电位分析与离子选择性电极
电位分析法(离子选择性电极)
参比电极 Ag/AgCl参比电极 电极套管 0.1mol/LNH4Cl溶液 溶液 透气膜
气敏氨电极结构示意图
以Ca 2+离子选择性电极为例
液膜 二癸基磷酸钙的苯基磷
酸二辛酯溶液
内 参 比 溶 液
Ca2+
| | | |
CaR | | | | | | ++++ +
Ca2+ 待 测 溶 液
++++++
X-
X-
带电荷流动载体膜作用示意图 X- 非响应离子 R 载体 CaR 离子型 缔合物
气敏电极
pH玻璃电极 玻璃电极
电位分析法
RT aM,内 RT aM,外 膜电位的产生ln 若敏感膜仅对阳离子 n+有选 若敏感膜仅对阳离子M ln E道 ,内 = k 2 + E道 ,外 = k1 + nF 择性相应 a′ ,内 nF a′ ,外 M M
E道内 E扩内 E扩外 E道外 内参 比溶 液
a内 a内/
待测 溶液 膜
a外/ a外
晶体膜电极 以F-选择性电极为例
内参比电极 Ag-AgCl
塑料管 内参比溶液 NaF-NaCl
RT EF = k − ln a F − 掺EuF 的LaF 单晶片 F F 电极电极结构示意图 = k − 0.059 lg a F −
2 3 −
流动载体电极: 流动载体电极:
• 其关键部分 是液体敏感 膜,它由三 部分组成: 部分组成: 载体 有机溶剂 惰性微孔膜。 惰性微孔膜。
RT aM,外 E膜 = E道 ,外 − E道 ,内 = ln nF aM,内
E膜 = k 3 +
《现代仪器分析》_第二版-刘约权-课后习题答案
现代仪器分析习题解答20xx年春第12章电位分析及离子选择性电极分析法P2161.什么是电位分析法?什么是离子选择性电极分析法?答:利用电极电位和溶液中某种离子的活度或浓度之间的关系来测定待测物质活度或浓度的电化学分析法称为电位分析法。
以离子选择性电极做指示电极的电位分析,称为离子选择性电极分析法。
2.何谓电位分析中的指示电极和参比电极?金属基电极和膜电极有何区别?答:电化学中把电位随溶液中待测离子活度或浓度变化而变化,并能反映出待测离子活度或浓度的电极称为指示电极。
电极电位恒定,不受溶液组成或电流流动方向变化影响的电极称为参比电极。
金属基电极的敏感膜是由离子交换型的刚性基质玻璃熔融烧制而成的。
膜电极的敏感膜一般是由在水中溶解度很小,且能导电的金属难溶盐经加压或拉制而成的单晶、多晶或混晶活性膜。
4. 何谓TISAB溶液?它有哪些作用?答:在测定溶液中加入大量的、对测定离子不干扰的惰性电解质及适量的pH缓冲剂和一定的掩蔽剂,构成总离子强度调节缓冲液(TISAB)。
其作用有:恒定离子强度、控制溶液pH、消除干扰离子影响、稳定液接电位。
5. 25℃时,用pH=4.00的标准缓冲溶液测得电池:“玻璃电极|H+(a=X mol?L-1)║饱和甘汞电极”的电动势为0.814V,那么在c(HAc)=1.00×10-3 mol?L-1的醋酸溶液中,此电池的电动势为多少?(KHAc=1.8×10-5,设aH+=[H+])解:∵E1=φ(+)--φ(-)=φ(+)-(K-0.0592pH1)E2=φ(+)--φ(-)=φ(+)-(K-0.0592pH2)∴E2- E1= E2-0.814=0.0592(pH2- pH1)∴E2=0.814+0.0592(-lg√Kc-4.00)=0.806(V)6.25℃时,用pH=5.21的标准缓冲溶液测得电池:“玻璃电极|H+(a=X mol?L-1)║饱和甘汞电极”的电动势为0.209V,若用四种试液分别代替标准缓冲溶液,测得电动势分别为①0.064V;②0.329V;③0.510V;④0.677V,试求各试液的pH和H+活度解:(1)ΔE1=0.064-0.209=0.0592(pH1-pHs)∵pHs=5.21∴pH1=2.76 aH+=1.74×10-3 mol?L-1(2)ΔE2=0.329-0.209=0.0592(pH2-pHs)∵pHs=5.21∴pH2=7.24 aH+=5.75×10-8 mol?L-1(3)ΔE3=0.510-0.209=0.0592(pH3-pHs)∵pHs=5.21∴pH3=10.29 aH+=5.10×10-11 mol?L-1(4)ΔE4=0.677-0.209=0.0592(pH4-pHs)∵pHs=5.21∴pH4=13.12 aH+=7.60×10-14 mol?L-17.25℃时,电池:“镁离子电极|Mg2+(a=1.8×10-3mol?L-1)║饱和甘汞电极”的电动势为0.411V,用含Mg2+试液代替已知溶液,测得电动势为0.439V,试求试液中的pMg值。
电位分析及离子选择性电极分析
高选择性,需要在pH5~7之间使用,
pH高时:溶液中的OH-与氟化镧晶体膜中的F-交换; pH较低时:溶液中的F -生成HF或HF2 - 。
电位分析及离子选择性电极分析
2.玻璃膜电极
非晶体膜电极,玻璃膜的组成不同可 制成对不同阳离子响应的玻璃电极。
(敏感膜)
内参比电极的电位值固定,且内充溶液中离 子的活度也一定,则膜电极电位为:
IS E 内 参 膜 kR ZlF T n M
电位分析及离子选择性电极分析
离子选择电极的电位
导线
对MZ+产生响应时,
电极腔体 内参比电极 内参比溶液
内k2R ZFTln 'M M((内 内 )) 外k1R ZFTln 'M M((外 外))
电位分析及离子选择性电极分析
玻璃膜电位:
将浸泡后的玻璃电极放入待测溶液,水合硅胶层表面与溶液
中的H+活度不同,形成活度差,H+由活度大的一方向活度小的一 方迁移, 平衡时:
H+溶液==
H+ 硅胶
E内 = k1 + 0.059 lg( a2 / a2’ )
E外 = k2 + 0.059 lg(a1 / a1’ )
由于玻璃膜内、外表面的性质基本相同, 则: k1=k2 , a’1 = a’2
电极电位与溶液中给定离子活度的对数 呈线性关系。
电位分析及离子选择性电极分析
一、电极的基本构造
电极腔体――玻璃或高分子聚 合物材料做成
内参比电极――通常为 Ag/AgCl电极
内参比溶液――由氯化物及响 应离子的强电解质溶液组成
第九章--电位分析法(2014)PPT课件
H水 合层 H溶 液
E内K内0.059lgaaHH内 内 参 水比 化溶 层液 E外K外0.059lgaaH H外 外 部 水溶 化液 层
.
13/6193
E内K内0.059lgaaHH内 内 参 水比 化溶 层液 E外K外0.059lgaaH H外 外 部 水溶 化液 层
同一玻璃电极,膜内外表面性质可以看成是相同 的,所以常数K内=K外;
属于非晶体膜电极。 最早使用的离子选择性电极。 核心部分是玻璃膜。
.
6/696
玻璃膜的不同组成可制成对不同 阳离子响应的玻璃电极。
pH玻璃膜电极的敏感膜是在SiO2 基质中加入Na2O、Li2O和CaO烧 结而成的特殊玻璃膜。厚度约为 100 mm左右。
原理:玻璃膜产生的膜电位与待 测溶液的pH值有关。
.
19/6199
3.3 pH值的测定
pHlogH[] pH loagH
饱和甘汞电极为参比电 极 , 玻 璃 电 极 作 为 H+ 活 度 指 示电极,两者插入溶液中组 成电池:
A A g ,0 . g 1 m C L 1 H ol 玻 lC 试 l 璃 K ( 饱 液 C ) 膜 ,H 2 C l 和 2 H g l
.
34/6394
二氧化碳气敏电极
电极浸入待测液,试液中 待测CO2通过透气膜扩散 ,直到透气膜内外CO2的 分压相等。
CO2引起的内电解质溶液 pH变化用pH玻璃电极指 示,由此测定试液中CO2 的浓度。
.
35/6395
气敏电极一览表:
.
36/6396
7. 酶电极
将 生物酶 涂剂:二癸基磷酸钙+苯基磷酸二辛酯溶液。
.
32/6392
第八章 电位分析法与离子选择性电极.
RT a a jj ln nF a a
a A p P b B q Q
R:气体常数 8.314 J· mol-1· K-1; n:参加反应的电子数;
F:法拉第常数 96485C/mol T:绝对温度,单位为K。
j:标准电极电位。 aA:A组分的活度,a=gC,g:活度系数
02:35:05
(2)阳离子干扰
Be2+、Al3+、Fe3+、Th4+、Zr4+能与F-生成稳定的配合物
Al 6F ( AlF 6)
3
3
消除方法:加柠檬酸钠、EDTA、钛铁试剂、磺基水杨酸等
02:35:05
(二)气敏电极:CO2气敏电极
1. 指示电极
pH玻璃电极
2. 中介液
0.0 1 mol/L NaHCO3
02:35:05
3. 工作原理
CO2 + H2O K1 H2CO3
a(H 2C O3 ) K1 a(H 2C O3 ) K 1p(C O2 ) p(C O2 )
a(HCO K a(H 2CO3 ) 3 )a( H ) K2 a(H ) 2 a(H 2CO3 ) a(HCO 3)
一、pH玻璃电极
<一>、构造
{
玻璃膜:22% Na2O,6%CaO,72% SiO2 内参比电极:Ag/AgCl 电极 内参比溶液:一定pH值的缓冲液
(内充溶液)
02:35:05
<二> 电极电位
pH玻璃电极使用前必须在水中浸泡24小时以上,
使玻璃膜表面形成水化层
H+(水相)+ Na+Gl-(玻璃相) Na+(水相)+ H +Gl-(玻璃相)
离子选择性电极介绍
硫化银电极可测定 Ag+,其电极电位可表达为
E k ln t
(1-8)
硫化银电极除了测定 Ag+以外,还可以测定 S2-。当电极与试液接触时,存在以下平衡
Ag2S ═ 2Ag+ + S2-
由于氟离子活度梯度存在而引起的扩散电位。这些值均与它们各自相关的氟离子活度有关。可
得到:
ln
(1-3)
式中,R 为气体常数;T 为热力学温度;F 为法拉第常数;, , 分别为膜外测和内测溶液 与膜接触的界面溶液中氟离子的活度。由于膜内测的 式固定不变的,式(1-3)可写为
ln Ⅰ
(1-4)
式中, 为与膜内测氟离子活度有关的常数; 即为试液中氟离子活度 。
5×10-7~1×10-1
Cl-
AgCl+Ag2S
5×10-5~1×10-1
5~6.5 2~12
Br-
AgBr+Ag2S
5×10-6~1×10-1
2~12
(1-10)
主要干扰离子 OH-
Br-,S2O32-,I-,CN-,S2S2O32-,I-,CN-,S2-
ICNAg+,S2Cu2+ Pb2+ Cd2+
近年来,离子选择性薄膜电极得到了极大的发展,一大批粒子选择性电极倍研制出来。按 照 IUPAC 推荐,以敏感膜材料为基础对离子选择性电极进行分类:
原电极是指敏感膜直接与试液接触的离子选择性电极。敏化离子选择性电极是以原电极为 基础,利用复合膜界面敏化反应的一类离子选择性电极。下面主要介绍晶体膜电极和刚性基质 电极。
电位分析及离子选择性电极分析法
第十二章
12.2 离子选择性电极 与膜电位
电位分析及离子选 12.3 离子选择性电极的
择性电极分析法
主要性能参数
12.4 离子选择性电极
的分析仪器
12.5 电位分析及离子
选择性电极分析
方法与应用
电位分析及离子
2021/3/6
选择性电极分析
法
1
12-1 概述
一、电位分析法 1.定义 利用电极的电极电位与待测试液中某种 离子的活度(或浓度)之间的关系,确定出 待测组分含量的电化学分析方法。
2021/3/6
电位分
析及离
子选择
性电极
分析法
10
2021/3/6
H+ + N电a位G分 I(固)
析及离
子选择
性电极
分析法
11
Na+ + HGI(固) (水合硅胶)
(4)玻璃膜电位的形成 玻璃电极在水溶液中浸泡,形成一个三
层结构,即中间的干玻璃层和两边的水化硅 胶层。
玻璃膜电位的产生是H+在玻璃内、外溶液和水化层 电位分
界间没有发生电子交换过程。表现为离子在 相界上的扩散。
2021/3/6
电位分
析及离
ห้องสมุดไป่ตู้
子选择
性电极
分析法
6
离子选择性电极(又称“膜电极”)组成: ★薄膜(敏感膜或传感膜)
—对特定离子有选择性响应。 ★内参比溶液
—含有与待测离子相同的离子 ★内参比电极
—Ag/AgCl电极。
2021/3/6
电位分
析及离
子选择
ln
α2 α 2
外
k2
氟离子选择性电极
六、数据记录及处理
1.记录E,在坐标纸上绘制E-pcF曲线。 2.查出未知试样溶液中氟离子浓度[F -],由下
式计算饮用水中氟含量: WF=[F-]×100/50.0×MF×1000 式中WF为每升饮用水样中氟的毫克数,MF为 氟的原子量。
E
氟 电 极 SCE
K
2.303 RT F
lgF
K
2.303 RT ZF
lg
cx
K
2.303 RT ZF
lg
2.303 RT ZF
lg cF
K
'0.059
pc F
E
K '0.059
pc F
E(mV) 300
250
Ex
200
150
100
50 2
pcx
五、实验步骤
1.将氟电极和甘汞电极接好,开通电源,预热 2.清洗电极:取去离子水50~60mL至100mL的烧杯中,放入
搅拌磁子,开启搅拌器,直到读数大于规定值。 3.标准曲线法 (1)系列标准溶液的配制: 准确移取10.00 mL 0.100 mol·L-1
氟化钠标准溶液于100 mL容量瓶中,加入10.0mL TISAB溶液。用去离子水稀释至刻度,摇匀。逐级稀 释10-2 mol·L-1,10-3 mol·L-1,10-4 mol·L-1,10-5 mol·L-1,10-6 mol·L-1的标准溶液。稀释时只需9.0 mL TISAB (2)标准曲线的绘制:由稀到浓的顺序测定。 (3)水样的测定:用移液管移取50.0mL置于100mL干的容量 瓶中,加入TISAB溶液10.0 mL,用去离子水稀释至刻度。 清洗氟电极,使其在纯水中测得的毫伏数大于空白值。再测未知水样。
电位分析法2_膜电极
电位分析法(二)三、离子选择电极(Membrane potential and ISE)和膜电位1. 膜电位及其产生膜电极(Membrane potential and ISE),具有敏感膜且能产生膜电位的电极。
膜电位产生于被分隔两边不同成分的溶液,测量体系为:参比电极1|溶液1|膜|溶液2|参比电极2膜电极特点:仅对溶液中特定离子有选择性响应(离子选择性电极)。
膜电极的关键:选择膜的敏感元件。
敏感元件构成:特殊组分的玻璃、单晶、混晶、液膜、高分子功能膜及生物膜等。
膜电极组成的半电池,没有电极反应;相界间没有发生电子交换过程。
表现为离子在相界上的扩散,造成双电层存在,产生界面电位差。
该类主指离子选择性电极。
•膜电位: = 膜内扩散电位和膜与电解质溶液形成的内外界面的Donnan电位的代数和。
膜电位=扩散电位(膜内) + Donnan电位(膜与溶液之间)(1)扩散电位:液液界面或固体膜内,因不同离子之间或离子相同而浓度不同而发生扩散即扩散电位。
其中,液液界面之间产生的扩散电位也叫液接电位。
特点:这类扩散是自由扩散,正负离子可自由通过界面,没有强制性和选择性。
(2)Donnan电位:选择性渗透膜或离子交换膜,它至少阻止一种离子从一个液相扩散至另一液相或与溶液中的离子发生交换。
这样将使两相界面之间电荷分布不均匀——形成双电层——产生电位差——Donnan 电位。
这类扩散具强制性和选择性。
2. 离子选择性电极ISE 原电极晶体膜均相膜如F-,Cl-,Cu2+非均相膜如硅橡胶膜非晶体膜刚性基质如PH,PNa流动载体带正电荷如NO3-,ClO4-,BF4-带负电荷如Ca2+, Mg2+中性如K+敏化电极气敏电极如CO2, NH4+电极生物电极如酶电极,生物组织电极1)玻璃膜电极玻璃电极构成:是一种特定配方的玻璃吹制成球状的膜电极,这种玻璃的结构为三维固体结构,网格由带有负电性的硅酸根骨架构成,Na+可以在网格中移动或者被其他离子所交换,而带有负电性的硅酸根骨架对H+有较强的选择性。
第12章 电位分析法
RT a( 2) ED E1 E2 ln zF a(1)
负离子扩散:
RT a( 2) ED E1 E2 ln zF a(1)
三、膜电位 由于带电粒子(如离子、电子、双极 分子等)在两相中的不均匀分布在界面上形成的 电位差,称为膜电位。
若膜仅对M+选择性响应,则
第12章 电位分析法
Potentiometric analysis
概述 §12-1 §12-2 §12-3 §12-4 §12-5 §12-6 §12-7
金属基指示电极 膜电位与离子选择电极 离子选择电极的类型及响应机理 离子选择电极的性能参数 定量分析方法 离子选择电极的特点及应用 电位滴定
概述
IUPAC的定义 静态响应时间:离子选择电极与参比电极 一起从接触试液开始到电池电动势达到稳定值 (变化<1mV)所需的时间。
§12-5 定量分析方法
一、参比电极
对参比电极的要求要: 可逆性 有电流流过(μ A)时,反转变号时,电位基 本上保持不变。 重现性 溶液的浓度和温度改变时,按Nernst 响应, 无滞后现象。 稳定性 测量中电位保持恒定、并具有长的使用寿命。 例: 甘汞电极(SCE),银-氯化银电极等。
O
O
O
O
O
二甲基-二苯并30-冠醚-10
四、气敏电极(sensor)
气敏电极端部装有透 气膜,气体可通过它进人管内。 管内插入pH玻璃复合电极,复 合电极是将外多比电极(Ag/ AgCI)绕在电极周围。管中充 有电解液,也称中介液。试样 中的气体通过透气膜进入中介 液,引起电解液中离子活度的 变化,这种变化由复合电极进 行检测。 如 CO2气敏电极,用 PH玻璃电极作为指示电极,中 介液为0.01mol/L的碳酸氢钠。 二氧化碳与水作用生成碳酸, 从而影响碳酸氢钠的电离平衡 来指示CO2 。
电位分析法
内、外参比电极的电位值固定,且内充溶液中离子的活度 也一定,则电池电动势为:
RT EK ln ai nF
离子选择性电极的类型和结构
1976年IUPAC基于膜的特征,推荐将其分为以下几类
离子选择性电极(又称膜电极)
注意:离子活度系数保持不变时,膜电位才与log ci
呈线性关系。
总离子强度调节缓冲溶液简称TISAB
TISAB的作用:
①保持较大且相对稳定的离子强度,使活度系数恒定; ②维持溶液在适宜的pH范围内,满足离子电极的要求; ③掩蔽干扰离子。 典型组成(测F-): 1mol/L的NaCl,使溶液保持较大稳定的离子强度; 0.25mol/LHAc和0.75mol/LNaAc, 使溶液pH在5左右; 0.001mol/L的柠檬酸钠, 掩蔽Fe3+、Al3+等干扰离子。
公式使用时注意:对阳
离子,△E不变;对阴离子,△E
前加负号或取△E的绝对值。
优点:
(1)无须绘制标准曲线
(仅需一种浓度标液) (2)无需配制或添加 TISAB (3)操作步骤简单、快 速
3、直读法--pH测定原理与方法 ⑴ 直读法:对于被测溶液中
的某种成分能够在仪器上直接读 出其浓度的方法称为直读法。如 在pH计或pNa计上就能测定pH值
影响电位测定准确性的因素
(1) 测量温度:影响主要表现在对电极的标准电极电位、 直线的斜率和离子活度的影响上。 仪器可对前两项进行校正,但多数仅校正斜率。 温度的波动可以使离子活度变化,在测量过程中应尽量 保持温度恒定。 (2) 线性范围和电位平衡时间:一般线性范围在10-1~10-6 mol / L;平衡时间越短越好。测量时可通过搅拌使待测离子 快速扩散到电极敏感膜,以缩短平衡时间。 测量不同浓度试液时,应由低到高测量。
仪器分析电位分析2
Ag, AgCl | HCl | 玻璃膜 | 试液溶液 KCl(饱和) | Hg2Cl2, Hg
2.303RT E K pH , F 25 C : E K 0.0592pH
式中常数 K´包括: E外参比 、E内参比、 E不对称、E液接
12
(3)比较法确定待测溶液的pH: 标准校正法测定溶液的pH
19
总离子强度调节缓冲溶液 总离子强度调节缓冲液
(Totle Ionic Strength Adjustment Buffer,TISAB)
TISAB的作用:
①保持较大且稳定的离子强度,使活度系数恒定;
②维持溶液适宜的pH范围,满足电极和离子的要求;
③掩蔽干扰离子。 例如: 测定F-时的TISAB的组成与作用: NaCl,使溶液保持较大稳定的离子强度; HAc-NaAc, 使溶液pH在5-6; 柠檬酸钠, 掩蔽Fe3+、Al3+等干扰离子。
15
2.标准曲线法:
E
2.303 RT E K lg ai nF
2.303 RT 令:S ,则 nF E k’Slga i
用测定离子的纯物质 配制一系列不同浓度的 标准溶液,分别测定各 溶液的电动势,并绘制 E – lgai(或lgci ) 关系曲线,即标准曲线。 根据未知试液的电动 势值,可在标准曲线上 求得对应的活度或浓度。 16
(9-21) (9-22)
5
§8-5
离子选择电极的选择性
阳离子电极,取“+”; 阴离子的电极,取“-”。
一.有干扰离子时的膜电位
RT E膜 K ln a nF
共存的其它离子对膜 电位的产生有贡献吗?
式中:测定离子为i,电荷为ni;干扰离子为j,电荷为nj。
2.离子选择性电极分类及原理解析
1.晶体膜电极(氟电极)
结构:右图
敏感膜:(氟化镧单晶)
掺有EuF2 的LaF3单晶切片;
内参比电极:Ag-AgCl电极(管 内 )。 内参比溶液:0.1mol/L的NaCl和0.1mol/L的NaF混合溶液(F-用 来控制膜内表面的电位,Cl-用以固定内参比电极的电位)。
原理:
LaF3的晶格中有空穴,在晶格上的F-可以移 入晶格邻近的空穴而导电。离子的大小、形状 和电荷决定其是否能够进入晶体膜内。
当氟电极插入到F-溶液中时,F-在晶体膜 表面进行交换。25℃时:
RT lna F =K - 0.059 lgaF- = K + 0.059 pF E膜 = K nF
具有较高的选择性,需要在pH5~6之间使 用。 pH高时,溶液中的OH-与氟化镧晶体膜中 的F-交换。 pH较低时,溶液中的F -生成HF。
lg ci E
E E
nF
lnai
2、标准加入法
设某一试液体积为V0,其待测离子的浓度为cx, 往试
液中准确加入一小体积Vs(大约为V0的1/100)的用待测
离子的纯物质配制的标准溶液, 浓度为Cs(约为Cx的100 倍)。由于V0>>Vs,可认为溶液体积基本不变。则: 浓度增量为:⊿c = Cs Vs / V0
2.303 RT E1 K lg( xi i c x ) nF
2.303 RT E2 K lg( x2 2 c x x2 2 c) nF
可以认为γ 2≈γ 1,χ 2≈χ 1。则:
2.303 RT c E E2 E1 lg(1 ) nF cx
2.303 RT 令:S ; nF c 则: E S lg(1 ) cx c x c(10 E / s 1) 1
电位分析法离子选择性电极的选择性
2. 标准加入法
标准曲线法要求标准溶液与待测溶液具有相近的离子强 度和组成,否则将会因活度系数变化而引起误差。而标准 加入法则在一定程度上减免这一误差的产生。
设:未知液中待测离子浓度为cx,溶液体积为V0,测得电动 势为E1,则
E1
K '
2.303RT nF
lg(x1 1cx )
x1为游离的离子的摩尔分数。
EM
K
2.303RT nF
lg[ ai
K i, j(a j )ni
nj ]
式中第二项对阳离子为正号;对阴离子为负号。
离子选择性系数Ki,j的物理意义:
1.它是在其他相同条件下,同时提供相同的电位时的欲测 离子活度ai与干扰离子活度aj的比值:
Ki, j ai (a j )ni n j
Ki,j愈小,说明j离子的干扰愈小,即此电极对欲测离子的 选择性愈好。 Ki,j愈小愈好。 2. Ki,j值并非一真实的常数,其值与i和j例子的活度和实 验条件等有关,所以不能直接利用Ki,j的文献值作为分析 测定时的干扰校正。但可作为判断离子选择性电极在已 知杂质存在下时的干扰程度的一个指标,对拟定有关分 析方法时起参考作用。
E
K
2.303RT F
lg
a F
对各种离子选择性电极:
E电极
K
RT nF
ln
a离子
1.标准曲线法
配制出与试样组成相似的标准 溶液来制作标准曲线。即将离子 选择性电极与参比电极插入一系 列活(浓)度已知的标准溶液并测 定相应的电动势
注意:离子活度系数保持不变时, 膜电位才与log ci呈线性关系。-------------恒定背景法
相对误差的计算:
根据Ki,j的定义,利用下式可以估量在测定中的误差:
电位分析及离子选择电极
如H+,Na+,K+,Li+,Ag+离子响应电极(p139)。其中H+离子响 应电极(即pH玻璃电极)被最早最广泛应用。下面以pH玻璃 电极为例,详细阐述玻璃电极的工作原理。
18:14:39
pH玻璃电极
H+响应的玻璃膜电极:内充0.1mol/LHCl 溶液,敏感膜厚度约为0.10mm。
玻璃膜内、外表面的性质基本相同,则k外=k内 , a’1 = a’2
E 18:14:39
膜
=
E外
-
E内
=
0.059
lg(
a1
/
a2)
玻璃电极电位
作为玻璃电极的整体,玻璃电极的电位应包括内参比电极 的电位,即
E玻 = E内参比 + E膜 于是 E玻 = E内参比 + 0.059v lg( a1 / a2)
敏化电极(sensitized electrodes) 气敏电极:如氨电极 酶电极:如尿素电极
18:14:39
1.非晶体膜电极(玻璃电极)
玻璃膜电极,它的核心部分是玻璃 膜,是在SiO2基质中加入Na2O和少量 CaO烧制而成,膜厚0.5mm,呈球泡型。 球泡内充注内参比溶液(含有与待测离 子相同的离子),再插入一根AgCl-Ag电 极作内参比电极。
18:14:39
18:14:39
18:14:39
一、电位分析原理
principle of potentiometry analysis
电位分析是通过在零电流条件下测 定两电极间的电位差(电池电动势)所 进行的分析测定。
E 电池= E + - E 装置:参比电极、指示电极、电位
电位及离子选择性电极法
在于将膜电位引出。
ISE法的特点:
①选择性好,多数情况下共存离子的干扰小, 不需复杂处理待测液即可直接测定 ②灵敏度高。可达10-5- 10-8 mmol/L. ③实际测定的是溶液中离子活度,这是生物 学中一个重要的物理量。 ④溶血、脂血及黄疸不影响测定。 ⑤设备简单,分析速度快,易于自动化。 ⑥标本用量少而且应用广。
⑤NaN3可明显干扰Cl的测定。
电解质检测中各项的意义:
血清钾:3.5-5.5 mmol/L • 钾在参与蛋白质和糖的代谢,维持心肌和神经肌肉正常的应激性,维持酸碱
平衡等方面起重要作用。 降低: ①钾的摄入不足。 ②钾的过度丢失。如严重的呕吐、腹泻及胃肠引流、肾脏疾病(肾衰多尿期)等。 ③钾的细胞内转移。如家族性周期性四肢麻痹、肌无力症、给予大量葡萄糖等。 ④肾上腺皮质功能亢进。如醛固酮增多症。 ⑤碱中毒。 ⑥药物作用:a.长期使用大量肾上腺皮质激素,如可的松、地塞米松等;b.使用
降低 ①丢失过多。如严重呕吐和腹泻;大量使用利尿等 ②钠的摄入量不足。如饥饿、营养不良、低盐疗法等。 ③酸中毒 。
增高 ①肾上腺皮质功能亢进症。如柯兴综合征、原发性醛固酮增多症。 ②高渗性脱水症。 ③钠进量过多。如注射高渗盐水或进食过量钠盐,且伴有肾功能失常时。 ④潴钠性水肿。常见于心脏病、心力衰竭、肝硬化、肾病等。
和待测液(Es),根据以下公式计算:
Ex –Es = K 2.303RT
nF
lg a i
3. 标准加入法:适用于体系复杂,且与标准液浓度有较大
差异的待测液。先测定体积为Vx、浓度为Cx的待测液电动
势E,然后在此溶液中加入体积为Vs的标准液,测量电动势
电位分析法3-6
线性范围和电位平衡时间
一般线性范围在10-1~10-6mol / L,平衡时间越短越好。 测量时可通过搅拌使待测离子快速扩散到电极敏感膜,以 缩短平衡时间。测量不同浓度试液时,应由低到高测量。
式中pHs已知,实验测出Es和Ex后,即可计算出试液的pHx 。IUPAC推 荐上式作为pH的实用定义,通常也称为pH标度。使用时,尽量使温度保持 恒定并选用与待测溶液pH接近的标准缓冲溶液,减小测定误差。
pH基准缓冲溶液的pHs值
温度 t ℃ 10 15 20 25 30 35 40 0.05M 草 酸 25 ℃ 饱 和 0.05M 邻 0.01mol/ 三氢钾 酒石酸氢钾 苯二甲酸氢 L 钾 硼 砂 1.671 3.996 9.330 1.673 3.996 9.276 1.676 3.998 9.226 1.680 3.559 4.003 9.182 1.684 3.551 4.010 9.142 1.688 3.547 4.019 9.105 1.694 3.547 4.029 9.072 25℃ Ca(OH)2 13.011 12.820 12.637 12.460 12.292 12.130 11.975
11:29:52
三、标准加入法——测定金属离子总浓度
设某一试液体积为V0,其待测离子的浓度为cx,测定的工作电池电 动势为E1,则:
2.303RT E1 K lg(xi i c x ) nF
式中:χ i为游离态待测离子占总浓度的分数;γ i是活度系数;cx是待测 离子的总浓度。 往试液中准确加入一小体积Vs(大约为Vo的1/100)的用待测离子的纯 物质配制的标准溶液, 浓度为Cs(约为cx的100倍)。由于V0>Vs,可认为溶 液体积基本不变。浓度增量为: ⊿c = cs Vs / V 0 再次测定工作电池的电动势为E2:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特点: a) 制作简单、应用广泛; b) 使用温度较低(<40oC)。但受温度影响较
大。(当T从20oC~25oC时,饱和甘汞电极
电位从0.2479V~2444V, E=0.0035 V);
c) 当温度改变时,电极电位平衡时间较长; d) Hg(II)可与一些离子产生反应。
阻抗高、电流小、KCl渗漏少 适宜于水溶剂
E)以pM-aMn+作图,所得斜率与理论值(-0.059/n)相差很大、且难以
预测;
较常用的金属基电极有:Ag/Ag+、Hg/Hg22+(中性溶液);Cu/Cu2+、 Zn/Zn2+、Cd/Cd2+、Bi/Bi3+、Tl/Tl+、Pb/Pb2+(溶液要作脱气处理)。
2. 第二类电极:亦称金属-难溶盐电极(M MXn)
其它参比电极来代替。
一、甘汞电极(Calomel electrode)
定 义:甘汞电极由汞、Hg2Cl2和已知浓度(0.1, 3.5, 4.6M)的KCl溶液组成。
电极组成:Hg Hg2Cl2,KCl(xM) ; 如下图所示。
电极反应:Hg2Cl2(s) + 2e == 2Hg(l) + 2Cl-
电极电位:
电位滴定法:向试液中滴加可与被测物发生氧化还原反 应的试剂,以电极电位的变化来确定滴定终点,根据滴定 试剂的消耗量间接计算待测物含量的方法。
11.1 参比电极及其构成
定义:与被测物质无关、电位已知且稳定,提供测量电位参考的电极,称为参
比电极。前述标准氢电极可用作测量标准电极电位的参比电极。但因该
种电极制作麻烦、使用过程中要使用氢气,因此,在实际测量中,常用
校正曲线、选择性系数、响应时间、内阻
11.5 电位分析
电位分析(包括电位测量误差、pH测量)、电位滴定(终点确定方法)
电位分析: 通常是由指示电极、参比电极和待测溶液构成原电池,
直接测量电池电动势并利用Nernst公式来确定物质含量的方 法。 分类:
直接电位法:测定原电池的电动势或电极电位,利用 Nernst方程直接求出待测物质含量的方法。
0
0.059 2
lg
aHg22 aH2 g
0
0.059 2
lg
aHg22
0
0.059 lg
K sp,Hg2Cl2
(
a Cl
)2
' 0
0.059 lg
aCl
可见,电极电位与Cl-的活度或浓度有关。当Cl-浓度不同时,可得到具有不
同电极电位的参比电极。(注意:饱和甘汞电极指 KCl 浓度为4.6M)
第11章 电位分析与离子选择性电极
11.1 参比电极及其构成
甘汞电极和Ag/AgCl电极
11.2 指示电极——金属指示电极
第一、二、三及零类电极
11.3 膜电位与离子选择性电极
膜电位及其产生、离子选择性电极分类、离子选择性电极各论(玻璃膜电 极、晶体膜电极、载体电极、气敏电极、生物电极、场效应管)
11.4 离子选择性电极性能参数
电极电位:
oMn / M
0.0592 z lg aM n
要 求:0(Mn+/M)> 0, 如Cu, Ag, Hg 等;其它元素,如Zn, Cd, In, Tl,
Sn, 虽然它们的电极电位较负,因氢在这些电极上的超电位
较大,仍可做一些金属离子的指示电极。
特 点:
因下列原因,此类电极用作指示电极并不广泛。 A)选择性差,既对本身阳离子响应,亦对其它阳离子响应; B)许多这类电极只能在碱性或中性溶液中使用,因为酸可使其溶解; C)电极易被氧化,使用时必须同时对溶液作脱气处理; D)一些“硬”金属,如Fe, Cr, Co, Ni。其电极电位的重现性差;
但该类电极最为重要的应用是作参比电极。
3. 第三类电极:M (MX+NX+N+)
其中MX,NX是难溶化合物或难离解配合物。举例如下。
• Ag/Ag2C2O4,CaC2O4,Ca2+
电极反应:Ag2C2O4+2e==2Ag+ + C2O42-
电极电位:
0
0.0592 z
lg aAg
因为: a [ K a ] Ag
11.2 金属指示电极及其构成
指示电极:电极电位随被测电活性物质活度变化的电极。
一、金属基电极:
以金属为基体,共同特点是电极上有电子交换发生的氧化还原反
应。可分为以下四种:
1. 第一类电极(Electrode of the first kind):亦称金属基电极(M Mn+)
电极反应: M n ne M
1 sp ,Ag2C2O4 2
c2O42
aC 2O42
K sp ,CaC2O4 aCa 2
代入前式得:
0
0.0592 lg K sp,Ag2C2O4
2
K sp ,CaC2O4
0.0592 2
lg
aCa 2
简化上式得:
0'
溶液的污染或因外部溶液与Ag+、Hg2+发生反应而造成液接面的堵
塞,尤其是后者,可能是测量误差的主要来源); 2)上述试液污染有时是不可避免的,但通常对测定影响较小。但如果
用此类参比电极测量K+、Cl-、Ag+、Hg2+ 时,其测量误差可能会
较大。这时可用盐桥(不含干扰离子的KNO3或Na2SO4)来克服。
阻抗小、有渗漏、接触好 适宜非水溶液及粘稠液
二、Ag/AgCl电极
定 义:该参比电极由插入用AgCl 饱和的一定浓度(3.5M或饱和KCl溶
液)的 KCl 溶液中构成。
电极组成:Ag AgCl,(xM)KCl
电极反应:AgCl + e == Ag + Cl-
电极电位:
o Ag / Ag
0.059lg
电极反应:MX n ne M n nX
电极电位:
0
0.0592 z
lg
aM n aM
0
0.0592 z
lg
aM n
0
0.0592 z
lg
K sp ,MXn ( aX )n
此类电极可作为一些与电极离子产生难溶盐或稳定配合物的阴离
子的指示电极; 如对Cl-响应的Ag/AgCl和Hg/Hg2Cl2电极,对Y4-响应的 Hg/HgY(可在待测EDTA试液中加入少量HgY)电极。
aCl
构 成:同甘汞电极,只是将甘汞电极内管中的(Hg,Hg2Cl2+饱和KCl)
可在高于60oC的温度下使用;
b) 较少与其它离子反应(但可与蛋白质作用并导致与待测物界面的堵塞)
三、参比电极使用注意事项 1)电极内部溶液的液面应始终高于试样溶液液面!(防止试样对内部