2020高考物理专题十 电磁感应
2025年高考物理总复习课件专题十电磁感应第1讲电磁感应现象、楞次定律

高考总复习·物理
核心素养
重要考点
物理观念
(1)理解电磁感应现象、磁通量、自感、涡流 等概念;(2)掌握右手定则、楞次定律、法拉 第电磁感应定律等重要规律
1.电磁感应现象、 磁通量
科学思维
科学探究 科学态度
与责任
综合应用楞次定律、法拉第电磁感应定律分 析问题的能力
通过实验探究影响感应电流方向的因素,习·物理
2.实验步骤 (1)按图连接电路,闭合开关,记录下G中流入电流方 向与灵敏电流计G中指针偏转方向的关系. (2)记下线圈绕向,将线圈和灵敏电流计构成通路. (3)把条形磁铁N极(或S极)向下插入线圈中,并从线圈 中拔出,每次记下电流计中指针偏转方向,然后根据步骤(1)的结论,判 定出感应电流方向,从而可确定感应电流的磁场方向. (4)记录实验现象.
了解电磁感应知识在生活、生产和科学技术 中的应用
2.法拉第电磁感 应定律
3.楞次定律的应 用
4.自感、涡流现 象的分析理解
高考总复习·物理
一、磁通量 1.概念:磁感应强度B与面积S的__乘__积____. 2.公式:Φ=____B_S___.适用条件:匀强磁场;S是__垂__直____磁场的有效面 积. 单位:韦伯(Wb),1 Wb=__1_T_·_m__2_. 3.意义:穿过某一面积的磁感线的___条__数___. 4.标矢性:磁通量是___标__量___,但有正、负.
高考总复习·物理
例1 (2023年广东二模)如图甲所示,驱动线圈通过开关S与电源连接,
发射线圈放在绝缘且内壁光滑的发射导管内.闭合开关S后,在0~t0内驱动 线圈的电流iab随时间t的变化如图乙所示.在这段时间内,下列说法正确的 是( B )
2020年高考物理专题10 电磁感应

重点1 电磁感应现象楞次定律【要点解读】1.磁通量变化的常见情况弹性线圈在向外拉的过程中(1)楞次定律中“阻碍”的含义(2)判断感应电流方向的两种方法方法一用楞次定律判断方法二用右手定则判断该方法适用于切割磁感线产生的感应电流。
判断时注意掌心、拇指、四指的方向:①掌心——磁感线垂直穿入;②拇指——指向导体运动的方向;③四指——指向感应电流的方向。
4.楞次定律、左手定则、右手定则、安培定则的综合应用(1)“三个定则一个定律”的比较①因电而生磁(I→B)→安培定则;②因动而生电(v、B→I安)→右手定则;③因电而受力(I、B→F安)→左手定则;④因磁而生电(Φ、B→I安)→楞次定律。
(3)相互联系①应用楞次定律,一般要用到安培定则。
②研究感应电流受到的安培力,一般先用右手定则确定电流方向,再用左手定则确定安培力的方向,有时也可以直接应用楞次定律的推论确定。
5.利用“因果关系法”分析电磁感应现象(物理思想)(1)方法概述因果关系分析法是指在解题过程中依据事物之间的前后相连,先行后续的因果关系去分析,推断事物的原因或结果的一种思维方法。
(2)利用因果关系分析法进行主观性推断的两种情形①据因推果:根据某种原因,预见它可能产生的结果。
②执果索因:根据某种结果,探究产生或导致这种结果的原因。
(3)电磁感应中常见因果关系的例析①阻碍原磁通量变化——“增反减同”②阻碍相对运动——“来拒去留”③)使回路面积有扩大或缩小的趋势——“增缩减扩”④阻碍原电流的变化——“增反减同”【考向1】电磁感应现象【例题】(多选)如图所示,矩形闭合线圈abcd竖直放置,OO′是它的对称轴,通电直导线AB与OO′平行。
若要在线圈中产生感应电流,可行的做法是()A.AB中电流I逐渐增大B.AB中电流I先增大后减小C.以AB为轴,线圈绕AB顺时针转90°D.线圈绕OO′轴逆时针转动90°(俯视)【审题指导】(1)AB中电流变化,能否在线圈中产生感应电流?提示:只要AB中电流变,线圈中磁通量就变,就有感应电流产生。
2020版新一线高考物理(人教版)一轮复习教学案:第10章 第2节 法拉第电磁感应定律 自感 涡流 含答案

第2节 法拉第电磁感应定律 自感 涡流知识点一| 法拉第电磁感应定律1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势。
产生感应电动势的那部分导体就相当于电源,导体的电阻相当于电源内阻。
(2)感应电流与感应电动势的关系:遵循闭合电路欧姆定律,即I =E R +r。
2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。
(2)公式:E =n ΔΦΔt,n 为线圈匝数。
3.导体切割磁感线的情形(1)若B 、l 、v 相互垂直,则E =Bl v 。
(2)若B ⊥l ,l ⊥v ,v 与B 夹角为θ,则E =Bl v sin_θ。
[判断正误](1)Φ=0,ΔΦΔt 不一定等于0。
(√) (2)感应电动势E 与线圈匝数n 有关,所以Φ、ΔΦ、ΔΦΔt的大小均与线圈匝数有关。
(×) (3)线圈中磁通量变化越快,产生的感应电动势越大。
(√) (4)法拉第提出了法拉第电磁感应定律。
(×)(5)当导体在匀强磁场中垂直磁场方向运动时(运动方向和导体垂直),感应电动势为E =BL v 。
(√)考法1 对感生电动势E =n ΔΦΔt 的理解与应用1.关于感应电动势的大小,下列说法中正确的是( )A .穿过线圈的磁通量Φ越大,所产生的感应电动势就越大B.穿过线圈的磁通量的变化量ΔΦ越大,所产生的感应电动势就越大C.穿过线圈的磁通量的变化率ΔΦΔt越大,所产生的感应电动势就越大D.穿过线圈的磁通量Φ等于0,所产生的感应电动势就一定为0C[根据法拉第电磁感应定律可知,感应电动势的大小与磁通量的变化率ΔΦΔt成正比,与磁通量Φ及磁通量的变化量ΔΦ没有必然联系。
当磁通量Φ很大时,感应电动势可能很小,甚至为0。
当磁通量Φ等于0时,其变化率可能很大,产生的感应电动势也会很大。
所以只有选项C正确。
]2.(2017·天津高考)如图所示,两根平行金属导轨置于水平面内,导轨之间接有电阻R。
高考物理一轮总复习专题10电磁感应第2讲法拉第电磁感应定律自感涡流课后提能演练

专题十 第2讲知识巩固练1.如图甲所示,100匝的线圈(图中只画了2匝)两端A 、B 与一个理想电压表相连.线圈内有指向纸内方向的匀强磁场,线圈中的磁通量在按图乙所示规律变化.下列说法正确的是( )A .A 端应接电压表正接线柱,电压表的示数为150 VB .A 端应接电压表正接线柱,电压表的示数为50.0 VC .B 端应接电压表正接线柱,电压表的示数为150 VD .B 端应接电压表正接线柱,电压表的示数为50.0 V【答案】B 【解析】线圈相当于电源,由楞次定律可知A 相当于电源的正极,B 相当于电源的负极,故A 应该与理想电压表的正接线柱相连.由法拉第电磁感应定律得E =nΔΦΔt =100×0.15-0.10.1V =50.0 V ,电压表的示数为50.0 V ,故B 正确.2.如图所示,闭合导线框的质量可以忽略不计,将它从如图所示的位置匀速拉出匀强磁场.若第一次用0.3 s 时间拉出,外力所做的功为W 1,通过导线截面的电荷量为q 1;第二次用0.9 s 时间拉出,外力所做的功为W 2,通过导线截面的电荷量为q 2,则( )A .W 1<W 2,q 1<q 2B .W 1<W 2,q 1=q 2C .W 1>W 2,q 1=q 2D .W 1>W 2,q 1>q 2【答案】C 【解析】第一次用0.3 s 时间拉出,第二次用0.9 s 时间拉出,两次速度比为3∶1,由E =BLv ,两次感应电动势比为3∶1,两次感应电流比为3∶1,由于F 安=BIL ,两次安培力比为3∶1,由于匀速拉出匀强磁场,所以外力比为3∶1,根据功的定义W =Fx ,所以W 1∶W 2=3∶1;根据电量q =I Δt ,感应电流I =E R ,感应电动势E =ΔΦΔt ,得q =ΔΦR,所以q 1∶q 2=1∶1,故W 1>W 2,q 1=q 2.故C 正确.3.(2021年龙岩二模)如图所示,abcd 为水平放置的平行“”形光滑金属导轨,导轨间距为l ,电阻不计.导轨间有垂直于导轨平面向下的匀强磁场,磁感应强度大小为B .金属杆放置在导轨上,与导轨的接触点为M 、N ,并与导轨成θ角.金属杆以ω 的角速度绕N 点由图示位置匀速转动到与导轨ab 垂直,转动过程中金属杆与导轨始终接触良好,金属杆单位长度的电阻为r .则在金属杆转动的过程中( )A .M 、N 两点电势相等B .金属杆中感应电流的方向由N 流向MC .电路中感应电流的大小始终为Bl ω2rD .电路中通过的电荷量为Bl2r tan θ【答案】A 【解析】根据题意可知,金属杆MN 为电源,导轨为外电路,由于导轨电阻不计,外电路短路,M 、N 两点电势相等,A 正确;转动过程中磁通量减小,根据楞次定律可知金属杆中感应电流的方向是由M 流向N ,B 错误;由于切割磁场的金属杆长度逐渐变短,感应电动势逐渐变小,回路中的感应电流逐渐变小,C 错误;因为导体棒MN 在回路中的有效切割长度逐渐减小,所以接入电路的电阻逐渐减小,不能根据q =ΔΦR计算通过电路的电荷量,D 错误.4.(多选)如图所示的电路中,电感L 的自感系数很大,电阻可忽略,D 为理想二极管,则下列说法正确的有( )A .当S 闭合时,L 1立即变亮,L 2逐渐变亮B .当S 闭合时,L 1一直不亮,L 2逐渐变亮C .当S 断开时,L 1立即熄灭,L 2也立即熄灭D .当S 断开时,L 1突然变亮,然后逐渐变暗至熄灭 【答案】BD5.(2021年莆田质检)(多选)如图甲所示,边长为L 的正方形单匝线框水平放置,左侧一半置于沿竖直方向的匀强磁场中,线框的左侧接入电阻R ,右侧接入电容器,其余电阻不计.若磁场的磁感应强度B 随时间t 的变化规律如图乙所示(规定竖直向下为正方向),则在0~2t 0时间内( )A .电容器a 板带负电B .线框中磁通量变化为零C .线框中产生的电动势为B 0L 22t 0D .通过电阻R 的电流为B 0L 22Rt 0【答案】AC 【解析】由题图可知在0~t 0时间内磁场向上减小,根据楞次定律,可知线圈中产生逆时针方向的充电电流,则电容器a 板带负电,A 正确;因磁感应强度的变化率不为零,则线框中磁通量变化不为零,B 错误;线框中产生的电动势E =ΔΦΔt =ΔB ·12L2Δt =B 0L 22t 0,C 正确;因电动势恒定,则回路中只有瞬时的充电电流,电容器充电完毕后,回路中电流变为零,D 错误.6.(多选)如图所示,半径为2r 的弹性螺旋线圈内有垂直纸面向外的圆形匀强磁场区域,磁场区域的半径为r ,已知弹性螺旋线圈的电阻为R ,线圈与磁场区域共圆心,则以下说法正确的是( )A .保持磁场不变,线圈的半径由2r 变到3r 的过程中,有顺时针的电流B .保持磁场不变,线圈的半径由2r 变到0.5r 的过程中,有逆时针的电流C .保持半径不变,使磁场随时间按B =kt 变化,线圈中的电流为k πr 2RD .保持半径不变,使磁场随时间按B =kt 变化,线圈中的电流为2k πr2R【答案】BC 【解析】在线圈的半径由2r 变到3r 的过程中,穿过线圈的磁通量不变,则线圈内没有感应电流,故A 错误;当线圈的半径由2r 变到0.5r 的过程中,穿过线圈的磁通量减小,根据楞次定律,则有逆时针的电流,故B 正确;保持半径不变,使磁场随时间按B =kt 变化,根据法拉第电磁感应定律,有E =ΔB Δt ·πr 2=k πr 2,因此线圈中的电流I =E R=k πr 2R,故C 正确,D 错误. 7.(2021年株洲质检) 零刻度在表盘正中间的电流计,非常灵敏,通入电流后,线圈所受安培力和螺旋弹簧的弹力作用达到平衡时,指针在示数附近的摆动很难停下,使读数变得困难.在指针转轴上装上的扇形铝框或扇形铝板,在合适区域加上磁场,可以解决此困难.下列方案合理的是( )A BC D【答案】D 【解析】当指针向左偏转时,铝框或铝板可能会离开磁场,产生不了涡流,起不到电磁阻尼的作用,指针不能很快停下,A、C方案不合理,A、C错误;磁场在铝框中间,当指针偏转角度较小时,铝框不能切割磁感线,不能产生感应电流,起不到电磁阻尼的作用,指针不能很快停下,B错误,D正确.8.(2021年郑州模拟)(多选)涡流检测是工业上无损检测的方法之一.如图所示,线圈中通以一定频率的正弦式交变电流,靠近待测工件时,工件内会产生涡流,同时线圈中的电流受涡流影响也会发生变化.下列说法正确的是( )A.涡流的磁场总是要阻碍穿过工件磁通量的变化B.涡流的频率等于通入线圈的交变电流的频率C.通电线圈和待测工件间存在恒定的作用力D.待测工件可以是塑料或橡胶制品【答案】AB综合提升练9.(多选)如图甲所示,螺线管内有一平行于轴线的磁场,规定图中箭头所示方向为磁感应强度B的正方向,螺线管与U形导线框cdef相连,导线框cdef内有一半径很小的金属圆环L,圆环面积为S,圆环与导线框cdef在同一平面内.当螺线管内的磁感应强度随时间按图乙所示规律变化时,下列说法正确的是( )A .在t 1时刻,金属圆环L 内的磁通量最大,最大值Φm =B 0S B .在t 2时刻,金属圆环L 内的磁通量最大C .在t 1~t 2时间内,金属圆环L 有扩张的趋势D .在t 1~t 2时间内,金属圆环L 内有顺时针方向的感应电流 【答案】BD10.(多选)空间有磁感应强度为B 的有界匀强磁场区域,磁场方向如图所示,有一边长为L 、电阻为R 、粗细均匀的正方形金属线框abcd 置于匀强磁场区域中,ab 边跟磁场的右边界平行,若金属线框在外力作用下以速度v 向右匀速运动,下列说法正确的是( )A .当ab 边刚离开磁场时,cd 边两端的电压为3BLv4B .从ab 边到磁场的右边界至cd 边离开磁场的过程中,外力所做的功为B 2L 3vRC .从ab 边到磁场的右边界至cd 边离开磁场的过程中,外力做功的功率为B 2L 2vRD .从ab 边到磁场的右边界至cd 边离开磁场的过程中,通过线框某一截面的电量为BL 2R【答案】ABD 【解析】当ab 边刚离开磁场时,线框只有cd 边切割磁感线,产生的电动势为E =BLv ,cd 边为等效电源,两端的电压为闭合电路的路端电压,电路等价为四个电阻串联,cd 边为一个内阻R 4,外电路为三个R 4的电阻,故有U dc =E R 4+3R 4×3·R 4=3BLv4,故A正确;从ab 边到磁场的右边界至cd 边离开磁场的匀速过程,产生的恒定电流为I =E R,由动能定理W F 外-W F 安=0,由功的定义W F 安=F 安·L =BIL ·L ,可解得W F 外=B BLv R L 2=B 2L 3vR ,故B 正确;由能量守恒定律P F 外·t -P F 安·t =0,可得P F 外=P F 安=F 安·v =B BLv R L ·v =B 2L 2v 2R,故C 错误;根据电量的定义q =I ·Δt ,I =ER,E =ΔΦΔt ,联立可得q =ΔΦR,从ab 边到磁场的右边界到cd 边离开磁场的过程中,磁通量的变化量为ΔΦ=B ΔS =BL 2,可得q=BL 2R,故D 正确. 11.如图所示,匀强磁场的磁感应强度方向竖直向上,大小为B 0,用电阻率为ρ,横截面积为S 的导线做成的边长为l 的正方形线框abcd 水平放置,OO ′为过ad 、bc 两边中点的直线,线框全部都位于磁场中.现把线框右半部分固定不动,而把线框左半部分以OO ′为轴向上转动60°,如图中虚线所示.(1)求转动过程中通过导线横截面的电荷量;(2)若转动后磁感应强度随时间按B =B 0+kt 变化(k 为常量),求出磁场对线框ab 边的作用力大小随时间变化的关系式.解:(1)线框在转动过程中产生的平均感应电动势 E =ΔΦΔt=B 0·12l 2cos 60°Δt=B 0l 24Δt, ①在线框中产生的平均感应电流I =E R,② R =ρ4l S,③ 转动过程中通过导线横截面的电荷量q =I Δt , ④ 联立①~④解得q =B 0lS16ρ.⑤(2)若转动后磁感应强度随时间按B =B 0+kt 变化,在线框中产生的感应电动势大小E =ΔB ·S Δt=⎝ ⎛⎭⎪⎫12l 2cos 60°+l 22ΔB Δt=3l24k ,⑥在线框中产生的感应电流I =E R,⑦线框ab 边所受安培力的大小F =BIl ,⑧联立⑥~⑧解得F =(B 0+kt )3kl 2S16ρ.。
2020年高中物理讲义(第10章)-磁场(附详解)

.内容要求要点解读磁场、磁感应强度、磁感线Ⅰ新课标卷高考近几年未直接考查,而是结合安培力、洛伦兹力、电磁感应等内容间接考查。
高考要求知道其内容及含义,并能在有关问题中识别和直接使用。
通电直导线和通电线圈周围磁场的方向Ⅰ常考点,多以选择题考查安培定则的应用,要求考生会分项多条通电导线周围磁场的叠加。
安培力、安培力的方向Ⅰ常考点,往往结合平衡条件、牛顿运动定律和电磁感应问题综合考查。
匀强磁场中的安培力Ⅱ常考点,选择题或计算题均有可能,特别是安培力作用下的平衡或运动问题,并且常结合电磁感应问题综合考查。
洛伦兹力、洛伦兹力的方向Ⅰ热点。
要求考生会用左手定则判断洛伦兹力的方向,知道安培力是洛伦兹力的宏观表现。
洛伦兹力公式Ⅱ高频点或热点。
要求考查能熟练运用洛伦兹力公式,常结合带电粒子在磁场中的运动综合考查。
带电粒子在匀强磁场中的运动Ⅱ热点也是难点。
考查形式有选择题,也有压轴计算题,多涉及有界磁场,还会考查电、磁复合场,对考生各种能力要求较高。
复习时要注意多研究一些以最新科技成果为背景的题目,注意将实际问题模型化能力的培养。
质谱仪和回旋加速器Ⅰ熟悉其工作原理,多注意其他类似元件的工作原理,例如速度选择题、电磁流量计、磁流体发电机、霍尔元件等。
带电粒子在组合场、叠加场中的运动Ⅱ重力场、电场、磁场的组合或叠加,这部分内容涵盖了力、电、磁的核心内容,是高考的重点和难点,综合度高,难度大。
10 磁场§10-1 磁场性质一、磁场1.力的角度——磁感应强度:把一段检验电流放在磁场中时,用它受到的最大安培力与其电流强度和长度的乘积之比来描述该点的磁感应强度大小,即FBIL 。
2.“形”的角度——磁感线:磁感线的疏密反映磁场的强弱(磁感应强度的大小),切线方向是磁场方向。
3.磁场的叠加:由于磁感应强度是矢量,故磁场叠加时合磁场的磁感应强度可以由平行四边形定则计算。
二、安培定则和左手定则使用手使用范围安培定则右手环形电流→磁场、直线电流→环形磁场左手定则左手电(流)+磁→(安培)力判断通电导线在磁场中的运动方向:1.把弯曲导线分成很多直线电流元,先用左手定则判断各电流元受力方向,然后判断整段导线所受合力的方向,从而确定导线的运动方向。
专题10电磁感应 第3讲电磁感应定律的综合应用(教学课件)-高考物理一轮复习

4.电磁感应中图像类选择题的两个常用方法
定性分析电磁感应过程中物理量的变化趋势(增大还是减小)、 排除法 变化快慢(均匀变化还是非均匀变化),特别是分析物理量的正
负,以排除错误的选项 根据题目所给条件定量写出两个物理量之间的函数关系,然 函数法 后由函数关系对图像进行分析和判断
例2 (2020年山东卷)(多选)如图所示,平面直角坐标系的第一和第
的铜圆环,规定从上向下看时,铜环中的感应电流I,沿顺时针方向为
正方向.图乙表示铜环中的感应电流I随时间t变化的图像,则磁场B随
时间t变化的图像可能是下图中的
()
甲
乙
【答案】B
2.(2021年广东一模)(多选)如图所示,绝缘的水平面上固定有两条 平行的光滑金属导轨,导轨电阻不计,两相同金属棒a、b垂直导轨放 置,其右侧矩形区域内存在恒定的匀强磁场,磁场方向竖直向上.现两 金 属 棒 分 别 以 初 速 度 2v0 和 v0 同 时 沿 导 轨 自 由 运 动 , 先 后 进 入 磁 场 区 域.已知a棒离开磁场区域时b棒已经进入磁场区域,则a棒从进入到离 开磁场区域的过程中,电流i随时间t的变化图像可能正确的有
()
【答案】AB
【解析】a 棒以速度 2v0 先进入磁场切割磁感线产生的感应电流为 i0 =Bl·R2v0,a 棒受安培阻力做变减速直线运动,感应电流也随之减小,即 i-t 图像的斜率逐渐变小;设当 b 棒刚进入磁场时 a 棒的速度为 v1,此 时的瞬时电流为 i1=BRlv1.若 v1=v0,即 i1=BRlv0=i20,此时双棒双电源反 接,电流为零,不受安培力,两棒均匀速运动离开,i-t 图像中无电流 的图像,故 A 正确,C 错误.
【解析】导体棒向右切割磁感线,由右手定则,知电流方向为 b 指 向 a,由图像可知金属杆开始运动经 t=5.0 s 时,电压为 0.4 V,根据闭 合电路欧姆定律,得 I=UR=00..44 A=1 A,故 A 正确;根据法拉第电磁感 应定律,知 E=BLv,根据电路结构,可知 U=R+R rE,解得 v=5 m/s, 故 B 错误;
高中物理-专题 电磁感应-2020高考真题(解析版)

2020年高考物理100考点最新模拟题千题精练(选修3-2)第四部分电磁感应专题4.电磁感应-2020高考真题一.选择题1.(2020高考全国理综I)如图,U形光滑金属框abcd置于水平绝缘平台上,ab和dc边平行,和bc边垂直。
ab、dc足够长,整个金属框电阻可忽略。
一根具有一定电阻的导体棒MN置于金属框上,用水平恒力F向右拉动金属框,运动过程中,装置始终处于竖直向下的匀强磁场中,MN与金属框保持良好接触,且与bc边保持平行。
经过一段时间后A.金属框的速度大小趋于恒定值B.金属框的加速度大小趋于恒定值C.导体棒所受安培力的大小趋于恒定值D.导体棒到金属框bc边的距离趋于恒定值【参考答案】BC【命题意图】本题考查法拉第电磁感应定律、闭合电路欧姆定律、安培力及其相关知识点,考查的核心素养是运动和力的物理观念、科学思维。
【解题思路】用水平恒力F向右拉动金属框,bc边切割磁感线产生感应电动势,回路中有感应电流i,bc 边受到水平向左的安培力作用,设金属框的质量为M,加速度为a1,由牛顿第二定律,F-BiL=Ma1;导体棒MN受到向右的安培力向右加速运动,设导体棒的质量为m,加速度为a2,由牛顿第二定律,BiL=ma2,二者运动的速度图像如图所示。
设金属框bc边的速度为v时,导体棒的速度为v’,则回路中产生的感应电动势为E=BL(v-v’),由闭合电路欧姆定律I=E/R=()'BL v vR-,F安=BIL可得金属框ab边所受的安培力和导体棒MN所受的安培力都是F安=B 2L 2(v-v’)/R ,即金属框所受的安培力随着速度的增大而增大。
对金属框,由牛顿运动定律,F - F 安=Ma 1,对导体棒MN ,由牛顿运动定律, F 安=ma 2,二者加速度之差△a= a 1- a 2=(F - F 安)/M- F 安/m=F/M- F安(1/M+1/m ),随着所受安培力的增大,二者加速度之差△a 减小,当△a 减小到零时,即F/M=()22'B L v v R-(1/M+1/m ),所以金属框和导体棒的速度之差△v=(v-v’)=()22FRmB L m M +保持不变。
2020高考物理精品习题:电磁感应(全套含解析)高中物理

2020高考物理精品习题:电磁感应(全套含解析)高中物理第I 课时 电磁感应现象?楞次定律1如图12- 1 — 9所示,在同一平面内有四根彼此绝缘的直导线,分不通有大小相同 如图的电流,要使由四根直导线所围成的面积内的磁通量增加,那么应切断哪一根导 的电流〔〕A 、切断i i ;B 、切断i 2;C 、切断i 3;D 、切断i 4.【解析】i 1产生的的磁场在导线所围的面积内的磁感应强度的方向垂直纸面向里; 围的面积内的磁感应强度的方向垂直纸面向里;i 3产生的磁场在导线所围的面积内的磁感应强度的方向垂直纸面向里;i 4产生的磁场在导线所围的面积内的磁感应强度的方向垂直纸面向外;因此四根导线产生的 磁场叠加后在导线所围的面积内的磁场方向向里•故要使由四根直导线所围成的面积内的磁通量增加,只 要将磁场方向相反的i 4去除就能够了. 【答案】D2、磁悬浮列车是在车辆底部安装电磁铁,在轨道两旁铺设一系列的铝环•当列车运行时,电磁铁产生的 磁场相对铝环运动,列车凌空浮起,使车与轨道间的摩擦减小到专门小,从而提高列车的速度.以下讲法 正确的选项是〔〕A 、 当列车通过铝环时,铝环中有感应电流, 感应电流产生的磁场的方向与电磁铁产生的磁场的方向相同.B 、 当列车通过铝环时,铝环中有感应电流,感应电流产生的磁场的方向与电磁铁产生的磁场的方向相反.C 、 当列车通过铝环时,铝环中通有电流,铝环中电流产生的磁场的方向与电磁铁产生的磁场的方向相同.D 、 当列车通过铝环时,铝环中通有电流,铝环中电流产生的磁场的方向与电磁铁产生的磁场的方向相反. 【解析】列车通过铝环时,铝环中磁通量增大,铝环中产生感应电流,由楞次定律可知,铝环中感应电流 的磁场方向与电磁铁的磁场方向相反,从而使电磁铁受到向上的力,使列车悬浮. 【答案】B3、如图12— 1 — 10所示,一闭合的金属环从静止开始由高处下落通过条形磁铁后连续下落,空气阻力不 计,那么在圆环运动过程中,以下讲法正确的选项是〔A 、 圆环在磁铁的上方时,圆环的加速度小于B 、 圆环在磁铁的上方时,圆环的加速度小于C 、 圆环在磁铁的上方时,圆环的加速度小于D 、 圆环在磁铁的上方时,圆环的加速度大于【解析】一闭合的金属环从静止开始由高处下落通过条形磁铁的过程中,闭合金属环的磁通量先增大,而 后减小,依照楞次定律它增大时,不让它增大即阻碍它增大;它要减小时,不让它减小即阻碍它减小,因此下落时圆环在磁铁的上方和下方,圆环所受的安培力都向上,故加速度都小于 【答案】B4、如图12— 1 — 11所示,螺线管CD 的导线绕法不明.当磁铁 AB 插入螺线 电路中有图示方向的感应电流产生.以下关于螺线管极性的判定正确的选项 〔 〕A 、C 端一定是N 极B 、C 端的极性一定与磁铁 B 端的极性相同甘方向B3 12^1—?i 2产生的磁场在导线所〕 g ,在下方时大于 g g ,在下方时也小于 g g ,在下方时等于gg ,在下方时小于 g场必定g .国 12-1-11管时, 是C、C端一定是S极D、无法判定,因螺线管的绕法不明确【解析】磁铁AB插入螺线管时,在螺线管中产生感应电流,感应电流的磁阻碍AB 插入,故螺线管的 C 端和磁铁的B 端极性相同. 【答案】B5、如图12- 1 - 12所示,平行导体滑轨 MM 〈 NN ,水平放置,固定在匀强磁场中•磁场的方向与水平面垂 直向下.滑线 AB 、CD 横放其上静止,形成一个闭合电路.当 AB 向右滑动时,电路中感应电流的方向及8、如图12- 1 - 15所示,边长为h 的正方形金属导线框,从图示的位置由静止开 落,通过一匀强磁场区域, 磁场方向水平,且垂直于线框平面, 磁场区域宽度为 边界如图中虚线所示, H h .从线框开始下落到完全穿过磁场区域的全过程中, 判定正确的选项是〔 〕 ①线框中总有感应电流存在②线框受到磁场力的合力方向有时向上有时向下③线 动方向始终是向下的④线框速度的大小不一定总是在增加 A 、①②B 、③④C 、①④D 、②③【解析】因H h ,故能够分为三个过程:①从下边开始进入磁场到全部进入磁场;②从全部开始进入磁场到下边开始离开磁场;③下边开始离开磁场到全部离开磁场.再由楞次定律和左手定那么能够判定明 白.可能会使线框离开磁场时线框所受的安培力大于线框的重力,从而使线框的速度减小. 【答案】B9、如图12- 1- 16所示,A 、B 是两个相互垂直的线框, 两线框相交点恰 线框的中点,两线框互相绝缘, A 线框中有电流,当线框 A 的电流强度 时,线框B 中 _________ 感应电流.〔填”有无"〕【解析】A 线框中尽管有电流, 同时产生了磁场,但磁感应强度的方向与滑线CD 受到的磁场力的方向分不为〔 A 、 电流方向沿 B 、 电流方向沿 C 、 电流方向沿 D 、 电流方向沿 ABCDA , ABCDA , ADCBA , ADCBA , 受力方向向右; 受力方向向左; 受力方向向右; 受力方向向左.【解析】此题用右手定那么和楞次定律都能够解决, 但用楞次定律比较快捷.由于AB 滑线向右运动,ABCD 所构成的回路面积将要增大,磁通量将增大,依照楞次定律要阻碍它 增大,因此产生的感应电流方向沿 ADCBA , CD 滑线将向右滑动,故受力方向向右.【答案】C6、如图12- 1- 13所示,在绝缘圆筒上绕两个线圈 P 和Q ,分不与 E 和电阻R 构成闭合回路,然后将软铁棒迅速插入线圈 P 中,那么 入的过程中〔〕A 、电阻R 上有方向向左的电流B 、电阻R 上没有电流C 、电阻R 上有方向向右的电流D 、条件不足,无法确定【解析】 软铁棒被磁化,相当于插入一根跟 P 的磁场同向的条形磁铁,使 P 、Q 线圈中的磁通量增加.由 楞次定律得,在 Q 中产生的感应电流向右通过电阻R .【答案】C7、如图12- 1 — 14所示,一有限范畴的匀强磁场,宽度为 形导线框以速度 时刻应等于〔A 、d/ ud ,将一个边长为L 的U 匀速地通过磁场区域,假设 d>L ,那么在线框中不产生感应电 〕 B 、L/ uC 、(d - L)/; uD 、(d - 2L)/; ux x >—X XJ & —》S 12-1-14【解析】线框中不产生感应电流,那么要求线框所组成的闭合回路内的磁通量不变化,即线框全部在磁场中匀速运动时没有感应电流.因此线框从左边框进入磁场时开始到线框的右边框 将要离开磁场时止,那个过程中回路中将没有感应电流.【答案】C正方流的发生f X X X Hx BX X j_X_ X X始下 上下 以下 框运左右DS 12-1-12阳 12-1-13是两 增大A 线50框的平面相垂直,即与 B 线框平行•因此不管 A 线框中的电流如何变化, B 线框中始终没有磁通量,即无 磁通量变化. 【答案】无210、与磁感应强度B 0.8T 垂直的线圈面积为 0.05m ,现在线圈的磁通量是多大?假设那个线圈绕有 匝时,磁通量多大?线圈位置假如转过530时磁通量多大?【解析】依照磁通量的定义:磁感应强度 B 与面积S 的乘积,叫做穿过那个面的磁通量,但要注意rE BL 0,而它相当于一个电源,同时其内阻为;金属棒两端电势差相当于外电路的端电压.外电S 是与磁感应强度 B 相垂直的那部分面积.即 BS 故:① 1 BS 10.8 0.05Wb4 10 2Wb②线圈绕有 50匝,但与磁感应强度 B 垂直的面积依旧 20.05m ,故穿过那个面的磁感线条数不变.磁通量也可明白得为穿过那个面的磁感线的条数.因此仍旧为 24 10 2Wb③依照磁通量的定义: 3BS COS 530 0.8 0.05 0.6Wb 2.4 10 2Wb 【答案】①14 10 2Wb ②2 4 10 2Wb ③32.4 10 2Wb第H 课时 法拉第电磁感应定律?自感1、如图12-2 — 12所示,粗细平均的电阻为 r 的金属圆环,放在图示的匀强磁场中,磁感应强度为r环直径为d ,长为L ,电阻为一的金属棒ab 放在圆环上,以速度 2金属棒两端电势差为〔 C 、^BL 0 ;20向左匀速运动,棒运动到图示虚线位置时, A 、0;B 、 BLD 1BL 0 .B ,圆 当ab【解析】当金属棒 ab以速度 °向左运动到图示虚线位置时, 依照公式可得产生的感应电动势为路半个圆圈的电阻为 -,而这两个半个圆圈的电阻是并联关系,故外电路总的电阻为 -,因此外电路电压23BL 0 .为U ba【答案】 1E3D 12-2- 13所示,竖直向下的匀强磁场中,将一水平放置的金属棒ab 以水 平的初速0抛出,设在整个过程中棒的取向不变且不计空气阻力,那么在金属动过程中产生的感应电动势大小变化情形是〔 〕A 、越来越大;B 、越来越小;C 、保持不变;D 、无法判定. 【解析】金属棒做切割磁感线的有效速度是与磁感应强度 B 垂直的那个分速度,金属棒做切割磁感线的水平分速度不变,故感应电动势不变.B 12-2—12棒运图 12^2-13【解析】线框在A 、C 位置时只受重力作用, 加速度a A = a C = g .线框在B 、D 位置时均受两个力的作用,【答案】C3、〔 2003年杭州模拟题〕如图 12-2 — 14所示为日光灯的电路图,以 法中正确的选项是〔〕①日光灯的启动器是装在专用插座上的,当日光灯正常发光后,取下启 器,可不能阻碍灯管发光•②假如启动器丢失,作为应急措施,能够用 段带绝缘外皮的导线启动日光灯•③日光灯正常发光后,灯管两端的电 220V .④镇流器在日光灯启动时,产生瞬时高压A 、①②B 、③④C 、①②④D 、②③④ 【解析】日光灯正常发光后,由于镇流器的降压限流作用,灯管两端的 要低于220V . 电压【答案】C4、〔 2002年全国高考卷〕如图 12— 2 — 15中EF 、GH 为平行的金属导轨,其电阻可不计, R 为电阻器, 表示图中该处导线中的电流,那么当横杆 AB 〔 〕 EAF A 、匀速滑动时,h 0 ,丨2 0B 、匀速滑动时11 0 , 120 A:XRXC 、加速滑动时,I 10 , I 2 0D 、加速滑动时,丨10,丨2C-k > XB【解析】横杆匀速滑动时,由于 EBL 不变,故I ? 0 , I 1 0 •加国 12-2-L5动时,由于E BL 逐步增大,电容器不断充电,故 I 1 0 , I 20 .【答案】D5、如图12— 2 — 16所示,线圈由A 位置开始下落,假设它在磁场中受到的磁场 于重力,那么在 A 、B 、C 、D 四个位置〔B 、D 位置恰好线圈有一半在磁场中〕 度的关系为〔 〕A 、 a A >aB >a c >a DB 、 a A = aC > a B > aD C 、 a A = a c > a D > a BD 、 a A = a C > a B = a DA D---B pTL ___XXX c[x\ XX •哂0 12-2—15力总小 时加速其中安培力向上 重力向下由于重力大于安培力,因此加速度向下,大小B 2l 2〔吨飞ma 丨又线框在 D 点时速度大于 B 点时速度,即 F D F B ,因此a B > a D .因此加速度的关系为a A = a c >a B >a D .【答案】B6、如图12— 2 — 17所示,将长为1m 的导线从中间折成约为 1060的角,磁感应 为0.5T 的匀强磁场垂直于导线所在的平面.为使导线产生 4V 的感应电动势,导线切割磁感线的最小速度约为 ___________ .下讲动 一小 压为C 为电容器,AB 为可在EF 和GH 上滑动的导体横杆,有平均磁场垂直于导轨平面•假设用 丨1和丨2分不速滑强度 那么国 12-2-17mgRsinB 2L 2【答案】〔1〕ab 杆受到一个竖直向下的重力;垂直斜面向上的支持力;沿斜面向上的安培力【解析】 欲使导线获得4V 的感应电动势,而导线的速度要求最小,依照 形下,L 最大且 与L 垂直时速度最小. BL 可知:E 、B 一定的情故依照E BL 得: minBL4m/s 10m/s0.5 0.8【答案】10m/s7、如图12- 2- 18所示,匀强磁场的磁感应强度为C 100 F , ab 长为 20cm ,当 ab 以10m/s 的速度向右匀速运动时,中的电流为【解析】 ,电容器上板带 感应电动势E BL0.4 ________ 电,电荷量为 _________ C .0.2 10V0.8V ,极板上的电荷量k x xh]XX k X XT电路Q CE100 10 6 0.8C10 5C .由于感应电动势一定, 电容器的带电荷量因此电路中无电流.【答案】 零;正;8 10 5C8、〔 2004年北京高考试卷〕如图 角为的绝缘斜面上,两导轨间距为 杆ab 放在两导轨上,并与导轨垂直. 下•导轨和金属杆的电阻可忽略•让 间的摩擦. (1)由b 向a 方向看到的装置如图 12-2- 19 所示,请在此图中画出 ab 杆下滑过程中某的受力示意图;〔2〕在加速下滑的过程中,当 ab 杆的速度 为 时,求现在ab 杆中的电流及其加速度 小; 〔3〕求在下滑过程中,ab 杆能够达到的速 大值.【解析】〔1〕ab 杆受到一个竖直向下的重力; 得所受的安培力沿斜面向上.12-2- 19〔 1〕所示,两根足够长的直金属导轨 L . M 、P 两点间接有阻值为 整套装置处于磁感应强度为 ab 杆沿导轨由静止开始下滑,MN 、PQ 平行放置在倾R 的电阻•一根质量为 m 的平均直金属 B 的匀强磁场中,磁场方向垂直斜面向 导轨和金属杆接触良好,不计它们之(画图略)〔2〕当ab 杆的速度大小为时,产生的感应电动势为 E BL ,现在杆ab 的电流为IBLR ;受到的 安培力为F BILB 2 L 2依照牛顿第二定律得 mg sinB 2 L 2 Rma即a gsin 『L 2 mR〔3〕当加速度为零时速度达到最大即疋,0.4T , R 100函 12-2-1S度最團 12-2-19垂直斜面向上的支持力;依照楞次定律的”阻碍 作用可大小 的大〔2〕2 2r 、B2 L2〔2〕a g sin 〔3〕mmR mgRsi n B2L29、〔2003年北京海淀区模拟题〕如图12—2—20所示,MN和PQ是固定在水平面内间距L = 0.2m的平行金属导轨,轨道的电阻忽略不计.金属杆ab垂直放置在轨道上.两轨道间连接有阻值为R0 1.5的电阻,ab杆的电阻R 0.5 . ab杆与导轨接触良好并不计摩擦,整个装置放置在磁感应强度为 B 0.5T的匀强磁场中,磁场方向垂直轨道平面向下.对ab杆施加一水平向右力,使之以5m/s速度在金属轨道上向右匀速运动.求:〔1〕通过电阻R o的电流;〔2〕对ab杆施加的水平向右的拉力大小;〔3〕ab杆两端的电势差. Mr ---------- N轨XXEXbl函12-2-3D【解析】〔1〕a、b杆上产生的感应电动势为E BL0.5V .依照闭合电路欧姆定律,通过R o的电流ER R o0.25A〔2〕由于ab杆做匀速运动,拉力和磁场对电流的安培力F大小相等,即卩拉=F BIL 0.025N〔3〕依照欧姆定律,ab杆两端的电势差U ab -ER°BL Ro0.375V R R o R R0【答案】〔1〕0.25A〔2〕0.025N〔3〕0.375V10、〔2004年上海高考卷〕水平向上足够长的金属导轨平定放置,间距为L, 一端通过导线与阻值为R的电阻连接;上放一质量为m的金属杆〔如图12-2 —21所示〕,金属导轨的电阻忽略不计;平均磁场竖直向下.用与导轨平行定拉力F作用在金属杆上,杆最终将做匀速运动. 当改变大小时,相对应的匀速运动速度也会变化,和F的关—* F X X行固导轨杆与的恒拉力系如图12— 2 —22所示.〔取重力加速度g 10m/s2〕〔1〕金属杆在匀速运动之前做什么运动?〔2〕假设m 0.5kg, L 0.5m, R 0.5 ;磁感应强度B为多大?〔3〕由一F图线的截距可求得什么物理量?其值为多少?【解析】〔1〕假设金属棒与导轨间是光滑的,那么平稳时必有恒定拉力与安培力平稳,即B2从而得到RB2L2 F,即与F成线性关系且通过坐标原点.而此题的图像坐标没有通过原点,讲明金等.故金属棒在匀速运动之前做变速运动〔加速度越来越小〕. 圈12-2—21属棒与导轨间有摩擦•金属棒在匀速运动之前 F F f + F安,随着速度的增加,安培力越来越大,最后相B 2 L 2〔2〕设摩擦力为F f ,平稳时有F = F f + F 安=F f + 皂上.选取两个平稳状态,得到两个方程组,从而R求解得到•如当 F = 4N 时, =4m/s ;当F = 10N 时,解得:B = 1T , F f 2N 〔3〕由以上分析得到:一F 图线的截距可求得金属棒与导轨间的摩擦力,大小为 2N .【答案】〔1〕金属棒在匀速运动之前做变速运动〔加速度越来越小〕;〔 2〕B = 1T ;〔 3〕 — F 图线的截距可求得金属棒与导轨间的摩擦力,大小为2N .第皿课时 电磁感应和电路规律的综合应用1如图12-3 — 7所示,闭合导线框的质量能够忽略不计,将它从图示位置匀速拉出匀强磁场,假设第 次用0.3s 时刻拉出,外力做的功为 W 1,通过导线截面的电量为为W 2,通过导线截面的电量为 q 2,那么〔 〕;X A 、W 1 W , q 1 q 2 B 、W 1 W 2 , q 1 q 2 :X ilC 、W 1 W 2, q 1 q 2D 、W 1 W 2 , q 1 q 2:X 1. N 4【解析】 设矩形线框的竖直边为 a ,水平边为 b ,线框拉出匀强磁场时的速度为 框拉出匀强磁场时产生的感应电动势为 E Ba ,产生的感应电流为丨| X I X X X : I —► 齟 12-3^7 ,线框电阻为R •那么线B a R 依照平稳条件得:作用的外力等于安培力即 F 安=Bia将线框从磁场中拉出外力要做功 W F b B 2ba 2R 由那个表达式可知: B 2b a 2 B-b ^两种情形都一样, R 拉出的速度越大,做的功就越多. 第一次速度大,故W 1 E t R 在磁场中的面积变化有关,即从磁场中拉出的线框面积•由于两次都等于整个线框的面积即两次拉出在磁 依照q 11 ,由这一推导过程可知两次拉出磁场通过导线截面的电量只与 场中的面积变化相等•故通过导线截面的电量两次相等•即 q i q 2【答案】C 2、如图12— 3 — 8所示,在磁感应强度为 B 的匀强磁场中,有半径为 r 的光滑 形导体框,OC 为一能绕O 在框架上滑动的导体棒, Ob 之间连一个电阻 R ,导 架与导体电阻均不计,假设要使 OC 能以角速度 匀速转动,那么外力做功的 是〔 〕R国 12-3-&X 0X半圆 体框 功率B 2 L 216m/s •代入 F = F f + B 一—Rq i ,第二次用0.9s 时刻拉出,外力做的功2R 【解析】由于导体棒匀速转动, 1 律得:E B I B- I I 2 4R 8R 因此外力的功率与产生的感应电流的电功率相等.依照法拉第电磁感应定 (1B I 2)2RI 2,因此电功率为P E 2 4R 【答案】C 3、用同种材料粗细平均的电阻丝做成 在电阻可忽略的光滑的平行导轨上, ef 较长,分 ab 、cd 、ef 三根导线, 如图12-3-9所示,磁场是平均的, ,而且每次 力使导线水平向右作匀速运动 〔每次只有一根导线在导轨上〕 做功功率相同,那么以下讲法正确的选项是〔 〕 A 、ab 运动得最快 B 、ef 运动得最快 C 、导线产生的感应电动势相等 D 、每秒钟产生的热量不相等磁感应定律得产生的感应电动势为 i C e:X 」; 乂 X X >X x乂、A] Xb d f国 L2-3-9不放 用外 外力l 〕•依照法拉第电 E B l ,由于匀速运动,因此外力做功的功率与电功率相等即 .B 2l 2 由图可知导线ef 最长,ab 最短, 因此有R ef R cd R ab 故ef 运动得最快. 由E B l 和ef 的速度最大可知导线 ef 产生的感应电动势最大. 由于三根导线产生的电热功率相等,由 Q Pt 得每秒钟产生的热量相等. 【答案】B 4、如图12-3- 10所示,光滑导轨倾斜放置,其下端连接一个灯泡,匀强磁场垂直于导轨所在平面,当ab 棒下滑到稳固状态时,小灯泡获得的功率为 P o ,除灯泡外,其它电阻不计,要使灯泡的功率变为2P 。
新版高考物理 第十章 电磁感应 10-4-3 电磁感应问题的综合应用课件.ppt

01 课堂互动 02 题组剖析 03 规范解答 04
课堂互动
应用动力学知识和功能关系解决力、电综合问题与 解决纯力学问题的分析方法相似,动力学中的物理规 律在电磁学中同样适用,分析受力时只是多了个安培 力或电场力或洛伦兹力。
题组剖析
典例 (20分) (2016·渝中区二模)如图,电阻不计的相同的光滑弯折金 属轨道MON与M′O′N′均固定在竖直面内,二者平行且正对,间距为L=1 m, 构成的斜面NOO′N′与MOO′M′跟水平面夹角均为α=30°,两边斜面均处于垂 直于斜面的匀强磁场中,磁感应强度大小均为B=0.1 T。t=0时,将长度也 为L,电阻R=0.1 Ω的金属杆ab在轨道上无初速度释放。金属杆与轨道接触 良好,轨道足够长。(g取10 m/s2,不计空气阻力,轨道与地面绝缘)求:
题组剖析
2.再读题―→过程分析―→选取规律
过程 分析 ab杆由静止释放,ab杆做匀加速直线运动t=2 s 时释放金属杆 cd,cd 由于受力
平衡,处于静止状态,ab 杆受力平衡,开始匀速下滑
选取 对cd杆,平衡条件:mgsin α=BIL 对 ab 杆
规律
牛顿第二定律:mgsin α=ma 运动学公式:v=at 法拉第电磁感应定律:E=BLv
(1)t时刻杆ab产生的感应电动势的大小E; (2)在t=2 s时将与ab完全相同的金属杆cd放在MOO′M′上,发现cd恰能 静止,求ab 杆的质量m以及放上杆cd后ab杆每下滑位移s=1 m回路产1.读题―→抓关键点―→提取信息 (1)“光滑弯折金属轨道”―隐―含→不计杆与轨道间摩擦力 (2)“与 ab 完全相同的金属杆 cd”―隐―含→杆 ab、cd 的电阻、质量均相同 (3)“cd 恰能静止”―隐―含→cd 受力平衡,那么 ab 杆受力也平衡
高考物理中电磁感应的考点和解题技巧有哪些

高考物理中电磁感应的考点和解题技巧有哪些在高考物理中,电磁感应是一个重要且具有一定难度的考点。
理解和掌握电磁感应的相关知识,以及熟练运用解题技巧,对于在高考中取得优异成绩至关重要。
一、电磁感应的考点1、法拉第电磁感应定律法拉第电磁感应定律是电磁感应的核心内容之一。
其表达式为:$E = n\frac{\Delta \Phi}{\Delta t}$,其中$E$ 表示感应电动势,$n$ 为线圈匝数,$\Delta \Phi$ 表示磁通量的变化量,$\Delta t$ 表示变化所用的时间。
这个考点通常会要求我们计算感应电动势的大小,或者根据给定的条件判断感应电动势的变化情况。
2、楞次定律楞次定律用于判断感应电流的方向。
其核心思想是:感应电流的磁场总是阻碍引起感应电流的磁通量的变化。
这一定律在解决电磁感应中的电流方向问题时经常用到,需要我们能够准确理解并运用“阻碍”这一概念。
3、电磁感应中的电路问题当导体在磁场中做切割磁感线运动或者磁通量发生变化时,会产生感应电动势,从而形成闭合回路中的电流。
在这类问题中,我们需要根据电路的基本规律,如欧姆定律、串并联电路的特点等,来计算电路中的电流、电压、电阻等物理量。
4、电磁感应中的能量转化问题电磁感应现象中,机械能与电能相互转化。
例如,导体棒在磁场中运动时,克服安培力做功,将机械能转化为电能;而电流通过电阻时,电能又转化为内能。
在解题时,需要运用能量守恒定律来分析能量的转化和守恒关系。
5、电磁感应与力学的综合问题这类问题通常将电磁感应现象与力学中的牛顿运动定律、功和能等知识结合起来。
例如,导体棒在磁场中受到安培力的作用,其运动情况会受到影响,我们需要综合运用电磁学和力学的知识来求解。
6、电磁感应中的图像问题包括磁感应强度$B$、磁通量$\Phi$、感应电动势$E$、感应电流$I$ 等随时间或位移变化的图像。
要求我们能够根据给定的物理过程,准确地画出相应的图像,或者从给定的图像中获取有用的信息,分析物理过程。
2020年高考物理新课标第一轮总复习讲义:第十章 第三讲 电磁感应中的电路和图象问题 含答案

能力提升课第三讲电磁感应中的电路和图象问题热点一电磁感应中的电路问题(师生共研)1.电磁感应中电路知识的关系图2.解决电磁感应中的电路问题三部曲[典例1]如图所示,在匀强磁场中竖直放置两条足够长的平行导轨,磁场方向与导轨所在平面垂直,磁感应强度大小为B0,导轨上端连接一阻值为R的电阻和开关S,导轨电阻不计,两金属棒a和b的电阻都为R,质量分别为m a=0.02 kg和m b=0.01 kg,它们与导轨接触良好,并可沿导轨无摩擦地运动.若将b棒固定,开关S断开,用一竖直向上的恒力F拉a棒,稳定后a棒以v1=10 m/s的速度向上匀速运动,此时再释放b棒,b 棒恰能保持静止.(g取10 m/s2)(1)求拉力F的大小;(2)若将a棒固定,开关S闭合,让b棒自由下滑,求b棒滑行的最大速度v2的大小;(3)若将a棒和b棒都固定,开关S断开,使磁感应强度从B0随时间均匀增加,经0.1 s 后磁感应强度增大到2B 0时,a棒受到的安培力大小正好等于a棒的重力,求两棒间的距离.解析:(1)法一:a棒做切割磁感线运动,产生的感应电动势为E=B0L v1,a棒与b棒构成串联闭合电路,电流为I=E2R,a棒、b棒受到的安培力大小为F a=ILB0,F b=ILB0依题意,对a棒有F=F a+G a对b棒有F b=G b所以F=G a+G b=0.3 N.法二:a、b棒都是平衡状态,所以可将a、b棒看成一个整体,整体受到重力和一个向上的力F,所以F=G a+G b=0.3 N.(2)a棒固定、开关S闭合后,当b棒以速度v2匀速下滑时,b棒滑行速度最大,b棒做切割磁感线运动,产生的感应电动势为E1=B0L v2,等效电路图如图所示.所以电流为I1=E1 1.5Rb棒受到的安培力与b棒的重力平衡,有G b=B20L2v2 1.5R由(1)问可知G b=F b=B20L2v1 2R联立可得v2=7.5 m/s.(3)当磁场均匀变化时,产生的感应电动势为E2=ΔB·LhΔt,回路中电流为I2=E22R依题意有F a2=2B0I2L=G a,代入数据解得h=1 m. 答案:(1)0.3 N(2)7.5 m/s(3)1 m[反思总结]电磁感应中电路问题的题型特点闭合电路中磁通量发生变化或有部分导体做切割磁感线运动,在回路中将产生感应电动势和感应电流.从而考题中常涉及电流、电压、电功等的计算,也可能涉及电磁感应与力学、电磁感应与能量的综合分析.1-1.[E =n ΔΦΔt 在电路中的应用] (多选)在如图甲所示的电路中,螺线管匝数n =1 500匝,横截面积S =20 cm 2.螺线管导线电阻r =1 Ω,R 1=4 Ω,R 2=5 Ω,C =30 μF.在一段时间内,穿过螺线管的磁场的磁感应强度B 按如图乙所示的规律变化,则下列说法中正确的是( )A .螺线管中产生的感应电动势为1.2 VB .闭合S ,电路中的电流稳定后电容器上极板带正电C .电路中的电流稳定后,电阻R 1的电功率为5×10-2 WD .S 断开后,通过R 2的电荷量为1.8×10-5 C解析:由法拉第电磁感应定律可知,螺线管内产生的电动势为E =n ΔB Δt S =1 500×0.82×20×10-4 V =1.2 V ,故A 正确;根据楞次定律,当穿过螺线管的磁通量增加时,螺线管下部可以看成电源的正极,则电容器下极板带正电,故B 错误;电流稳定后,电流为I =E R 1+R 2+r = 1.24+5+1A =0.12 A ,电阻R 1上消耗的功率为P =I 2R 1=0.122×4 W =5.76×10-2 W ,故C 错误;开关断开后通过电阻R 2的电荷量为Q =CU =CIR 2=30×10-6×0.12×5 C =1.8×10-5 C ,故D 正确.答案:AD1-2.[E =Bl v 在电路中的应用] (2017·江苏卷)如图所示,两条相距d 的平行金属导轨位于同一水平面内,其右端接一阻值为R 的电阻.质量为m 的金属杆静置在导轨上,其左侧的矩形匀强磁场区域MNPQ 的磁感应强度大小为B 、方向竖直向下.当该磁场区域以速度v 0匀速地向右扫过金属杆后,金属杆的速度变为v .导轨和金属杆的电阻不计,导轨光滑且足够长,杆在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求:(1)MN 刚扫过金属杆时,杆中感应电流的大小I ; (2)MN 刚扫过金属杆时,杆的加速度大小a ; (3)PQ 刚要离开金属杆时,感应电流的功率P . 解析:(1)感应电动势E =Bd v 0感应电流I =ER , 解得I =Bd v 0R .(2)安培力F =BId 牛顿第二定律F =ma 解得a =B 2d 2v 0mR .(3)金属杆切割磁感线的速度v ′=v 0-v ,则 感应电动势E =Bd (v 0-v ),电功率P =E 2R 解得P =B 2d 2(v 0-v )2R.答案:(1)I =Bd v 0R (2)a =B 2d 2v 0mR (3)P =B 2d 2(v 0-v )2R热点二 电磁感应中的图象问题 (师生共研)1.图象问题的求解类型2.弄清初始条件、正负方向的对应变化范围、所研究物理量的函数表达式、进出磁场的转折点等是解决此类问题的关键.3.解决图象问题的一般步骤(1)明确图象的种类,即是B-t图还是Φ-t图,或者E-t图、I-t图等;(2)分析电磁感应的具体过程;(3)用右手定则或楞次定律确定方向的对应关系;(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等知识写出函数关系式;(5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等;(6)画图象或判断图象.4.电磁感应中图象类选择题的两个常用方法排除法定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是分析物理量的正负,以排除错误的选项.函数法根据题目所给条件定量地写出两个物理量之间的函数关系,然后由函数关系对图象进行分析和判断.1.F安-t图象[典例2]将一段导线绕成图甲所示的闭合回路,并固定在水平面(纸面)内.回路的ab边置于垂直纸面向里的匀强磁场Ⅰ中.回路的圆环区域内有垂直纸面的磁场Ⅱ,以向里为磁场Ⅱ的正方向,其磁感应强度B随时间t变化的图象如图乙所示.用F表示ab边受到的安培力,以水平向右为F的正方向,能正确反映F随时间t变化的图象是()解析:0~T2时间内,根据法拉第电磁感应定律及楞次定律可得回路的圆环形区域产生大小恒定的、顺时针方向的感应电流,根据左手定则,ab边在匀强磁场Ⅰ中受到水平向左的恒定的安培力;同理可得T2~T时间内,ab边在匀强磁场Ⅰ中受到水平向右的恒定的安培力,故B正确.答案:B2.v-t图象[典例3]如图,矩形闭合导体线框在匀强磁场上方,由不同高度静止释放,用t1、t2分别表示线框ab边和cd边刚进入磁场的时刻.线框下落过程形状不变,ab边始终保持与磁场水平边界线OO′平行,线框平面与磁场方向垂直.设OO′下方磁场区域足够大,不计空气阻力影响,则下列哪一个图象不可能反映线框下落过程中速度v随时间t变化的规律()A B C D解析:由题意可知,线框先做自由落体运动,最终做匀加速直线运动.若ab边刚进入磁场时,速度较小,线框内产生的感应电流较小,线框所受安培力小于重力,则线圈进入磁场的过程做加速度逐渐减小的加速运动,图象C有可能;若线框进入磁场时的速度较大,线框内产生的感应电流较大,线框所受安培力大于重力,则线框进入磁场时做加速度逐渐减小的减速运动,图象B有可能;若线框进入磁场时的速度合适,线框所受安培力等于重力,则线框匀速进入磁场,图象D有可能;由分析可知选A.答案:A3.E-t图象[典例4]在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,规定线圈中感应电流的正方向如图甲所示,当磁场的磁感应强度B随时间t按如图乙所示规律变化时,下列选项中正确表示线圈中感应电动势E变化的是()解析:根据楞次定律得,0~1 s内,感应电流为正方向;1~3 s内,无感应电流;3~5 s 内,感应电流为负方向;再由法拉第电磁感应定律得,0~1 s内的感应电动势为3~5 s 内的二倍,故A正确.答案:A4.i-t图象[典例5]如图所示,两个垂直纸面的匀强磁场方向相反,磁感应强度的大小均为B,磁场区域的宽度为a,一正三角形(高为a)导线框ABC从图示位置沿图示方向匀速穿过两磁场区域,以逆时针方向为电流的正方向,线框中感应电流i与线框移动距离x的关系图是下图中的()A B C D解析:x在a~2a范围,线框穿过两磁场分界线时,BC、AC边在右侧磁场中切割磁感线,有效切割长度逐渐增大,产生的感应电动势E1增大,AB边在左侧磁场中切割磁感线,产生的感应电动势E2不变,两个电动势串联,总电动势E=E1+E2增大,故A错误;x 在0~a范围,线框穿过左侧磁场时,根据楞次定律,感应电流方向为逆时针,为正值,故B错误;x在2a~3a范围,线框穿过右侧磁场时,根据楞次定律,感应电流方向为逆时针,为正值,故C正确,D错误.答案:C5.综合图象[典例6](多选)如图所示为三个有界匀强磁场,磁感应强度大小均为B,方向分别垂直纸面向外、向里和向外,磁场宽度均为L.在磁场区域的左侧边界处有一边长为L的正方形导体线框,总电阻为R,且线框平面与磁场方向垂直.现用外力F使线框以速度v匀速穿过磁场区域,以初始位置为计时起点,规定电流沿逆时针方向时的电动势E为正,磁感线垂直纸面向里时的磁通量Φ为正值,外力F向右为正.则以下能反映线框中的磁通量Φ、感应电动势E、外力F和电功率P随时间变化规律的图象是()解析:在0~L v 时间内,磁通量Φ=BL v t ,为负值,逐渐增大;在t =3L2v 时磁通量为零,当t =2L v 时,磁通量Φ=BL 2为最大正值,在2L v ~5L2v 时间内,磁通量为正,逐渐减小,t =5L 2v 时,磁通量为零,5L 2v ~3L v 时间内,磁通量为负,逐渐增大,t =3Lv 时,磁通量为负的最大值,3L v ~4L v 时间内,磁通量为负,逐渐减小,由此可知A 正确.在0~Lv 时间内,E =BL v ,为负值;在L v ~2Lv 时间内,两个边切割磁感线,感应电动势E =2BL v ,为正值;在2L v ~3L v 时间内,两个边切割磁线,感应电动势E =2Bl v ,为负值;在3L v ~4Lv 时间内,一个边切割磁感线,E =BL v ,为正值,B 正确.0~Lv 时间内,安培力向左、外力向右,F 0=F 安=BI 0L ,电功率P 0=I 20R =B 2L 2v 2R,L v~2L v时间内,外力向右,F 1=2B ·2I 0L =4F 0,电功率P 1=I 21R =4B 2L 2v 2R=4P 0;2L v~3L v时间内,外力向右,F 2=2B ·2I 0L =4F 0,电功率P 2=I 22R =4B 2L 2v 2R=4P 0;在3L v~4L v时间内,外力向右,F 3=BI 0L =F 0,电功率P 3=I 20R =B 2L 2v 2R=P 0,C 错误,D 正确. 答案:ABD1. (多选)如图所示,两根足够长的光滑金属导轨水平平行放置,间距为l =1 m ,cd 间、de 间、cf 间分别接着阻值R =10 Ω的电阻.一阻值R =10 Ω的导体棒ab 以速度v =4 m/s 匀速向左运动,导体棒与导轨接触良好;导轨所在平面存在磁感应强度大小B =0.5 T 、方向竖直向下的匀强磁场.下列说法中正确的是( BD )A.导体棒ab中电流的流向为由b到aB.cd两端的电压为1 VC.de两端的电压为1 VD.fe两端的电压为1 V2.(多选)如图甲所示,MN、PQ两平行金属光滑导轨固定在绝缘水平面上,其左端接一电容为C的电容器,导轨范围内存在竖直向下的匀强磁场,导体棒ab垂直MN放在导轨上,在水平拉力的作用下从静止开始向右运动.电容器两极板间的电势差随时间变化的图象如图乙所示,不计导体棒及导轨电阻.下列关于导体棒ab运动的速度v、导体棒ab 受到的外力F随时间变化的图象可能正确的是( BD )3.在水平桌面上,一个面积为S的圆形金属框置于匀强磁场中,线框平面与磁场垂直,磁感应强度B随时间t的变化关系如图甲所示,0~1 s内磁场方向垂直线框平面向下,圆形金属框与两根水平的平行金属导轨相连接,导轨上放置一根导体棒,导体棒的长为L、电阻为R,且与导轨接触良好,导体棒处于另一匀强磁场中,如图乙所示.若导体棒始终保持静止,则其所受的静摩擦力F f随时间变化的图象是下图中的(设向右的方向为静摩擦力的正方向)( B )4.如图所示,金属杆ab 、cd 置于平行轨道MN 、PQ 上,可沿轨道滑动,两轨道间距l =0.5 m ,轨道所在空间有垂直于轨道平面的匀强磁场,磁感应强度B =0.5 T ,用力F =0.25 N 向右水平拉杆ab ,若ab 、cd 与轨道间的滑动摩擦力分别为F f1=0.15 N 、F f2=0.1 N ,两杆的有效电阻R 1=R 2=0.1 Ω,设导轨电阻不计,ab 、cd 的质量关系为2m 1=3m 2,且ab 、cd 与轨道间的最大静摩擦力与滑动摩擦力相等.求: (1)此两杆之间的稳定速度差;(2)若F =0.3 N ,两杆间稳定速度差又是多少?解析:因F >F f1,故ab 由静止开始做加速运动,ab 中将出现不断变大的感应电流,致使cd 受到安培力F 2作用,当F 2>F f2时,cd 也开始运动,故cd 开始运动的条件是:F -F f1-F f2>0.(1)当F =0.25 N 时,F -F f1-F f2=0,故cd 保持静止,两杆的稳定速度差等于ab 的最终稳定速度v max ,故此种情况有:电流I m =E m R 1+R 2=Bl v max R 1+R 2,安培力F m =BI m l ,则有F -F m -F f1=0,由此得v max =0.32 m/s.(2)当F =0.3 N >F f1+F f2,对ab 、cd 组成的系统,ab 、cd 所受安培力大小相等,方向相反,合力为零,则系统受的合外力为F 合=F -F f1-F f2=0.05 N .对系统有F 合=(m 1+m 2)a ,因为2m 1=3m 2,则F 合=52m 2a .取cd 为研究对象,F 安-F f2=m 2a ,F 安=BIl ,I =Bl Δv R 1+R 2,联立各式解得Δv =R 1+R 2B 2l 2(25F 合+F f2)=0.384 m/s. 答案:(1)0.32 m/s (2)0.384 m/s[A组·基础题]1. 如图所示,纸面内有一矩形导体线框abcd,置于垂直纸面向里、边界为MN的匀强磁场外,线框的ab边平行磁场边界MN,线框以垂直于MN的速度匀速地完全进入磁场,线框上产生的热量为Q1,通过线框导体横截面的电荷量为q1,现将线框进入磁场的速度变为原来的两倍,线框上产生的热量为Q2,通过线框导体横截面的电荷量为q2,则有( C )A.Q2=Q1q2=q1B.Q2=2Q1q2=2q1C.Q2=2Q1q2=q1D.Q2=4Q1q2=2q12. (2016·浙江卷)如图所示,a、b两个闭合正方形线圈用同样的导线制成,匝数均为10匝,边长l a=3l b,图示区域内有垂直纸面向里的匀强磁场,且磁感应强度随时间均匀增大,不考虑线圈之间的相互影响,则( B )A.两线圈内产生顺时针方向的感应电流B.a、b线圈中感应电动势之比为9∶1C.a、b线圈中感应电流之比为3∶4D.a、b线圈中电功率之比为3∶13.如图甲所示,一闭合圆形线圈水平放置,穿过它的竖直方向的匀强磁场磁感应强度随时间变化的规律如图乙所示,规定B的方向以向上为正方向,感应电流以俯视顺时针的方向为正方向,在0~4t时间内感应电流随时间变化的图象正确的是( D )4.如图甲所示,线圈ABCD固定于匀强磁场中,磁场方向垂直纸面向外,当磁场变化时,线圈AB边所受安培力向右且变化规律如图乙所示,则磁场的变化情况可能是下图所示的哪一个( D )5.(多选) 如图所示,光滑导轨倾斜放置,下端连一灯泡,匀强磁场垂直于导轨平面,当金属棒ab(电阻不计)沿导轨下滑达到稳定状态时,灯泡的电功率为P,导轨和导线电阻不计.要使灯泡在金属棒稳定运动状态下的电功率为2P,则下面选项中符合条件的是( AC )A.将导轨间距变为原来的2 2B.换一电阻值减半的灯泡C.换一质量为原来2倍的金属棒D.将磁场磁感应强度B变为原来的2倍6.(多选)如图甲所示,圆形的刚性金属线圈与一平行板电容器连接,线圈内存在垂直于线圈平面的匀强磁场,磁感应强度B随时间t变化的关系如图乙所示(以图示方向为正方向).t=0时刻,平行板电容器间一带正电的粒子(重力不计)由静止释放,假设粒子运动过程中未碰到极板,不计线圈内部磁场变化时对外部空间的影响,下列粒子在板间运动的速度图象和位移图象(以向上为正方向)中,正确的是( BC )7.(多选) 如图所示,两根电阻不计的平行光滑金属导轨在同一水平面内放置,左端与定值电阻R相连,导轨x>0一侧存在着沿x轴方向均匀增大的磁场,磁感应强度与x的关系是B=0.5+0.5x(T),在外力F作用下一阻值为r的金属棒从A1运动到A3,此过程中电路中的电功率保持不变.A1的坐标为x1=1 m,A2的坐标为x2=2 m,A3的坐标为x3=3 m,下列说法正确的是( BD )A.回路中的电动势既有感生电动势又有动生电动势B.在A1与A3处的速度之比为2∶1C.A1到A2与A2到A3的过程中通过导体横截面的电荷量之比为3∶4D.A1到A2与A2到A3的过程中产生的焦耳热之比为5∶7[B组·能力题]8.(多选) (2016·四川卷)如图所示,电阻不计、间距为l的光滑平行金属导轨水平放置于磁感应强度为B、方向竖直向下的匀强磁场中,导轨左端接一定值电阻R.质量为m、电阻为r的金属棒MN置于导轨上,受到垂直于金属棒的水平外力F的作用由静止开始运动,外力F与金属棒速度v的关系是F=F0+k v(F0、k是常量),金属棒与导轨始终垂直且接触良好.金属棒中感应电流为i,受到的安培力大小为F A,电阻R两端的电压为U R,感应电流的功率为P,它们随时间t变化图象可能正确的有( BC )9.某兴趣小组用电流传感器测量某磁场的磁感应强度.实验装置如图甲,不计电阻的足够长光滑金属导轨竖直放置在匀强磁场中,导轨间距为d ,其平面与磁场方向垂直.电流传感器与阻值为R 的电阻串联接在导轨上端.质量为m 、有效阻值为r 的导体棒AB 由静止释放沿导轨下滑,该过程中电流传感器测得电流随时间变化规律如图乙所示,电流最大值为I m .棒下滑过程中与导轨保持垂直且良好接触,不计电流传感器内阻及空气阻力,重力加速度为g .(1)求该磁场磁感应强度的大小; (2)求在t 1时刻棒AB 的速度大小;(3)在0~t 1时间内棒AB 下降了h ,求此过程电阻R 产生的电热. 解析:(1)电流为I m 时棒做匀速运动, 对棒:F 安=BI m d F 安=mg 解得B =mg I md .(2)t 1时刻,对回路有: E =Bd v I m =Bd vR +r解得v =I 2m (R +r )mg .(3)电路中产生的总电热:Q =mgh -12m v 2,电阻R 上产生的电热:Q R =R R +rQ 解得Q R =mghR R +r -I 4m R (R +r )2mg 2.答案:(1)mg I md (2)I 2m (R +r )mg(3)mghR R +r-I 4m R (R +r )2mg 2 10.在同一水平面上的光滑平行导轨P 、Q 相距l =1 m ,导轨左端接有如图所示的电路.其中水平放置的平行板电容器两极板M 、N 相距d =10 mm ,定值电阻R 1=R 2=12 Ω,R 3=2 Ω,金属棒ab 的电阻r =2 Ω,其他电阻不计.磁感应强度B =0.5 T 的匀强磁场竖直穿过导轨平面,当金属棒ab 沿导轨向右匀速运动时,悬浮于电容器两极板之间的质量为m =1×10-14 kg 、电荷量为q =-1×10-14 C 的微粒恰好静止不动.取g =10 m/s 2,在整个运动过程中金属棒与导轨接触良好,且速度保持恒定.试求:(1)匀强磁场的方向; (2)ab 两端的电压;(3)金属棒ab 运动的速度大小.解析:(1)负电荷受到重力和电场力的作用处于静止状态,因为重力竖直向下,所以电场力竖直向上,故M 板带正电.ab 棒向右做切割磁感线运动产生感应电动势,ab 棒等效于电源,感应电流方向由b →a ,其a 端为电源的正极,由右手定则可判断,磁场方向竖直向下.(2)微粒受到重力和电场力的作用处于静止状态,根据平衡条件有mg =Eq 又E =U MN d所以U MN =mgdq =0.1 VR 3两端电压与电容器两端电压相等,由欧姆定律得通过R 3的电流为I =U MNR 3=0.05 A则ab 棒两端的电压为U ab =U MN +I R 1R 2R 1+R 2=0.4 V .(3)由法拉第电磁感应定律得感应电动势E =Bl v由闭合电路欧姆定律得E=U ab+Ir=0.5 V 联立解得v=1 m/s.答案:(1)竖直向下(2)0.4 V(3)1 m/s。
2025年高考物理总复习课件专题十电磁感应第2讲法拉第电磁感应定律、自感、涡流

解:(1)根据法拉第电磁感应定律有E=l22
·
ΔB Δt
=
k2l2.
(2)由图可知线框受到的安培力为F=k2lR3·kt,
当线框开始向上运动时有mg=F,
解得t0=mkg2·l23R.
高考总复习·物理
考点2 导体切割磁感线产生感应电动势的计算 [能力考点] 1.E=Blv的特性 (1)正交性:要求磁场为匀强磁场,而且B、l、v三者互相垂直. (2)有效性:l为导体切割磁感线的有效长度.如图甲中,导体棒的有效长 度为a、b间的距离. (3)相对性:v是导体相对磁场的速度,若磁场也在运动,则应注意速度 间的相对关系.
驱动停在轨道上的列车,则( BC )
A.图示时刻线框中感应电流沿逆时针方向 B.列车运动的方向与磁场移动的方向相同 C.列车速度为v'时线框中的感应电动势大小为2NBL(v-v') D.列车速度为v'时线框受到的安培力大小为2NB2LR2(v−v′)
高考总复习·物理
【解析】线框相对磁场向左运动,根据右手定则可知图示时刻线框中感 应电流沿顺时针方向,A错误;根据左手定则,列车受到向右的安培力, 因此列车运动的方向与磁场移动的方向相同,B正确;由于前后两个边 产生的感应电动势顺次相加,根据法拉第电磁感应定律 E=2NBLΔv=2NBL(v-v'),C正确;列车速度为v'时线框受到的安培力大小 为F=2NBIL=4N2B2LR2(v−v′),D错误.
内容
求的是Δt时间内的平均感应
①若v为瞬时速度,则求的是瞬时感 应电动势
电动势,E与某段时间或某 个过程对应
②若v为平均速度,则求的是平均感 应电动势
高考总复习·物理
适用 范围 对任何电路普遍适用
2020届高考物理复习:法拉第电磁感应定律(解析版)

2020届高考物理 法拉第电磁感应定律(解析版)1. 如图所示,一正方形线圈的匝数为 n ,边长为 a ,线圈平面与匀强磁场垂直,且一半处在磁场中. 在 Δt 时间内,磁感应强度的方向不变,大小由 B 均匀地增大到 2 B .在此过程中,线圈中产生的感应电动势为( B )A .B .C .D . 【解析】当磁场增强时线圈中产生感生电动势,由法拉第电磁感应定律221a t B n S t B n t E ∆∆∆∆ϕ∆===,选项B 正确 2. 英国物理学家麦克斯韦认为,磁场变化时会在空间激发感生电场。
如图所示,一个半径为r 的绝缘细圆环水平放置,环内存在竖直向上的匀强磁场B ,环上套一带电量为+q 的小球。
已知磁感应强度B 随时间均匀增加,其变化率为k ,若小球在环上运动一周,则感生电场对小球的作用力所做功的大小是 ( D )A .0B .212r qk C .22r qk π D .2r qk π【解析】由法拉第电磁感应定律得感生电动势:22r k r tB t E ππ∆∆∆∆Φ===,而电场力做功W=qU ,小球在环上运动一周U=E ,故2r qk W π=。
D 正确。
3. 如图.在水平面(纸面)内有三报相同的均匀金属棒ab 、ac 和MN ,其中ab 、ac 在a 点接触,构成“V”字型导轨。
空间存在垂直于纸面的均匀磁场。
用力使MN 向右匀速运动,从图示位置开始计时,运动中MN 始终与∠bac 的平分线垂直且和导轨保持良好接触。
下列关于回路中电流i 与时间t 的关系图线.可能正确的是( A )22Ba t ∆22nBa t ∆2nBa t ∆22nBa t∆【解析】设“V”字形导轨夹角为2θ,MN 向右匀速运动运动的速度为v ,根据法拉第电磁感应定律:,设回路中单位长度的导线的电阻为R O ,, 根据欧姆定律:,A 选项对。
4. 如图,在磁感应强度为B 、方向垂直纸面向里的匀强磁场中,金属杆MN 在平行金属导轨上以速度v 向右匀速滑动,MN 中产生的感应电动势为E l ;若磁感应强度增为2B ,其他条件不变,MN 中产生的感应电动势变为E 2。
【高考物理必刷题】电磁感应(后附答案解析)

1
B.
2
如图所示,两根平行金属导轨置于水平面内,导轨之间接有电阻
中的感应电流逐渐减小
3
时,线圈中的电流改变方向
一个周期内,线圈产生的热量为
4
、总电阻为的正
边与磁场边界平行,如图(a)所示,已知导线框一直向右做匀速
时刻进入磁场.线框中感应电动势随时间变化的图线如图(b)所示(感
左转轴上侧绝缘漆挂掉,右转轴下侧的绝缘漆刮掉左转轴上下两侧绝缘漆都挂掉,右转轴下侧的绝缘漆刮掉
5
D.
和.圆形匀强磁场的边缘恰好与线圈重合,则穿6
7
磁场的方向;
答案B.
1
A 2
中的感应电流逐渐减小3
时,线圈中的电流改变方向
一个周期内,线圈产生的热量为
,所以线圈平面平行于磁感线,故A正确;
和,故B错误;
C.在交变电流产生的过程当中,磁通量最大时,感应电动势以及感应电流最小,故C 4
5
左转轴上侧绝缘漆挂掉,右转轴下侧的绝缘漆刮掉
左转轴上下两侧绝缘漆都挂掉,右转轴下侧的绝缘漆刮掉
6
D.
7
磁场的方向;
考点
开关接后,开始向右加速运动,速度达到最大值时,设上的感应电动势为,有
⑥
依题意有⑦
设在此过程中的平均电流为,上受到的平均安培力为,有
⑧
由动量定理,有
⑨
又⑩
联立⑤⑥⑦⑧⑨⑩式得
⑪
电磁感应
涡流、电磁阻尼和电磁驱动。
2020年高考物理实验专项复习:《研究电磁感应现象》(解析版)

《研究电磁感应现象》一、实验题1.在图甲中,不通电时电流表指针停在正中央,当闭合S时,观察到电流表指针向左偏。
现在按图乙连接方式将电流表与螺线管B连成一个闭合回路,将螺线管A与电池、滑动变阻器和开关串联成另一个闭合回路:(1)将S闭合后,将螺线管A插入螺线管B的过程中,电流表的指针将______(填“向左”“向右”或“不发生”)偏转;(2)螺线管A放在B中不动,电流表的指针将______(填“向左”“向右”或“不发生”)偏转;(3)螺线管A放在B中不动,滑动变阻器的滑片向右滑动,电流表的指针将______(填“向左”“向右”或“不发生”)偏转;(4)螺线管A放在B中不动,突然切断开关S时,电流表的指针将______(填“向左”“向右”或“不发生”)偏转。
2.如图是某实验小组在研究磁通量变化时感应电流方向实验中的部分操作示意图,图甲所示是电流通过灵敏检流计时指针的偏转情况,图乙是磁铁从线圈中抽出时灵敏检流计指针的偏转情况。
(1)(单选)图甲电路中串联定值电阻R主要是为了______A.减小电路两端的电压,保护电源B.增大电路两端的电压,保护电源C.减小电路中的电流,保护灵敏检流计D.减小电路中的电流,便于观察灵敏检流计的读数(2)实验操作如图乙所示,当磁铁向上抽出时,检流计中指针是______偏(填“左”或“右”);继续操作如图丙所示,判断此时条形磁铁的运动是______线圈(填“插入”或“抽出”)。
3.如图为研究电磁感应现象的实验装置,部分导线已连接。
(1)请用笔画线代替导线将实验器材连接起来构成实验电路图,要求移动滑动变阻器滑片时灵敏电流计指针发生偏转;(2)在实验过程中灵敏电流计指针发生偏转时,A、B两个线圈中______(填“A”或“B”)线圈相当于电源;(3)正确连接电路后,在实验过程中发现,开关闭合瞬间灵敏电流计的指针向右偏,则下列说法正确的是______A.闭合开关稳定后,将滑片向右移动,灵敏电流计的指针向右偏B.闭合开关稳定后,将A线圈拔出来的过程中,灵敏电流计的指针向右偏C.闭合开关稳定后俯视A、B两线圈,若A线圈中的电流为顺时针方向,则在断开开关瞬间B线圈中的感应电流为顺时针方向D.闭合开关稳定后俯视A、B两线圈,若A线圈中的电流为顺时针方向,则在断开开关瞬间B线圈中的感应电流方向不能确定,因为电流的方向与A、B两线圈的绕向有关4.某同学利用如图的装置研究磁铁下落过程中的重力势能与电能之间的相互转化。
高考物理二轮复习考点第十章电磁感应专题电磁感应中的能量问题

专题10.6 电磁感应中的能量问题一.选择题1.(2020·山东德州二模)(多选)如图所示,在水平面上有两条光滑的长直平行金属导轨MN 、PQ ,电阻忽略不计,导轨间距离为L ,磁感应强度为B 的匀强磁场垂直于导轨所在平面。
质量均为m 的两根金属a 、b 放置在导轨上,a 、b 接入电路的电阻均为R 。
轻质弹簧的左端与b 杆连接,右端固定。
开始时a 杆以初速度v 0向静止的b 杆运动,当a 杆向右的速度为v 时,b 杆向右的速度达到最大值v m ,此过程中a 杆产生的焦耳热为Q ,两杆始终垂直于导轨并与导轨接触良好,则b 杆达到最大速度时( )A .b 杆受到弹簧的弹力为B 2L 2(v -v m )2RB .a 杆受到的安培力为B 2L 2(v -v m )RC .a 、b 杆与弹簧组成的系统机械能减少量为QD .弹簧具有的弹性势能为12mv 20-12mv 2-12mv 2m -2Q【参考答案】AD2.(2020·河南八校联考)(多选)如图所示,正方形金属线圈abcd 平放在粗糙水平传送带上,被电动机带动一起以速度v 匀速运动,线圈边长为L ,电阻为R ,质量为m ,有一边界长度为2L 的正方形磁场垂直于传送带,磁感应强度为B ,线圈穿过磁场区域的过程中速度不变,下列说法中正确的是( )A .线圈穿出磁场时感应电流的方向沿abcdaB .线圈进入磁场区域时受到水平向左的静摩擦力,穿出区域时受到水平向右的静摩擦力C.线圈经过磁场区域的过程中始终受到水平向右的静摩擦力D.线圈经过磁场区域的过程中,电动机多消耗的电能为2B2L3vR【参考答案】AD3.(2020河南开封一模)如右图所示,足够长的光滑导轨倾斜放置,导轨宽度为L,其下端与电阻R连接;导体棒ab电阻为r,导轨和导线电阻不计,匀强磁场竖直向上。
若导体棒ab以一定初速度v下滑,则关于ab棒下列说法中正确的为 ( )A.所受安培力方向水平向右B.可能以速度v匀速下滑C.刚下滑的瞬间ab棒产生的电动势为BLvD.减少的重力势能等于电阻R上产生的内能【参考答案】AB【考点】本题考查了电磁感应、安培力、法拉第电磁感应定律、平衡条件、能量守恒定律及其相关的知识点。
法拉第电磁感应定律及其应用—高考物理总复习专题PPT课件(原文)

(1)定义:在自感现象中产生的感应电动势. 一下后渐渐熄灭
S闭合时,线圈产生自感电动势,阻碍电流的增大,使流过A1灯的电流比流过A2灯的电流增加得慢
开始充电瞬间,导通,可近似短路
开始充电瞬间,导通,可近似短路
ΔI 稳定后L相当于导线,A被短路后熄灭 (2)表达式:E=L . 第十章 电磁感应 Δt S断开时,线圈L产生自感电动势,阻碍电流的减小,使通过L的电流从原来电流减小,由于IL>IA,会使得流过A灯的电流突然增大,从而使A灯闪亮
2.法拉第电磁感应定律的三种情况 (1)回路与磁场垂直的面积 S 不变,磁感应强度发生 变化,则 ΔΦ=ΔB·S,E=nΔΔBt ·S. (2)磁感应强度 B 不变,回路与磁场垂直的面积发生 变化,则 ΔΦ=B·ΔS,E=nBΔΔSt .
(3)磁通量的变化是由面积和磁场变化共同引起的,
则根据定义求,ΔΦ=Φ
(3)自感系数 L:①相关因素:与线圈的大小、形状、匝数 一下后渐渐熄灭
S断开时,线圈L产生自感电动势,阻碍电流的减小,使通过L的电流从原来电流减小,由于IL>IA,会使得流过A灯的电流突然增大,从而使A灯闪亮 一下后渐渐熄灭
以及是否有铁芯等因素有关. S闭合时,线圈产生自感电动势,阻碍电流的增大,使流过A1灯的电流比流过A2灯的电流增加得慢
答案:BC
应用电磁感应定律需注意的两个问题 1.公式 E=nΔΔΦt 求解的是一个回路中某段时间内的 平均电动势,在磁通量均匀变化时,瞬时值才等于平均值. 2.利用公式 E=nSΔΔBt 求感应电动势时,S 为线圈在 磁场范围内的有效面积.
考点二 导体切割磁感线产生感应电动势的计算 1.公式 E=Blv 的使用条件 (1)匀强磁场. (2)B、l、v 三者相互垂直. 2.E=Blv 的“四性” (1)正交性:本公式是在一定条件下得出的,除磁场 为匀强磁场外,还需 B、l、v 三者互相垂直. (2)瞬时性:若 v 为瞬时速度,则 E 为相应的瞬时感 应电动势.
2020年高考物理一轮复习考点归纳专题电磁感应含答案

2020年高考一轮复习知识考点专题10 《电磁感应》第一节电磁感应现象楞次定律【基本概念、规律】一、磁通量1.定义:在磁感应强度为B的匀强磁场中,与磁场方向垂直的面积S和B的乘积.2.公式:Φ=B·S.3.单位:1 Wb=1_T·m2.4.标矢性:磁通量是标量,但有正、负.二、电磁感应1.电磁感应现象当穿过闭合电路的磁通量发生变化时,电路中有电流产生,这种现象称为电磁感应现象.2.产生感应电流的条件(1)电路闭合;(2)磁通量变化.3.能量转化发生电磁感应现象时,机械能或其他形式的能转化为电能.特别提醒:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线圈中就有感应电动势产生.三、感应电流方向的判断1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化.(2)适用情况:所有的电磁感应现象.2.右手定则(1)内容:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内,让磁感线从掌心进入,并使拇指指向导体运动的方向,这时四指所指的方向就是感应电流的方向.(2)适用情况:导体切割磁感线产生感应电流.【重要考点归纳】考点一电磁感应现象的判断1.判断电路中能否产生感应电流的一般流程:2.判断能否产生电磁感应现象,关键是看回路的磁通量是否发生了变化.磁通量的变化量ΔΦ=Φ2-Φ1有多种形式,主要有:(1)S、θ不变,B改变,这时ΔΦ=ΔB·S sin θ;(2)B、θ不变,S改变,这时ΔΦ=ΔS·B sin θ;(3)B、S不变,θ改变,这时ΔΦ=BS(sin θ2-sin θ1).考点二楞次定律的理解及应用1.楞次定律中“阻碍”的含义2.应用楞次定律判断感应电流方向的步骤考点三“一定律三定则”的综合应用1.“三个定则与一个定律”的比较2.无论是“安培力”还是“洛伦兹力”,只要是涉及磁力都用左手判断.“电生磁”或“磁生电”均用右手判断.【思想方法与技巧】楞次定律推论的应用楞次定律中“阻碍”的含义可以理解为感应电流的效果总是阻碍产生感应电流的原因,推论如下:(1)阻碍原磁通量的变化——“增反减同”;(2)阻碍相对运动——“来拒去留”;(3)使线圈面积有扩大或缩小的趋势——“增缩减扩”;(4)阻碍原电流的变化(自感现象)——“增反减同”第二节法拉第电磁感应定律自感涡流【基本概念、规律】一、法拉第电磁感应定律1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势.产生感应电动势的那部分导体就相当于电源,导体的电阻相当于电源内阻.(2)感应电流与感应电动势的关系:遵循闭合电路欧姆定律,即I=ER+r.2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.(2)公式:E=n ΔΦΔt,n为线圈匝数.3.导体切割磁感线的情形(1)若B、l、v相互垂直,则E=Blv.(2)若B⊥l,l⊥v,v与B夹角为θ,则E=Blv sin_θ.二、自感与涡流1.自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做自感电动势.(2)表达式:E=L ΔI Δt.(3)自感系数L的影响因素:与线圈的大小、形状、匝数以及是否有铁芯有关.2.涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生像水的旋涡状的感应电流.(1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动.(2)电磁驱动:如果磁场相对于导体转动,在导体中会产生感应电流,使导体受到安培力作用,安培力使导体运动起来.交流感应电动机就是利用电磁驱动的原理工作的.【重要考点归纳】考点一公式E=nΔΦ/Δt的应用1.感应电动势大小的决定因素(1)感应电动势的大小由穿过闭合电路的磁通量的变化率ΔΦΔt和线圈的匝数共同决定,而与磁通量Φ、磁通量的变化量ΔΦ的大小没有必然联系.(2)当ΔΦ仅由B引起时,则E=n SΔBΔt;当ΔΦ仅由S引起时,则E=nBΔSΔt.2.磁通量的变化率ΔΦΔt是Φ-t图象上某点切线的斜率.3.应用电磁感应定律应注意的三个问题(1)公式E=n ΔΦΔt求解的是一个回路中某段时间内的平均电动势,在磁通量均匀变化时,瞬时值才等于平均值.(2)利用公式E=nS ΔBΔt求感应电动势时,S为线圈在磁场范围内的有效面积.(3)通过回路截面的电荷量q仅与n、ΔΦ和回路电阻R有关,与时间长短无关.推导如下:q=IΔt=nΔΦΔtRΔt=nΔΦR.考点二公式E=Blv的应用1.使用条件本公式是在一定条件下得出的,除了磁场是匀强磁场外,还需B、l、v三者相互垂直.实际问题中当它们不相互垂直时,应取垂直的分量进行计算,公式可为E=Blv sin θ,θ为B与v 方向间的夹角.2.使用范围导体平动切割磁感线时,若v为平均速度,则E为平均感应电动势,即E=Bl v.若v为瞬时速度,则E为相应的瞬时感应电动势.3.有效性公式中的l为有效切割长度,即导体与v垂直的方向上的投影长度.例如,求下图中MN两点间的电动势时,有效长度分别为甲图:l=cd sin β.乙图:沿v1方向运动时,l=MN;沿v2方向运动时,l=0.丙图:沿v1方向运动时,l=2R;沿v2方向运动时,l=0;沿v3方向运动时,l=R.4.相对性E=Blv中的速度v是相对于磁场的速度,若磁场也运动,应注意速度间的相对关系.5.感应电动势两个公式的比较考点三自感现象的分析1.自感现象“阻碍”作用的理解(1)流过线圈的电流增加时,线圈中产生的自感电动势与电流方向相反,阻碍电流的增加,使其缓慢地增加.(2)流过线圈的电流减小时,线圈中产生的自感电动势与电流方向相同,阻碍电流的减小,使其缓慢地减小.2.自感现象的四个特点(1)自感电动势总是阻碍导体中原电流的变化.(2)通过线圈中的电流不能发生突变,只能缓慢变化.(3)电流稳定时,自感线圈就相当于普通导体.(4)线圈的自感系数越大,自感现象越明显,自感电动势只是延缓了过程的进行,但它不能使过程停止,更不能使过程反向.3.自感现象中的能量转化通电自感中,电能转化为磁场能;断电自感中,磁场能转化为电能.4.分析自感现象的两点注意(1)通过自感线圈中的电流不能发生突变,即通电过程,线圈中电流逐渐变大,断电过程,线圈中电流逐渐变小,方向不变.此时线圈可等效为“电源”,该“电源”与其他电路元件形成回路.(2)断电自感现象中灯泡是否“闪亮”问题的判断,在于对电流大小的分析,若断电后通过灯泡的电流比原来强,则灯泡先闪亮后再慢慢熄灭.第三节电磁感应中的电路和图象问题【基本概念、规律】一、电磁感应中的电路问题1.内电路和外电路(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源.(2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电阻.2.电源电动势和路端电压(1)电动势:E=Blv或E=n ΔΦΔt.(2)路端电压:U=IR=ER+r·R.二、电磁感应中的图象问题1.图象类型(1)随时间t变化的图象如B-t图象、Φ-t图象、E-t图象和i-t图象.(2)随位移x变化的图象如E-x图象和i-x图象.2.问题类型(1)由给定的电磁感应过程判断或画出正确的图象.(2)由给定的有关图象分析电磁感应过程,求解相应的物理量.(3)利用给出的图象判断或画出新的图象.【重要考点归纳】考点一电磁感应中的电路问题1.对电源的理解:在电磁感应现象中,产生感应电动势的那部分导体就是电源,如切割磁感线的导体棒、有磁通量变化的线圈等.这种电源将其他形式的能转化为电能.2.对电路的理解:内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成.3.解决电磁感应中电路问题的一般思路:(1)确定等效电源,利用E=n ΔΦΔt或E=Blv sin θ求感应电动势的大小,利用右手定则或楞次定律判断电流方向.(2)分析电路结构(内、外电路及外电路的串、并联关系),画出等效电路图.(3)利用电路规律求解.主要应用欧姆定律及串、并联电路的基本性质等列方程求解.4.(1)对等效于电源的导体或线圈,两端的电压一般不等于感应电动势,只有在其电阻不计时才相等.(2)沿等效电源中感应电流的方向,电势逐渐升高.考点二电磁感应中的图象问题1.题型特点一般可把图象问题分为三类:(1)由给定的电磁感应过程选出或画出正确的图象;(2)由给定的有关图象分析电磁感应过程,求解相应的物理量;(3)根据图象定量计算.2.解题关键弄清初始条件,正负方向的对应,变化范围,所研究物理量的函数表达式,进、出磁场的转折点是解决问题的关键.3.解决图象问题的一般步骤(1)明确图象的种类,即是B-t图象还是Φ-t图象,或者是E-t图象、I-t图象等;(2)分析电磁感应的具体过程;(3)用右手定则或楞次定律确定方向对应关系;(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数关系式;(5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等;(6)画出图象或判断图象.4.解决图象类选择题的最简方法——分类排除法.首先对题中给出的四个图象根据大小或方向变化特点分类,然后定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是用物理量的方向,排除错误选项,此法最简捷、最有效.【思想方法与技巧】电磁感应电路与图象的综合问题解决电路与图象综合问题的思路(1)电路分析弄清电路结构,画出等效电路图,明确计算电动势的公式.(2)图象分析①弄清图象所揭示的物理规律或物理量间的函数关系;②挖掘图象中的隐含条件,明确有关图线所包围的面积、图线的斜率(或其绝对值)、截距所表示的物理意义.(3)定量计算运用有关物理概念、公式、定理和定律列式计算.第四节电磁感应中的动力学和能量问题【基本概念、规律】一、电磁感应现象中的动力学问题1.安培力的大小⎭⎬⎫安培力公式:F =BIl 感应电动势:E =Blv 感应电流:I =E R⇒F =B 2l 2v R 2.安培力的方向(1)先用右手定则判定感应电流方向,再用左手定则判定安培力方向. (2)根据楞次定律,安培力的方向一定和导体切割磁感线运动方向相反. 二、电磁感应中的能量转化 1.过程分析(1)电磁感应现象中产生感应电流的过程,实质上是能量的转化过程.(2)感应电流在磁场中受安培力,若安培力做负功,则其他形式的能转化为电能;若安培力做正功,则电能转化为其他形式的能.(3)当感应电流通过用电器时,电能转化为其他形式的能. 2.安培力做功和电能变化的对应关系“外力”克服安培力做多少功,就有多少其他形式的能转化为电能;安培力做多少功,就有多少电能转化为其他形式的能.【重要考点归纳】考点一 电磁感应中的动力学问题分析1.导体的平衡态——静止状态或匀速直线运动状态. 处理方法:根据平衡条件(合外力等于零)列式分析. 2.导体的非平衡态——加速度不为零.处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析. 3.分析电磁感应中的动力学问题的一般思路(1)先进行“源”的分析——分离出电路中由电磁感应所产生的电源,求出电源参数E 和r ; (2)再进行“路”的分析——分析电路结构,弄清串、并联关系,求出相关部分的电流大小,以便求解安培力;(3)然后是“力”的分析——分析研究对象(常是金属杆、导体线圈等)的受力情况,尤其注意其所受的安培力;(4)最后进行“运动”状态的分析——根据力和运动的关系,判断出正确的运动模型.考点二 电磁感应中的能量问题1.电磁感应过程的实质是不同形式的能量转化的过程,而能量的转化是通过安培力做功的形式实现的,安培力做功的过程,是电能转化为其他形式能的过程,外力克服安培力做功,则是其他形式的能转化为电能的过程.2.能量转化及焦耳热的求法 (1)能量转化(2)求解焦耳热Q的三种方法3.在解决电磁感应中的能量问题时,首先进行受力分析,判断各力做功和能量转化情况,再利用功能关系或能量守恒定律列式求解.【思想方法与技巧】电磁感应中的“双杆”模型1.模型分类“双杆”模型分为两类:一类是“一动一静”,甲杆静止不动,乙杆运动,其实质是单杆问题,不过要注意问题包含着一个条件:甲杆静止、受力平衡.另一种情况是两杆都在运动,对于这种情况,要注意两杆切割磁感线产生的感应电动势是相加还是相减.2.分析方法通过受力分析,确定运动状态,一般会有收尾状态.对于收尾状态则有恒定的速度或者加速度等,再结合运动学规律、牛顿运动定律和能量观点分析求解.3.分析“双杆”模型问题时,要注意双杆之间的制约关系,即“动杆”与“被动杆”之间的关系,需要注意的是,最终两杆的收尾状态的确定是分析该类问题的关键.电磁感应中的含容电路分析一、电磁感应回路中只有电容器元件1.这类问题的特点是电容器两端电压等于感应电动势,充电电流等于感应电流.2.(1)电容器的充电电流用I=ΔQΔt=CΔUΔt表示.(2)由本例可以看出:导体棒在恒定外力作用下,产生的电动势均匀增大,电流不变,所受安培阻力不变,导体棒做匀加速直线运动.二、电磁感应回路中电容器与电阻并联问题1.这一类问题的特点是电容器两端的电压等于与之并联的电阻两端的电压,充电过程中的电流只是感应电流的一支流.稳定后,充电电流为零.2.在这类问题中,导体棒在恒定外力作用下做变加速运动,最后做匀速运动.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题十电磁感应挖命题【考情探究】考点内容解读要求5年考情预测热度考题示例关联考点解法电磁感应现象、楞次定律电磁感应现象Ⅰ★☆☆感应电流的产生条件Ⅱ2016,6,4分法拉第电磁感应定律★★☆楞次定律Ⅱ法拉第电磁感应定律法拉第电磁感应定律Ⅱ2014,1,3分2014,13,15分2015,13,15分2016,13,15分2017,13,15分2018,9,4分2018,13,15分共点力平衡牛顿运动定律功能关系平衡法能量守恒法★★★自感、涡流自感涡流Ⅰ2014,7,4分★★☆分析解读导体棒切割磁感线的计算限于导线方向与磁场方向、运动方向垂直的情况。
本专题主要研究电磁感应现象的描述、感应电流的方向的判断(楞次定律、右手定则)、感应电动势的大小的计算、自感现象和涡流现象等。
这部分是高考考查的重点内容,近几年多放在第一道计算题考查。
在高考中电磁感应现象多与磁场、电路、力学、能量等知识结合,综合性较高,因此在复习时应深刻理解各知识点内容、注重训练和掌握综合性题目的分析思路,要研究与实际生活、生产科技相结合的实际应用问题。
命题趋势:(1)楞次定律、右手定则、左手定则的应用。
(2)与图像结合考查电磁感应现象。
(3)通过“杆+导轨”模型,“线圈穿过有界磁场”模型,考查电磁感应与力学、电路、能量等知识的综合应用。
【真题典例】破考点【考点集训】考点一电磁感应现象、楞次定律1.(2018江苏海安高级中学阶段检测,8)(多选)如图所示,A为一固定的圆环,条形磁铁B从左侧无穷远处以初速度v0沿圆环轴线移向圆环,穿过后移到右侧无穷远处。
下列说法中正确的是()A.若圆环A是电阻为R的线圈,磁铁移近圆环直至离开圆环这一过程中圆环中的感应电流方向发生变化B.若圆环A是一超导线圈,磁铁移近圆环直至离开圆环这一过程中圆环中的感应电流方向发生变化C.若圆环A是电阻为R的线圈,磁铁的中点通过环面时,圆环中电流为零D.若圆环A是一超导线圈,磁铁的中点通过环面时,圆环中电流为零答案AC2.(2018江苏泰州、宜兴能力测试,3)如图所示,螺线管与灵敏电流计相连,磁铁从螺线管的正上方由静止释放,向下穿过螺线管。
下列说法正确的是()A.电流计中的电流先由a到b,后由b到aB.a点的电势始终低于b点的电势C.磁铁减少的重力势能等于回路中产生的热量D.磁铁刚离开螺线管时的加速度小于重力加速度答案D3.(2017江苏扬州中学月考,7)(多选)一个水平固定的金属大圆环A,通有恒定的电流,方向如图所示,现有一小金属环B自A环上方落下并穿过A环,B环在下落过程中保持水平,并与A环共轴,那么在B环下落过程中()A.B环中感应电流方向始终与A环中电流方向相反B.B环中感应电流方向与A环中电流方向先相反后相同C.经过A环所在平面的瞬间,B环中感应电流最大D.经过A环所在平面的瞬间,B环中感应电流为零答案BD考点二法拉第电磁感应定律1.(2017江苏如东中学模拟,5)如图所示的圆形线圈共n匝,电阻为R。
过线圈中心O垂直于线圈平面的直线上有A、B两点,A、B两点的距离为L,A、B关于O点对称,一条形磁铁开始放在A点,磁铁中心与A点重合,轴线与A、B所在直线重合,此时线圈中的磁通量为Φ1,若条形磁铁以速度v匀速向右运动,轴线始终与直线重合,磁铁中心到O点时线圈中的磁通量为Φ2,下列说法中正确的是()A.磁铁在A点时,通过一匝线圈的磁通量为Φ1nB.磁铁从A到O的过程中,线圈中产生的平均感应电动势为E=2nv(Φ2-Φ1)LC.磁铁从A到B的过程中,线圈中磁通量的变化量为2Φ1D.磁铁从A到B的过程中,通过线圈某一横截面的电荷量不为零答案B2.(2018江苏南京调研,13)如图所示,电阻不计、间距为l=1.0 m的光滑平行金属导轨水平放置于磁感应强度B=1.0 T、方向竖直向下的匀强磁场中,导轨左端接一定值电阻R=1.5 Ω,质量为m=1.0 kg、电阻为r=0.5 Ω的金属棒MN置于导轨上,始终垂直导轨且接触良好。
当MN受到垂直于棒的水平外力F=2 N的作用,由静止开始运动,经过位移x=1.55 m,到达PQ处(图中未画出),此时速度为v=2 m/s。
求:(1)金属棒在PQ处所受磁场作用力大小;(2)金属棒在PQ处的加速度大小;(3)金属棒在运动中回路总共产生的热量。
答案(1)1 N(2)1 m/s2(3)1.1 J3.(2018江苏百校联考)图甲为兴趣小组制作的无线充电装置中的受电线圈示意图,已知线圈匝数n=100,电阻r=1 Ω,面积S=1.5×10-3m2,外接电阻R=3 Ω。
线圈处在平行于线圈轴线的匀强磁场中,磁场的磁感应强度随时间变化关系如图乙所示。
求:(1)t=0.01 s时线圈中的感应电动势E;(2)0~0.02 s内通过电阻R的电荷量q;(3)0~0.03 s内电阻R上产生的热量Q。
答案(1)0.6 V(2)3×10-3 C(3)4.05×10-3 J考点三自感、涡流1.(2018江苏泰州月考,2)关于涡流,下列说法中不正确的是()A.真空冶炼炉是利用涡流来熔化金属的装置B.家用电磁炉锅体中的涡流是由恒定磁场产生的C.阻尼摆摆动时产生的涡流总是阻碍其运动D.变压器的铁芯用相互绝缘的硅钢片叠成能减小涡流答案B2.(2018江苏泰州月考,7)(多选)如图所示,L是自感系数很大的线圈,但其电阻几乎为零,A和B是两只相同的小灯泡,下列说法正确的是()A.当开关S闭合瞬间,A、B两灯同时亮,最后B灯熄灭B.当开关S断开瞬间,A、B两灯同时熄灭C.当开关S断开瞬间,a点电势比b点电势低D.当开关S断开瞬间,流经灯泡B的电流是由a到b答案AD3.(2018江苏南通二模,8)(多选)用电流传感器研究自感现象的电路如图甲所示,线圈L的直流电阻为R,没有带铁芯。
闭合开关S,传感器记录了电路中电流随时间变化的规律,如图乙所示,t0时刻电路中电流达到稳定值I。
下列说法中正确的有()A.t=0时刻,线圈中自感电动势为零B.若线圈中插入铁芯,上述过程中电路达到稳定电流经历时间大于t0C.若线圈中插入铁芯,上述过程中电路达到稳定时电流值仍为ID.若将线圈匝数加倍,上述过程中电路达到稳定时电流值仍为I答案BC炼技法【方法集训】方法1 感应电流方向的判定方法1.(2018江苏泰州高三月考,8)(多选)如图甲所示,螺线管内有一平行于轴线的磁场,规定图中箭头所示方向为磁感应强度B的正方向,螺线管与U形导线框cdef相连,导线框cdef内有一半径很小的金属圆环L,圆环与导线框cdef在同一平面内,当螺线管内的磁感应强度随时间按图乙所示的规律变化时,下列选项中正确的是()A.在t1时刻,金属圆环L内的磁通量最大B.在t2时刻,金属圆环L内的磁通量最大C.在t1~t2时间内,金属圆环L内有逆时针方向的感应电流D.在t1~t2时间内,金属圆环L有收缩的趋势答案BD2.(多选)如图所示,铁芯上有两个线圈A和B。
线圈A跟电源相连,LED(发光二极管,具有单向导电性)M和N 并联后接在线圈B两端。
图中所有元件均正常,则()A.S闭合瞬间,A中有感应电动势B.S断开瞬间,A中有感应电动势C.S闭合瞬间,M亮一下,N不亮D.S断开瞬间,M和N二者均不亮答案ABC方法2 电磁感应中的电路问题的分析方法1.(2017江苏启东中学调研,3)如图,用某种粗细均匀的总电阻为3R的金属条制成的矩形线框abcd,固定在水平面内且处于方向竖直向下的匀强磁场B中,一接入电路电阻为R的导体棒PQ,在水平拉力作用下沿ab、dc以速度v匀速滑动,滑动过程中PQ始终与ab垂直,且与线框接触良好,不计摩擦。
则在PQ从靠近ad处向bc滑动的过程中()A.PQ中电流先增大后减小B.PQ两端电压先减小后增大C.线框消耗的电功率先减小后增大D.作用在PQ上拉力的功率先减小后增大答案D2.(2018江苏如皋调研,13)如图所示为某同学根据所学物理知识设计的一个发电测速装置。
他将健身房锻炼用自行车的后轮置于垂直车身平面向里的匀强磁场中,让后轮圆形金属盘在磁场中转动。
已知磁感应强度B=1.5 T,圆盘半径l=0.3 m,圆盘电阻不计。
导线通过电刷分别与后轮外边缘和圆心O相连,导线两端a、b 间接一阻值R=10 Ω的小灯泡。
后轮匀速转动时,该同学用电压表测得a、b间电压U=1.8 V。
根据以上信息,回答以下问题。
(1)与a连接的是电压表的正接线柱还是负接线柱?(2)求圆盘匀速转动10分钟,此过程中产生的电能。
(3)自行车车轮边缘线速度是多少?答案(1)负(2)194.4 J(3)8 m/s方法3 电磁感应中的力学问题的分析方法1.(2017江苏南京、盐城一模,13)如图甲所示,质量m=1 kg,边长ab=1.0 m,电阻r=2 Ω的单匝正方形闭合线圈abcd放置在倾角θ=30°的斜面上,保持静止状态。
匀强磁场垂直线圈平面向上,磁感应强度B随时间t的变化如图乙所示,整个线圈都处在磁场中,重力加速度g=10 m/s2。
求:(1)t=1 s时穿过线圈的磁通量;(2)4 s内线圈中产生的焦耳热;(3)t=3.5 s时,线圈受到的摩擦力。
答案(1)0.1 Wb(2)0.01 J(3)5 N2.(2018江苏海安高级中学阶段检测,13)如图所示,两平行光滑金属导轨MN、PQ被固定在同一水平面内,间距为L,电阻不计。
导轨的M、P两端用导线连接一定值电阻,阻值为R,在PM的右侧0到2x0区域里有方向竖直向下的磁场,其磁感应强度B随坐标x的变化规律为B=kx(k为正常数)。
一直导体棒ab长度为L,电阻为R,其两端放在导轨上且静止在x=x0处,现对导体棒持续施加一作用力F(图中未画出)使导体棒从静止开始做沿x正方向加速度为a的匀加速运动,求:(用L、k、R、x0、a表示)(1)导体棒在磁场中运动到2x0时导体棒上所消耗的电功率;(2)导体棒离开磁场瞬间导体棒的加速度a'的大小;(3)导体棒从x0运动到2x0过程中通过电阻R的电荷量。
答案 (1)2k 2x 03L 2a R (2)a+2k 2x 02L 2√2ax 0mR(3)3kx 02L 4R方法4 电磁感应中功能问题的分析1.(2018江苏盐城期中,6)如图所示,在光滑绝缘的水平面上方,有两个方向相反的水平方向的匀强磁场,PQ 为两磁场的边界,磁场范围足够大,磁感应强度的大小分别为B 1=B,B 2=2B,一个竖直放置的边长为a 、质量为m 、电阻为R 的正方形金属线框,以初速度v 垂直磁场方向从图中实线位置开始向右运动,当线框运动到在每个磁场中各有一半的面积时,线框的速度为v2,则下列判断不正确的是( )A.此过程中通过线框截面的电荷量为3Ba 22R B.此过程中线框克服安培力做的功为38mv 2C.此时线框的加速度为9B 2a 2v2mR D.此时线框中的电功率为9B 2a 2v 22R答案 D2.(2017苏北四市期末,13)如图所示,边长为L 、电阻为R 、质量为m 的正方形线框abcd 放在光滑水平面上,其右边有一磁感应强度大小为B 、方向竖直向上的有界匀强磁场,磁场宽度为L,左边界与线框的ab 边相距为L 。