表观遗传学_---_Epigenetics教材

合集下载

2024年表观遗传学(研究生课件)

2024年表观遗传学(研究生课件)

表观遗传学(研究生课件)一、表观遗传学的基本概念表观遗传学(Epigenetics)一词最早由英国生物学家康韦·里德(ConradWaddington)于1942年提出,意为“基因表达调控的研究”。

表观遗传学关注的是基因表达的可遗传变化,这种变化不涉及DNA序列的改变,而是通过染色质重塑、DNA甲基化、组蛋白修饰等机制实现。

二、表观遗传学的调控机制1.染色质重塑:染色质重塑是指染色质结构发生变化,使DNA 暴露或隐藏于核小体中,从而影响基因表达。

染色质重塑主要通过ATP依赖的染色质重塑复合体实现。

2.DNA甲基化:DNA甲基化是指在DNA甲基转移酶的作用下,将甲基基团转移至DNA上的过程。

DNA甲基化通常发生在CpG岛上,高甲基化状态往往与基因沉默相关,而低甲基化状态与基因活化相关。

3.组蛋白修饰:组蛋白修饰是指组蛋白上的氨基酸残基发生甲基化、乙酰化、磷酸化等修饰。

这些修饰可以改变组蛋白与DNA的相互作用,进而影响基因表达。

4.非编码RNA:非编码RNA包括微小RNA(miRNA)、长链非编码RNA(lncRNA)等,它们在基因表达调控中发挥重要作用。

例如,miRNA可以通过与目标mRNA结合,抑制其翻译过程。

三、表观遗传学与疾病表观遗传学异常与多种疾病的发生密切相关。

例如,肿瘤的发生往往伴随着表观遗传学调控机制的紊乱,如DNA甲基化异常、组蛋白修饰异常等。

表观遗传学还与心血管疾病、神经系统疾病、代谢性疾病等密切相关。

四、表观遗传学的应用1.肿瘤诊断与治疗:表观遗传学在肿瘤诊断和治疗方面具有重要应用价值。

例如,通过检测肿瘤相关基因的DNA甲基化状态,可以早期发现肿瘤;同时,针对表观遗传学调控机制的药物研发,为肿瘤治疗提供了新策略。

2.农业育种:表观遗传学在农业育种领域也具有广泛应用。

通过改变植物表观遗传状态,可以提高作物产量、抗病性和适应环境能力。

3.神经科学与心理学:表观遗传学研究为揭示神经系统疾病和心理学问题的发生机制提供了新视角。

表观遗传学

表观遗传学

表观遗传学( epigenetics)
1. 概念
基因的DNA序列不发生改变的情况下, 基因表达水平与功能发生改变,并产生 可遗传的表型。
2. 特征 (1)可遗传 (2)可逆性 (3)DNA不变
研究历史
1942 年沃丁顿 (Wadding
ton) 在 Endeavour 杂志
首次提出表观遗产学。
基因型的遗传(heredity)或
2. DNA甲基化抑制基因转录的机制:
(1) 干扰转录因子对DNA元件的识别和结合 (2) 将转录因子DNA识别序列转变为阻抑物识别序列 (3) DNA甲基化有利于招募染色质重塑或修饰因子
3. DNA甲基化: 是转录沉默的结果和维持,而不是原因。
DNA甲基化
DNA甲基化(DNA methylation)是研究得最清楚、
启动子区甲基化DNA,并影响组蛋白H3甲基转移酶的活性, 促使组蛋白H3的赖氨酸甲基化,后者与DNA甲基化一起对 H19基因的表达起抑制作用。
DNA甲基化模式:正常细胞 vs. 癌症
影响DNA甲基化的因素
1.DNA甲基化转移酶(DNA Methyltransferase,DNMT)
2. 组蛋白甲基化 3.饮食等环境因素对DNA甲基化的影响
转录起始:1, Structural preparation: chromatin modulation
> 30 nm 10 nm (beads-on-a-string); 2, Formation of pre-initiation complex.
染色质调整 chromatin modulation
A. Histone acetyltransferase,HAT (>30) B. Histone deacetylase, HDAC (18)

表观遗传学 (epigenetics)

表观遗传学 (epigenetics)

3、遗传印记(迹)或基因印记(迹)


基因印迹是指二倍体细胞的一对基因(父本和母本) 只有一个可以表达,另一个因甲基化而沉默。 哺乳动物中相当数量的印迹基因与胎儿的生长发育 和胎盘的功能密切相关的。
4、染色质重塑
• 组成核小体的组蛋白可以被多种化学复合物所 修饰,如磷酸化、乙酰化和甲基化等,组蛋白 的这类结构修饰可使染色质的构型发生改变, 称为染色质构型重塑。 • X染色质出现与表观遗传修饰相关
4、神经精神疾病
精神分裂症和情绪障碍与DNMT基因相关。基因 高甲基化抑制脑组织中Reelin蛋白的表达,Reelin 蛋白是维持正常神经传递、大脑信息存储和突触可 塑性所必需的蛋白 。


• 掌握表观遗传学的概念 • 掌握表观遗传的主要现象
• 了解DNA甲基化与去甲基化、组蛋白乙酰 化和非乙酰化对基因的调控作用
表观遗的概念:是指DNA序列不发生变
化,但基因功能却发生了可遗传的改变。这种 改变是细胞内除了遗传信息以外的其他可遗传 物质发生的改变,且这种改变在发育和细胞增 殖过程中能稳定传递。
• 表观遗传(epigenetic inheritance)概 念:通过有丝分裂或减数分裂来传递非DNA序
列信息的现象。
二、表观遗传现象或表观遗传修 饰机制
1、DNA甲基化
DNA甲基化是指在DNA甲基转移酶(DNMTs)的作 用下,以S-腺苷甲硫氨酸(SAM)为甲基供体, 将甲基基团转移到胞嘧啶和鸟嘌呤(CpG)二核 苷酸的胞嘧啶。
DNMT1 SAM
胞嘧啶
5-甲基胞嘧啶
胞嘧啶甲基化反应
基因调控元件(如启动子)所含CpG岛中的5-mC会 阻碍转录因子复合体与DNA的结合.
DNA的去甲基化基因可重新激活。

表观遗传学(研究生课件)

表观遗传学(研究生课件)
2. 异染色质:基因表达 沉默的区域,染色体结 构致密
组成核小体的组蛋白可以被多种化合物所 修饰,如磷酸化、乙酰化和甲基化等,组 蛋白的这类结构修饰可使染色质的构型发 生改变,称为染色质构型重塑。
组蛋白中不同氨基酸残基的乙酰化一般与 活化的染色质构型常染色质(euchromatin) 和有表达活性的基因相关联;而组蛋白的 甲基化则与浓缩的异染色质(heterochromatin)和表达受抑的基因相关联。
当一个基因的启动子序列中的CpG岛被甲基化 以后,尽管基因序列没有发生改变,但基因不 能启动转录,也就不能发挥功能,导致生物表 型的改变。
DNA甲基化抑制基因表达
DNA甲基化模式可以在DNA复制后被保持下来
基因组印记与DNA甲基化密切相关
1956年Prader-Willi综合征(Prader-Willi Syndrome,PWS),患者肥胖、矮小、 中度智力低下。染色体核型分析表明为 父源染色体15q11-13区段缺失。
遗传信息的传递:中心法则
1. DNA自身通过复制传递遗传信息; 2. DNA转录成RNA; 3. RNA自身能够复制(RNA病毒); 4. RNA能够逆转录成DNA; 5. RNA翻译成蛋白质。
基因组含有两类遗传信息
1. 遗传编码信息:提供生命必需蛋白质的模板 2. 表观遗传学信息:何时、何地、以何种方式去应 用遗传信息 (1) DNA的甲基化:CpG位点,>5,000万个 (2) 组蛋白修饰:组蛋白密码(Histone code)
表观遗传学的研究已成为基因组测序后 的人类基因组重大研究方向之一。这一 飞速发展的科学领域从分子水平揭示了 复杂的生物学现象,为解开人类和其他 生物的生命奥秘、造福人类健康带来了 新希望。

第六章 表观遗传学

第六章 表观遗传学


NIH-National Institutes of Health(美国)
Epigenetic changes have been associated with disease, but further progress requires the development of better methods to detect the modifications and a clearer understanding of factors that drive these changes. 192 million USD for 5 years ( 2008 to 2012)
获得性遗传( Inheritance
of acquired characteristics)
Jean-Baptiste Lamarck
(1744-1829)
问题 环境的作用能否改变个体的遗传 特性,并传递给下一代?
这种被称为“拉马克学说”(Lamarckism) 的观点一直被正统的生物学家拒之门外。
AHEAD(人类表观基因组与疾病联合会) (Alliance for the Human Epigenome and Disease)计划.
The international AHEAD scientific committee will discuss the issue of the global collaborative efforts in light of the recent launch of NIH routemap Epigenetics program
effect variegation (PEV) —— 第一种表观遗
传学现象。 1942年,Waddington提出现代Epigenetics的

Epigenetics-表观遗传学

Epigenetics-表观遗传学

Epigenetics-表观遗传学展开全文之前看到一篇关于epigenetics的小短文,觉得有趣,顺藤摸瓜就找到了这本小蓝书。

副标题挺好的,概括了书中的关键词:How Modern Biology is Rewriting Our Understanding of Genetics, Disease and Inheritance.如果像我一样,对生物学和医学纯属小白,这本书里有很多简单明了的例子和类比,能够帮助读者搞明白一些基本的生物学知识,再次印证,好的科学家也可以是好的文学写手。

What's more, Carey's style is highlyapproachable and readable.当然书里也有让人晕头转向的地方,特别是碰到各种术语多的时候(背景知识薄弱),但总体上不影响阅读。

我们对于遗传并不陌生(起码知道这两个汉字),但对表观遗传学就有点生疏了。

英文解释是这样的:Whenever two genetically identicalindividuals are non-identical in some waywe can measure, this is calledepigenetics...The 'epi' in epigenetics isderived from Greek and means at, on, to,upon, over or besides.简单来讲,就是明明两者基因一样,但是外显出来的特征却不一样。

epi在这里就体现出来了:epigenome不会改变你的DNA,但是会影响你体内有多少基因或者以什么样的方式“表达”出来。

有趣的是,它不会永恒不变,会随着外界的影响而变化,跟环境进行“对话”,也会通过遗传的方式传递;所以有些人喝水都胖,而有些人怎么吃都不胖,很可能是你受到了上几代人饮食习惯的影响。

书中讲了很多有趣的例子,就像下面的两代老鼠,老鼠爸爸因为偷吃果子经常被电击,次数多了,看见果子就害怕;结果跑到下一代小老鼠身上,就算不电击它,它看见果子也会惊恐地直哆嗦。

表观遗传学 - EpigeneticsPPT课件

表观遗传学 - EpigeneticsPPT课件
(2)转录抑制复合物干扰基因转录。甲基化DNA结合蛋 白与启动子区内的甲基化CpG岛结合,再与其他一些 蛋白共同形成转录抑制复合物(TRC),阻止转录因 子与启动子区靶序列的结合,从而影响基因的转录。
(3)通过改变染色质结构而抑制基因表达。染色质构型 变化伴随着组氨酸的乙酰化和去乙酰化,许多乙酰化 和去乙酰化本身就分别是转录增强子和转录阻遏物蛋 白。
表观遗传学 Epigenetics
概念
表观遗传学
研究不涉及DNA序列改变的基因表达和调控的可遗传变 化的,或者说是研究从基因演绎为表型的过程和机制 的一门新兴的遗传学分支。
表观遗传
所谓表观遗传就是不基于DNA差异的核酸遗传。即细胞 分裂过程中,DNA 序列不变的前提下,全基因组的基 因表达调控所决定的表型遗传,涉及染色质重编程、 整体的基因表达调控(如隔离子,增强子,弱化子, DNA甲基化,组蛋白修饰等功能 ), 及基因型对表型的 决定作用。
表观遗传学的特点:
可遗传的,即这类改变通过有丝分裂或减数分 裂,能在细胞或个体世代间遗传;
可逆性的基因表达调节,也有较少的能用DNA序列变化来解 释。
表观遗传学的研究内容:
基因选择性转录表达 基因转录后的调控 的调控
DNA甲基化
❖ 目前认为基因调控元件(如启动子)的CpG岛中发生 5mC修饰会在空间上阻碍转录因子复合物与DNA的结 合。因而DNA甲基化一般与基因沉默相关联。
DNA甲基化的转录抑制机制:
(1)直接干扰特异转录因子与各自启动子结合的识别位 置。DNA的大沟是许多蛋白因子与DNA结合的部位,胞 嘧啶的甲基化干扰转录因子与DNA的结合。
染色质重塑是由染色质重塑复合物介导的 一系列以染色质上核小体变化为基本特征 的生物学过程。

表观遗传学课件 PPT

表观遗传学课件 PPT

核小体
• 核小体定位是核小体在DNA上特异性定位的现象。 • 核小体核心DNA并不是随机的,其具备一定的定向特性。 • 核小体定位机制:
内在定位机制:每个核小体被定位于特定的DNA片断。 外在定位机制:内在定位结束后,核小体以确定的长度 特性重复出现。
• 核小体定位的意义:
核小体定位是DNA正确包装的条件。 核小体定位影响染色质功能。
• 组蛋白修饰种类
乙酰化-- 一般与活化的染色质构型相关联,乙酰化修饰 大多发生在H3、H4的 Lys 残基上。
甲基化-- 发生在H3、H4的 Lys 和 Arg残基上,可以与 基因抑制有关,也可以与基因的激活相关,这往往取决 于被修饰的位置和程度。 磷酸化-- 发生与 Ser 残基,一般与基因活化相关。 泛素化-- 一般是C端Lys修饰,启动基因表达。 SUMO(一种类泛素Байду номын сангаас白)化-- 可稳定异染色质。 其他修饰(如ADP的核糖基化)
组蛋白修饰的检测方法
1.免疫染色
2.染色质免疫共沉淀
3.质谱
三、染色质重塑
• 染色质重塑(chromatin remodeling)是一个重要的表观遗传学 机制。 • 染色质重塑是由染色质重塑复合物介导的一系列以染色质上核小 体变化为基本特征的生物学过程。 • 组蛋白尾巴的化学修饰(乙酰化、甲基化及磷酸化等)可以改变 染色质结构,从而影响邻近基因的活性。
ton) 在 Endeavour 杂志
首次提出表观遗传学。
基因型的遗传(heredity)或
传承(inheritance)是遗传学
研究的主旨 ,而基因型产生
表型的过程则是属于表观
遗传学研究的范畴。
1987 年 ,霍利德( Holliday) 进一步指出可在两个层面上 研究高等生物的基因属性。 第一个层面是基因的世代间传递的规律 ——遗传学。 第二个层面是生物从受精卵到成体的发育过程中基因

表观遗传学(epigenetics)

表观遗传学(epigenetics)
在该模型中唯一有关的因子是阻遏蛋白(repressor)和活 化物蛋白(activator)的浓度,负责游离型与DNA结合型的 平衡。平衡模型可以解释在细菌细胞中的转录调控
n. 均衡丟平静丟保持平衡的能力
2.染色质重构模型(Chromatin remodeling)
染色质重构模型主要涉及真 核生物基因的转录调控 真核生物的启动子可能出现 两种情况: (1)失活状态 核小体的存在 阻碍基本因子和RNA聚 合酶与启动子结合 (2)激活状态 基本转录装置 占据启动子,组蛋白八聚 体不能与其结合 在以上两种情况中染色体结 构是稳定的。
3.组蛋白修饰是关键 组蛋白的修饰 控制基因活性。
修饰发生在组蛋 白N-端末尾,特别是 H3和H4。 组蛋白N-端末尾 20个氨基酸组成, 其中有很多修饰位置
乙酰化 甲基化 磷酸化
在组蛋白修饰中 一般乙酰化与活性染色质相联系, 甲基化与失活染色质相联系
All the core histones can be acetylated. The major targets for acetylation are lysines in the N-terminal tails of histones H3 and H4. Acetylation occurs in two different circumstances: · during DNA replication; · and when genes are activated.
(1).甲基化:是指在DNA甲基化转移酶的作用下,将一个甲
基添加在DNA分子的碱基上: C
mC
5-甲基胞嘧啶是高诱导基因突变的自发突变位点,可以通 过自发脱氨,使CG TA,结果导致人类DNA的甲基化受体位点的 强烈抑制,因而造成基因沉默。 人类基因组70%的5-甲基胞嘧啶在CpG岛,但由于其发布散 在,所以CpG岛呈非甲基化。 CpG岛甲基化可直接导致相关基因的表观遗传学沉默。异常 CpG重新甲基化,被认为是人类癌症发生早期的一个特征。

表观遗传学课件

表观遗传学课件

概述
Tuesday, March 03,
11
概述
遗 传 与 表 观 遗 传
Tuesday, March 03,
12
概述
真核生物全部遗传信息
遗传 密码
组蛋白 密码
? 密码
基因组 DNA 序列
Tuesday, March 03,
组蛋白 氨基端 修饰

13
DNA
概述
与 染 色 质
Tuesday, March 03,
Tuesday, March 03,
8
概述
❖Definition of Epigenetics
Any changes in gene expression resulting from either a DNA and chromatin modification or resulting from a post posttranscriptional mechanism. However, it does not reflect a difference in the DNA code。
6
发展历史
❖1975年,Hollidy R 对表观遗传学进行了 较为准确的描述。
❖他认为表观遗传学不仅在发育过程,而且 应在成体阶段研究可遗传的基因表达改变 ,这些信息能经过有丝分裂和减数分裂在 细胞和个体世代间传递,而不借助于DNA 序列的改变,也就是说表观遗传是非DNA 序列差异的核遗传。
Tuesday, March 03,
Tuesday, March 03,
18
Quiz, J. nature. 2006
表观遗传学机制
11Biblioteka DDNNAA 甲甲基基化化2

第十一章-表观遗传学PPT课件

第十一章-表观遗传学PPT课件

二、基因组印迹(genomic imprinting)
概念:依赖于父、母源性的等位基因的差异性 表达,即父亲和母亲的基因组在个体发育中有 着不同的影响,这种现象称基因组印迹。
两个亲本的等位基因差异性甲基化是基因组印 迹现象的基础。
疾病的基础: 15q11-13 微缺失
Prader-Willi syndrome, PWS(父源):肥胖、矮 小, 中度智力低下
2. 表遗传(epigenetic)信息
,提供何时、何地、如何应
用遗传学信息的指令,保证
基因适时启闭
One genome--------multiple epigenome
-
12
一、表观遗传修饰
表达模式的信息标记: DNA特定碱基的修饰:胞嘧啶的甲基化; 染色质构型重塑:如,组蛋白的乙酰化、 甲基化
果蝇中的杂色(眼)位置效应(positioneffect variegation): 野生红眼基因W+(显性) 突变白眼基因w(隐性)
基因定位于X染色体长臂末端
W+
“W+/W+”和“W+/w”均表现正常红眼 意外情况: W+异位至着丝粒附近(异染
色质区), “W+/w”杂合体表现为花斑 眼(杂色),即:部分细胞正常红色, 部分少量红色,部分白色。
设计实验拟解决:“RNA 干扰”是否与转入的RNA 结构有关。
-
22
意外发现:导入双链RNA的产生功能干扰的有效 性远高于导入单链RNA, sense or antisense RNA导入均如此。
仅需少数分子即可产生干扰效应,提示酶促反 应或分子扩增的存在。
-
23
上述现象提示: 1. 存在超越简单反义RNA作用的机理。 2. RNA靶向的作用也不能排除。 3. 同时可能存在RNA与染色质的直接作用,影 响RNA的转录。

表观遗传学简介课件

表观遗传学简介课件
借以调控基因表达活性,在生殖与发育、遗传与进化、生理与病理现象中 具有重要的生物学意义,表观遗传学及应运而生的人类表观基因组计划 (HEP)已成为近年关注的热点问题。已知表观遗传学现象与多种人类疾 病有着密切的关系,如肿瘤、基因印迹病等。同时基因甲基化异常存在可 逆性,这可能为相关疾病的治疗提供崭新的途径。
DNA甲基化
DNA 甲基化是生物关闭基因表达的一种有效手段,也是印迹遗传的主要 机制之一;基因的去甲基化可能使得印迹丢失,基因过度表达,甚至引起 肿瘤或癌症的发生,如促肿瘤生长因子IGF2基因过度表达引发大肠癌。
在特定组织中,非甲基化基因表达,甲基化基因不表达,基因选择性的去甲 基化形成特异的组织类型。
表观遗传有三个密切相关的含义:
(1) 可遗传的,即这类改变通过有丝分裂或减数分裂,能在细胞或个体世 代间遗传;
(2) 可逆性的基因表达调节; (3) 没有DNA序列的变化或不能用DNA序列变化来解释。
表观遗传学的研究内容
主要包括:
(1)基因选择性转录表达的调控:DNA 甲基化、组蛋白共价修饰等所导致 的基因组印迹、染色质重构(塑)等; (2)基因转录后的调控: 针对mRNA的调控。如基因组中非编码RNA(主 要来源于内含子和转录的基因间序列)、miRNA(能够自我折叠形成发夹 状结构,通过RNAi或类似于RNAi的机制起作用)、反义RNA、内含子和 核糖体开关等
表观遗传学治疗
由于表观遗传学修饰机制参与人类多种疾病的致病,且表观遗传学的改 变在一定程度上具有可逆性(reversibility),这就要求我们寻找逆转基 因沉默的有效治疗方法,因此,表观遗传学治疗(epigenetic therapy) 应运而生。如,DNA甲基化抑制剂和组蛋白去乙酰化酶抑制剂等。

ZT_课件4_表观遗传学概论

ZT_课件4_表观遗传学概论

Baylin S, Cell, 2007
Neoplastic Conversion
Chemical Carcinogen -DNA Reactive -Epigenetic effect -DNA methylation -Histone deacetylation Progression Promotion
• Posttranscriptional gene
silencing (PTGS)
mRNA
(RNA interference by dsRNA, miRNA)
Gene Silencing in Normal Cells
Baylin S, Cell, 2007
An “Epigenetic Gatekeeper” Prevents Early Tumor Progression
DNA methylation
GCAGATCC DNA: 5’ CGTCTAGG 3’
3’ 5’
CpG methylation of DNA
CH3-SAM SAH
C
:S-MTase
C
S-MTase
C
S-MTase
C
:S-MTase
Dense CpG methylation silences transcription !
Manel Esteller , NEJM, 2008
Epigenome: The overall epigenetic state of a cell
Methylation subtraction (MS-RDA)
MassARRAY® EpiTYPER from Sequenom co.
Epigenetics in Cancer Management

表观遗传学

表观遗传学

第五章:哺乳动物基因 组印记
第六章:哺乳动物X染色 体失活
第七章:表观遗传学和 人类疾病
第一章:染色质修饰及其作用机理
1.核小体和染色质高级结构
染色质:DNA+组蛋白 组蛋白(Histone):小分子强碱性蛋白。由球状结构域
和可变的(相对无结构域的)从核小体表面伸出的“组蛋 白尾部”组成,组蛋白序列相当保守 核小体(Nucleosome):染色质重复单位,由核心组蛋 白(H2A、H2B、H3和H4)组成的一个蛋白八聚体和一 段147bp包绕在外周的DNA组成
组蛋白修饰因子和染色体重塑因子 染色体重塑时的修饰酶:ISWI家族和SWI家族
染色体重塑机制(共价修饰与ATP依赖)
2. 组蛋白变体和表观遗传学
因为巨大的DNA长度,演化出结构性蛋白进行包装 染色质因为组蛋白变体的装入和置换而多样化 组蛋白变体在基因表达、染色体分离、DNA修复和真核
赖氨酸甲基化酶
与着丝粒和端粒周围异染色质形成有关
通过chromo结构域与HP1因子结合介导异染色质形成 与DNA甲基化协同存在
H3K9与DNA甲基化互相依赖,缺失DNA甲基化酶的哺乳动物 癌细胞中H3K9甲基化水平下降 在常染色质基因抑制中也有功能
3.3.2 赖氨酸去甲基化
2004年,去甲基化酶LSD1的发现提供了细胞内可发生去 甲基化的证据
模型3中,一个组蛋白翻译 后修饰可以为一个染色质结 合因子提供特异性结合
3. 组蛋白翻译后修饰类型
3.1 乙酰化(acetylation)与去乙酰化 实验证据: 转录活跃区或准备转录的染色质区域倾向于开放构想,可被
核酸酶降解; 实验发现鸡红细胞中活跃球蛋白基因处核酸酶高敏位点和组
蛋白高乙酰化位点有高度的相关性 酿酒酵母中,转录沉默区域有降低的转录水平

表观遗传学PPT课件

表观遗传学PPT课件
1958年,R.A.Brink发现paramutation现象。
1961年,Mary Lyon发现X染色体失 活现象。
1983年,DNA甲基化的发现。
近年来,现代分子生物学 认为细胞中信息的表达受两 种因素控制:一种是传统意 义上的遗传调控,另一种是 表观遗传调控—何时、何地、 以何种方式去应用遗传信息 的指令。
表观遗传学(epigentics) 被认为是遗传学领域中探讨 基因型与表现型之间相互关 系的一个新的研究方向。
• 人类表观基因组和疾病联合会 于2003 年10月正式宣布开始投 资和实施旨在解析人类全基因 组中表观遗传信息及其与疾病 状态相关的特定表观遗传修饰 的人类表观基因组计划(Human Epigenome Project , HEP) 。
DNA低甲基化:整个基因组普遍低甲基化,这种广泛的 低甲基化会造成基因的不稳定,这与多种肿瘤的发生有 关。 DNA的低甲基化也可能在异常组蛋白修饰的协同下引起 某些T细胞基因的异常活化、导致自身免疫性疾病的发 生。
肿瘤类型 肺癌
乳腺癌 食管癌 胃癌 肝癌
结直肠癌
肾癌 膀胱癌
前列腺癌 卵巢癌
神经胶质瘤 淋巴瘤
CHCH33源自CH3DNA
DNA
CH
3
CH
复制
3

甲基 CH
3
转移
CH
3

CH
3
甲基化抑制基因的 表达
SUCCESS
THANK YOU
2019/7/30
DNA高甲基化:基因启动子区的CpG岛在正常状态下一般是 非甲基化的,当发生甲基化时,基因转录沉寂,使一些重 要基因如抑癌基因、DNA修复基因等丧失功能,从而导致 正常细胞的生长分化调控失常以及DNA损伤不能被及时修 复,这与多种肿瘤形成密切相关。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)转录抑制复合物干扰基因转录。甲基化DNA结合蛋 白与启动子区内的甲基化CpG岛结合,再与其他一些 蛋白共同形成转录抑制复合物(TRC),阻止转录因 子与启动子区靶序列的结合,从而影响基因的转录。
(3)通过改变染色质结构而抑制基因表达。染色质构型 变化伴随着组氨酸的乙酰化和去乙酰化,许多乙酰化 和去乙酰化本身就分别是转录增强子和转录阻遏物蛋 白。
表观遗传学的特点:
可遗传的,即这类改变通过有丝分裂或减数分 裂,能在细胞或个体世代间遗传;
可逆性的基因表达调节,也有较少的学者描述 为基因活性或功能的改变;
没有DNA序列的改变或不能用DNA序列变化来 解释。
表观遗传学的研究内容:
基因选择性转录表达 基因转录后的调控 的调控
DNA甲基化
甲基化-- 发生在H3、H4的 Lys 和 Arg残基上,可以 与基因抑制有关,也可以与基因的激活相关,这往往 取决于被修饰的位置和程度。
磷酸化-- 发生与 Ser 残基,一般与基因活化相关。
泛素化-- 一般是C端Lys修饰,启动基因表达。
SUMO(一种类泛素蛋白)化-- 可稳定异染色质。
其他修饰(如ADP的核糖基化)
被组蛋白覆盖的基因如果要表达,首先要改变组蛋白 的修饰状态,使其与DNA的结合由紧变松,这样靶基因 才能与转录复合物相互作用。因此,组蛋白是重要的 染色体结构维持单元和基因表达的负控制因子。
组蛋白修饰种类
乙酰化-- 一般与活化的染色质构型相关联,乙酰化修 饰大多发生在H3、H4的 Lys 残基上。
基因组中非编码RNA
基因印记
微小RNA(miRNA)
组蛋白共价修饰
反义RNA
染色质重塑
内含子、核糖开关等
表观遗传学机制
DNA甲基化 组蛋白修饰 染色质重塑 RNA调控 其他表观遗传机制
遗传印记 X染色体失活
一、DNA甲基化
DNA甲基化(DNA methylation)是研究得 最清楚、 也是最重要的表观遗传修饰形式,主 要是基因组 DNA上的胞嘧啶第5位碳原子和甲 基间的共价结合,胞嘧啶由此被修饰为5甲基 胞嘧啶(5-methylcytosine,5mC)。
表观遗传学 Epigenetics
闵捷 21014007
பைடு நூலகம்
概念
表观遗传学
研究不涉及DNA序列改变的基因表达和调控的可遗传 变化的,或者说是研究从基因演绎为表型的过程和机 制的一门新兴的遗传学分支。
表观遗传
所谓表观遗传就是不基于DNA差异的核酸遗传。即细 胞分裂过程中,DNA 序列不变的前提下,全基因组的 基因表达调控所决定的表型遗传,涉及染色质重编程 、整体的基因表达调控(如隔离子,增强子,弱化子 ,DNA甲基化,组蛋白修饰等功能 ), 及基因型对表型 的决定作用。
❖ 组蛋白中被修饰氨基酸的种类、位置和修饰类型被 称为组蛋白密码(histone code),遗传密码的 表观遗传学延伸,决定了基因表达调控的状态,并 且可遗传。
Bryan M. Turner, nature cell biology, 2007
三、染色质重塑
染色质重塑(chromatin remodeling) 是一个重要的表观遗传学机制。
核小体定位机制:
内在定位机制:每个核小体被定位于特定的DNA片断 。
外在定位机制:内在定位结束后,核小体以确定的长 度特性重复出现。
核小体定位的意义:
核小体定位是DNA正确包装的条件。 核小体定位影响染色质功能。
重塑因子调节基因表达机制的假设有两种:
结构。
DNA去甲基化
主动去甲基化
复制相关的去甲基化
在复制过程中维持甲基化酶活性被关闭或维持甲基化酶 活性被抵制。
DNA
复 制 相 关 的 去 甲 基 化
DNA全新甲基化
DNA主动去甲基化
DNA甲基化状态的保 持
二、组蛋白修饰
组蛋白修饰是表观遗传研究的重要内容。
组蛋白的 N端是不稳定的、无一定组织的亚单位,其 延伸至核小体以外,会受到不同的化学修饰,这种修 饰往往与基因的表达调控密切相关。
基因调控元件(如启动子)所含CpG岛中的5mC会阻碍转录因 子复合体与DNA的结合。
DNA甲基化一般与基因沉默相关联;
非甲基化一般与基因的活化相关联;
而去甲基化往往与一个沉默基因的重新激活相关联。
CpG
频 率
5’
Rb基因
3’
❖ CpG岛主要处于基因5’端调控区域。
❖ 启动子区域的CpG岛一般是非甲基化状态的,其非甲基 化状态对相关基因的转录是必须的。
染色质重塑是由染色质重塑复合物介导的 一系列以染色质上核小体变化为基本特征 的生物学过程。
组蛋白尾巴的化学修饰(乙酰化、甲基化 及磷酸化等)可以改变染色质结构,从而 影响邻近基因的活性。
核小体
核小体定位是核小体在DNA上特异性定位 的现象。
核小体核心DNA并不是随机的,其具备一 定的定向特性。
DNMT1
胞嘧啶
S-腺苷S甲AM硫氨酸
5-甲基胞嘧啶
胞嘧啶甲基化反应
哺乳动物基因组中5mC占胞嘧啶总量的2%-7%,约70%的 5mC存在于CpG二连核苷。
在结构基因的5’端调控区域, CpG二连核苷常常以成簇串联 形式排列,这种富含CpG二连核苷的区域称为CpG岛(CpG islands),其大小为500-1000bp,约56%的编码基因含该结 构。
❖ 目前认为基因调控元件(如启动子)的CpG岛中发生 5mC修饰会在空间上阻碍转录因子复合物与DNA的结 合。因而DNA甲基化一般与基因沉默相关联。
DNA甲基化的转录抑制机制:
(1)直接干扰特异转录因子与各自启动子结合的识别位 置。DNA的大沟是许多蛋白因子与DNA结合的部位, 胞嘧啶的甲基化干扰转录因子与DNA的结合。
DNA甲基化状态的遗传和保持:
DNA复制后,新合成链在DNMT1的作用下,以旧 链为模板进行甲基化。(缺乏严格的精确性,95% )
甲基化并非基因沉默的原因而是基因沉默的结果, 其以某种机制识别沉默基因,后进行甲基化。
DNA全新甲基化。引发因素可能包括:
DNA本身的序列、成分和次级结构。 RNA根据序列同源性可能靶定的区域。 特定染色质蛋白、组蛋白修饰或相当有序的染色质
相关文档
最新文档