sfp模块光参数标准协议
SFP光模块收发模块标准
Cooperation Agreement for Small Form-Factor Pluggable Transceivers Agilent Technologies, Blaze Network Products, E2O Communications, Inc., ExceLight Communications, Finisar Corporation, Fujikura Technology America Corp., Hitachi Cable, Infineon Technologies Corp., IBM Corp., Lucent Technologies, Molex, Inc., Optical Communication Products, Inc., Picolight, Inc.,Stratos Lightwave, Tyco ElectronicsI. Purpose of the Cooperation Agreement (Agreement)Each party desires to establish internationally compatible sources of a pluggable fiber optic transceiver module in support of standards for fiber optic systems including Asynchronous Transfer Mode (ATM), FDDI, Fibre Channel, Fast Ethernet and Gigabit Ethernet, and Synchronous Optical Network (SONET) / Synchronous Digital Hierarchy (SDH) applications. Each party further desires to establish uniformity in the industry for the Transceiver “Package Dimensions”, “Cage and Electrical Connector System”, “Host Board Layout”, “Electrical Interfaces”, and “Front Panel Bezel Requirements” as described in Appendices A-B.Each party expects that the establishment of compatible sources for an interchangeable transceiver module will allow the entire fiber optic marketplace to grow more rapidly. This enhanced marketplace growth, customer choice, and vigorous competition are the express purposes of this Agreement. Each party acknowledges this agreement provides a solution with height as a primary limiting constraint and may not provide an optimum solution for applications with different constraints.The parties desire to establish compatible sources for additional products in the future.II. AgreementA. GeneralThe parties agree to cooperate by supporting common product specifications for pluggable fiber optic transceivers with the package “Package Dimensions”, “Cage and Electrical Connector System”, “Host Board Layout”, “Electrical Interfaces”, and “Front Panel Bezel Requirements” as shown in Appendices A-B. The overall package dimensions shall not exceed the maximum indicated dimensions, and the mounting features shall be located such that the products are mechanically interchangeable with the cage and connector system. In addition the overall dimensions and mounting requirements for the cage and connector system on a circuit board shall be configured such that the products are mechanically and electrically interchangeable.The electrical and optical specifications shall be compatible with those enumerated in the appropriate standards (i.e. the IEEE 802.3z Gigabit Ethernet standard and the ITU G.957 Synchronous Digital Hierarchy standard). Recommended circuit layouts for electrical input and output terminations, and grounding practices are also described in Appendix B.The transceivers per this Agreement will accept an optical connector such as the duplex LC, MT-RJ or the SG connector. This Agreement does not preclude any of the parties from offering SFP transceivers with other connectors.Internal design of the SFP transceiver is entirely at the discretion of each party and is not covered by this Agreement. The parties recognize that their products may not be identical, but need only meet the above criteria.B. Licensing and FeesNo license is granted under the patents, know-how, tradesecrets or any other technology of any party to this Agreement either expressly or by implication or by estoppel. Each of the MSA parties have agreed that licenses to all required intellectual property will be made available to all interested parties under reasonable and non-discriminatory terms and conditions applicable to that MSA party. Individual parties to this Agreement may have patents, which they believe may be relevant to this Agreement. The MSA parties should be contacted individually to determine if they have patent rights, which they believe may be pertinent to this Agreement. Each party is free to seek technology or other exchanges with other firms in order to support its activities under this Agreement.C. Scope of the AgreementThe scope of this Agreement includes transceivers with transmission rates up to 5.0 Gb/s operating over multimode and single mode fiber.Each party agrees to be responsible for its own development, manufacturing, marketing and selling in order to supply transceivers meeting the attached specifications.This Agreement does not preclude any party from offering other products that may not meet the attached specifications.Each party retains complete liberty regarding its methods of implementing a supply of product, e.g., by engineering effort or by technology licensing or transfer or combination of these or other practices.Each party also retains sole discretion in its choice of sales channels and distribution.Each party affirms its intention to compete freely and openly in the marketplace with the parties as well as other competitors.Each party expects to support products meeting the attached specifications for as long as marketplace conditions warrant. No specific time limit is associated with this Agreement. The determination of market condition suitability is to be made by each party individually and in each party’s sole discretion.III. PublicAnnouncementA. Announcing the AgreementEach party agrees to announce this Agreement in a manner agreed upon by the parties. These announcements will mention all the parties who have signed this Agreement.Each party agrees to seek public attention by means of such an announcement.Each party agrees to contribute time and effort at its sole discretion toward preparing and making such an announcement.B. Promotion of the AgreementAfter the Agreement is announced, each party may advertise or otherwise promote this Agreement in any way that it deems appropriate. Mutual consent of the other party is required if such other party is to be mentioned by name.IV. Other VendorsA. Other Vendors Matching the Product ConfigurationThe parties recognize that additional vendors may choose to match the attached product specifications after this Agreement is announced.Each party recognizes it is desirable and keeping with the intent of the Agreement for such additional vendors to support the transceiver mechanical dimensions and functional attributes described in Appendix A.Therefore, each party agrees to encourage other vendors to support these product specifications.B. Naming Other VendorsEach party agrees to have written internal procedures that require such party to name the other parties when customers ask who intends to be a source for transceivers as described in this Agreement. Each party agrees for such procedures to require it to name the others regardless as to whether another of the parties has already supplied similar transceiver products to that customer.An example of suggested wording is: “Agilent, Blaze Networks, E2O, ExceLight, Finisar, Fujikura, Hitachi Cable, Infineon, IBM, Lucent, Molex, OCP, Picolight, Stratos Lightwave, and Tyco have signed a Cooperation Agreement relating to the establishment of Small Form-factor Pluggable transceivers for multimode and single mode fiber operating up to 5.0 Gb/s data rates.”The parties are not obligated to provide any information other than the identities of the other parties. The requirements of this provision are met entirely if a party has the aforementioned written procedures and they are made available to its sales force in the same way as are other sales related procedures.DirectionV. FutureA. Current ProductShould the parties agree to further explore technical and other exchanges pertaining to the products described in this Agreement, then this shall be under a separate agreement.B. WithdrawalThe parties recognize that at some future time it may become less feasible to offer the products envisioned by this Agreement. A party may withdraw from its commitment to cooperate at its own discretion upon a 90-day notice to the other parties. This notice is necessary to allow the other parties to discontinue mentioning the withdrawing part as a participant in this Agreement and to reconsider any jointly planned promotional activities.VI. Limitation of LiabilityWith the exception of disputes arising out of intellectual property issues, no party to this Agreement shall be liable for any indirect, incidental, punitive, or consequential damages, including without limitation, lost profits or changes of good will, or similar losses, even if advised of the possibility of such damages. In addition, each party’s liability under this Agreement for direct damages shall be limited to $10,000.Appendix A. Mechanical InterfaceA1. SFP Transceiver Package DimensionsA2. Mating of SFP Transceiver PCB to SFP Electrical ConnectorA3. Host Board LayoutA4. Insertion, Extraction and Retention Forces for SFP Transceivers A5. Labeling of SFP TransceiversA6. Bezel Design for Systems Using SFP TransceiversA7. SFP Electrical Connector Mechanical SpecificationsA8. SFP Cage Assembly DimensionsAppendix B. Electrical InterfaceB1. IntroductionB2. Pin DefinitionsB3. Timing Requirements of Control and Status I/OB4. Module Definition Interface and Data Field DescriptionAppendix C. Agreement SignaturesAppendix A. Mechanical InterfaceA1.SFP Transceiver Package DimensionsA common mechanical outline is used for all SFP transceivers. The package dimensions for the SFP transceiver are described in Table 1 and Figures 1A and 1B.Table 1. Dimension Table for Drawing of SFP TransceiverDesignator Dimension(mm)Tolerance(mm)CommentsA13.7± 0.1Transceiver width, nosepiece or front that extends inside cage B8.6± 0.1Transceiver height, front, that extends inside cageC8.5± 0.1Transceiver height, rearD13.4± 0.1Transceiver width, rearE 1.0Maximum Extension of front sides outside of cage, see Note 2 Figure 1BF 2.3Reference Location of cage grounding springs from centerline, topG 4.2Reference Location of side cage grounding springs from topH 2.0Maximum Width of cage grounding springsJ28.5Minimum Location of transition between nose piece and rear oftransceiverK56.5Reference Transceiver overall lengthL 1.1x45°Minimum Chamfer on bottom of housingM 2.0± 0.25Height of rear shoulder from transceiver printed circuit board N 2.25± 0.1Location of printed circuit board to bottom of transceiverP 1.0± 0.1Thickness of printed circuit boardQ9.2± 0.1Width of printed circuit boardR0.7Maximum Width of skirt in rear of transceiverS45.0± 0.2Length from latch shoulder to rear of transceiverT34.6± 0.3Length from latch shoulder to bottom opening of transceiverU41.8± 0.15Length from latch shoulder to end of printed circuit boardV 2.5± 0.05Length from latch shoulder to shoulder of transceiver outsideof cage (location of positive stop).W 1.7± 0.1Clearance for actuator tinesX9.0Reference Transceiver length extending outside of cage, see Note 2Figure 1BY 2.0Maximum Maximum length of top and bottom of transceiver extendingoutside of cage, see Note 2 Figure 1BZ0.45± 0.05Height of latch bossAA8.6Reference Transceiver height, front, that extends inside cageAB 2.6Maximum Length of latch boss (design optional)AC45°± 3°Entry angle of actuatorAD0.3Maximum Radius on entry angle of actuatorAE 6.3Reference Width of cavity that contains the actuatorAF 2.6± 0.05Width of latch boss (design optional)AG0.40Minimum Maximum radius of front of latch boss, 2 places (designoptional)Figure 1A. Drawing of SFP TransceiverNotes:1. Cage grounding springs permitted in thisarea and may extend full length oftransceiver, 4 places. Grounding springsmay contribute a maximum force of 3.5N(Newtons) to the withdrawal force of thetransceiver from the cage.2. A representative MT-RJ configuration isillustrated. Indicated outline defines thepreferred maximum envelope outside ofthe cage.3. Design of actuation method and shape isoptional.4. Color code: An exposed colored feature ofthe transceiver (a feature or surfaceextending outside the cage assembly) shallbe color coded as follows:•Black or beige for multi-mode•Blue for single modeFigure 1B. Drawing of SFP Transceiver (Cont.)A2.Mating of SFP Transceiver PCB to SFP Electrical ConnectorThe SFP transceiver contains a printed circuit board that mates with the SFP electrical connector. The pads are designed for a sequenced mating:•First mate – ground contacts•Second mate – power contacts•Third mate – signal contactsThe design of the mating portion of the transceiver printed circuit board is illustrated in Figure 2 and the electrical pad layout is illustrated in Figure 3. A typical contact pad plating for the printed circuit board is 0.38 micrometers minimum hard gold over 1.27 micrometers minimum thick nickel.Other plating options that meet the performance requirements are acceptable.Figure 2. Recommended Pattern Layout for SFP Printed Circuit BoardFigure 3. SFP Transceiver Electrical Pad LayoutA3. Host Board LayoutA typical host board mechanical layout for attaching the SFP Connector and Cage System is shown in Figures 4A and 4B.VeeT TD-TD+VeeT VccT VccR VeeR RD+RD-VeeR20191817161514131211VeeT TxFault Tx Disable MOD-DEF(2)MOD-DEF(1)MOD-DEF(0)Rate Select LOS VeeR VeeR12345678910Top of BoardBottom of Board (as viewed thru top of board)Figure 4A. SFP Host Board Mechanical LayoutFigure 4B. SFP Host Board Mechanical Layout (Cont.)A4. Insertion, Extraction and Retention Forces for SFP TransceiversThe requirement for the various functional forces and the durability cycles are specified in Table 2.Table 2. Insertion, Extraction, and Retention Forces Measurement Minimum Maximum Units CommentsSFP transceiver insertion040NewtonsSFP transceiver extraction011.5NewtonsSFP transceiver retention90170Newtons No damage to transceiverbelow 90N Cage retention (Latch strength)180N/A Newtons No damage to latch below180N Cage kickout spring force11.522NewtonsInsertion / removal cycles,connector/cage100N/A cyclesInsertion / removal cycles, SFP transceiver 50N/A cyclesA5. Labeling of SFP TransceiversColor coding requirements for optical SFP transceivers are specified in Figure 1B.Each SFP transceiver should be clearly labeled. The complete labeling need not be visible when the SFP transceiver is installed. Labeling should include appropriate manufacturing and part number identification, appropriate regulatory compliance labeling, and a clear specification of the external port characteristics. The external port characteristic label may include such information as optical wavelength, required fiber characteristics, operating data rate, interface standards supported, and link length supported.A6. Bezel Design for Systems Using SFP TransceiversHost enclosures that use SFP devices should provide appropriate clearances between the SFP transceivers to allow insertion and extraction without the use of special tools and a bezel enclosure with sufficient mechanical strength. For most systems a nominal centerline to centerline spacing of 16.25mm (0.640”) is sufficient. See Figure 5 for the recommended bezel design. For double-sided board mounting, a printed circuit board thickness of 3.0mm (0.118”) is required.The SFP transceiver insertion slot should be clear of nearby moldings and covers that might block convenient access to the latching mechanisms, the SFP transceiver, or the cables connected to the SFP transceiver.Figure 5. Recommended Bezel DesignA7. SFP Electrical Connector Mechanical SpecificationsThe SFP Connector is a 20-contact, right angle surface mount connector. It is described in Table 3 and Figure 6. The plating on the contacts is specified as follows:• Contact area:0.38 micrometers minimum hard gold over 2.54 micrometers minimum thick nickel•Solder terminal area: gold flash or 2.54 micrometers tin lead plating over 2.54 minimum thick nickel.Table 3. SFP Transceiver Connector DimensionsDesignator Dimension(mm)Tolerance(mm)CommentsA9.4± 0.08Connector card slot widthB 1.4± 0.05Guide pin diameterC11.2Maximum Connector widthD9.2Maximum Connector lengthE 3.5Reference Distance from centerline of connectorto outer contactF 3.9Reference Distance from centerline of connectorto outer contactG 1.35Maximum Connector card slot heightH 2.6Minimum Height from bottom of connector tobottom of card slotJ9.6TP Distance between guide pinsK0.9Reference Diamond guide pin widthL 1.4± 0.05Diamond guide pin lengthM 5.4Maximum Connector heightN0.8Reference Length of solder leads past housing,front & rearP 6.0Minimum Depth of card slot from front face ofhousingQ 3.0Maximum Depth of contact point from front faceof connectorR0.7± 0.1Size of chamfer on top face ofconnectorS0.3Reference Distance boss extends past front faceof connectorT 1.0Minimum Size of chamfer at entry of card slot,all aroundU 4.5Reference Length from centerline of guide poststo end of solder leadFigure 6. SFP Transceiver Connector IllustrationA8. SFP Cage Assembly DimensionsThe SFP Cage Assembly consists of two components: a lower cage that is soldered to the host board and a top cage that is assembled to the lower cage after soldering. A reference drawing describing the SFP Cage Assembly is provided in Table 4 and Figures 7A and 7B. The cage material is copper alloy and plating options are:•Tin-lead plate 2.54 micrometers minimum over copper flash•Tin plate 2.54 micrometers minimum over 0.76 micrometers minimum nickelTable 4. Dimension Table for Drawing of SFP Cage AssemblyDesignator Dimension(mm)Tolerance(mm)CommentsA48.8Maximum Overall lengthB8.3Maximum Length from inside top of cage to latchC14.0± 0.1Inside width of cageD14.25Basic Distance between solderleg centerlines on side of cage E0.249± 0.025Thickness of solderlegF9.0Basic Distance between vent holes along lengthG11.8Basic Distance from front of cage to beginning of center venthole rowH7.9Basic Distance between vent holes across the width of thecageJ 2.0± 0.1Diameter of vent holesK16.5Basic Distance from front of cage to solderlegL10.0Basic Distance between chassis ground solderlegs along side M0.6± 0.1Width of EMI pinsN0.7± 0.1Width of all chassis ground solderlegsP 2.0Maximum Width of solderleg shoulderQ 1.25Maximum Length of solderlegR 3.95Basic Distance from centerline of cage to centerline ofchassis ground solderlegS 1.45Basic Distance from centerline of cage to centerline ofchassis ground solderlegT 1.45Basic Distance from centerline of cage to centerline ofchassis ground solderlegU 4.8Basic Distance from centerline of cage to centerline of EMIpinsV0.5± 0.05Width of EMI pins on top cageW9.2± 0.15Distance from inside top of cage to inside bottomsurface of front section of cage assemblyX9.8Maximum Maximum height of cage assembly from host boardZ10.0Basic Distance between chassis ground solderlegs along side AA11.5Basic Distance from front of cage to solderlegAB7.5Minimum Length of 9.2 (W) dimension from front of cageAC15.0Maximum Maximum width of cage assemblyAD13.9Minimum Minimum width of inside of cageAE8.95± 0.15Height of inside of cage assemblyAF 1.0Minimum Height of clearance slotsAG 2.4Basic Distance of clearance slots from cage centerlineTable 4. Dimension Table for Drawing of SFP Cage Assembly (Cont.)Designator Dimension(mm)Tolerance(mm)CommentsAH 3.0± 0.1Width of clearance slotsAJ 2.35± 0.1Distance from front of cage to latch openingAK 2.8± 0.1Length of latch openingAL0.5Minimum Height of latch lead-inAM45.6Maximum Distance from front of cage to kickout springAN35.0Maximum Distance from front of cage to end of cage floorAP0.7± 0.1Width of solderlegs that extend from floor of cageAQ 5.1Maximum Width of latchAR 3.0± 0.05Width of latch openingAS16.3Basic Front of cage to beginning of outer vent hole rowsAT0.65Maximum Inside radius of cage, four placesAU 5.8Minimum Distance between panel ground spring supportsAV12.7MaximumrecommendedLength of plug extending outside of the cage AW15.75Maximum Width of plug extending outside of the cageAX10.9Maximum Height of plug extending outside of the cageA9. Dust / EMI CoverThe order to prevent contamination of the internal components and to optimize EMI performance, it is recommended that a Dust/EMI Plug be inserted into cage assemblies when no transceiver is present. The maximum dimensions of the Dust/EMI Cover are listed in Table 4 and the maximum size is illustrated in Figure 7A. The Dust/EMI Cover shall exert a maximum force of 4.0 Newtons per side to the inside surfaces of the cage. This force shall be measured as the force/side required to compress the Dust/EMI Cover’s compliant feature(s) to the maximum dimensions listed in Table 4 (Illustrated in Figure 7A).Figure 7A. SFP Cage AssemblyFigure 7B. SFP Cage Assembly (Cont.)Appendix B. Electrical InterfaceB1. IntroductionThis annex contains pin definition data for the small form-factor pluggable (SFP) transceiver.The pin definition data is specific to gigabit rate datacom applications such as Fibre Channel and Gigabit Ethernet. It is expected that different pin definitions will be developed for SONET/ATM and lower data rate datacom applications.B2. Pin DefinitionsFigure 1 below shows the pin names and numbering for the connector block on the host board.The diagram is in the same relative orientation as the host board layout (see Appendix A,Figure 4.). As mentioned, this pinout only applies to gigabit rate datacom applications. The pin functions are defined in Table 1 and the accompanying notes. Figure 2A shows the recommended power supply filtering network. Figure 2B shows an example of a complete SFP host board schematic with connections to SerDes and protocol ICs. For EMI protection the signals to the 20-pin connector should be shut off when the transceiver is removed.Standard board layout practices such as connections to Vcc and GND with Vias, use of short-and equal-length differential signal lines, use of microstrip-lines and 50Ω terminations are recommended. Chassis grounds and external electromagnetic interference shields should notbe attached to circuit ground.1234567891020191817161514131211Towards ASICTowards BezelFigure 1. Diagram of Host Board Connector Block Pin Numbers and NamesTable 1. Pin Function DefinitionsPin Function PlugSeq.Notes1VeeT Transmitter Ground12TX Fault Transmitter FaultIndication3Note 13TX Disable Transmitter Disable3Note 2Module disables on high or open 4MOD-DEF2Module Definition 23Note 3, 2 wire serial ID interface 5MOD-DEF1Module Definition 13Note 3, 2 wire serial ID interface 6MOD-DEF0Module Definition 03Note 3, Grounded in Module7Rate Select Select between full orreducedreceiver bandwidth 3Note 4Low or Open – reduced bandwidth,High– full bandwidth8LOS Loss of Signal3Note 59VeeR Receiver Ground1Note 610VeeR Receiver Ground1Note 611VeeR Receiver Ground1Note 612RD-Inv. Received Data Out3Note 713RD+Received Data Out3Note 714VeeR Receiver Ground1Note 615VccR Receiver Power2 3.3 ± 5%, Note 816VccT Transmitter Power2 3.3 ± 5%, Note 817VeeT Transmitter Ground1Note 618TD+Transmit Data In3Note 919TD-Inv. Transmit Data In3Note 920VeeT Transmitter Ground1Note 6Plug Seq.: Pin engagement sequence during hot plugging.1) TX Fault is an open collector/drain output, which should be pulled up with a 4.7K – 10KΩresistor on the host board. Pull up voltage between 2.0V and VccT, R+0.3V. When high, output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.2) TX disable is an input that is used to shut down the transmitter optical output. It is pulledup within the module with a 4.7 – 10 KΩ resistor. Its states are:Low (0 – 0.8V): Transmitter on(>0.8, < 2.0V): UndefinedHigh (2.0 – 3.465V): Transmitter DisabledOpen:TransmitterDisabledTable 1 Notes (Cont.)3) Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a4.7K – 10KΩ resistor on the host board. The pull-up voltage shall be VccT or VccR (seeSection IV for further details).Mod-Def 0 is grounded by the module to indicate that the module is presentMod-Def 1 is the clock line of two wire serial interface for serial IDMod-Def 2 is the data line of two wire serial interface for serial ID4) This is an optional input used to control the receiver bandwidth for compatibility withmultiple data rates (most likely Fibre Channel 1x and 2x Rates). If implemented, the input will be internally pulled down with > 30kΩ resistor. The input states are:Low (0 – 0.8V): Reduced Bandwidth(>0.8 , < 2.0V):UndefinedHigh (2.0 – 3.465V): Full BandwidthBandwidthOpen: Reduced5) LOS (Loss of Signal) is an open collector/drain output, which should be pulled up with a4.7K – 10KΩ resistor. Pull up voltage between 2.0V and VccT, R+0.3V. When high, thisoutput indicates the received optical power is below the worst-case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.6) VeeR and VeeT may be internally connected within the SFP module.7) RD-/+: These are the differential receiver outputs. They are AC coupled 100 Ω differentiallines which should be terminated with 100 Ω (differential) at the user SERDES. The AC coupling is done inside the module and is thus not required on the host board. The voltage swing on these lines will be between 370 and 2000 mV differential (185 – 1000 mV single ended) when properly terminated.8) VccR and VccT are the receiver and transmitter power supplies. They are defined as 3.3V±5% at the SFP connector pin. Maximum supply current is 300 mA. Recommended host board power supply filtering is shown below. Inductors with DC resistance of less than 1Ω=should be used in order to maintain the required voltage at the SFP input pin with 3.3V supply voltage. When the recommended supply filtering network is used, hot plugging of the SFP transceiver module will result in an inrush current of no more than 30 mA greater than the steady state value. VccR and VccT may be internally connected within the SFP transceiver module.9) TD-/+: These are the differential transmitter inputs. They are AC-coupled, differential lineswith 100Ω differential termination inside the module. The AC coupling is done inside the module and is thus not required on the host board. The inputs will accept differential swings of 500 – 2400 mV (250 – 1200 mV single-ended), though it is recommended that values between 500 and 1200 mV differential (250 – 600 mV single-ended) be used for best EMI performance.3.3 V Figure 2A. Recommended Host Board Supply Filtering NetworkFigure 2B. Example SFP Host Board SchematicB3. Timing Requirements of Control and Status I/OThe timing requirements of the control and status lines are drawn largely from the GBIC standard at the time of writing. They are summarized in Table 2 below:Table 2. Timing Requirements of Control and Status I/0 Parameter Symbol Min Max Unit ConditionTX Disable AssertTime t_off10µs Time from rising edge of TX Disable to when the optical output falls below 10% of nominalTX Disable NegateTime t_on1ms Time from falling edge of TX Disable to when the modulated optical output rises above 90% of nominalTime to initialize,including reset of TX_Fault t_init300msFrom power on or negation of TXFault using TX DisableTX Fault Assert Time t_fault100µs Time from fault to TX fault on. TX Disable to reset t_reset10µs Time TX Disable must be heldhigh to reset TX_faultLOS Assert Time t_loss_on100µs Time from LOS state to RX LOSassertLOS Deassert Time t_loss_off100µs Time from non-LOS state to RXLOS deassertRate-Select Change Time t_ratesel10µs Time from rising or falling edgeof Rate Select input until receiverbandwidth is in conformancewith appropriate specification.Serial ID Clock Rate f_serial_clock100kHzSFP transceiver power on initialization procedure, TX_DISABLE negated.During power on of the SFP transceiver, TX_FAULT, if implemented, may be asserted (High) as soon as power supply voltages are within specification. For transceiver initialization with TX_DISABLE negated, TX_FAULT shall be negated when the transmitter safety circuitry, if implemented, has detected that the transmitter is operating in its normal state. If a transmitter fault has not occurred, TX_FAULT shall be negated within a period t_init from the time that V CC T exceeds the specified minimum operating voltage (see Table 2). If TX_FAULT remains asserted beyond the period t_init, the host may assume that a transmission fault has been detected by the transceiver.。
光模块协议标准(一)
光模块协议标准(一)光模块协议标准什么是光模块•光模块是一种用于光通信系统中的光电转换设备。
•光模块通常由激光器、光检测器、驱动电路和接口等组成。
光模块协议标准的重要性•光模块协议标准是确保光模块之间互操作性的基础。
•标准化的协议可以提高光模块的兼容性和可用性。
•光模块协议标准为用户提供了更多的选择和灵活性。
光模块协议标准的发展历程•过去,光模块厂商采用自己的私有协议,导致光模块之间无法互通。
•随着光通信技术的发展,光模块协议标准逐渐得到重视。
•目前,光模块协议标准已经有了一些成熟的国际标准,如SFP、QSFP等。
主要的光模块协议标准1.SFP(Small Form-Factor Pluggable)–SFP是一种热插拔式光模块标准。
–SFP具有小尺寸和高密度等特点,被广泛应用于光通信系统中。
–SFP支持多种传输速率和传输距离。
2.QSFP(Quad Small Form-Factor Pluggable)–QSFP是一种四通道的热插拔式光模块标准。
–QSFP可以同时实现高带宽和高速率传输。
–QSFP适用于数据中心和高性能计算等场景。
3.CFP(C Form-Factor Pluggable)–CFP是一种100Gbps级别的热插拔式光模块标准。
–CFP可以实现更高的传输速率和更长的传输距离。
–CFP广泛应用于高速光通信和光网络设备中。
光模块协议标准的未来趋势•随着光通信技术的不断发展,光模块协议标准将逐渐向更高速率和更大容量的方向发展。
•光模块协议标准也将更加注重能耗和环境友好性。
•预计未来会有更多新的光模块协议标准出现,以满足不同场景的需求。
结语•光模块协议标准在光通信领域中具有重要的地位和作用。
•标准化的协议是光模块互通性和兼容性的基础。
•我们期待未来光模块协议标准的不断发展和创新,为光通信技术的发展做出更大贡献。
sfp-光模块接口资料-ESFP7313
1250M单模15公里SFP光模块1.特点:1310波长FP激光器发射InGaAs光电二极管接收工作速率达到1250M兼容SFP MSA and SFF-8472工业级标准的小封装双LC接口单3.3V供电差分的LVPECL电平输入和输出TTL信号检测功能具有热插拔功能具有数字诊断功能2.运用:路由或服务器开关背板运用其它的光传输系统3.描述:ESFP7313-53-DDM光模块是完全兼容SFP协议的。
它表现出高性能低成本的特点,并且传输速率可达到1250M.在模块内部,发射部分与接收部分是完全独立的两个部分。
接收部分包含了InGaAs光电二极管(可探测的波长范围从1100nm到1650nm),一个前置放大器与一个后放,完成了从接收的光电信号转变成电信号。
发射部分包含了具有背光反馈的1310nm的FP的激光器,激光器的驱动IC 具有自动光功率控制功能,完成了把输入的电信号转换成稳定的光信号。
这款产品是与SFP的协议是完全兼容的,例如LC光接口,3.3V电源供电,TTL信号检测。
4.规格指标:极限工作指标参数参数符号最小值最大值单位存储温度Ts-40+85°C工作温度To0+75°C供电电压Vcc-0.5+3.7VESFP7313-53-DDM(1310nm FP and PIN,15km)发射部分光口,电口的参数Parameter Symbol Min.Typ.Max.Unit Note 差分的输入阻抗Rin100Ω发射差分的输入电压VinPP3001600mV发射失效电压高 2.0V发射失效电压低0.8V发射故障指示电压高 2.0V发射故障指标是压低0.8V发射失效插入时间0.145us发射光功率Po-9-3dBm消光比ER10dB中心波长λ1310nm输出光谱∆λ5nm接收部分电、光特性参数符号最小值典型值最大值单位注明差分的接收输出信号VoutPP4001600mV接收信号检测电压高2nm接收信号检测电压低0.8dBm接收灵敏度Sen-23dBm最大的输入光功率PinMAX-3dBm-信号检测范围-35-24dBm-信号检测滞后0.5dB-5.管脚定义:Notes:1.TX Fault:开集电极或者开漏集输出。
光模块协议总结(1):SFP光模块协议小结
光模块协议个人总结 1 ---SFP协议小结
●光模块作为标准模块,遵循了很多协议。
在实践的过程中,这些协议会经常帮助我们
或者给相关的工作者带来很多困扰。
●即便是“老工程师”也不见得对众多的协议“门清”。
●如果问一个模块所参照的协议标准,相信绝大多数人知道很多,但如果全部都弄清楚,
理清脉络,就非常难了。
以上是初衷,作为一个摆弄了很久光模块的工程师,打算对这个题目进行一些总结。
同时对协议中的相关概念和版本相关变化做一些阐述。
题目很大,内容很多。
我要坚持下来。
●如有漏洞和不足请多多指出。
其他认证:TUV-GS,UL,FCC, CDRH 21, FDA, CE等等,由于是质量体系和安全方面认证,就不一一列举了
以上是SFP 模块(1~4G)常见的协议列表,关于协议中具体的细节,后续慢慢补充。
SFP光模块知识
SFP光模块的功耗相对较低,有助于 降低网络设备的整用紧凑型设计,便于安 装在有限的空间内,如高密度数据中 心。
低功耗
SFP光模块支持热插拔,可以在不关 闭设备电源的情况下进行更换,提高 了网络的可靠性和可维护性。
缺点
成本较高
相对于其他类型的光模块,SFP 光模块的成本较高,可能会增加
THANKS
06
SFP光模块的未来展望
5G网络的应用
5G网络将带来更高的数据传输速率和更低的延迟,从而需要 更大规模的光纤网络进行支持。SFP光模块作为光纤网络中的 重要组件,将受益于5G网络的发展,需求量有望进一步增长 。
5G网络将需要更灵活、可扩展的光纤网络架构,SFP光模块 的小型化、可插拔特性将更加符合这种需求,有助于推动其 应用的普及。
详细描述
不同的波长对应不同的光谱范围,波长越短,传输速率越高 ,传输距离越短;波长越长,传输速率越低,传输距离越长 。常见的波长有850nm、1310nm和1550nm等。
传输速率
总结词
传输速率决定了光模块的数据传输能力 。
VS
详细描述
传输速率越高,单位时间内传输的数据量 越大。常见的传输速率有1Gbps、 10Gbps、40Gbps等,随着技术的不断 发展,更高的传输速率如100Gbps也已 逐渐商用。
云计算和数据中心的需求
随着云计算和数据中心的快速发展,数据传输量呈现爆炸 性增长,对高速、高效的光模块需求迫切。SFP光模块作 为高速光模块的一种,将广泛应用于云计算和数据中心领 域。
云计算和数据中心需要高可靠性的数据传输,SFP光模块 的稳定性和可靠性能够满足这种需求,有助于提高数据中 心的运行效率和稳定性。
在工业自动化领域,SFP光模块可用于传感器、执行器等设备的连接,实现远程控制和数据采集 。
光模块SFP与SFP、XFP、QSFP、QSFP的区别及参数
光模块与、、、地区别收发器有多种不同地发送和接收类型,用户可以为每个链接选择合适地收发器,以提供基于可用地光纤类型(如多模光纤或单模光纤)能达到地"光学性能".可用地光学模块一般分为如下类别:纳米波长米距离地 ()、纳米波长公里距离地 ()、纳米波长公里距离地、公里距离地、公里距离地或,以及.收发器也提供铜缆接口,使得主要为光纤通信设计地主机设备也能够通过网络线缆通信.也存在波分复用()以及单光纤"双向"(纳米波长上行下行)地.商用收发器能够提供速率达到 . 收发器地几种封装形式为,以及与封装基本一致地新地变种"".( 地缩写),是将千兆位电信号转换为光信号地接口器件.设计上可以为热插拔使用.是一种符合国际标准地可互换产品.采用接口设计地千兆位交换机由于互换灵活,在市场上占有较大地市场份额. ()可以简单地理解为地升级版本.支持、、光纤通道()以及一些其他通信标准.此标准扩展到了,能支持传输速率,包括光纤通道和.引入了光纤和铜芯版本地模块版本,与模块地、或版本相比,模块将部分电路留在主板实现,而非模块内实现b5E2R。
模块经历了从,,,地发展,最终实现了用和一样地尺寸传输地信号,这就是.凭借其小型化低成本等优势满足了设备对光模块高密度地需求,从年标准推出,到年已经取代成为市场主流.p1Ean。
光模块优点:、具有比和封装更紧凑地外形尺寸(与尺寸相同);、可以和同类型地直接连接;、成本比产品低.DXDiT。
和地区别:、和外观尺寸相同;、协议规范:、;和地区别:、和都是地光纤模块,且与其它类型地模块可以互通;、比外观尺寸更小;、因为体积更小将信号调制功能,串行解串器、、时钟和数据恢复(),以及电子色散补偿()功能从模块移到主板卡上;、遵从地协议:协议;、遵从地协议:、、;、是更主流地设计.、协议规范:、、.RTCrp。
:四通道接口(),是为了满足市场对更高密度地高速可插拔解决方案地需求而诞生地.这种通道地可插拔接口传输速率达到了.很多中成熟地关键技术都应用到了该设计中.可以作为一种光纤解决方案,并且速度和密度均优于通道接口.由于可在相同地端口体积下以每通道地速度支持四个通道地数据传输,所以地密度可以达到产品地倍,产品地倍.具有通道且密度比高地接口已经被标准所采用.5PCzV。
SFP模块标准介绍
17
3.2 固定信息存储地址--A0h
Data Addre ss 0 1 2 3-10 11 12 13 Size (Bytes) Name of Field Description Contents(Hex)
BASE ID FIELDS 1 1 1 8 1 1 1 Identifier Ext. Identifier Connector Transceiver Encoding BR, Nominal Reserved 类型 类型扩展 接口形式 电光特性 编码 速率(×100M) 保留 00 SFP 03 04 LC 07 155M,15km 00,10,02,00,…… NRZ 03
3
2.1、机械外形
金 手 指
4
SFP连接器
5
2.2 、引脚定义
6
Pin 1 2 3 4 5 6 VeeT
Name 发射部分地 发射部分报错
Function/Description
TX Fault TX Disable MOD-DEF2 MOD-DEF1 MOD-DEF0
关断发射,高电平或悬空是有效 模块定义脚,I2C通信的数据线 模块定义脚,I2C通信的时钟线 模块定义脚,接地
33
highwarning
标志位
highalarm
标志位
被监控模拟量
A/D转换、校准
数字量
显示
lowalarm
标志位
lowwarning
标志位
数字诊断监控示意图
34
35
36
37
38
• •
设定内校准还是外部校准由A0h中92确定,92的第5位置1,采用内部校准,位4置1采 用外部校准. 内部校准: 1 、温度,用带符号位的2字节表示,第一字节表示整数位,第二字节表示小数位, 可以确定测量范围-128oC~+128oC,最低有效位1/256oC。在指定的温度和工作电 压下,测量的误差在±3oC之内。
一分钟了解SFP光模块
一分钟了解SFP光模块SFP光模块是市面上最常用的一种光模块,是SMALL FORM PLUGGABLE(小型可插拔)的缩写。
SFP封装为热插拔小封装模块,传输速率从百兆到10G,目前最高速率可达10.3G,可以简单的理解为GBIC的升级版本。
SFP光模块尺寸:SFP光模块尺寸比GBIC模块减少一半,只有大拇指大小。
可以在相同的面板上配置多出一倍以上的端口数量。
SFP模块的其他功能基本和GBIC一致。
有些交换机厂商称SFP模块为小型化GBIC(MINI-GBIC)。
SFP光模块的构成:激光器(包括发射器TOSA跟接收器ROSA)和线路板IC 及外部配件构成,外部配件则有外壳、底座、PCBA、拉环、卡扣、解锁件、橡胶塞组成,为了辨认方便一般以拉环的颜色辨别模块的参数类型。
对于GE的SFP来说:黑色:单模MM SX模块蓝色:单模SM LX模块浅黄色:单模SM LH or ZX模块对于2.5G的SFP来说:灰色:单模SM SR模块绿色:单模SM LR模块SFP光模块有很多种类型,如:BIDI-SFP、电口SFP、CWDM SFP、DWDM SFP、SFP+光模块等。
另外,对于同类型的XFP、X2、XENPAK光模块而言,SFP光模块不仅能与其直连,还具有成本较其更低的特点。
SFP光模块和SFP+光模块的区别:1、SFP光模块和SFP+光模块外观尺寸相同;2、SFP+光模块的速率是10G;3、SFP光模块协议规范:IEEE802.3、SFF-8472 ;4、SFP+光模块支持数字诊断。
SFP光模块的应用SFP支持SONET、Gigabit Ethernet、光纤通道(Fiber Channel)以及一些其他通信标准。
一般用于交换机、路由器、服务器、光纤通道设备、光纤收发器、摄像机、光端机等等。
SFP光模块有哪些分类?按速率分类:按照速率分有155M/622M/1.25G/2.125G/4.25G/8G/10G,155M和1.25G市场上用的较多,10G的技术正在逐渐成熟,需求量正以上升的姿态发展。
sfp光模块标准
SFP光模块是一种小型可插拔光模块,是SFP封装的热插拔小封装模块。
其标准主要涉及速率、波长和模式。
速率分类:按照速率分有155M/622M/1.25G/2.125G/4.25G/8G/10G,其中155M和1.25G市场上用的较多,10G的技术正在逐渐成熟,需求量正以上升的姿态发展。
波长分类:按照波长分有850nm/1310nm/1550nm/1490nm/1530nm/1610nm,波长为850nm为SFP多模,传输距离在2KM以下,波长是1310/1550nm的为单模,传输距离在2KM以上,相对来说这三种波长的价格较其他三种要便宜。
模式分类:多模光纤尺寸一般为50/125um或62.5/125um,带宽通常为200MHz到2GHz,通过多模光纤可进行长达5公里的传输。
单模光纤尺寸为9-10/125µm,具有无限量带宽和更低损耗的特性,多用于长距离传输,有时可达到150至200公里。
此外,SFP光模块主要由激光器构成,接口类型主要以LC接口为主,一般用在SONET/SDH网络、百兆/千兆以太网以及其他低速传输应用。
具体到实际使用中,裸模块如果没有标识很容易混淆,一般厂家会在拉环的颜色上进行区分。
以上内容仅供参考,如需更多信息,建议访问信息技术论坛或咨询专业技术人员。
第三课时 光模块组织和协议
光模块培训系列三-----组织和协议By 王冰2016.04.19内容简述•组织IEEE、ITU、OIF、FSAN •协议SFF和SFF8472——行业组织——SFP和SFP+的区别?SFP协议:ITU-T G.957、IEEE802.3、SFF-8472、SFP MSA;SFP+协议:IEEE802.3ae、SFF-8431SFF-8432;——各组织负责内容————IEEE——Engineers)是一个国际性的电子技术与信息科学工程师的协会,是目前全球最大的非营利性专业技术学会,其会员人数超过40万人,遍布160多个国家。
IEEE 致力于电气、电子、计算机工程和与科学有关的领域的开发和研究,在太空、计算机、电信、生物医学、电力及消费性电子产品等领域已制定了900多个行业标准,现已发展成为具有较大影响力的国际学术组织。
——IEEE内容————ITU——国际电信联盟是联合国的一个重要专门机构,也是联合国机构中历史最长的一个国际组织。
简称“国际电联”、“电联”或“ITU”。
国际电联是主管信息通信技术事务的联合国机构,负责分配和管理全球无线电频谱与卫星轨道资源,制定全球电信标准,向发展中国家提供电信援助,促进全球电信发展。
与光传输与接入网的研究组。
——ITU-T 协议发布——ITU-T的标准,从提出文稿到成立标准要2-3年,之后还会不断维护与修改,比如G.984 和G.984增补是GPON的标准。
系列标准按字母A-V来分类,G是与传输体系网络相关的标准树(相比IEEE的802要长的多)协议下载地址:http://www.itu.int/itu-t/recommendations/index.aspx?ser=G——G.957——主题:与同步数字系列有关的设备和系统的光接口其主要内容基本上是围绕右图介绍STM-1/STM-4和STM-16这三个SDH应用。
——OIF——OIF:Optical Internet Forum (光互联论坛)目的是完成网络互用性的规范,包括物理层协议、网络接口以及安全性。
2.5G高性能SFP光收发模块的研制
模块MOD-DEF管脚提供标准的12C总线接口,使模块与外接系统进行通讯,实现DDM数字 诊断功能。 2.2 基于相关光通讯行业标准的SFP模块设计 在光纤通讯领域为了保证产品最大的易用性和兼容性, 一些相关光通讯行业的标准和协 议应运而生,我们此方案设计的SFP主要涉及到ITU G.957,SFP-MSA,SFF-8472三个标准。 2.2.1 基于ITU G.957标准的设计 ITU G.957此标准主要规定我们设计此SFP光模块所需要满足的光电参数性能, 已满足我 们80km的长程传输。它主要给出以下几点关于SFP光模块的主要要求: (1)一些光电测试参数的定义; (2)这些光电参数的测试条件和测试方法; (3)给出应用于SDH/SONET光通讯系统各个速率光收发合一模块应该满足的光电参数指 标。本课题主要针对的是SDH STM-16和SONET OC-48 80km L16.2的长程SFP模块,因此我们 需要设计的光模块的光电参数指标需要符合标准定义或者更好,我们设计SFP模块的目标光 电参数如下:
2.5G的电调制信号,通过TD差分数据输入脚输入到光模块发射部分,通过模块内部的 Laser Driver产生调制光信号数据,通过光纤传输。光信号到接收数据端,通过光模块的接 收部分将光信号转换为调制电信号并进行整形放大, 通过模块的Rx差分数据脚进行输出。 从 而实现数据通过光纤的长程传输。
5 / 44
3 / 44
2002年8月1日,国际SFF通讯委员会发布了由Agilent Technologies、Finisar Corporation、EMC等公司一起讨论的关于实现SFP数字诊断功能扩展的标准协议SFF-8472。 这是SFP模块在功能扩展上的又一里程碑。 2003年6月5日,Agilent Technologies德国公司率先推出了具备DDM功能的SFP光收发 合~模块工作速率达到1.25G。此后其他国外光通信厂商纷纷推出自己具有DDM功能的SFP模 块,模块的工作速率也由155M逐渐提升至5G。 国内发展状况相应滞后一年多的样子, 2002年中旬国内较为知名的光模块制造厂商如武 汉电信器件有限公司,深圳飞通光电有限公司等开始研制SFP光收发合一模块。 2003年中旬武汉电信器件有限公司, 深圳飞通光电有限公司等国内光模块制造厂商开始 推出SFP光收发合一模块,速率最高可工作于2.5G。 2005年国内光模块制造厂商开始陆续推出具备DDM功能的SFP模块。2005年6月,飞通光 电公司的SFP光收发合一模块项目被列入国家开发计划, 国内厂商的SFP模块开发得到国家的 支持。 2005年至2006年, SFP光模块开始真正在国内光通信市场火爆起束, SFP模块种类从传输 距离,工作速率上开始逐渐多样化起来。工作速率开始向5G发展,采用高灵敏度的APD接收 的长程SFP光模块也开始开发并逐渐成熟。支持粗波分光通信系统的CWDM SFP也出现了。 今后,SFP光模块的发展将继续向着多样化,高集成度,阵列化方向发展。高于5G的SFP 光收发合一模块、应用于DWDM密集波分复用的DWDM SFP、4路高密度可插拔光模块QSFP的开 发都是今后SFP模块研究的方向。 SFP光模块正以其独特的优势在光通信发展的大路上快速向 前。 本论文所研究的高性能SFP光收发合一模块集成了目前国内外光收发模块的先进技术, 不仅采取了高集成度的SFP模块封装形式并具有高灵敏度和长传输距离的特点,而且具备数 字诊断功能这一先进的模块功能。 整个模块的光电参数指标都满足和优于光通信标准, 在国 内处于领先水平。 1.3 论文研究的内容与意义,关键技术描述 本文以研制的小封装SFP(Small Form-Factor Pluggable)主流光模块,对光收发模块的 结构原理,关键技术,LD/PD组件和设计原理,测试系统和方法加以分析和研究。 本论文研究内容的关键技术: (1)总体方案设计: 为实现光电器件、 印刷电路板(PCB)、 DUPLEX LC光接口的混合集成。 考虑光器件的长度和模块的限制尺寸,模块的布板面积非常小。为此,应尽量采用短的光器 件以给PCB电路扳留出尽可能大的面积、 在PCB设计时可采用封装好的IC块进行自动化表面组 装技术(SMT)工艺。 (2)发射部分:模块需要长程传输,并且调制速率达到2.5G。因此需要选型1550nm低传 输损耗的无制冷DFB激光器吼为满足模块对光功率、可靠性、光反射、光路长度的要求,需
sfp+光模块使用手册
sfp 光模块使用手册一、概述SFp光模块是一种小型化、高性能的光纤模块,采用LC/UPC或APC连接器,具有低插入损耗、高带宽和低成本等优点。
它支持多种传输距离和传输速率,可广泛应用于各种光纤网络中。
二、规格参数SFp光模块的规格参数如下:传输速率:1Gbps、10Gbps、40Gbps等传输距离:多模光纤(MMF)模式下支持2公里、5公里、10公里等多种距离;单模光纤(SMF)模式下支持10公里、40公里、80公里等多种距离连接器类型:LC/UPC或APC插入损耗:≤0.3dB偏振模色散:≤0.5ps回波损耗:≥50dB(UPC)/≥35dB(APC)最大功耗:≤0.9W三、使用方法使用SFp光模块前需要先确定网络设备的接口类型和传输距离,然后选择相应的光模块和光纤跳线。
以下是使用SFp光模块的步骤:确定网络设备的接口类型和传输距离,选择相应的SFp 光模块和光纤跳线。
打开网络设备的机箱,找到光模块插槽,将光模块插入插槽中,确保模块与插槽对齐。
使用螺丝将光模块固定在插槽中。
使用光纤跳线连接光模块和光纤网络设备或光纤面板。
确保连接器端面清洁,插入时要轻、快,避免过度用力。
在连接完成后,测试光模块的连通性和传输速率,确保其正常工作。
在使用过程中,定期检查光模块和光纤跳线的连接情况,确保其保持良好状态。
四、注意事项在使用SFp光模块时,需要注意以下几点:避免在高温和高湿度的环境下使用光模块,以免影响其性能和使用寿命。
在安装和拆卸光模块时,要轻拿轻放,避免剧烈震动或碰撞。
在使用过程中,要定期检查光模块和光纤跳线的连接情况,确保其保持良好状态。
在更换光模块时,要选择与原设备兼容的品牌和型号,以确保其正常工作。
光模块SFP+与SFP、XFP、QSFP、QSFP+地区别及全参数
SFP收发器有多种不同的发送和接收类型,用户可以为每个链接选择合适的收发器,以提供基于可用的光纤类型(如多模光纤或单模光纤)能达到的"光学性能"。
可用的光学SFP模块一般分为如下类别:850纳米波长/550米距离的 MMF (SX)、1310纳米波长/10公里距离的 SMF (LX)、1550 纳米波长/40公里距离的XD、80公里距离的ZX、120公里距离的EX或EZX,以及DWDM。
SFP收发器也提供铜缆接口,使得主要为光纤通信设计的主机设备也能够通过UTP网络线缆通信。
也存在波分复用(CWDM)以及单光纤"双向"(1310/1490纳米波长上行/下行)的SFP。
商用SFP收发器能够提供速率达到4.25 G bps。
10 Gbps 收发器的几种封装形式为XFP,以及与SFP封装基本一致的新的变种"SFP+"。
GBIC(Gigabit Interface Converter的缩写),是将千兆位电信号转换为光信号的接口器件。
GBIC设计上可以为热插拔使用。
GBIC是一种符合国际标准的可互换产品。
采用GBIC接口设计的千兆位交换机由于互换灵活,在市场上占有较大的市场份额。
SFP (Small Form-factor Pluggable)可以简单的理解为GBIC的升级版本。
SFP支持SONET、Gigabit Ethernet、光纤通道(Fiber Channel)以及一些其他通信标准。
此标准扩展到了SFP+,能支持10.0 Gbit/s传输速率,包括8 gigabit光纤通道和10GbE。
引入了光纤和铜芯版本的SFP+模块版本,与模块的Xenpak、X2或XFP版本相比,SFP+模块将部分电路留在主板实现,而非模块内实现10G模块经历了从300Pin,XENPAK,X2,XFP的发展,最终实现了用和SFP一样的尺寸传输10G的信号,这就是SFP+。
华为光模块参数
华为光模块参数huawei 2010-07-08 15:22:46 阅读64 评论0 字号:大中小订阅千兆光模块:1、千兆多模0.55km光模块光收发一体模块-SFP-850nm-1.25Gb/s-0dBm--9.5dBm--17dBm-LC-0.55km 光功率输出范围为0dBm ~-9.5dBm;最小输入-17dBm。
过载光功率-3dBmAGILENT HFBR-5710LPOCP TRP-G1BCINFINEO V23818-K305-B572、千兆单模10km光模块光收发一体模块-SFP-1310nm-1.25Gb/s--3dBm--9dBm--20dBm-LC-10km 光功率输出范围为-3dBm ~-9dBm;最小输入-20dBm。
过载光功率-3dBmAGILENT HFCT-5710LPHITACHI HTR6511ROCP TRP-G1L1BC3、千兆单模70km光模块光收发一体模块-SFP-1550nm-1.25Gb/s-2dBm--4dBm--22dBm-LC-70km 光功率输出范围为2dBm ~-4dBm;最小输入-22dBm。
过载光功率-3dBmHITACHI HTR8511ROCP TRP-G1H7BC4、千兆单模40km光模块(1550nm)光收发一体模块-SFP-1550nm-1.25Gb/s-1dBm--4dBm--21dBm-LC-40km 光功率输出范围为1dBm ~-4dBm;最小输入-21dBm。
过载光功率-3dBmOCP TRP-G1H5BC5、千兆单模40km光模块(1310nm)过载光功率-3dBm光功率输出范围为5dBm ~-2dBm;最小输入-23dBm。
光收发一体模块-SFP-1310nm-1.25Gb/s-5dBm--2dBm--23dBm-LC-40kmFINISAR FTRJ1419P1BCLHITACHI HTR6534R百兆光模块:1、百兆单模15km光模块光收发一体模块-SFP-1310nm-STM1--8dBm--15dBm--28dBm-LC-15km 光功率输出范围为-8dBm ~-15dBm;最小输入-28dBm。
光模块SFP与SFP、XFP、QSFP、QSFP的区别及参数
光模块SFP+与SFP、XFP、QSFP、QSFP+的区别SFP收发器有多种不同的发送和接收类型,用户可以为每个链接选择合适的收发器,以提供基于可用的光纤类型(如多模光纤或单模光纤)能达到的"光学性能"。
可用的光学S FP模块一般分为如下类别:850纳米波长/550米距离的 MMF (SX)、1310纳米波长/10公里距离的 SMF (LX)、1550 纳米波长/40公里距离的XD、80公里距离的ZX、120公里距离的EX或EZX,以及DWDM。
SFP收发器也提供铜缆接口,使得主要为光纤通信设计的主机设备也能够通过UTP网络线缆通信。
也存在波分复用(CWDM)以及单光纤"双向"(1310/1490纳米波长上行/下行)的SFP。
商用SFP收发器能够提供速率达到4.25 G bps。
10 Gbps 收发器的几种封装形式为XFP,以及与SFP封装基本一致的新的变种"SFP+"。
GBIC(Gigabi t Interf ace Conver ter的缩写),是将千兆位电信号转换为光信号的接口器件。
GBIC设计上可以为热插拔使用。
GBIC是一种符合国际标准的可互换产品。
采用GBIC接口设计的千兆位交换机由于互换灵活,在市场上占有较大的市场份额。
SFP (SmallForm-factor Plugga ble)可以简单的理解为GBI C的升级版本。
SFP支持S ONET、Gigabi t Ethern et、光纤通道(FiberChanne l)以及一些其他通信标准。
此标准扩展到了SFP+,能支持10.0 Gbit/s传输速率,包括8 gigabi t光纤通道和10Gb E。
引入了光纤和铜芯版本的SFP+模块版本,与模块的Xe npak、X2或XFP版本相比,SFP+模块将部分电路留在主板实现,而非模块内实现10G模块经历了从300Pin,XENPAK,X2,XFP的发展,最终实现了用和SFP一样的尺寸传输10G的信号,这就是SFP+。
SFP光模块详解,看看有哪些是你不知道的!
SFP 光模块的封装形式是热插拔小封装,目前最高速率可达10G,LC 接口为多。
SFP 的缩写为Small Form-factor Pluggable,可以简单理解为GBIC 的升级版本。
SFP 光模块体积比GBIC 光模块减少一半,可以在相同的面板上配置多出一倍以上的端口数量。
一、SFP 光模块的外观与结构:SFP 光模块由激光器、线路板IC 和外部配件构成,外部配件包含有外壳、解锁件、卡扣、底座、拉环、橡胶塞,PCBA,拉环的颜色可以帮助大家辨别模块的参数类型。
二、SFP 光模块分类:SFP 光模块详解,看看有哪些是你不知道的!速率:155M、1.25G、2.5G、4.25G波长:短距、中距、长距传输模式:电口、单模(SM)、多模(MM)三、SFP光模块的类型:BIDI-SFP:单纤双向SFP,利用WDM技术,发送和接收两个方向的不同的中心波长,从而实现一根光纤双向传输光信号。
BIDI光模块只有1个端口,通过光模块中的滤波器进行滤波,同时完成1310光信号的发射和1550nm光信号的接收,或者相反。
因此,BIDI光模块必须成对使用。
Copper SFP:电口SFP光模块,采用SFP的封装形式,电口模块,可支持最大传输距离100m(RJ45,5类双绞线为传输介质)。
CWDM SFP:采用了CWDM技术,可以通过外接波分复用器,将不同波长的光信号复合在一起,通过一根光纤进行传输,从而节约光纤资源。
同时,接收端需要使用波分复用器对复光信号进行分解。
CWDM SFP光模块分为18个波段,从1270nm~1610nm,每两个波段之间间隔20nm,一般会用颜色来区分不同波段的光模块。
DWDM SFP:属于密集波分复用技术,可以将不同波长的光耦合到单芯光纤中去,一起传输,DWDM SFP的通道间隔根据需要有0.4nm,0.8nm,1.6nm等不同的间隔,间隔较小、需要额外的波长控制器件。
DWDM SFP的一个关键优点是它的协议和传输速度是不相关的。
中国电信SFP封装的PON ONU模块技术要求_20101118v2
中国电信SFP 封装的 PON ONU 模块技术要求Technical Requirements for SFP-type PON ONU Module of China Telecom(V1.0)中国电信集团公司 发布保密等级:公开发放目次前言 (II)1 范围 (1)2 规范性引用文件 (1)3 缩略语 (1)4 功能要求 (2)4.1 总体要求 (2)4.2 逻辑标识认证功能 (2)4.3 恢复出厂设置(Reset)功能 (2)4.4 Dying Gasp (3)4.5 PON链路状态指示 (3)4.6 光模块异常发光关断 (3)4.7 光链路诊断功能 (3)5 PON接口要求 (3)5.1 EPON接口要求 (3)5.2 GPON接口要求 (4)6 电接口特性 (4)6.1 引脚定义 (4)6.2 EEPROM数据信息 (6)6.3 电性能参数 (10)7 机械尺寸 (10)8 功耗要求 (10)9 工作条件 (10)9.1 极限参数 (10)9.2 推荐工作条件 (11)附录 A (资料性附录)典型应用场景 (12)附录 B (资料性附录)支持SFP封装的PON ONU模块的主设备相关功能要求 (13)前言本标准按照GB/T 1.1一2009给出的规则起草。
本标准参考SFP MSA、SFF-8472、《中国电信EPON设备技术要求》和《中国电信GPON设备技术要求》编制而成,主要包括SFP封装的PON ONU模块的功能要求、PON接口要求、电接口特性、机械尺寸、功耗要求和工作条件等内容。
本标准由中国电信集团公司技术部组织制定,上海研究院起草。
SFP封装的PON ONU模块技术要求1 范围本标准规定了SFP封装的PON ONU模块的功能要求、PON接口要求、电接口特性、机械尺寸、功耗要求和工作条件等内容。
本标准适用于中国电信网络环境下的SFP封装的PON ONU模块。
2 规范性引用文件下列文件对于本文件的应用是必不可少的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
sfp模块光参数标准协议
SFP模块是一种小型的光模块,其光参数标准协议是由多个组织共同制定的,包括IEEE、TIA、IEC等。
其中,IEEE 802.3ae标准规定了10 Gbit/s以太网中使用的光模块参数,包括光功率、接收灵敏度、通道损耗等;TIA/EIA-942-A标准规定了数据中心中使用的光模块参数,包括光功率、接收灵敏度、发射光功率等;IEC 60728-2-1标准规定了CATV系统中使用的光模块参数,包括光功率、接收灵敏度、频率响应等。
此外,SFP MSA(多源协议)组织还发布了一系列的SFP光模块规格规范,包括1.8V、3.3V、5V等多种不同的电压等级,以及不同的速率和传输距离等参数。
总之,SFP光模块参数标准协议是一个复杂的体系,需要综合考虑多个因素,如光功率、接收灵敏度、通道损耗等,以保证光模块的性能和可靠性。
第1页/ 共1页。