奥数比和比例含答案

合集下载

六年级:比和比例应用题(奥数培优有难度)

六年级:比和比例应用题(奥数培优有难度)

六年级:比和比例应用题(奥数培优有难度)例1 淘淘和笑笑原有邮票张数的比是5:4,如果淘淘给笑笑48张后,淘淘和笑笑的张数比是3:4,淘淘原来有多少张?解析如下:练习1:甲,乙两个建筑队原有水泥的重量之比是4:3,当甲队给乙队54吨水泥后,甲乙两队水泥重量之比是3:4,原来甲队有多少水泥?(答案:216吨)例2 某学校有若干名学生参加电视邀请赛,其中男生人数与女生人数的比为8:5,后来又有20名女生报名参赛,这时女生人数占参赛总人数的 5/11 。

现在参赛的学生共有多少人?解析如下:练习2 某校图书室有图书210本,其中新书占5/7,又买进一些新书后,新书本数与现在图书本数的比是4:5,现在图书室一共有多少新书?(答案:240本)例3 有一袋糖分配给甲,乙,丙三人,三人依次所得数目之比是5:4:3,如果把糖重新分配给甲,乙,丙三人,使其比依次为7:6:5,则其中一人会比原来所得的数目多10颗,求此人原来所得的数目。

解析如下:练习3 马小跳和刘超,唐飞三人斗地主,游戏前,三人游戏币之比是6:5:4,游戏结束后,游戏币之比是5:4:3,其中一个人赢了200枚,那么这个人是?他开始有多少游戏币?(答案:马小跳,4800枚)例4 车过河需要交渡费3元,马过河需要交渡费2元,人过河需要交渡费1元。

某天过河的车与马数目比是2:9,马和人数目比是3:7,共收渡费945元,则这天车,马,人数目各是?解析如下:练习4 某商贩按大个桃子每个3角,小个桃子每个2角的价格卖出了一批桃子,共收51元。

已知他卖出的桃子大小个数比是8:5,则卖出的大小桃子各有多少个?(答案:卖出大桃120个,小桃75个)例5 一个盒子里有黑棋子和白棋子若干,若取出一粒黑子,则余下的黑白数比是9:7,若放回黑子,再取出一粒白子,则余下黑白之比是7:5,那么盒子原有黑比白多多少?解析如下:练习5 同学周末登山,男背红包,女背蓝包,他们每人只能看到背包,其中一位男生说:我看到的红蓝包之比是5:3,另一女生说:我看到的蓝包是红包的一半。

小学奥数教程:比例应用题(二)全国通用(含答案)

小学奥数教程:比例应用题(二)全国通用(含答案)

1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题比例与百分数作为一种数学工具在人们日常生活中处理多组数量关系非常有用,这一部分内容也是小升初考试的重要内容.通过本讲需要学生掌握的内容有:一、比和比例的性质性质1:若a : b =c :d ,则(a + c ):(b + d )= a :b =c :d ;性质2:若a : b =c :d ,则(a - c ):(b - d )= a :b =c :d ;性质3:若a : b =c :d ,则(a +x c ):(b +x d )=a :b =c :d ;(x 为常数)性质4:若a : b =c :d ,则a ×d = b ×c ;(即外项积等于内项积)正比例:如果a ÷b =k (k 为常数),则称a 、b 成正比;反比例:如果a ×b =k (k 为常数),则称a 、b 成反比.二、主要比例转化实例①x a y b = ⇒ y b x a =; x y a b =; a b x y =; ② x a y b = ⇒ mx a my b =; x ma y mb=(其中0m ≠); ③ x a y b = ⇒ x a x y a b =++; x y a b x a--=; x y a b x y a b ++=-- ;④ x a y b =,y c z d= ⇒ x ac z bd =;::::x y z ac bc bd =; ⑤ x 的c a 等于y 的d b ,则x 是y 的ad bc ,y 是x 的bc ad. 三、按比例分配与和差关系 ⑴按比例分配例如:将x 个物体按照:a b 的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量与x 的比分别为():a a b +和():b a b +,所以甲分配到ax a b +个,乙分配到bx a b+个. ⑵已知两组物体的数量比和数量差,求各个类别数量的问题 例如:两个类别A 、B ,元素的数量比为:a b (这里a b >),数量差为x ,那么A 的元素数量为ax a b -,B 的元素数量为bx a b-,所以解题的关键是求出()a b -与a 或b 的比值. 知识点拨 教学目标比例应用题(二)四、比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“l ”。

六年级奥数题及答案-比和比例

六年级奥数题及答案-比和比例

六年级奥数题及答案-比和比例
导语:六年级是学习的冲刺阶段,也是拓展思维的好时机,有效的进行习题训练有助于同学们奥数能力的提升.同学们要加把劲儿哦!
政府为建设新农村修了新路,这条路全长有60千米,分成上坡、平路、下坡三段,各段路程长的比例是1:2:3,小刚回家走各段路程所用时间之比是4:5:6,已知他上坡的速度是每小时3千米,问小刚走完全程用了多少时间?
分析:要求小刚走完全程用了多少时间,必须先求出他走上坡路用了多少时间,必须知道走上坡路的速度和上坡路的路程,已知全程60千米,又知道上坡、平破、下坡三段路程比是1:2:3,就可以求出上坡路的路程。

六下。第二单元比和比例能力提高题和奥数题(附答案)

六下。第二单元比和比例能力提高题和奥数题(附答案)

六下。

第二单元比和比例能力提高题和奥数题(附答案)在北京课改版六年级下册同步奥数中,第二单元是关于比和比例能力提升的题目和奥数题。

其中,板块一主要涉及比的概念和应用,如例题1中的求解已读页数和未读页数比例的问题。

练1则涉及甲、乙两袋糖果的质量比,通过拿出一部分糖果来使两袋糖果的质量比相等。

例题2和练2则涉及数的比例关系,如求解甲数是乙数的多少倍,以及三人参加百米赛跑的速度比例问题。

例题3和练3则是关于学生人数和货物质量比例的问题,如求解从一个学校转入另一个学校的学生人数,或者从一个仓库向另一个仓库转移货物的质量比例问题。

在例题4和练4中,涉及到收费标准和人数比例的问题,如求解不同类型车辆通过收费站的数量,或者学生和老师体检的人数比例问题。

例题5和练5则是关于合买和购物的问题,如求解三人合买电视机的价格,或者三人在商场购物的花费比例问题。

最后,例题6和练6涉及到捐款的问题,如求解四人捐款的比例和总金额问题。

需要注意的是,文章中存在一些格式错误和明显有问题的段落,需要删除或者修改。

同时,对于每段话,可以进行小幅度的改写,使得表述更加清晰明了。

北京课改版六年级下册同步奥数第二单元是关于比和比例的能力提升、思维突破和挑战极限的练。

下面是一些例题和练。

例题1:用2、4、8和16组成不同的比例。

练1:用6、12、15再加上一个数组成比例。

例题2:用2,3.6,4.5和x组成比例,求x的值。

练2:用4,4.8,12和a组成比例,求a的值。

例题3:XXX在100米赛跑中领先XXX10米,领先XXX15米。

如果XXX和XXX按原来的速度继续冲向终点,那么当XXX到达终点时,XXX还差多少米到达终点?例题4:甲、乙两个圆柱形,底面积的比为4∶3,甲中水深7厘米,乙中水深3厘米,再往两个中注入同样多的水,直到水深相等,甲中的水面应上升多少厘米?练4:甲、乙两个长方体,底面积的比是4∶5,甲中水深8厘米,乙中水深12厘米,再往两个中注入同样多的水,直到水深相等,甲中的水面应上升多少厘米?例题1:某车队运一堆煤,第一天运走这堆煤的1/6,第二天比第一天多运30吨,这时已运走6/11的煤与余下煤吨数比是7:5,这堆煤共有多少吨?练1:有一桶油,桶重与油重的比是2:23,用了44千克油后,剩下油的重量是桶重的桶内原有油的多少千克?例题2:甲、乙两运输队同时合运一批货物,甲队每天比乙队每天多运3/4的物品,当甲队运了全部货物的4/11时,就比乙队多运了138吨。

奥数中的比例问题

奥数中的比例问题

奥数中的“比例问题”
(一)比例与和倍关系
(―)比例与差倍关系
(三)正比例、反比例的应用
应用正、反比例性质解答应用题时要注意题中某一数量是否变化,然后再确定是
成正比例,还是成反比例.找出这些具体数量相对应的分率与其他具体数量之间的正、反比例关系,就能找到更好、更巧的解题方法.
比例问题例题及答案分析1
比例问题例题及答案分析2
【例题】甲从A出发步行向B.同时,乙、丙两人从B地驾车出发,向A 行驶.甲乙两人相遇在离A地3千米的C地,乙到A地后立即调头,与丙在C地相遇.若开始出发时甲就跑步,速度提高到步行速度的2.5倍,则甲、丙相遇地点距A地7.5千米.求AB两地距离.
比例问题练习1
比例问题练习2
比例问题练习4
奥数中的“比例问题”
例题解析
一)比例与和倍关系
(二)比例与差倍关系
(三)正比例、反比例的应用
应用正、反比例性质解答应用题时要注意题中某一数量是否变化,然后再确定是成正比例,还是成反比例.找出这些具体数量相对应的分率与其他具体数量之间的正、反比例关系,就能找到更好、更巧的解题方法.
1、
2、【例题】甲从A出发步行向B.同时,乙、丙两人从B地驾车出发,向A 行驶.甲乙两人相遇在离A地3千米的C地,乙到A地后立即调头,与丙在C地相遇.若开始出发时甲就跑步,速度提高到步行速度的2.5倍,则甲、丙相遇地点距A地7.5千米.求AB两地距离.。

奥数比和比例含答案

奥数比和比例含答案

y;a;x=ma(其中m≠0);y b;x=;②=⇒x-y a-b;x+y,y=c x ac;x:y:z=ac:bc:bd;比和比例月日姓名【知识要点】一、比和比例的性质性质1:若a:b=c:d,则(a+c):(b+d)=a:b=c:d;性质2:若a:b=c:d,则(a-c):(b-d)=a:b=c:d;性质3:若a:b=c:d,则(a+x c):(b+x d)=a:b=c:d;(x为常数)性质4:若a:b=c:d,则a×d=b×c;(即外项积等于内项积)正比例:如果a÷b=k(k为常数),则称a、b成正比;反比例:如果a×b=k(k为常数),则称a、b成反比.二、主要比例转化实例①x a=⇒y bb x a mx a===x a a b x y y b my b y mb③x a x a=⇒=y b x+y a+b ;a+b==x a x-y a-b;④x a=⇒=y b z d z bd⑤x的c等于y的d,则x是y的ad,y是x的bc.a b bc ad三、按比例分配与和差关系⑴按比例分配例如:将x个物体按照a:b的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量与x的比分别为a:(a+b)和b:(a+b),所以甲分配到ax个,乙分配到bx个.a+b a+b⑵已知两组物体的数量比和数量差,求各个类别数量的问题例如:两个类别A、B,元素的数量比为a:b(这里a>b),数量差为x,那么A的元素数量为ax,Ba-b 的元素数量为bx,所以解题的关键是求出(a-b)与a或b的比值.a-b四、比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“l”。

题中如果有几个不同的单位“1”,必须根据具体情况,将不同的单位“1”,转化成统一的单位“1”,使数量关系简单化,达到解决问题的效果。

在解答分数应用题时,要注意以下几点:1.题中有几种数量相比较时,要选择与各个已知条件关系密切、便于直接解答的数量为单位“1”。

小学六年级奥数第2课《比和比例》试题附答案

小学六年级奥数第2课《比和比例》试题附答案

小学六年级上册数学奥数知识点讲解第2课《比和比例》试题附答案第二讲比和比例在应用题的各种类型中,有一类与数量之间的(正、反)比例关系有关. 在解答这类应用题时,我们需要对题中各个量之间的关系作出正确的判断.成正比或反比的量中都有两种相关联的量.一种量(记作X)变化时另一种量(记作y)也随着变化.与这两个量联系着,有一个不变的量(记为k). 在判断变量x与谣否成正、反比例时,我们要紧紧抓住这个不变量k.如果不变量k是变量y 与x的商,即在x变化时y与x的商不变:工=k,那么y与x成正比例;如果k是y与x的积,即在x变化时,y与x的积不变:xy=k,那么y与x 成反比例.如果这两个关系式都不成立,那么y与x不成(正和反)比例.下面我们从最基本的判断两种量是否成比例的例题开始.例1下列各题中的两种量是否成比例?成什么比例?①速度一定,路程与时间.②路程一定,速度与时间.③路程一定,己走的路程与未走的路程.④总时间一定,要制造的零件总数和制造每个零件所用的时间.⑤总产量一定,亩产量和播种面积.⑥整除情况下被除数一定,除数和商.⑦同时同地,竿高和影长.⑧半径一定,圆心角的度数和扇形面积.⑨两个齿轮啮合转动时转速和齿数.⑪圆的半径和面积.(11)长方体体积一定,底面积和高.(12)正方形的边长和它的面积.习题二解答321.24+ (自一黑)=120 m ,3120X - = 72 (米),2120X - = 48 (米),72 X 48= 3456 (平方米).2.120 + 2 = 60 (米),360X-= 36 (米),60X-= 24 (米),36X24 = 864 (平方米)・5 + 3=8,96 X G = 60筐(橘子),O96X -= 36筐(苹果). 84.设剩下的任务还需x天完成.25% 1-25% = ,25%x=75%X5,x=15.5.设一件上衣与一条裤子的价钱之比是1 : x,则小强和小明用去钱数的比是:l + 2x 4 1 + x =?3(1 + 2x) = 4 (1 + x),3+ 6x= 4 + 4x,2x=l,1X= 2,7x1 = 3. 5 (元)(一条裤子). 乙3276.6+(齐亍一百X2)X百7 = 126 (页).7.设乙车行完全程用x小时.13x = 2X5-,乙2x= 3y,1+(3+』)=2:(小时).3 三545328.顺水船速:逆水船速=(21-12):(7-4)=3: 1.附:奥数技巧分享分享四个奥数小技巧。

奥数比和比例含答案

奥数比和比例含答案

比和比例 月 日 姓 名【知识要点】一、比和比例的性质性质1:若a : b =c :d ,则(a + c ):(b + d )= a :b =c :d ;性质2:若a : b =c :d ,则(a - c ):(b - d )= a :b =c :d ;性质3:若a : b =c :d ,则(a +x c ):(b +x d )=a :b =c :d ;(x 为常数)性质4:若a : b =c :d ,则a ×d = b ×c ;(即外项积等于内项积)正比例:如果a ÷b =k (k 为常数),则称a 、b 成正比;反比例:如果a ×b =k (k 为常数),则称a 、b 成反比.二、主要比例转化实例①x a y b = ⇒ y b x a =; x y a b =; a b x y =;② x a y b = ⇒ mx a my b =; x ma y mb =(其中0m ≠); ③x a y b = ⇒ x a x y a b =++; x y a b x a --=; x y a b x y a b ++=-- ; ④ x a y b =,y c z d = ⇒ x ac z bd=;::::x y z ac bc bd =; ⑤ x 的ca 等于y 的d b ,则x 是y 的ad bc ,y 是x 的bc ad . 三、按比例分配与和差关系⑴按比例分配例如:将x 个物体按照:a b 的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量与x 的比分别为():a a b +和():b a b +,所以甲分配到ax a b +个,乙分配到bx a b+个. ⑵已知两组物体的数量比和数量差,求各个类别数量的问题例如:两个类别A 、B ,元素的数量比为:a b (这里a b >),数量差为x ,那么A 的元素数量为ax a b -,B 的元素数量为bx a b -,所以解题的关键是求出()a b -与a 或b 的比值. 四、比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“l ”。

小学六年级奥数系列讲座:比和比例(含答案解析)

小学六年级奥数系列讲座:比和比例(含答案解析)

比和比例两个数相除又叫做两个数的比.一、比和比例的性质性质1:若a: b=c:d,则(a + c):(b + d)= a:b=c:d;性质2:若a: b=c:d,则(a - c):(b - d)= a:b=c:d;性质3:若a: b=c:d,则(a +x c):(b +x d)=a:b=c:d;(x为常数)性质4:若a: b=c:d,则a×d = b×c;(即外项积等于内项积)正比例:如果a÷b=k(k为常数),则称a、b成正比;反比例:如果a×b=k(k为常数),则称a、b成反比.二、比和比例在行程问题中的体现,所以:在行程问题中,因为有速度=路程时间当一组物体行走速度相等,那么行走的路程比等于对应时间的反比;当一组物体行走路程相等,那么行走的速度比等于对应时间的反比;当一组物体行走时间相等,那么行走的速度比等于对应路程的正比.1.A和B两个数的比是8:5,每一数都减少34后,A是B的2倍,试求这两个数.【分析与解】方法一:设A为8x,则B为5x,于是有(8x-34):(5x-34)=2:1,x=17,所以A为136,B为85.方法二:因为减少的数相同,所以前后A 、B的差不变,开始时差占3份,后来差占1份且与B一样多,也就是说减少的34,占开始的3-1=2份,所以开始的1份为34÷2=17,所以A为17×8=136,B为17×5=85.2.近年来火车大提速,1427次火车自北京西站开往安庆西站,行驶至全程的511再向前56千米处所用时间比提速前减少了60分钟,而到达安庆西站比提速前早了2小时.问北京西站、安庆西站两地相距多少千米?【分析与解】设北京西站、安庆西站相距多少千米?(5 11x+56):x=60:120,即(511x+56):x=1:2,即x=1011x+112,解得x=1232.即北京西站、安庆西站两地相距1232千米,3.两座房屋A和B各被分成两个单元.若干只猫和狗住在其中.已知:A房第一单元内猫的比率(即住在该单元内猫的数目与住在该单元内猫狗总数之比)大于B房第一单元内猫的比率;并且A房第二单元内猫的比率也大于B房第二单元内猫的比率.试问是否整座房屋A内猫的比率必定大于整座房屋B内猫的比率?【分析与解】 如下表给出的反例指出:对所提出问题的回答应该是否定的.表中具体写出了各个单元及整座房屋中的宠物情况和猫占宠物总数的比率.4.家禽场里鸡、鸭、鹅三种家禽中公篱与母篱数量之比是2:3,已知鸡、鸭、鹅数量之比是8:7:5,公鸡、母鸡数量之比是1:3,公鸭、母鸭数量之比是3:4.试求公鹅、母鹅的数量比.【分析与解】 公鸡占家禽场家禽总数的 =21124615:(3544)45:46:(3544)46:47.333345⨯⨯+⨯⨯=⨯⨯+⨯⨯=8118751310⨯=+++,母鸡占总数的310; 公鸭占总数的8338753420⨯=+++,母鸭占总数的420; 公鹅占总数的213332102020-+=+(),母鹅占总数的234232102020-+=+(),公鹅、母鹅数量之比为322020::3:2.5.在古巴比伦的金字塔旁,其朝西下降的阶梯旁6m 的地方树立有1根走子,其影子的前端正好到达阶梯的第3阶(箭头).另外,此时树立l 根长70cm 自杆子,其影子的长度为175cm,设阶梯各阶的高度与深度都是50cm,求柱子的高度为多少?【分析与解】70cm的杆子产生影子的长度为175cm;所以影子的长度与杆子的长度比为:175:70=2.5倍.于是,影子的长度为6+1.5+1.5×2.5=11.25,所以杆子的长度为11.25÷2.5=4.5m.6.已知三种混合物由三种成分A、B、C组成,第一种仅含成分A和B,重量比为3:5;第二种只含成分B和C,重量比为I:2;第三种只含成分A和C,重量之比为2:3.以什么比例取这些混合物,才能使所得的混合物中A,B和C,这三种成分的重量比为3:5:2 ?【分析与解】注意到第一种混合物种A、B重量比与最终混合物的A、B重量比相同,均为3:5.所以,先将第二种、第三种混合物的A、B重量比调整到3:5,再将第二种、第三种混合物中A、B与第一种混合物中A、B视为单一物质.第二种混合物不含A,第三种混合物不含B,所以1.5倍第三种混合物含A 为3,5倍第二种混合物含B为5,即第二种、第三种混合物的重量比为5:1.5.于是此时含有C为5×2+1.5×3=14.5,在最终混合物中C的含量为3A/5B含量的2倍.有14.5÷2-1=6.25,所以含有第一种混合物6.25.即第一、二、三这三种混合物的比例为6.25:5:1.5=25:20:6.7.现有男、女职工共1100人,其中全体男工和全体女工可用同样天数完成同样的工作;若将男工人数和女工人数对调一下,则全体男25天完成的工作,全体女工需36天才能完成,问:男、女工各多少人?【分析与解】直接设出男、女工人数,然后在通过方程求解,过程会比较繁琐.设开始男工为“1”,此时女工为“k”,有1名男工相当k名女工.男工、女工人数对调以后,则男工为“k”,相当于女工“k2”,女工为“I”.有k2:1=36:25,所以k=6.5×1100=500人,女工600人.于是,开始有男工数为11k8.有甲乙两个钟,甲每天比标准时间慢5分钟,而乙每天比标准时间快5分钟,在3月15日的零点零分的时候两钟正好对准.若已知在某一时刻,乙钟和甲钟时针与分针都分别重合,且在从3月15日开始到这个时候,乙钟时针与分针重合的次数比甲钟多10次,那么这个时候的标准时间是多少?【分析与解】 标准的时钟每隔56511分钟重合一次. 假设经历了x 分钟.于是,甲钟每隔52460651124605⨯⨯⨯-分钟重合一次,甲钟重合了246052460⨯-⨯×x 次; 同理,乙钟重合了246052460⨯+⨯×x 次; 于是,需要乙钟比甲钟多重合 246052460⨯+⨯×x-246052460⨯-⨯×x=102460⨯×x=10; 所以,x =24×60;所以要经历24×60×65511分钟,则为524606551165246011⨯⨯=⨯天. 于是为65天510(24)10()1111⨯=小时106(60)541111⨯=分钟.9.一队和二队两个施工队的人数之比为3:4,每人工作效率之比为5:4,两队同时分别接受两项工作量与条件完全相同的工程,结果二队比一队早完工9天.后来,由一队工人23与二队工人13组成新一队,其余的工人组成新二队.两支新队又同时分别接受两项工作量与条件完全相同的工程,结果新二队比新一队早完工6天.试求前后两次工程的工作量之比?【分析与解】 一队与二队的工作效率之比为:(3×5):(4×4)=15:16. 一队干前一个工程需9÷116=144天. 新一队与新二队的工作效率之比为:2112(3544):(3544)46:47.⨯⨯+⨯⨯⨯⨯+⨯⨯=3333=282天.新一队干后一个工程需6÷147一队与新一队的工作效率之比为21⨯⨯+⨯⨯=15:(3544)45:4633天.所以一队干后一个工程需282×4645)=(144×45):(282×46)=540:前后两次工程的工作量之比是144:(282×46451081.。

小学奥数五年级测试及答案(比例及应用题)

小学奥数五年级测试及答案(比例及应用题)
1、比例
如果你的文档出现显示不全的问题,请调整页边距,或将图片缩小查看。
第1题
第2题
第3题
第4题
第5题
第6题
试题答案
第1题:
正确答案:B
答案解析
第2题:
正确答案:D
答案解析
第3题:
正确答案:C
答案解析
第4题:
正确答案:B
答案解析
第5题:
正确答案:C
答案解析
第6题:
正确答案:B
答案解析
2、比例应用题1份数的应用
第1题
第2题
第3题
第4题
第5题
第6题
第7题
试题答案
第1题:
正确答案:B
答案解析
第2题:
正确答案:A
答案解析
第3题:
正确答案:B
答案解析
第4题:
正确答案:C
答案解析
第5题:
正确答案:D
答案解析
第6题:
正确答案:D
答案解析
第7题:
正确答案:Dห้องสมุดไป่ตู้
答案解析

五年级下册讲义 13讲 比和比例(含答案、奥数板块)--北师大版

五年级下册讲义  13讲 比和比例(含答案、奥数板块)--北师大版

比和比例【知识讲述】学习比和比例关系是提高小学数学综合能力的一个重要方面,深刻理解相关联的量是学习的基本要求。

比和比例的学习,也是为中学学习函数打下基础。

用比和比例解答的应用题有:1.按比例分配应用题。

把一个数量按一定的比进行分配,解答这类应用题的关键是根据题中所给的比,转化成求一个数的几分之几来做。

2.正、反比例应用题。

解答这类应用题,首先要找出相关联的量,然后判断成什么比例关系,建立比例式。

【例题精讲】例1 、 一个长方体的棱长总和是180厘米,它的长、宽、高之比是4:3:2。

这个长方形的体积是多少立方厘米?练习、一个长方体长与宽的比是4:3,宽与高之比是5:4,长方形的长是100厘米,求长方体的体积。

例2 、 兄弟俩共有85元,他们都买了一支价格相同的钢笔,哥哥花掉了自己钱数的34,弟弟花掉了自己钱数的23,哥哥还剩多少元?练习、甲乙两数的和是99,甲数的45 等于乙数的23,那么甲数与乙数各是多少?例3 、甲、乙、丙三人一起去商场购物,甲花钱数的12 等于乙花钱数的13 ,乙花钱数的34等于丙花钱数的47,结果丙比甲多花钱93元。

问他们三人共花了多少钱?练习、周、吴、张3人共有810元,周用了自己钱数的23 ,吴用了自己钱数的35,张用了自己钱数的34,都买了一件价格相同的衣服,那么周和吴剩下的钱共有多少元?例4、 饲养场里有鸡、鸭、鹅共860只,鸡、鸭的只数比是3:4,鸡、鹅的只数比是4:5,鸡、鸭、鹅各有多少只?练习、商店运进香蕉、梨、苹果共775千克,其中香蕉、梨的重量比是3:5,梨、苹果的重量比是2:3。

商店运进苹果、梨、香蕉各多少千克?例5、 一批货物共值171万元。

如果第一、二、三批货物的质量比为2:4:3,单位质量的价格之比为6:5:2,这三批货物各值多少万元?练习、一段路程分成上坡、平路、下坡三段,各段路程长之比依次是1:2:3.某人走各段路所用时间之比依次是4:5:6.已知他上坡时速度为每小时3千米.路程全长50千米.问:此人走完全程用了多少时间?例6、有两杯体积相同的酒精溶液,第一杯中酒精与水的比是3:5,第二杯酒精与水的比是1:4。

(完整版)小学奥数-比和比例(教师版)

(完整版)小学奥数-比和比例(教师版)

比和比例xx.=7:9(,求-1)【例1】★已知3 :6【解析】4x?7人。

求现在的男、女生444名女生后,全班共有【小试牛刀】某班的男、女生之比为3:2,又来了人数之比。

40-24=16人,40人,男生有40×3÷5=24人,女生【解析】原有24:20=6:5现在男女人数之比,,乙的长与宽之比是7:3】★甲、乙两个长方形,它们的周长相等。

甲的长与宽之比是3:2【例2 那么甲与乙的面积之比是多少?=7:3. :宽:宽=6:4,乙的长【解析】长+宽相等。

甲的长7?8:(7?3)(6?4):所以甲乙的面积比为而另一个瓶中酒3:1,★★两个相同的瓶子装满酒精溶液,一个瓶中酒精与水的体积之比是【例3】 4:1,若把两瓶酒精溶液混合,则混合后的酒精和水的体积之比是多少?精与水的体积之比是,于是水=4:1=16:4=3:1=15:5,第二个瓶子酒精:【解析】两个瓶子体积相同。

第一个瓶子酒精:水=(15+16):(5+4)=31:9水混合后酒精:个,5040个,西瓜【小试牛刀】水果店运来的西瓜个数与白兰瓜个数的比为7:5.如果每天卖白兰瓜水果店运来的西瓜有多少个?36个。

问:若干天后卖完白兰瓜时,西瓜还剩,个3份36原有西瓜:白兰瓜=7:5=28:20,西瓜剩【解析】卖的瓜的总数比为西瓜:白兰瓜=5:4=25:20, 个。

个,所以原有西瓜28×12=336每份12乙种每千克元,甲种糖果每千克6★★商店购进甲乙两种不同糖果,所用费用之比为2:1,【例4】元。

如果把这两种糖果混在一起成为什锦糖,那么,这种什锦糖每千克多少元?232?6?2?213.6?:3?2:),平均价格为【解析】费用比2:1,单价比3:1/千克(,重量比元32?31分钟。

15个,甲加工一个零件用9分钟,乙加工一个零件用甲乙二人共加工零件【例5】★★400 完成任务时,甲比乙多加工多少个零件?3?5100?400?3?515:9=5:3(个),甲比乙多加工【解析】工效之比? 分后乙再追,乙几分钟才能追上甲5分和30分,甲先走【小试牛刀】甲乙走完同一段路分别用40xxxxx=15 )=4,设乙分追上甲,则甲用(5+,)分,3(5+【解析】甲乙速度之比3:411? ,则甲乙两人的速度比是多少甲走的路比乙多【例6】★★,乙用的时间却比甲多435:34:5,所以甲乙速度之比是【解析】甲乙路程之比是4:3,甲乙时间之比是,如果甲、乙两人地,甲、乙两人骑自行车行完全程所用的时间的比是B4:5从【例7】★★A地到地晚多少BA40BA同时分别从、两地相对骑出,分钟相遇。

六年级上册奥数试题:第12讲 比和比例 全国通用(含答案)

六年级上册奥数试题:第12讲 比和比例 全国通用(含答案)

第12讲比和比例知识网络比和比例问题是一类与数量之间的正反比例关系相关的应用题。

它包括以下几个主要内容:(1)两个数的比实际就是这两上数的商。

表示两个比相等的式子叫做比例。

组成比例的四个数叫做比例的项,比例中两个外项的积等于两个内项的积。

(2)如果两种相关量x、y,可以写成,其中k是一个定值,那么称x、y为成正比例的量。

(3)如果两种相关联的量x、y,可以写成x×y=k,其中k是一个定值,那么称x、y 为成反比例的量。

(4)两上以上的数的比叫做连比。

连比满足比例的基本性质,也就是a∶b∶c=na∶nd∶nc(n≠0)。

重点·难点比和比例问题的重点在于正确找出两种相关的量,并明确二者之间的比例关系。

例如:1.常见的正比例关系(1)亩产量一定时,播种面积和总产量成正比例的关系,即(2)工作效率一定时,工作总量与工作时间成正比例的关系,即(3)速度一定时,路程与时间成正比例的关系,即2.常见的反比例关系(1)平行四边形的面积一定时,它的底和高成反比例的关系,即底×高=平行四边形的面积(一定)(2)总时间一定时,制造成零件个数和制造每个零件所用的时间成反比例的关系,即制造每个零件所用的时间×零件个数=总时间(一定)(3)两上互相啮合的齿轮,当齿轮转过的齿数一定时,齿数与转数成反比例的关系,即齿轮的齿数×转数=齿轮转过的齿数(一定)学法指导解答正、反比例的应用题时,首先要找出题中相关联的量,即两个变量,再确定题中隐含着的定量,判断两个变量间的比例关系,建立正确的比例式。

经典例题[例1]猎犬发现在离它10米远的前方有一只狂跑着的野兔,立刻追赶。

猎犬的步子大,它跑2步的路程,兔子要跑3步;但是兔子的动作快,猎犬跑3步的时间,兔子能跑4步。

问猎犬至少要跑多少米方能追上野兔?思路剖析从猎犬开始追兔子到追上兔子,猎犬和兔子所用的时间相等,即时间一定,因此,它们跑的速度与距离成正比例的关系。

六年奥数综合练习题十二答案(比和比例关系)

六年奥数综合练习题十二答案(比和比例关系)

六年奥数综合练习题十二答案(比和比例关系)比和比例,是小学数学中的最后一个内容,也是学习更多数学知识的重要基础.有了“比”这个概念和表达方式,处理倍数、分数等问题,要方便灵活得多.我们希望,小学同学学完这一讲,对“除法、分数、比例实质上是一回事,但各有用处”有所理解.这一讲分三个内容:一、比和比的分配;二、倍数的变化;三、有比例关系的其他问题.一、比和比的分配最基本的比例问题是求比或比值.从已知一些比或者其他数量关系,求出新的比.例1甲、乙两个长方形,它们的周长相等.甲的长与宽之比是3∶2,乙的长与宽之比是7∶5.求甲与乙的面积之比.解:设甲的周长是2.甲与乙的面积之比是答:甲与乙的面积之比是864∶875.作为答数,求出的比最好都写成整数.例2 如右图,ABCD是一个梯形,E是AD的中点,直线CE把梯形分成甲、乙两部分,它们的面积之比是10∶7.求上底AB与下底CD的长度之比.解:因为E是中点,三角形CDE与三角形CEA面积相等.三角形ADC与三角形ABC高相等,它们的底边的比AB∶CD=三角形ABC的面积∶三角形ADC的面积=(10-7)∶(7×2)= 3∶14.答:AB∶CD=3∶14.两数之比,可以看作一个分数,处理时与分数计算几乎一样.三数之比,却与分数不一样,因此是这一节讲述的重点.例3 大、中、小三种杯子,2大杯相当于5中杯,3中杯相当于4小杯.如果记号表示2大杯、3中杯、4小杯容量之和,求与之比.解:大杯与中杯容量之比是5∶2=10∶4,中杯与小杯容量之比是4∶3,大杯、中杯与小杯容量之比是10∶4∶3.∶=(10×2+4×3+3×4)∶(10×5+4×4+3×3)=44∶75.答:两者容量之比是44∶75.把5∶2与4∶3这两个比合在一起,成为三样东西之比10∶4∶3,称为连比.例3中已告诉你连比的方法,再举一个更一般的例子.甲∶乙=3∶5,乙∶丙=7∶4,3∶5=3×7∶5×7=21∶35,7∶4=7×5∶4×5=35∶20,甲∶乙∶丙=21∶35∶20.花了多少钱?解:根据比例与乘法的关系,连比后是甲∶乙∶丙=2×16∶3×16∶3×2=32∶48∶63.答:甲、乙、丙三人共花了429元.例5有甲、乙、丙三枚长短不相同的钉子,甲与乙,而它们留在墙外的部分一样长.问:甲、乙、丙的长度之比是多少?解:设甲的长度是6份.∶x=5∶4.乙与丙的长度之比是而甲与乙的长度之比是6∶5=30∶25.甲∶乙∶丙=30∶25∶26.答:甲、乙、丙的长度之比是30∶25∶26.于利用已知条件6∶5,使大部分计算都整数化.这是解比例和分数问题的常用手段.例6 甲、乙、丙三种糖果每千克价分别是22元、30元、33元.某人买这三种糖果,在每种糖果上所花钱数一样多,问他买的这些糖果每千克的平均价是多少元?解一:设每种糖果所花钱数为1,因此平均价是答:这些糖果每千克平均价是27.5元.上面解法中,算式很容易列出,但计算却使人感到不易.最好的计算方法是,用22,30,33的最小公倍数330,乘这个繁分数的分子与分母,就有:事实上,有稍简捷的解题思路.解二:先求出这三种糖果所买数量之比.不妨设,所花钱数是330,立即可求出,所买数量之比是甲∶乙∶丙=15∶11∶10.平均数是(15+11+10)÷3=12.单价33元的可买10份,要买12份,单价是下面我们转向求比的另一问题,即“比的分配”问题,当一个数量被分成若干个数量,如果知道这些数量之比,我们就能求出这些数量.例7 一个分数,分子与分母之和是100.如果分子加23,分母加32,解:新的分数,分子与分母之和是(10+23+32),而分子与分母之比2∶3.因此例8加工一个零件,甲需3分钟,乙需3.5分钟,丙需4分钟,现有1825个零件要加工,为尽早完成任务,甲、乙、丙应各加工多少个?所需时间是多少?解:三人同时加工,并且同一时间完成任务,所用时间最少,要同时完成,应根据工作效率之比,按比例分配工作量.三人工作效率之比是他们分别需要完成的工作量是所需时间是700×3=2100分钟)=35小时.答:甲、乙、丙分别完成700个,600个,525个零件,需要35小时.这是三个数量按比例分配的典型例题.例9某团体有100名会员,男会员与女会员的人数之比是14∶11,会员分成三个组,甲组人数与乙、丙两组人数之和一样多.各组男会员与女会员人数之比是:甲:12∶13,乙:5∶3,丙:2∶1,那么丙有多少名男会员?解:甲组的人数是100÷2=50(人).乙、丙两组男会员人数是56-24=32 (人).答:丙组有12名男会员.上面解题的最后一段,实质上与“鸡兔同笼”解法一致,可以设想,“兔例10 一段路程分成上坡、平路、下坡三段,各段路程长之比依次是1∶2∶3.小龙走各段路程所用时间之比依次是4∶5∶6.已知他上坡时速度为每小时3千米,路程全长50千米.问小龙走完全程用了多少时间?解一:通常我们要求出小龙走平路与下坡的速度,先求出走各段路程的速度比.上坡、平路、下坡的速度之比是走完全程所用时间答:小龙走完全程用了10小时25分.上面是通常思路下解题.1∶2∶3计算中用了两次,似乎重复计算,最后算式也颇费事.事实上,灵活运用比例有简捷解法.解二:全程长是上坡这一段长的(1+2+3)=6(倍).如果上坡用的时设小龙走完全程用x小时.可列出比例式二、比的变化已知两个数量的比,当这两个数量发生增减变化后,当然比也发生变化.通过变化的描述,如何求出原来的两个数量呢?这就是这一节的内容.例11 甲、乙两同学的分数比是5∶4.如果甲少得22.5分,乙多得22.5分,则他们的分数比是5∶7.甲、乙原来各得多少分?解一:甲、乙两人的分数之和没有变化.原来要分成5+4=9份,变化后要分成5+7=12份.如何把这两种分法统一起来?这是解题的关键.9与12的最小公倍数是36,我们让变化前后都按36份来算.5∶4=(5×4)∶(4×4)=20∶16.5∶7=(5×3)∶(7×3)=15∶21.甲少得22.5分,乙多得22.5分,相当于20-15=5份.因此原来甲得22.5÷5×20=90(分),乙得22.5÷5×16=72(分).答:原来甲得90分,乙得72分.我们再介绍一种能解本节所有问题的解法,也就是通过比例式来列方程.解二:设原先甲的得分是5x,那么乙的得分是4x.根据得分变化,可列出比例式.(5x-22.5)∶(4x+22.5)=5∶7即5(4x+22.5)=7(5x-22.5)15x=12×22.5x=18.甲原先得分18×5=90(分),乙得18×4=72(分).解:其他球的数量没有改变.增加8个红球后,红球与其他球数量之比是5∶(14-5)=5∶9.在没有球增加时,红球与其他球数量之比是1∶(3-1)=1∶2=4.5∶9.因此8个红球是5-4.5=0.5(份).现在总球数是答:现在共有球224个.本题的特点是两个数量中,有一个数量没有变.把1∶2写成4.5∶9,就是充分利用这一特点.本题也可以列出如下方程求解:(x+8)∶2x=5∶9.例13 张家与李家的收入钱数之比是8∶5,开支的钱数之比是8∶3,结果张家结余240元,李家结余270元.问每家各收入多少元?解一:我们采用“假设”方法求解.如果他们开支的钱数之比也是8∶5,那么结余的钱数之比也应是8∶5.张家结余240元,李家应结余x元.有240∶x=8∶5,x=150(元).实际上李家结余270元,比150元多120元.这就是8∶5中5份与8∶3中3份的差,每份是120÷(5-3)=60.(元).因此可求出答:张家收入720元,李家收入450元.解二:设张家收入是8份,李家收入是5份.张家开支的3倍与李家开支的8倍的钱一样多.我们画出一个示意图:张家开支的3倍是(8份-240)×3.李家开支的8倍是(5份-270)×8.从图上可以看出5×8-8×3=16份,相当于270×8-240×3=1440(元).因此每份是1440÷16=90(元).张家收入是90×8=720(元),李家收入是90×5=450(元).本题也可以列出比例式:(8x-240)∶(5x-270)=8∶3.然后求出x.事实上,解方程求x的计算,与解二中图解所示是同一回事,图解有算术味道,而且一些数量关系也直观些.例14 A和B两个数的比是8∶5,每一数都减少34后,A是B的2倍,求这两个数.解:减少相同的数34,因此未减时,与减了以后,A与B两数之差并没有变,解题时要充分利用这一点.8∶5,就是8份与5份,两者相差3份.减去34后,A是B的2倍,就是2∶1,两者相差1.将前项与后项都乘以3,即2∶1=6∶3,使两者也相差3份.现在就知道34是8-6=2(份)或5-3=2(份).因此,每份是34∶2=17.A数是17×8=136,B数是17×5=85.答:A,B两数分别是136与85.本题也可以用例13解一“假设”方法求解,不过要把减少后的2∶1,改写成8∶4.例15小明和小强原有的图画纸之比是4∶3,小明又买来15张.小强用掉了8张,现有的图画纸之比是5∶2.问原来两人各有多少张图画纸?解一:充分利用已知数据的特殊性.4+3=7,5+2=7,15-8=7.原来总数分成7份,变化后总数仍分成7份,总数多了7张,因此,新的1份=原来1份+1原来4份,新的5份,5-4=1,因此新的1份有15-1×4=11(张).小明原有图画纸11×5-15=40(张),小强原有图画纸11×2+8=30(张).答:原来小明有40张,小强有30张图画纸.解二:我们也可采用例13解一的“假设”方法.先要将两个比中的前项化成同一个数(实际上就是通分)4∶3=20∶155∶2=20∶8.但现在是20∶8,因此这个比的每一份是当然,也可以采用实质上与解方程完全相同的图解法.解三:设原来小明有4“份”,小强有3“份”图画纸.把小明现有的图画纸张数乘2,小强现有的图画纸张数乘5,所得到的两个结果相等.我们可以画出如下示意图:从图上可以看出,3×5-4×2=7(份)相当于图画纸15×2+8×5=70(张).因此每份是10张,原来小明有40张,小强有30张.例11至15这五个例题是同一类型的问题.用比例式的方程求解没有多大差别.用算术方法,却可以充分利用已知数据的特殊性,找到较简捷的解法,也启示一些随机应变的解题思路.另外,解方程的代数运算,对小学生说来是超前的,不容易熟练掌握.例13的解一,也是一种通用的方法.“假设”这一思路是很有用的,希望读者能很好掌握,灵活运用.从课外的角度,我们更应启发小同学善于思考,去找灵巧的解法,这就要充分利用数据的特殊性.因此我们总是先讲述灵巧的解法,利于心算,促进思维.例16粗蜡烛和细蜡烛长短一样.粗蜡烛可以点5小时,细蜡烛可以点4小时.同时点燃这两支蜡烛,点了一段时间后,粗蜡烛长是细蜡烛长的2倍.问这两支蜡烛点了多少时间?我们把问题改变一下:设细蜡烛长度是2,每小时点等需要时间是答:这两支蜡烛点了3小时20分.把细蜡烛的长度和每小时烧掉的长度都乘以2,使原来要考虑的“2倍”变成“相等”,思考就简捷了.解这类问题这是常用的技巧.再请看一个稍复杂的例子.例17箱子里有红、白两种玻璃球,红球数是白球数的3倍多2只.每次从箱子里取出7只白球,15只红球,经过若干次后,箱子里剩下3只白球,53只红球,那么,箱子里原来红球数比白球数多多少只?解:因为红球是白球的3倍多2只,每次取15只,最后剩下53只,所以对3倍的白球,每次取15只,最后应剩51只.因为白球每次取7只,最后剩下3只,所以对3倍的白球,每次取7×3=21只,最后应剩3×3=9只.因此.共取了(51- 3×3)÷(7×3-15)=7(次).红球有15×7+53=158(只).白球有7×7+3=52(只).原来红球比白球多158-52=106(只).答:箱子里原有红球数比白球数多106只.三、比例的其他问题,这里必须用分数来说,而不能用比.实际上它还是隐含着比例关系:(甲-7)∶乙= 2∶3.因此,有些分数问题,就是比例问题.加33张,他们两人取的画片一样多.问这些画片有多少张?答:这些画片有261张.解:设最初的水量是1,因此最后剩下的水是样重,就有因此原有水的重量是答:容器中原来有8.4千克水.例18和例19,通常在小学数学中,叫做分数应用题.“比”有前项和后项,当两项合在一起写成一个分数后,才便于与其他数进行加、减运算.这就是把比(或除法)写成分数的好处.下面一个例题却是要把分数写成比,计算就方便些.例20 有两堆棋子,A堆有黑子350个和白子500个,B堆有黑子堆中拿到A堆黑子、白子各多少个?子100个,使余下黑子与白子之比是(40-100)∶100=3∶1.再要从B堆拿出黑子与白子到A堆,拿出的黑子与白子数目也要保持3∶1的比.现在A堆已有黑子350+100=450个),与已有白子500个,相差从B堆再拿出黑子与白子,要相差50个,又要符合3∶1这个比,要拿出白子数是50÷(3-1)=25(个).再要拿出黑子数是25×3=75(个).答:从B堆拿出黑子175个,白子25个.人,问高、初中毕业生共有多少人?解一:先画出如下示意图:6-5=1,相当于图中相差17-12=5(份),初中总人数是5×6=30份,因此,每份人数是520÷(30-17)= 40(人).因此,高、初中毕业生共有40×(17+12)=1160(人).答:高、初中毕业生共1160人.计算出每份是例21与例14是完全一样的问题,解一与例14的解法也是一样的.(你是否发现?)解二是通常分数应用题的解法,显然计算不如解一简便.例18,19,20,21四个例题说明分数与比例各有好处,你是否从中有所心得?当然关键还是在于灵活运用.下的钱共有多少元?解:设钢笔的价格是1.这样就可以求出,钢笔价格是张剩下的钱数是李剩下的钱数答:张、李两人剩下的钱共28元.题中有三个分数,但它们比的基准是不一样的.为了统一计算单位,设定钢笔的价格为1.每个人原有的钱和剩下的钱都可以通过“1”统一地折算.解分数应用题中,设定统一的计算单位是常用的解题技巧.作为这一讲最后的内容,我们通过两个例题,介绍一下“混合比”.用100个银币买了100头牲畜,问猪、山羊、绵羊各几头?这是十八世纪瑞士大数学家欧拉(1707~1783)提出的问题.们设1头猪和5头绵羊为A组,3头山羊和2头羊绵为B组.A表示A组的数,B表示B组的数,要使(1+5)×A+(3+2)×B=100,或简写成6A+5B=100.就恰好符合均价是1.类似于第三讲鸡兔同笼中例17,很明显,A必定是5的整数倍.A=5,B=4,6×5+5×4=50,50是100的约数,符合要求.A=5,猪5头,绵羊25头,B=4,山羊12头,绵羊8头.猪∶山羊∶绵羊=5∶12∶(25+8).现在已把1∶5和3∶2两种比,组合在一起通常称为混合比.要注意,这样的问题常常有多种解答.A= 5,B=14或A=15,B=2才能产生解答,相应的猪、山羊、绵羊混合比是5∶42∶53或15∶6∶79.答:有三组解答.买猪、山羊、绵羊的头数是10,24,66;或者5,42,53;或者15,6,79.求混合比是一种很实用的方法,对数学有兴趣的小学同学,学会这种方法是有好处的,会增加灵活运用比例的技巧.通常求混合比可列下表:下面例题与例23是同一类型,但由于题目的条件,解法上稍有变化.例24某商品76件,出售给33位顾客,每位顾客最多买三件,买1件按定价,买2件降价10%,买3件降价20%.最后结算,平均每件恰好按原定价的85%出售,那么买3件的顾客有多少人?解:题目已给出平均数85%,可作比较的基准.1人买3件少5%×3;1人买2件多5%×2;1人买1件多15%×1.1人买3件与1人买1件成A组,即按1∶1比例,2人买3件与3人买2件成B组,即按2∶3的比例.A组是2人买4件,每人平均买2件.B组是5人买12件,每人平均买2.4件.现在已建立了一个鸡兔同笼型问题:总脚数76,总头数33,兔脚数2.4,鸡脚数2.B组人数是(76-2×33)÷(24-2)=25(人),A组人数是33-25=8(人),其中买3件4人,买1件4人.10+4=14(人).答:买3件的顾客有14位.建立两种比的A组和B组,与例23的解题思路完全一致,只是后面解法稍有不同.因为对A组和B组,不仅要从人数考虑满足2A+5B=33,还要从买的件数考虑满足4A+12B=76.这已完全确定了A组和B组的数,不必再求混合比.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

比和比例月 日 姓 名【知识要点】一、比和比例的性质性质1:若a : b =c :d ,则(a + c ):(b + d )= a :b =c :d ; 性质2:若a : b =c :d ,则(a - c ):(b - d )= a :b =c :d ;性质3:若a : b =c :d ,则(a +x c ):(b +x d )=a :b =c :d ;(x 为常数) 性质4:若a : b =c :d ,则a ×d = b ×c ;(即外项积等于内项积) 正比例:如果a ÷b =k (k 为常数),则称a 、b 成正比; 反比例:如果a ×b =k (k 为常数),则称a 、b 成反比. 二、主要比例转化实例 ①x a y b = ⇒ y b x a =; x ya b =; a b x y =;② x a y b = ⇒mx a my b =; x ma y mb =(其中0m ≠); ③ x a y b = ⇒ x a x y a b =++; x y a b x a --=; x y a b x y a b ++=-- ;④x a y b =,y c z d = ⇒ x acz bd=;::::x y z ac bc bd =; ⑤ x 的ca等于y 的d b ,则x 是y 的ad bc ,y 是x 的bcad. 三、按比例分配与和差关系 ⑴按比例分配例如:将x 个物体按照:a b 的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量与x 的比分别为():a a b +和():b a b +,所以甲分配到ax a b +个,乙分配到bxa b+个. ⑵已知两组物体的数量比和数量差,求各个类别数量的问题例如:两个类别A 、B ,元素的数量比为:a b (这里a b >),数量差为x ,那么A 的元素数量为axa b-,B 的元素数量为bxa b-,所以解题的关键是求出()a b -与a 或b 的比值. 四、比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“l ”。

题中如果有几个不同的单位“1”,必须根据具体情况,将不同的单位“1”,转化成统一的单位“1”,使数量关系简单化,达到解决问题的效果。

在解答分数应用题时,要注意以下几点:1. 题中有几种数量相比较时,要选择与各个已知条件关系密切、便于直接解答的数量为单位“1”。

2. 若题中数量发生变化的,一般要选择不变量为单位“1”。

3. 应用正、反比例性质解答应用题时要注意题中某一数量是否一定,然后再确定是成正比例,还是成反比例。

找出这些具体数量相对应的分率与其他具体数量之间的正、反比例关系,就能找到更好、更巧的解法。

4. 题中有明显的等量关系,也可以用方程的方法去解。

5. 赋值解比例问题【典型例题】比例转化【例 1】已知甲、乙、丙三个数,甲等于乙、丙两数和的13,乙等于甲、丙两数和的12,丙等于甲、乙两数和的57,求::甲乙丙.【例 2】已知甲、乙、丙三个数,甲的一半等于乙的2倍也等于丙的23,那么甲的23、乙的2倍、丙的一半这三个数的比为多少?【例 3】如下图所示,圆B与圆C的面积之和等于圆A面积的45,且圆A中的阴影部分面积占圆A面积的16,圆B的阴影部分面积占圆B面积的15,圆C的阴影部分面积占圆C面积的13.求圆A、圆B、圆C的面积之比.CBA【例 4】某俱乐部男、女会员的人数之比是3:2,分为甲、乙、丙三组.已知甲、乙、丙三组的人数比是10:8:7,甲组中男、女会员的人数之比是3:1,乙组中男、女会员的人数之比是5:3.求丙组中男、女会员人数之比.【巩固】一项公路的修建工程被平均分成两份承包给甲、乙个工程队建设,两个工程队建设了相同多的一段时间后,分别剩下60%、40%的任务没有完成,已知两个工程队的工作效率(建设速度)之比3:1,求这两个工程队原先承包的修建公路长度之比.【例 5】某团体有100名会员,男女会员人数之比是14:11,会员分成三组,甲组人数与乙、丙两组人数之和一样多,各组男女会员人数之比依次为12:13、5:3、2:1,那么丙组有多少名男会员?【例 6】A、B、C三项工程的工作量之比为1:2:3,由甲、乙、丙三队分别承担.三个工程队同时开工,若干天后,甲完成的工作量是乙未完成的工作量的二分之一,乙完成的工作量是丙未完成的工作量的三分之一,丙完成的工作量等于甲未完成的工作量,则甲、乙、丙队的工作效率的比是多少?【巩固】某次数学竞赛设一、二、三等奖.已知:①甲、乙两校获一等奖的人数相等;②甲校获一等奖的人数占该校获奖总人数的百分数与乙校相应的百分数的比为5:6;③甲、乙两校获二等奖的人数总和占两校获奖人数总和的20%;④甲校获三等奖的人数占该校获奖人数的50%;⑤甲校获二等奖的人数是乙校获二等奖人数的4.5倍.那么,乙校获一等奖的人数占该校获奖总人数的百分数等于多少?【例 7】①某校毕业生共有9个班,每班人数相等.②已知一班的男生人数比二、三班两个班的女生总数多1;③四、五、六班三个班的女生总数比七、八、九班三个班的男生总数多1.那么该校毕业生中男、女生人数比是多少?随堂小测【按比例分配与和差关系】(一)量倍对应【例 8】一些苹果平均分给甲、乙两班的学生,甲班比乙班多分到16个,而甲、乙两班的人数比为13:11,求一共有多少个苹果?【巩固】小新、小志、小刚三人拥有的藏书数量之比为3:4:6,三人一共藏书52本,求他们三人各自的藏书数量.【巩固】在抗洪救灾区活动中,甲、乙、丙三人一共捐了80元.已知甲比丙多捐18元,甲、乙所捐资的和与乙、丙所捐资的和之比是10:7,则甲捐多少元,乙捐多少元,丙捐多少元.【巩固】有120个皮球,分给两个班使用,一班分到的13与二班分到的12相等,求两个班各分到多少皮球?随堂加油站【例 9】一班和二班的人数之比是8:7,如果将一班的8名同学调到二班去,则一班和二班的人数比变为4:5.求原来两班的人数.【例 10】幼儿园大班和中班共有32名男生,18名女生.已知大班男生数与女生数的比为5:3,中班男生数与女生数的比为2:1,那么大班有女生多少名?【巩固】参加植树的同学共有720人,已知六年级与五年级人数的比是3:2,六年级比四年级多80人,三个年级参加植树的各有多少人?【巩固】圆珠笔和铅笔的价格比是4:3,20支圆珠笔和21支铅笔共用71.5元.问圆珠笔的单价是每支多少元?【例 11】甲、乙两只蚂蚁同时从A点出发,沿长方形的边爬去,结果在距B点2厘米的C点相遇,已知乙蚂蚁的速度是甲的1.2倍,求这个长方形的周长.AC乙B【例 12】甲乙两车分别从A,B两地出发,相向而行.出发时,甲、乙的速度比是5∶4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米.问:A,B两地相距多少千米?【例 13】师徒二人加工一批零件,师傅加工一个零件用9分钟,徒弟加工一个零件用15分钟.完成任务时,师傅比徒弟多加工100个零件,求师傅和徒弟一共加工了多少个零件?【巩固】师徒二人共加工零件400个,师傅加工一个零件用9分钟,徒弟加工一个零件用15分钟.完成任务时,师傅比徒弟多加工多少个零件?【例 14】A、B、C三个水桶的总容积是1440公升,如果A、B两桶装满水,C桶是空的;若将A桶水的全部和B桶水的15,或将B桶水的全部和A桶水的13倒入C桶,C桶都恰好装满.求A、B、C三个水桶容积各是多少公升?【巩固】正方向教育学校四五六年级共有615名学生,已知六年级学生的12,等于五年级学生的25,等于四年级学生的37。

这三个年级各有多少名学生学生?家长留言:1、由甲等于乙、丙两数和的13,得到甲等于三个数和的113+14=,同样的乙等于甲、丙两数和的112+13=,同样的丙等于甲、乙两个数和的557512=+ ,所以115::::3:4:54312==甲乙丙.2、甲的一半、乙的2倍、丙的23这三个数的比为1:1:1,所以甲、乙、丙这三个数的比为()121:12:123⎛⎫⎛⎫÷÷÷ ⎪ ⎪⎝⎭⎝⎭即132::22,化简为4:1:3,那么甲的23、乙的2倍、丙的一半这三个数的比为()214:12:332⎛⎫⎛⎫⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭即83:2:32,化简为16:12:9. CBA3、设A 与B 的共同部分的面积为x ,A 与C 的共同部分的面积为y ,则根据题意有()()564A B C x y =+=+,5B x =,3Cy =,于是得到()56453B C B C ⎛⎫+=+ ⎪⎝⎭,这条式子可化简为15B C =,所以()5204A B C C =+=.最后得到::20:15:1A B C =.4、以总人数为1,则甲组男会员人数为103310873110⨯=+++,女会员为31110310⨯=,乙组男会员为8511087535⨯=+++,女会员为1335525⨯=;丙组男会员为33113+210510⎛⎫-+= ⎪⎝⎭,女会员为21393+2102550⎛⎫-+= ⎪⎝⎭;所以,丙组中男、女会员人数之比为19:5:91050=.【解析】 (法一)甲工程队以3倍乙工程队建设速度,仅完成了40%的承包任务,而乙工程队完成了60%,所以甲工程队承包任务的40%等于乙工程队承包任务的60%3180%⨯=,所以甲工程队的承包的任务是乙工程队承包任务的180%40%450%÷=,所以两个工程队承包的修建公路长度之比为450%:19:2=.(法二)两个工程队完成的工程任务(修建公路长度)之比等于工作效率之比,等于3:1,而他们分别完成了各自任务的40%和60%,所以两个工程队承包的修建公路长度之比为()()340%:160%9:2÷÷=.【解析】 会员总人数100人,男女比例为14:11,则可知男、女会员人数分别为56人、44人;又已知甲组人数与乙、丙两组人数之和一样多,则可知甲组人数为50人,乙、丙人数之和为50人,可设丙组人数为x 人,则乙组人数为()50x -人,又已知甲组男、女会员比为12:13,则甲组男、女会员人数分别为24人、26人,又已知乙、丙两组男、女会员比例,则可得:5224(50)5683x x +-+=,解得18x =.即丙组会员人数为18人,又已知男、女比例,可得丙组男会员人数为218123⨯=人.【解析】 根据题意,如果把A 工程的工作量看作1,则B 工程的工作量就是2,C 工程的工作量就是3.设甲、乙、丙三个工程队的工作效率分别为x 、y 、z .经过k 天,则:()()()22133213kx kyky kzkz kx =-⎧⎪=-⎨⎪=-⎩将⑶代入⑵,得()243kx ky +=,将⑷代入⑴,得2223kx kx +=-,47x k=, 将47x k =代入⑴,得67y k =.代入⑶,得37z k=.甲、乙、丙三队的.工作效率的连比是463::4:6:3777k k k=. 【巩固】某次数学竞赛设一、二、三等奖.已知:①甲、乙两校获一等奖的人数相等;②甲校获一等奖的人数占该校获奖总人数的百分数与乙校相应的百分数的比为5:6;③甲、乙两校获二等奖的人数总和占两校获奖人数总和的20%;④甲校获三等奖的人数占该校获奖人数的50%;⑤甲校获二等奖的人数是乙校获二等奖人数的4.5倍.那么,乙校获一等奖的人数占该校获奖总人数的百分数等于多少?【解析】 由①、②可知甲、乙两校获奖总人数的比为6:5,不妨设甲校有60人获奖,则乙校有50人获奖.由③知两校获二等奖的共有(6050)20%22+⨯=人;由⑤知甲校获二等奖的有22(4.51) 4.518÷+⨯=人;由④知甲校获一等奖的有606050%1812-⨯-=人,那么乙校获一等奖的也有12人,从而所求百分数为1250100%24%÷⨯=.【解析】 如下表所示,由②知,一、二、三班的男生总数比二、三班总人数多1;由③知,四至九班生总数等于四个班的人数之和.所以,男、女生人数之比是5:4.模块二、按比例分配与和差关系 (一)量倍对应【解析】 一共有()()1613111311192÷-⨯+=个苹果.【巩固】小新、小志、小刚三人拥有的藏书数量之比为3:4:6,三人一共藏书52本,求他们三人各自的藏书数量.【解析】 根据题意可知,他们三人各自的藏书数量分别占三人藏书总量的3346++、4346++、6346++,所以小新拥有的藏书数量为35212346⨯=++本,小志拥有的藏书数量为45216346⨯=++本,小刚拥有的藏书数量为65224346⨯=++本.【巩固】在抗洪救灾区活动中,甲、乙、丙三人一共捐了80元.已知甲比丙多捐18元,甲、乙所捐资的和与乙、丙所捐资的和之比是10:7,则甲捐 元,乙捐 元,丙捐 元.【解析】 由于甲比丙多捐18元,所以甲、乙所捐资的和比乙、丙所捐资的和多18元,那么甲、乙所捐资的和为:18(107)1060÷-⨯=(元),乙、丙所捐资的和为601842-=元.所以,甲捐了804238-=(元),乙捐了603822-=(元),丙捐了381820-=(元). 【巩固】有120个皮球,分给两个班使用,一班分到的13与二班分到的12相等,求两个班各分到多少皮球?【解析】 根据题意可知一班与二班分到的球数比11:3:223=,所以一班分到皮球31207232⨯=+个,二班分到皮球1207248-=个.【解析】 原来一班的人数为两班总人数的888715=+,调班后一班的人数是两班人数的44459=+,调班前后一班人数的比值为84:6:5159=,所以一班原来的人数为()865648÷-⨯=人,二班原来的人数为488742÷⨯=人.【解析】 由于男、女生人数有比例关系,而且知道总数,所以可以用鸡兔同笼的方法.假设18名女生全部是大班,则大班男生数:女生数5:330:18==,即男生应有30人,实际上男生有32人,相差2个人;又中班男生数:女生数2:16:3==,以3个中班女生换3个大班女生,每换一组可增加1个男生,所以需要换2组;所以,大班女生有183212-⨯=(名). 【解析】 假设四年级和六年级人数同样多,则参加植树的同学共有72080800+=人,四、五、六三个年级的人数比为3:2:3,知道三个量的和及它们的比,就可以按比例分配,分别求出三个年级参加植树的人数.六年级:3800300323⨯=++人;五年级:2800200323⨯=++人;四年级:30080220-=人. 【解析】 设圆珠笔的价格为4,那么铅笔的价格为3,则20支圆珠笔和21支铅笔的价格为20×4+21×3=143,则单位“1”的价格为71.5÷143=0.5元.所以圆珠笔的单价是O .5×4=2(元).【解析】 两只蚂蚁在距B 点2厘米的C 点相遇,说明乙比甲一共多走了224⨯=(厘米).又知乙蚂蚁的速度是甲蚂蚁的1.2倍,相同时间内乙蚂蚁爬的路程与甲蚂蚁爬的路程比为:1.2:1=6:5, 所以甲爬的路程是()465520÷-⨯=(厘米),乙爬的路程是20424+=(厘米),长方形的周长为202444+=(厘米).【解析】 甲、乙原来的速度比是5∶4,相遇后的速度比是:[5×(1-20%)]∶[4×(1+20%)]=4∶4.8=5∶6.相遇时,甲、乙分别走了全程的95和94。

相关文档
最新文档