风力发电发展现状及预测
世界风力发电现状与前景预测
世界风力发电现状与前景预测一、本文概述随着全球能源结构的转型和环境保护意识的提升,风力发电作为一种清洁、可再生的能源形式,正在全球范围内得到越来越广泛的应用。
本文旨在全面概述世界风力发电的现状,包括装机容量、技术进步、政策支持等方面,并分析其面临的挑战与机遇。
结合全球能源需求、技术发展趋势以及政策环境等因素,对风力发电的前景进行预测,以期为全球风能产业的持续发展提供有益的参考。
本文将首先回顾世界风力发电的发展历程,分析其装机容量的增长趋势和技术进步的主要表现。
在此基础上,探讨各国在风力发电领域的政策支持情况,包括补贴政策、税收优惠、市场准入等方面。
接着,分析风力发电在全球范围内面临的挑战,如电网接入问题、设备制造成本、环境影响等。
也将关注风力发电在应对气候变化、促进能源安全等方面的积极作用。
本文将结合全球能源需求增长、技术进步和政策环境等因素,对风力发电的未来前景进行预测。
通过对风能资源潜力的评估、技术创新方向的分析以及政策环境变化的预测,展望世界风力发电在未来的发展趋势和可能面临的挑战。
通过本文的论述,希望能为关注风能产业发展的读者提供全面、深入的信息和有益的思考。
二、全球风力发电现状在全球范围内,风力发电已经成为了一种重要的可再生能源。
随着科技的不断进步和环保理念的日益深入人心,风力发电在全球范围内得到了广泛的关注和应用。
目前,全球风力发电的装机容量已经超过了亿千瓦,年发电量占全球总发电量的比重也在逐年上升。
欧洲是全球风力发电最为发达的地区之一,其中德国、西班牙、荷兰等国家的风力发电装机容量和发电量均居世界前列。
亚洲地区也在近年来大力发展风力发电,中国、印度、韩国等国家的风力发电装机容量和发电量均呈现出快速增长的态势。
北美、南美、非洲等地区也在积极推进风力发电项目,全球风力发电市场的竞争日益激烈。
在技术方面,风力发电技术也在不断进步。
风力发电机组的单机容量不断增大,效率不断提高,成本不断降低。
《2024年多时空尺度的风力发电预测方法综述》范文
《多时空尺度的风力发电预测方法综述》篇一一、引言随着全球能源结构的转型,风力发电作为清洁可再生能源的代表,正逐渐成为能源领域的研究热点。
然而,风力发电的间歇性和不确定性给电力系统的稳定运行带来了挑战。
因此,对风力发电进行准确预测,尤其是在多时空尺度下的预测,对于提高电力系统运行效率和稳定性具有重要意义。
本文将对多时空尺度的风力发电预测方法进行综述,分析其研究现状、方法、挑战及未来发展趋势。
二、风力发电预测的研究现状风力发电预测经历了从单一尺度到多时空尺度的演变。
在单一尺度下,主要关注的是短期内的风速和功率预测。
随着研究的深入,学者们开始关注多时空尺度的预测,包括超短期、短期、中期和长期等多个时间尺度的预测。
此外,空间尺度的扩展也使得区域性乃至全球性的风力发电预测成为可能。
三、多时空尺度的风力发电预测方法(一)超短期预测超短期预测主要关注未来几分钟至几小时的风速和功率变化。
常用的方法包括基于物理模型的方法、基于统计学习的方法和基于机器学习的方法。
其中,机器学习方法在处理非线性、复杂的风速变化方面具有较大优势。
(二)短期预测短期预测主要关注未来数天的风速和功率变化。
在短期预测中,常用的方法包括时间序列分析、卡尔曼滤波等。
此外,结合气象预报信息,可以提高短期预测的准确性。
(三)中期和长期预测中期和长期预测主要关注季节性或年际尺度的风速和功率变化。
这些预测方法通常需要结合气候学、大气环流模型等知识,以及大量的历史数据进行分析。
(四)空间尺度扩展在空间尺度上,多时空尺度的风力发电预测需要考虑到地理位置、地形、气候等多种因素的影响。
因此,需要将地理信息系统(GIS)技术与风力发电预测方法相结合,实现区域性乃至全球性的风力发电预测。
四、挑战与未来发展尽管多时空尺度的风力发电预测方法取得了一定的研究成果,但仍面临诸多挑战。
首先,风速和功率的预测精度仍有待提高,特别是在极端天气条件下的预测。
其次,多时空尺度的预测需要处理大量的数据和信息,对计算能力和算法的要求较高。
浅谈风力发电的现状及前景
浅谈风力发电的现状及前景1. 引言1.1 介绍风力发电的背景意义1. 可再生能源:风力发电是一种可再生能源,通过利用风能来产生电力,可以有效地减少对有限资源的消耗,实现能源可持续利用。
2. 环保节能:风力发电不会产生二氧化碳等温室气体和污染物,是一种清洁、环保的能源形式,有助于改善空气质量,减少能源消耗。
3. 节约资源:利用风力发电可以减少对煤炭、天然气等非可再生能源的需求,有助于保护地球资源,降低能源的开采和开发成本。
4. 促进经济发展:发展风力发电产业可以刺激相关技术的进步和创新,带动就业增长,提高国家的能源安全和经济竞争力。
1.2 概述本文要讨论的内容本文主要讨论风力发电的现状及前景。
首先将介绍风力发电的发展历史,探讨其技术原理,并分析当前面临的主要问题。
随后将展望风力发电的未来发展前景,并探讨其在可再生能源中的地位。
最后对风力发电的现状进行总结,展望未来,并得出结论。
通过全面分析和探讨,可以更好地了解风力发电在能源领域中的地位和作用,为推动可持续发展提供参考。
2. 正文2.1 风力发电的发展历史风力发电的发展历史可以追溯到古代的帆船和风车。
帆船利用风力推动船只航行,风车则利用风力磨谷物或提水灌溉农田。
在18世纪末至19世纪初,随着工业革命的兴起,风力发电开始被用于发电。
最早的风力发电机是由丹麦物理学家和发明家皮特·鲁格特发明的,他于1891年建造了世界上第一个风力发电机。
20世纪初,风力发电开始在欧洲和美国得到广泛应用。
随着技术的不断进步和对可再生能源的需求增加,风力发电逐渐成为一种重要的清洁能源。
在20世纪末和21世纪初,随着风力发电技术的成熟和成本的降低,风力发电迅速发展。
目前,全球各国都在加大对风力发电的投资和推广,特别是在欧洲、中国和美国等国家和地区。
随着技术的不断创新和发展,风力发电系统的效率和稳定性不断提高,成本不断降低,风力发电正在成为一种可持续发展的清洁能源,为人类应对气候变化和能源安全提供了重要的支持。
国内外风电技术现状与发展趋势
国内外风电技术现状与发展趋势随着环境保护和能源可持续发展的重要性日益凸显,风电作为清洁、可再生的能源,正越来越受到全球的。
本文将概述国内外风电技术的现状,并探讨其发展趋势。
根据风力发电机的设计与结构,可分为水平轴风力发电机和垂直轴风力发电机两大类。
其中,水平轴风力发电机具有转速高、功率大、适用范围广等特点,但同时也具有较高的噪音和涡流损耗。
而垂直轴风力发电机则具有低速、高效、可靠等优点,适用于风能资源不丰富的地区。
风力发电机在国内外得到了广泛应用。
在欧洲、美国和印度等国家和地区,风力发电已成为重要的能源供应来源。
而在中国,风电项目更是得到了大力发展和推广,成为全球最大的风电市场。
随着全球对可再生能源需求的增加,风电市场的前景十分广阔。
根据国际能源署的预测,到2030年,全球风电装机容量将达到6600吉瓦,到2050年将达到14?吉瓦。
因此,风电技术的发展将拥有巨大的市场潜力。
各国政府对风电技术的发展都给予了极大的支持。
在中国,风电被列为国家战略性新兴产业之一,政府通过提供财政补贴、税收优惠等政策予以大力推动。
在欧洲,各国政府也制定了相应的政策来促进风电技术的发展和应用。
随着科技的不断进步,风电技术也将迎来更多的技术突破。
例如,大型化风机、超高塔筒、长叶片等技术的出现,使得风电发电效率得到了显著提升。
智能化的风电场管理技术也将得到进一步发展,从而提高风电场的运营效率和安全性。
作为中国最大的风电运营商之一,龙源电力集团在风电技术方面不断取得突破。
通过引进和消化国际先进的风电技术,龙源电力集团已经成功建设了多个大型风电场,并在风能资源的评估、风电场设计、风机选型和施工建设等方面积累了丰富经验。
作为全球领先的风电设备制造商,维斯塔斯风能公司在风电技术的研发和应用方面具有较高声誉。
该公司致力于不断推陈出新,通过技术创新提高风电发电效率。
例如,其最新一代的超级长叶片风机,能够显著提高风能的捕获和转化率,为全球风电市场的发展做出了积极贡献。
风电功率预测的发展现状与展望
风电功率预测的发展现状与展望近年来,随着可再生能源的快速发展,风能作为其中的重要一环,得到了广泛应用和推广。
然而,风能的不稳定性和波动性给电网的稳定性和可靠性带来了一定的挑战。
因此,准确预测风电功率具有重要意义,能够更好地实现对电网的可控性和可预测性,提高风电的利用率。
本文将对风电功率预测的发展现状进行探讨,并展望未来的发展趋势。
一、风电功率预测的背景和意义风能是一种无限可再生的能源,具有环保、低碳等特点,是未来能源结构转型的重要动力。
然而,风电的波动性和不稳定性使得其在电网中的接入存在一定的困难。
为更好地调控电网供电,提前做好风电功率的预测是十分必要的。
准确的风电功率预测对于减少调峰排备燃煤机组的使用、提高电网运行的灵活性以及降低电网的运营成本等方面有着重要意义。
目前,风电功率预测主要分为基于物理模型和基于统计模型的两种方法。
基于物理模型的预测方法是根据风机及其周围环境、地形、风速等基本物理规律建立的模型,并利用该模型对未来风能的产生进行估计。
这种方法通常需要大量的实时数据来进行建模,具有较高的精度。
而基于统计模型的预测方法,则是通过历史数据分析来找出相应的规律,通过对历史数据进行回归分析等统计方法来预测未来的风电功率。
这种方法的优势在于简单易行,且能够针对不同的风电场进行一致性的预测。
二、发展现状目前,风电功率预测在实际应用中已取得了一定的成果。
在基于物理模型的预测方法中,研究人员通过对风机理论和风场的物理特性进行深入研究,建立了一系列的数学模型和物理模型。
这些模型能够根据实时的风速、风向、气象条件等数据,对未来的风电功率进行准确预测。
同时,基于统计模型的预测方法也在实际中得到了广泛应用。
研究人员通过对历史数据进行回归分析、时间序列分析等统计方法,提出了多种预测模型,如ARIMA模型、BP神经网络模型等,实现了风电功率的预测。
然而,当前面临的挑战仍然不容忽视。
一方面,风电场的分布区域差异较大,不同区域的气象条件、地理环境等因素对于风电功率的影响也不尽相同,因此预测模型的适用性和实用性仍需进一步改善。
国内外风力发电发展现状及趋势
英国 目前英国有 600MW 的陆上风电招标项目正在规划之中,第一轮海上风电建
设项目总装机容量将达 1500MW,而第二轮更将高达 7000MW。预计英国将成 为继德国和西班牙之后欧洲第三大风电市场。
2003 年美国风力发电发展迅速,新增装机 169 万千瓦,累计装机 636 万千 瓦。过去 5 年来,美国风电年均增速达 24%,目前有超过 27 个州有风电场建成。
美国是全球最重要的风电市场之一,虽然政府政策方面的不延续性和不稳定 性使得风电的发展充满了不确定性,但仍存在着有利于风电发展的积极因素。 西班牙
浙江省风力发电发展规划背景研究之一:
国内外风力发电发展现状及趋势
目录
1、国际上风电发展的现状与趋势 .............................................................................1 1.1 世界及主要国家的风电发展现状.........................................................................1 1.2 世界风电技术研发动态.........................................................................................2 1.3 世界风电设备制造业的发展.................................................................................3 2、国内风电发展态势 .................................................................................................4 2.1 国内的风电发展现状.............................................................................................4 2.1.1 资源总量及分布状况..........................................................................................4 2.1.2 目前国内风电装机情况......................................................................................4 2.1.3 项目融资方式及经营管理..................................................................................9 2.1.4 各风电场风电上网电价一览表(含税价)...........................................................9 2.2 国内风电技术的研发水平...................................................................................10 2.3 国内风电设备制造的发展现状...........................................................................11 2.3.1 国内风电场规模和布局.....................................................................................11 2.3.2 国内风电场装机类型.........................................................................................11 2.3.3 各制造商在中国风电场市场份额.....................................................................12 2.3.4 中国风力发电设备制造业情况.........................................................................13 3、浙江省风电发展现状 ...........................................................................................16 3.1 现有风电场及运行情况等...................................................................................16 3.2 技术研发水平及实力...........................................................................................17 3.3 风电设备制造能力...............................................................................................17 3.4 存在的问题...........................................................................................................18
风电控制系统发展现状及展望
风电控制系统发展现状及展望风电控制系统是风力发电站中至关重要的组成部分,它负责监控和控制风力发电机组的运行状态,调节风轮转速和叶片角度,以及保护风力发电机组的安全运行。
随着风力发电的快速发展,风电控制系统也在不断创新和发展,本文将从发展现状和展望两个方面进行介绍。
风电控制系统的发展现状:1. 技术成熟度提升:随着风力发电技术的发展和成熟,风电控制系统也不断改进和提升。
现代的风电控制系统采用了先进的传感器和数据处理技术,能够实时监测风力发电机组的状态,并根据实时数据进行运行调整,提高发电效率和可靠性。
2. 智能化和自动化:现代风电控制系统借助人工智能技术和自动化控制算法,能够自动调节风轮和叶片的角度,以及控制风力发电机组的转速。
这大大降低了人工干预的需求,提高了风力发电机组的运行效率和可靠性。
3. 远程监控和管理:随着通信技术的发展,现代风电控制系统可以实现远程监控和管理。
运维人员可以通过云平台或者手机应用实时监测风力发电机组的运行状态,并进行故障诊断和维修工作。
这极大地提升了风电发电站的运维效率和可靠性。
风电控制系统的展望:1. 多智能化集成技术:未来的风电控制系统将会更加智能化和集成化。
通过引入大数据和人工智能技术,实现风力发电机组的智能化运维和预测性维修,可根据历史数据和环境变化进行预测,提前进行故障诊断和维修,降低维修成本和风险。
2. 新能源互联网:随着新能源互联网的发展,风电控制系统将与其他能源系统相互连接,实现能源的智能优化调度和交易。
通过与智能电网和储能系统的联动,进一步提高风力发电的可靠性和灵活性。
3. 超级网联网:未来的风电控制系统将与其他的超级网联网相互连接,共同构建一个高效、可靠、低碳的能源系统。
通过实时数据的共享和互通,实现能源的智能分配和优化调度,进一步提高风能的利用效率和可靠性。
综上所述,风电控制系统在技术成熟度和智能化水平方面取得了显著进展,并且未来还有更多的发展空间和潜力。
国内外风力发电现状及发展趋势
电力的预期使用期限长达 17 年, 这样就增强了清洁能源投资
我 国 自 1985 年 在 海 南 东 方 风 电 场 安 装 首 台 Vestas55kW
者的信心。这一措施的结果使得日本的风力发电能力从 2002 风力发电机组以来, 目前已经基本掌握了风力发电机组及主要
年的 486MW 增加到 2004 年的 700MW。为了促进日本可再生 部件的设计和制造技术, 具备了 200kW、250kW、600kW、750kW
1 国外风力发电的现状
世界上第 1 台用于发电的风力机于 1891 年在丹麦建成,
但由于技术和经济等方面原因, 风力发电一直未能成为电网中
的电源。直到 1973 年发生石油危机, 美国、西欧等发达国家为
寻求替代化石燃料的能源, 投入大量经费, 用新技术研制现代
风力发电机组。20 世纪 80 年代开始建立示范风电场, 成为电网
在各种能源中, 风能是利用起来比较简单的一种, 它不同 于煤、石油、天然气, 需要从地下采掘出来, 运送到火力发电厂 的锅炉设备中去燃烧; 也不同于水能, 必须建造坝, 来推动水轮 机运转; 也不像原子能那样, 需要昂贵的装置和防护设备。而风 能的利用由于简单, 且机动灵活, 因此有着广阔的前途。特别是 在 缺 乏 水 力 资 源 、缺 乏 燃 料 和 交 通 不 方 便 的 沿 海 岛 屿 、山 区 和 高原地带, 都具有速度很高的风, 这是很宝贵的能源, 如果能利 用起来发电对当地人民的生活和生产都会很有利的。
加拿大的风力发电产业发展迅速, 风力发电的增长率已经 达到 27%, 其增长速度超过前 5 年。2004 年, 加拿大风力发电的 装机容量为 122MW, 风力发电的总装机能力已达到 444MW。预 计在 10 年中, 加拿大的风力发电能力将比现在提高 15 倍。
风电发展现状与未来展望
中国风电发展现状与未来展望一、风能资源风能储量我国幅员辽阔,海岸线长,风能资源比较丰富;根据全国900多个气象站陆地上离地10m高度资料进行估算,全国平均风功率密度为100W/m2,风能资源总储量约亿kW,可开发和利用的陆地上风能储量有亿kW,近海可开发和利用的风能储量有亿kW,共计约10亿kW;如果陆上风电年上网电量按等效满负荷2000小时计,每年可提供5000亿千瓦时电量,海上风电年上网电量按等效满负荷2500小时计,每年可提供万亿千瓦时电量,合计万亿千瓦时电量;风能资源分布我国面积广大,地形条件复杂,风能资源状况及分布特点随地形、地理位置不同而有所不同;风能资源丰富的地区主要分布在东南沿海及附近岛屿以及北部地区;另外,内陆也有个别风能丰富点,海上风能资源也非常丰富;北部东北、华北、西北地区风能丰富带;北部东北、华北、西北地区风能丰富带包括东北三省、河北、内蒙古、甘肃、青海、西藏和新疆等省/自治区近200km宽的地带;三北地区风能资源丰富,风电场地形平坦,交通方便,没有破坏性风速,是我国连成一片的最大风能资源区,有利于大规模的开发风电场,但是当地电网容量较小,限制了风电的规模,而且距离负荷中心远,需要长距离输电;沿海及其岛屿地区风能丰富带;沿海及其岛屿地区包括山东、江苏、上海、浙江、福建、广东、广西和海南等省/市沿海近10km宽的地带,冬春季的冷空气、夏秋的台风,都能影响到沿海及其岛屿,加上台湾海峡狭管效应的影响,东南沿海及其岛屿是我国风能最佳丰富区;沿海地区经济发达,沿海及其岛屿地区风能资源丰富,风电场接入系统方便,与水电具有较好的季节互补性;然而沿海岸的土地大部份已开发成水产养殖场或建成防护林带,可以安装风电机组的土地面积有限;内陆风能丰富点;在内陆一些地区由于湖泊和特殊地形的影响,形成一些风能丰富点,如鄱阳湖附近地区和湖北的九宫山和利川等地区;海上风能丰富区;我国海上风能资源丰富,东部沿海水深2m到15m的海域面积辽阔,按照与陆上风能资源同样的方法估测,10m高度可利用的风能资源约是陆上的3倍,即7亿多kW,而且距离电力负荷中心很近;随着海上风电场技术的发展成熟,经济上可行,将来必然会成为重要的可持续能源;二、风电的发展建设规模不断扩大,风电场管理逐步规范1986年建设山东荣成第一个示范风电场至今,经过近20多年的努力,风电场装机规模不断扩大截止2004年底,全国建成43个风电场,安装风电机组1292台,装机规模达到万kW,居世界第10位,亚洲第3位位于印度和日本之后;另外,有关部门组织编制有关风电前期、建设和运行规程,风电场管理逐步走向规范化;专业队伍和设备制造水平提高,具备大规模发展风电的条件经过多年的实践,培养了一批专业的风电设计、开发建设和运行管理队伍,大型风电机组的制造技术我国已基本掌握,主要零部件国内都能自己制造;其中,600kW及以下机组已有一定数量的整机厂,初步形成了整机试制和小批量生产;截止2004年底,本地化风电机组所占市场份额已经达到18%,设备制造水平不断提高,目前,我国已经具备了设计和制造750kW定桨距定转速机型的能力,相当于国际上二十世纪90年代中期的水平;与国外联合设计的1200千瓦和独立设计的1000千瓦变桨距变转速型样机于2005年安装,进行试验运行;风力发电成本逐步降低随着风电产业的形成和规模发展,通过引进技术,加速风电机组本地化进程以及加强风电场建设和运行管理,我国风电场建设和运行的成本逐步降低,初始投资从1994年的约12000元/kW降低到目前的约9000元/kW;同时风电的上网电价也从超过元/kWh降低到约元/kWh;2003年国务院电价改革方案规定风电暂不参与市场竞争,电量由电网企业按政府定价或招标价格优先购买;国家发展改革委从2003年开始推行风电特许权开发方式,通过招投标确定风电开发商和上网电价,并与电网公司签订规范的购电协议,保证风电电量全部上网,风电电价高出常规电源部分在全省范围内分摊,有利于吸引国内外各类投资者开发风电;2005年2月28日通过的中华人民共和国可再生能源法中规定了“可再生能源发电项目的上网电价,由国务院价格主管部门根据不同类型可再生能源发电的特点和不同地区的情况,按照有利于促进可再生能源开发利用和经济合理的原则确定”,“电网企业为收购可再生能源电量而支付的合理的接网费用以及其他合理的相关费用,可以计入电网企业输电成本,并从销售电价中回收;”和“电网企业依照本法第十九条规定确定的上网电价收购可再生能源电量所发生的费用,高于按照常规能源发电平均上网电价计算所发生费用之间的差额,附加在销售电价中分摊”,将风电特许权项目中的特殊之处已经用法律条文作为通用的规定,今后风电的发展应纳入法制的框架;三、存在问题资源需要进行第二轮风能资源普查,在现有气象台站的观测数据的基础上,按照近年来国际通用的规范进行资源总量评估,进而采用数值模拟技术编制高分辨率的风能资源分布图,评估风能资源技术可开发量;更重要的是应该利用GIS地理信息系统技术将电网、道路、场址可利用土地,环境影响、当地社会经济发展规划等因素综合考虑,进行经济可开发储量评估;风电设备生产本地化现有制造水平远落后于市场对技术的需求,国内定型风电机组的功率均为兆瓦级以下,最大750千瓦,而市场需要以兆瓦级为主流;国内风电机组制造企业面临着技术路线从定桨定速提升到变桨变速,单机功率从百千瓦级提升到兆瓦级的双重压力,技术路线跨度较大关;自主研发力量严重不足,由于国家和企业投入的资金较少,缺乏基础研究积累和人才,我国在风力发电机组的研发能力上还有待提高,总体来说还处于跟踪和引进国外的先进技术阶段;目前国内引进的许可证,有的是国外淘汰技术,有的图纸虽然先进,但受限于国内配套厂的技术、工艺、材料等原因,导致国产化的零部件质量、性能需要一定时间才能达到国际水平;购买生产许可证技术的国内厂商要支付昂贵的技术使用费,其机组性能价格比的优势在初期不明显;在研发风电机组过程中注重于产品本身,而对研发过程中需要配套的工作重视不够;由于试验和测试手段的不完备,有些零部件在实验室要做的工作必须总装后到风电场现场才能做;风电机组的测试和认证体系尚未建立;风电机组配套零部件的研发和产业化水平较低,这样增加了整机开发的难度和速度;特别是对于变桨变速型风机,国内相关零部件研发、制造方面处于起步阶段,如变桨距系统,低速永磁同步发电机,双馈式发电机、变速型齿轮箱,交直交变流器及电控系统,都需要进行科技攻关和研发;成本和上网电价比较高基本条件设定:根据目前国内风电场平均水平,设定基本条件为:风电场装机容量5万千瓦,年上网电量为等效满负荷2000小时,单位千瓦造价8000-10000元,折旧年限年,其他成本条件按经验选取;财务条件:工程总投资分别取4亿元8000元/千瓦、亿元9000元/千瓦和5亿元10000元/千瓦,流动资金150万元;项目资本金占20%,其余采用国内商业银行贷款,贷款期15年,年利率%;增值税税率为%,所得税税率为33%,资本金财务内部收益率10%;风电成本和上网电价水平测算:按以上条件及现行的风电场上网电价制度,以资本金财务内部收益率为10%为标准,当风电场年上网电量为等效满负荷2000小时,单位千瓦造价8000~10000元时,风电平均成本分别为~元/千瓦时,较为合理的上网电价范围是~元/千瓦时含增值税;成本在投产初期较高,主要是受还本付息的影响;当贷款还清后,平均度电成本降至很低;风电场造价对上网电价有明显的影响,当造价增加时,同等收益率下的上网电价大致按相同比率增加;我国幅员辽阔,各地风电场资源条件差别很大,甚至同一风电场址内资源分布也有较大差别;为了分析由风能资源引起的发电量变化对成本和平均上网电价影响,分别计算年等效满负荷小时数为1400、1600、1800、2200、2400、2600、2800、3000的情况下发电成本见表1,上网电价见表2;如果全国风电的平均水平是每千瓦投资9000元,以及资源状况按年上网电量为等效满负荷2000小时计算,则风电的上网电价约每千瓦时元,比于全国火电平均上网电价每千瓦时元高一倍;电网制约风电场接入电网后,在向电网提供清洁能源的同时,也会给电网的运行带来一些负面影响;随着风电场装机容量的增加,以及风电装机在某个地区电网中所占比例的增加,这些负面影响就可能成为风电并网的制约因素;风力发电会降低电网负荷预测精度,从而影响电网的调度和运行方式;影响电网的频率控制;影响电网的电压调整;影响电网的潮流分布;影响电网的电能质量;影响电网的故障水平和稳定性等;由于风力发电固有的间歇性和波动性,电网的可靠性可能降低,电网的运行成本也可能增加;为了克服风电给电网带来的电能质量和可靠性等问题,还会使电网公司增加必要的研究费用和设备投资;在大力发展风电的过程中,必须研究和解决风电并网可能带来的其他影响;四、政策建议1.加强风电前期工作;建立风电正常的前期工作经费渠道,每年安排一定的经费用于风电场风能资源测量、评估以及预可研设计等前期工作,满足年度开计划对风电场项目的需要;2.制定“可再生能源法”的实施细则,规定可操作的政府合理定价,按照每个项目的资源等条件,以及投资者的合理回报确定上网电价;同时也要规定可操作的全国分摊风电与火电价差的具体办法;3.加速风电机组本地化进程,通过技贸结合等方式,本着引进、消化、吸收和自主开发相结合的原则,逐步掌握兆瓦级大型风电机组的制造技术;引进国外智力开发具有自主知识产权的机组,开拓国际市场;4.建立风电制造业的国家级产品检测中心、质量保证控制体系以及认证制度,不断提高产品质量,降低成本,完善服务;5.制定适应风电发展的电网建设规划,研究风电对电网影响的解决措施;五、“十一五”和2020年风电规划我国电源结构70%是燃煤火电,而且负荷增长迅速,环境影响特别是减排二氧化碳的压力越来越大,风能是清洁的可再生能源,我国资源丰富,能够大规模开发,风电成本逐年下降,前景广阔;风电装机容量规划目标为2005年100万千瓦,2010年400~500万千瓦,2020年2000~3000万千瓦;2004年到2005年,“十五计划”后半段重点建设江苏如东和广东惠来两个特许权风电场示范项目,取得建设大规模风电场的经验,2005年底风力发电总体目标达100万千瓦;2006年到2010年;“十一五规划”期间全国新增风电装机容量约300万千瓦,平均每年新增60~80万千瓦,2010年底累计装机约400~500万千瓦;提供这样的市场空间主要目的是培育国内的风电设备制造能力,国家发展改革委于2005年7月下发文件,要求所有风电项目采用的机组本地化率达到70%,否则不予核准;此后又下发文件支持国内风电设备制造企业与电源建设企业合作,提供50万千瓦规模的风电市场保障,加快制造业发展;目前国家规划的主要项目有广东省沿海和近海示范项目31万千瓦;福建省沿海及岛屿22万千瓦;上海市12万千瓦;江苏省45万千瓦;山东省21万千瓦;吉林省33万千瓦;内蒙古50万千瓦;河北省32万千瓦;甘肃省26万千瓦;宁夏19万千瓦;新疆22万千瓦等;目前各省的地方政府和开发商均要求增加本省的风电规划容量;2020年规划目标是2000~3000万千瓦,风电在电源结构中将有一定的比例,届时约占全国总发电装机10亿千瓦容量的2~3%,总电量的1~%; 2020年以后随着化石燃料资源减少,成本增加,风电则具备市场竞争能力,会发展得更快;2030年以后水能资源大部分也将开发完,近海风电市场进入大规模开发时期;。
2024年风力发电行业发展趋势及分析
随着气候变化问题的日益突出以及对可再生能源的需求增加,风力发电作为一种清洁、可再生的能源形式,在近年来得到了广泛关注和发展。
2024年,风力发电行业将继续保持迅猛发展的态势,以下是对其发展趋势及分析的详细讨论。
首先,风力发电技术的进步将继续推动行业的发展。
近年来,风力发电技术取得了显著的进展,特别是在风机设计、材料科学、智能控制等方面的创新,提高了风力发电机组的效率和可靠性。
预计在2024年,这些新技术将逐渐成熟并被广泛应用,从而进一步降低风电成本,并增加风力发电的竞争力。
其次,风电装机容量将继续保持稳步增长。
根据国际能源署(IEA)的预测,全球风力发电装机容量将在2024年达到600吉瓦以上。
这主要得益于新建风电场的建设和现有风电场的扩建,以满足不断增长的能源需求和减少对化石燃料的依赖。
特别是在中国、美国和欧洲等地区,风电装机容量的增长将获得显著推动。
再次,风力发电与其他新能源形式的综合利用将成为一个新的发展方向。
近年来,人们越来越意识到单一的能源形式无法满足日益增长的能源需求,因此提倡不同能源形式的综合利用。
风力发电作为一种可再生的能源形式,与太阳能、生物质能等其他新能源形式的综合利用,具有很大的潜力。
在2024年,我们将看到越来越多的新能源项目采用多能源供应方式,以实现更高效、可持续的能源利用。
最后,风力发电行业的政策和市场环境将继续发生变化。
随着对气候变化问题的日益关注,各国政府将继续推动可再生能源的发展,通过制定激励政策、提供资金支持等方式鼓励风力发电行业的发展。
此外,风力发电市场也将面临来自传统能源行业和其他可再生能源行业的竞争压力。
在这样的竞争环境下,风力发电企业需要通过技术创新和降低成本来提高竞争力,以应对日益激烈的市场竞争。
风力发电的发展现状及应用
风力发电的发展现状及应用风力发电是一种利用风能产生电力的清洁能源技术。
随着全球能源危机的日益加剧和环境问题的日益突出,风力发电作为一种可再生的环保能源,受到了广泛的关注和重视。
在近年来,风力发电技术取得了长足的发展,并在世界范围内得到了广泛的应用。
本文将分析风力发电技术的发展现状及其应用,并探讨风力发电的前景与挑战。
一、风力发电的发展现状1.技术发展概况风力发电技术最早可以追溯到公元前500年的古希腊,当时人们就已经开始利用风力来驱动帆船、提水和磨面。
而现代风力发电技术则始于20世纪70年代,随着科学技术的发展,风力发电技术不断得到改进和完善。
目前,世界各国都在积极开展风力发电技术的研究与应用,一些先进国家已经建成了一大批大型风电场,风力发电技术已经进入了成熟的阶段。
2.全球风力发电市场概况据国际能源署(IEA)的数据统计,截至目前全球共有80多个国家在使用风力发电技术,全球风力发电装机容量已达700GW以上。
其中,中国、美国、德国、印度、西班牙等国家是全球风力发电的领先者,各国在风力发电技术研究、设备制造、风电项目投资等方面均取得了显著的成就。
特别是中国,作为世界上最大的风力发电市场,已经成为全球风电装机容量最大的国家。
3.风电技术的发展趋势风力发电技术的发展趋势主要体现在以下几个方面:(1)提高发电效率。
随着技术的不断进步,风力发电机组的发电效率不断提高,目前已经达到40%以上。
未来,随着先进材料、先进制造技术的应用,风力发电机组的发电效率有望进一步提升。
(2)减少成本。
随着风力发电技术的发展和普及,风力发电的成本不断下降,有望与传统能源竞争。
据IEA预测,到2030年,风力发电的成本将降至传统能源的水平。
(3)智能化与数字化。
随着物联网、大数据等技术的应用,风力发电设备将更加智能化和数字化,大大提高了运维效率和智能管理水平。
二、风力发电的应用1.风力发电在发电领域的应用风力发电技术主要用于生产电力,目前风力发电已经成为世界上主要的可再生能源之一,在许多国家已经成为电网的重要组成部分。
风力发电技术现状及发展趋势
风力发电技术现状及发展趋势一、本文概述随着全球能源结构的转型和环保意识的日益增强,风力发电作为一种清洁、可再生的能源形式,正逐渐在全球范围内得到广泛的关注和应用。
本文旨在全面概述风力发电技术的现状以及未来的发展趋势,从而为读者提供一个清晰、深入的理解风力发电行业发展的脉络和前景。
我们将从风力发电的基本原理出发,探讨当前风力发电技术的发展水平、主要挑战和应对策略,以及预测未来风力发电技术的创新方向和可能的市场变化。
通过对风力发电技术的深入研究和综合分析,本文旨在为读者提供一个全面、系统的视角,以期在推动风力发电技术的持续发展和优化中发挥积极作用。
二、风力发电技术现状风力发电技术,作为一种清洁、可再生的能源技术,近年来在全球范围内得到了广泛的关注和应用。
随着科技的不断进步和政策的持续推动,风力发电技术已经取得了显著的进展。
在硬件设备上,风力发电机的设计日趋成熟,单机容量不断增大,从早期的几百千瓦发展到现在的数兆瓦甚至更大。
风力发电机组的叶片材料、发电机效率、齿轮箱和轴承的耐久性等方面都有了显著提升。
同时,风电场的建设和管理也日趋规范化,风电机组的运维效率得到了极大的提高。
在技术创新方面,风力发电领域正在不断探索新的突破点。
包括智能化控制、海上风电、储能技术、电网接入等在内的多个领域都在积极开展研究和应用。
例如,智能化控制技术的应用使得风电场能够更准确地预测风速、优化运行策略,从而提高发电效率。
海上风电的发展则充分利用了海洋资源的优势,为风电行业开辟了新的发展空间。
在政策环境上,许多国家都出台了支持风力发电的政策,包括税收优惠、补贴、上网电价优惠等。
这些政策的实施为风力发电技术的发展提供了有力的保障。
随着全球气候变化和环境问题日益严重,风力发电作为清洁能源的重要组成部分,其地位和作用也日益凸显。
然而,尽管风力发电技术已经取得了显著的进展,但仍面临一些挑战和问题。
例如,风电场的选址和建设受到地理和气候条件的限制;风电场的运维成本较高,需要进一步提高运维效率;风电在电网中的接入和调度也存在一定的问题等。
风力发电技术的发展趋势及装机规模预测
风力发电技术的发展趋势及装机规模预测随着全球能源消耗量的不断增加,人们开始寻找新的替代能源来满足日益增长的需求。
与此同时,传统的火力发电和核能发电所造成的环境污染和安全隐患问题也引起了人们的广泛关注,使得可再生能源逐渐成为了一个备受瞩目的领域。
而风能作为其中最为发达的一种形式,在全世界范围内得到了广泛的应用。
那么,风力发电技术的发展趋势及装机规模预测是什么样的呢?一、技术发展趋势1.1 提高风力发电效率在风力发电领域,提高效率是永恒的主题。
而针对这一目标,人们通过优化桨叶形状和数量、改变机组选型等措施,使得风力发电效率得到了大幅提升。
另外,随着新型材料和新技术的不断涌现,如CFRP材料等,所带来的机组轻量化和动态简化等优势,也将使得风力发电效率进一步提高。
1.2 大规模化运作当前,风电装备已经实现标准化和模块化,可以通过集中镇压的方式建造大型风电场,这有助于提高风电发电能力的集成效率。
此外,在风电场的建设及运营方面,新的管理工具和智能化系统也不断涌现,将助力风电提高系统运行效率和人工智能化程度。
1.3 综合能源系统未来风电将向综合能源系统方向发展,通过与能源存储,充电桩等设备相配合,实现互联互通的能源系统。
此外,利用智能化控制系统和大数据技术,可以将风力发电在整个供应链中的能量输出进行有效的管理和优化,使其在整个能量分配过程中发挥最大的效用。
二、全球风电发展态势2.1 全球装机规模从目前来看,全球风电装机总规模不断增长。
2020年,全球风电装机容量达761.9 GW,其中中国占比最大,累计装机容量超过250 GW。
2.2 地区发展情况目前,欧洲和美洲地区是风电技术的最大推动者,欧洲各国已经建立了多个超大型风电场,而美洲地区则在风能发电技术和制造领域拥有着绝对的优势。
而作为全球智能制造一哥的中国在近年来也已经大力加强了风能领域的研究和推广,新增装机容量数量大幅提升。
2.3 行业竞争格局当前,全球风电行业竞争格局已从简单的供需形势向技术质量和创新竞争逐渐转变,同行业企业逐渐明晰化,市场优胜劣汰的态势正在逐渐形成。
基于风力发电技术发展现状以及行业发展分析
基于风力发电技术发展现状以及行业发展分析
风力发电是目前比较成熟、广泛应用的可再生能源技术之一。
它通过将风能转化为电
能来实现清洁能源的发电。
目前,风力发电技术在全球范围内得到广泛应用,其装机容量
快速增长,已成为全球电力生产和消费的重要组成部分。
当前,风力发电技术已经取得了很多进展。
首先,发电效率得到了极大提升。
特别是
在风轮叶片的形状、转速控制和电力系统的优化方面,取得了很多创新。
一些新材料,比
如碳纤维和玻璃纤维复合材料,被用于风轮叶片的制造,能够大大提高发电效率。
其次,
风力发电的成本不断降低。
由于技术不断改进和产能提高,风力发电的成本在过去几年里
大幅下降。
第三,风力发电面临的运维挑战得到了更好的解决。
利用越来越成熟的数据分
析和人工智能技术,可以识别和预测潜在问题,实现更好的设备维护和操作。
然而,尽管风力发电技术发展迅速,但它仍然面临着一些挑战。
首先,产业链衔接不足。
主要表现为风力发电产业的不可充分利用和协调。
其次,由于受制于天气和地理因素,风力发电对于大规模应用的可靠性和可预测性还有待提高。
第三,风力发电项目的环保和
社会风险问题尚未得到足够的解决,如鸟类迁徙、风电场附近居民与候鸟共同生存等问题,严重影响了风电新能源的开发。
总的来说,风力发电技术是一个快速发展的领域,不断创新和提升效率、降低成本是
未来的主要发展方向。
同时,需要加强产业链的协调和合作,同时也需要加强环保和社会
风险管理,才能保证在未来的发展中,风力发电技术和行业可持续发展。
2024年分布式风力发电市场发展现状
分布式风力发电市场发展现状1. 引言分布式风力发电作为可再生能源的一种,具有减少碳排放、环保、可持续等优点,在能源产业中越来越受关注。
本文旨在分析和介绍分布式风力发电市场目前的发展现状。
2. 分布式风力发电概述分布式风力发电是指将风力发电设备分散布置在不同地点,与传统集中式风力发电相对。
传统集中式风力发电需要大规模的风电场,而分布式风力发电通过将风力发电机组安装在建筑物、高楼、船只等地方,实现就近发电。
分布式风力发电具有灵活性高、建设周期短、利用地理优势等优点,逐渐成为发展风力发电的新趋势。
3. 分布式风力发电市场现状3.1 技术发展分布式风力发电技术目前已经取得了显著进展。
由于风力发电机组体积小、重量轻,安装方便,因此在分布式风力发电市场上,大量采用了垂直轴风力发电机组。
此外,智能控制系统、集成化逆变器等新技术的应用,进一步提升了分布式风力发电系统的效能和可靠性。
3.2 市场规模目前,分布式风力发电市场的规模正在不断扩大。
根据市场研究机构的预测,分布式风力发电市场的年复合增长率将达到10%以上,预计到2025年市场规模将超过100亿美元。
分布式风力发电市场的快速增长主要得益于政府的政策支持和环保要求的提高。
3.3 政策支持政府在分布式风力发电市场的发展中发挥了重要作用。
许多国家纷纷出台了支持分布式风力发电的政策措施,如提供补贴、减税等优惠政策。
这些措施鼓励了企业和个人参与分布式风力发电市场,推动了市场的快速增长。
3.4 行业挑战分布式风力发电市场在发展过程中也面临一些挑战。
首先是成本问题,目前分布式风力发电系统的成本较高,需要进一步降低以提高市场竞争力。
其次是技术标准和管理规范的统一,目前分布式风力发电领域存在多种技术体系和标准,需要加强协调和整合。
此外,分布式风力发电需要克服电网接入、储能等方面的技术难题。
4. 市场前景与展望尽管分布式风力发电市场面临一些挑战,但其前景仍然十分广阔。
随着技术的不断提升和成本的降低,分布式风力发电有望成为未来可再生能源市场的重要组成部分。
《2024年风电功率预测的发展现状与展望》范文
《风电功率预测的发展现状与展望》篇一一、引言随着全球能源结构调整与环保意识的增强,可再生能源如风电等清洁能源受到了广泛关注。
作为全球重要的可再生能源之一,风电技术正快速发展,其关键环节——风电功率预测技术,也正逐渐成为研究热点。
本文旨在探讨风电功率预测的发展现状以及未来展望。
二、风电功率预测的发展现状1. 技术进步随着计算机技术、大数据、人工智能等技术的飞速发展,风电功率预测技术取得了显著的进步。
基于机器学习、深度学习等算法的预测模型已经广泛应用于风电功率预测中,大幅提高了预测精度和可靠性。
2. 预测方法目前,风电功率预测方法主要包括物理方法、统计方法和组合方法等。
物理方法基于风力发电机的物理特性和气象信息,通过建立数学模型进行预测;统计方法则利用历史数据和统计规律进行预测;组合方法则结合了物理方法和统计方法的优点,提高了预测精度。
3. 实际应用风电功率预测技术已经在全球范围内得到了广泛应用。
各国都在加强风电功率预测系统的建设,以提高风电并网和调度能力。
同时,随着智能化电网的不断发展,风电功率预测技术在提高电力系统运行效率、优化能源结构等方面发挥着越来越重要的作用。
三、风电功率预测的挑战与展望尽管风电功率预测技术取得了显著进展,但仍面临一些挑战。
首先,风力资源的复杂性和不确定性使得预测精度仍有待提高;其次,现有预测模型在处理大规模风电并网等问题时仍存在局限性;此外,数据获取和模型训练的难度也是制约风电功率预测技术发展的因素之一。
展望未来,风电功率预测技术将朝着更加智能化、精细化的方向发展。
一方面,随着人工智能、大数据等技术的进一步发展,将有更多先进的算法和模型应用于风电功率预测中,提高预测精度和可靠性;另一方面,随着物联网技术的普及和电网智能化水平的提升,风电功率预测技术将更好地服务于电力系统运行和调度,优化能源结构,推动清洁能源的发展。
四、结论总之,风电功率预测技术作为可再生能源发展的重要支撑技术,正逐渐成为研究热点。
风能发电技术的发展与应用前景
风能发电技术的发展与应用前景随着人们对可再生能源的需求不断增加,风能发电作为一种环保、清洁的能源形式,正变得越来越受关注。
近年来,风能发电技术取得了显著的发展,并在全球范围内得到广泛应用。
本文将探讨风能发电技术的发展现状以及未来的应用前景。
首先,风能发电技术的发展得益于科技进步和投资力度的加大。
过去的几十年里,风能发电技术得到了长足的发展。
通过改良风力发电机的设计和制造工艺,提高了发电效率和可靠性。
同时,投资者对风能发电项目的投资也不断增加,为技术的研发和应用提供了充足的资金支持。
可以预见,随着技术的不断创新和投资的持续加大,风能发电技术将会进一步提高。
其次,风能发电技术在全球范围内得到了广泛应用。
目前,风力发电已经成为世界上最主要的可再生能源之一。
各国政府纷纷制定了风能发电的支持政策,鼓励企业和个人投资和建设风电站。
例如,丹麦和德国等国家在风能发电技术领域取得了重大突破,并建设了大量的风电场。
此外,在美洲、亚洲和非洲等地区,风力发电也得到了迅速推广和应用。
可以说,风能发电技术已经具备了很大的市场潜力,并呈现出良好的应用前景。
第三,风能发电技术的发展还带来了许多经济和环境效益。
首先,风能发电是一种相对较为经济的能源形式。
随着技术的进步和投资的增加,风能发电的成本不断降低,与传统的能源形式相比具有一定的竞争力。
其次,风能发电没有排放二氧化碳等温室气体,对于减缓气候变化具有重要意义。
此外,风能发电还能够减少对化石燃料的依赖,提高能源安全性。
因此,风能发电技术的应用不仅能够带来经济效益,还能够为环境保护做出贡献。
最后,虽然风能发电技术取得了较大的发展,但仍然面临一些挑战和障碍。
首先,风能发电的可预测性较差,受到气象条件的限制。
这就要求对风能发电站的规划和运营管理有较高的要求,以确保稳定的电力供应。
其次,风能发电的基础设施建设需要较大的土地和资金投入。
尤其在城市化进程加快的今天,寻找和规划适合的用地面临一定的困难。
风力发电的技术进步与发展趋势
风力发电的技术进步与发展趋势在当今全球追求可持续发展和清洁能源的大背景下,风力发电作为一种重要的可再生能源技术,正经历着快速的技术进步,并展现出令人瞩目的发展趋势。
风力发电的基本原理其实并不复杂,它是利用风力带动风车叶片旋转,再通过增速机将旋转的速度提升,来促使发电机发电。
但要实现高效、稳定且大规模的风力发电,背后涉及到的技术却相当复杂和精妙。
过去几十年里,风力发电技术取得了显著的进步。
在风机设计方面,叶片的形状和材料不断优化。
叶片是捕捉风能的关键部件,如今的叶片更长、更轻,采用了高强度的复合材料,能够更有效地捕捉风能,同时降低自身重量和成本。
而且,叶片的空气动力学设计更加精细,能够适应不同的风速和风向条件,提高风能的利用效率。
发电机技术也有了重大突破。
从早期的异步发电机,到现在广泛应用的双馈异步发电机和直驱永磁同步发电机,发电效率不断提高,稳定性也越来越好。
双馈异步发电机具有变速运行的特点,可以根据风速的变化调整转速,从而更好地适应风能的波动。
直驱永磁同步发电机则省去了齿轮箱,减少了能量损耗和机械故障,提高了系统的可靠性。
控制系统的智能化是风力发电技术进步的又一重要体现。
通过先进的传感器和监测设备,实时收集风速、风向、温度等数据,并利用复杂的算法进行分析和处理,实现对风机的精准控制。
比如,在风速较低时,控制系统可以调整叶片角度,以获取最大的风能;在风速过高时,能够及时停机保护设备,避免损坏。
随着技术的不断进步,风力发电的规模也在逐渐扩大。
从最初的单机容量几百千瓦,到现在的数兆瓦甚至十几兆瓦,大型化的趋势越来越明显。
大型风机不仅能够提高发电效率,降低单位成本,还可以减少土地占用,提高风电场的整体效益。
同时,海上风力发电也成为了新的发展热点。
相比于陆地,海上风速更高、更稳定,而且不受土地资源的限制。
不过,海上风力发电面临着更复杂的环境条件,如高盐度、强风、海浪等,这对风机的设计、安装和维护提出了更高的要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我国能源发展现状及发展趋势预测
一、我国能源利用现状及存在的问题
首先从不同一次能源的利用现状谈起:
1.煤炭
我国煤炭资源在地理分布上的总格局是西多东少、北富南贫。
从地区分布看,储量主要集中分布在新疆、内蒙古、山西、陕西、贵州、宁夏、河南和安徽8省,8省储量占全国储量近90%。
在我国的自然资源中,基本特点是富煤、贫油、少气,这就决定了煤炭在一次能源中的重要地位。
截至2007年底,中国煤炭剩余可采储量1 145亿t,仅次于美国和俄罗斯,位居世界第3位,占世界总量的%,煤炭的储采比为45,远低于世界平均水平的133。
中国是世界第一产煤大国,据统计,2009年煤炭产量达到亿t,比2008年增加亿t,同比增长%,占世界总产量的42%左右。
煤炭发电存在的问题:煤炭发电过程中除了排放二氧化碳等温室气体外外,还会排放出大量的二氧化硫。
二氧化硫是主要的空气污染物之一,也是酸雨的主要来源。
部分地区的荒漠化根源在于燃煤发电排放的二氧化硫,它造成大面积植被死亡、生态环境退化、蓄水能力下降。
燃煤发电是山西、内蒙古生态退化的罪魁祸首,是北京沙尘暴的主要原因。
2.石油
我国是少油国家,但石油在我国能源结构中占有重要地位(仅次于煤炭处于第二位),目前我国石油还不能够完全自给,约50%的石油用量需要从国外进口。
最近几年我国石油进口量一直在增长,从2004年的亿t增长到2009年的亿t,其中2004年增幅最大达%,除了2005年和2008年增幅较小外,其他
年份增幅都在2位数以上,从中可看出中国的石油消费对外依存度较高。
截至2007年底,中国石油剩余可采储量亿t,位居世界第13位,但仅占世界总量的%,石油储采比1l,远低于世界平均水平的。
3.天然气
我国的天然气工业发展相对比较落后,但是我国天然气生产消费增速较快。
近几年我国天然气产量和消费量都保持了较高的增长幅度。
目前我国探明的天然气地质资源量为22.66万亿m3,可采资源量为
万亿m30 2007年我国天然气产量为亿m3,比2006年增长%,首次进入世界天然气生产前十强;2008年我国生产天然气亿m3,与上年相比增长%;2009年我国生产天然气亿m3,与上年相比增长%。
石油和天然气存在的问题:我国石油储量有限是无法改变的现实,化石燃料带来的环境污染也是不可忽视的重要方面。
4.水电
水电资源作为可再生清洁能源,是我国能源的重要组成部分,在能源平衡和能源工业的可持续发展中占有重要地位。
我国在水电的具体规划布局上,2010年西部地区常规水电装机规模达到约9500万kW,占全国的55%,开发程度为%,其中水能资源最丰富的四川、云南水电装机容量分别达到2700万kW和l700万kW,开装机规模达到5000万kW,占全国的30%,开发程度达到68%;东部地区装机规模达到2500万kW,占全国的15%。
而且“十一五”期间,我国已薪增水电装机容量7300万kW,其中抽水蓄能电站1300万kW。
2010年全国水电装机容量达到亿kW,占电力总装机容量的26%左右,开发程度达到35%,其中大中型常规水电亿kW,小水电5000万kW,抽水蓄能电站2000万kW,已建常规水电装机容量占全国水电技术可开发装机容量的3l%。
水力发电存在问题:破坏人文地质景观,周边生态环境可能遭到破坏,建设过程带来的移民问题也不容忽视。
5.风电
与发达国家相比,我们的风电发展水平差距十分明显。
在20世纪80年代对中国风能资源曾进行了一次普查,根据全国900余个气象台站的气象资料首次较完整地估算了陆地上离地面lOm高度层上的风能资源储量,估算结果是:陆地平均风功率密度为lOOW/m2,风能资源理论总储量约为亿kw,经济可开发利用量约为亿kW;海上风能可开发利用量按陆地的3倍估算,约为亿kW:共计lO亿kw,大于中国的水能资源储量(中国水能资源储量为亿kw,居世界第l位。
实际可开发量为40%一60%).风能丰富区主要包括东南沿海地区,东北、西北及青藏高原为较丰富区。
中国大陆风能储备最丰富的地区是青海、甘肃、新疆和内蒙,可开发的风能储量分别为1l43万KW、242l万KW、3433万KW和6l78万KW.我国对新能源的研究主要是从上世纪90年代开始的,90年代制定的“中国21世纪议程”报告。
强调了发展新能源和可再生能源对中国经济持续发展和环境保护的重要作用,这一报告有力促进了我国的风能由科研试验向商业性开发与利用的转变。
由于风电的独特优势,自从该报告提出以来。
国内风电装机容量一直以平均每年约30%的速度增长。
同时,风电设备制造业也在快速发展,中国很快就将成为世界上最大的风电设备生产国。
图1:我国近年来风电的发展状况及预测
图2:我国风力资源分布情况
图3:我国风电基地建设情况
风电存在的问题:不稳定、随机性强,时时刻刻在变化,这也是风电最主要面对的问题。
6.核能
核电凭借资源丰富,干净清洁、用之不竭、经济、安全等优点,已成为国际能源领域投资热点。
从国务院批准的《核电中长期发展规划
(2005—2020年)》可以看出我国对核电发展的战略由“适度发展”到“积极发展”,在这样的背景下,我国的核电能源获得很好的发展机遇。
按照规划,到2020年,核电占全部电力装机容量的比重从现在的不到2%提高到4%,核电年发电量达到2 600~2 800亿k矾;2005—2010年,我国核电装机容量年复合增长率达到11.9%;2010—2020年,装机容量年复合增长率达到12.8%。
核电:安全问题仍是重中之重,福岛核电站再次给我们敲醒了警钟,安全上出了问题是最难办的。
7.太阳能发电
太阳能光伏发电市场规模稳步扩大,光伏产业在国际市场带动下继续发展壮大,在各种项目和政策推动下,国内并网光伏发电市场开始起步,分布式光伏发电市场逐步扩大。
初步统计,2010年新增并网光伏发电装机53万kW,累计装机达到83万kW,其中地面大型并网光伏发电累计装机70万kW,建筑一体化并网光伏发电装机约l 3万kW。
光伏产业在国际和国内市场带动下继续发展壮大。
全球光伏发电市场2010年新增装机同比增加超过120%,达到1700万kW以上,带动我国太阳能光伏产业规模迅速扩大。
当年我国全年光伏电池产量同比增长约l倍,约800万kW。
特别是国内光伏产业的多晶硅原料瓶颈得到新突破,当年全国多晶硅产量达到4万t以上。
随着技术水平的提高、产业规模的扩大、原料成本的下降和光伏设备市场竞争加剧,太阳能光伏发电成本持续降低。
光伏发电系统:太阳能发电受气候条件影响,具有间歇性,且价格昂贵,目前只能用于小型设备供电。
二、我国能源发展趋势
全球化石能源的枯竭是不可避免的,预计将在本世纪内基本开采殆尽。
中国是世界能耗大国,面临的形势更加严竣,未来的我国能源结构也将会发生较大的变化。
煤炭
中国是世界煤炭生产大国,也是消费大国。
目前煤炭在能源消费结构中占据主体地位,中国煤炭储量丰富。
按照目前的开采速度,在未来的几十年煤炭将在能源结构中的比例会有所降低但仍将占主导地位。
石油、天然气
中国石油储量20.5亿t,2009年我国石油产量达到近1.9亿t且还有增长趋势,按照目前开采速度,20 年之内我国石油将开采殆尽,石油在我国能源结构中的地位将慢慢削弱。
我国天然气储量丰富,每年生产量都在大幅度递增,随着我国综合国力的不断提升,新技术的引进及提高,天然气工业必将得到快速发展。
可再生资源
可再生能源技术是从大自然中获取能量,具有取之不尽用之不竭的优点。
主要的可再生资源是太阳能,风、河流、波浪和潮汐的动能,生物体中的化学能及岩石中的热量。
在这些可再生能源中,水力水电已经大量开发,我国正处于市场经济的初级阶段,现阶段水电消费在我国能源结构中所占的比例不到6%,依据国际经验和我国市场经济的发展趋势,在未来的50 年我国的水电消费在能源结构中所占比重将得到很大提高;风能是清洁的可再生能源,风力发电
与常规发电相比,具有能源充足、不消耗燃料、无环境污染、占地面积小、工程建设周期短、发电技术成熟等优点。
在当今世界的新能源开发技术中。
风力发电是最成熟、最有商业利用价值的发电方式,其装机容量正在不断扩大.全球风电发电量占总发电量的比例也在逐步增加;我国幅员广大,有着十分丰富的太阳能资源,我国的太阳能利用技术已基本成熟。
根据欧洲JRC的预测,到2030年可再生能源在总能源结构中占到30%以上,太阳能光伏发电在世界总电力的供应中达到10%以上;2040年可再生能源占总能耗50%以上,太阳能光伏发电将占总电力的20%以上;到21世纪末可再生能源在能源结构中占到80%以上,太阳能发电占到60%以上,显示出极其重要的战略地位。
由此可推断,在未来可再生能源在我国的能源结构中所占的比倒也会相应的提高。
核能
在现有的基础上,核能技术必将越来越成熟,核能在我国的能源结构中的重要地位定会越来越得到加强。
三、结论
目前我国的能源消费以煤炭、石油等化石能源为主,随着化石能源资源的逐渐枯竭,新能源(可再生资源、核能等)必将取代它们而发挥主要作用,未来的能源结构将会进行很大的调整。
参考文献:
1.从我国风电发展现状看世界风电发展形势及政策借鉴
作者:陈文章,荣士壮
2.中国可再生能源发展状况、展望及政策措施建议
作者:赵勇强,时璟丽,高虎
3. 浅谈新能源发电的特点及其发展前景
作者:邱志斌,黄刚,黄霞4.新能源发展的基本动因与主要方向
作者:吴疆
参考网站:。