小学五年级数学 《点阵中的规律》教学设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《点阵中的规律》教学设计

五年级数学教案

●一、教学内容:

新世纪版小学数学五年级上册《尝试与猜测》中的第二课时。(教科书第

82、83页。)

●二、教材分析:

1、这是一段“探索规律、策略多样”的发现之旅。

教材开头有这样两句话:阿拉伯数字的发明,使我们记录和计算更加方便,然而在表现一些数的特征方面,点阵更加直观;2000多年前,希腊数学家利用图形研究数。短短两句话,数学带着其精练、思辨、冷静的迷人魅力从厚重、光辉的历史中走来,一种研究数学的使命感油然而生,在这浓浓的数学味道里,学生开始了对点阵规律的发现之旅。教材首先给出了最为典型的正方形点阵,通过对其规律的探究,建立起点阵与数、与算式之间的联系。并且从不同角度,不同的划分方法中发现不同的规律,从而让学生体会到点阵研究数的形式是多样的,渗透解决问题的策略多样化。在此基础上再研究长方形、三角形、以及特殊形状的点阵。通过这些数学素材,引导学生探索规律,归纳概括,建立模式。

2、这是一次“尝试猜测,归纳概括”的方法会师。

教材将“点阵中的规律”和“鸡兔同笼”两个内容都划分在尝试和猜测这个章节中,在教学“鸡兔同笼”的问题时,教材运用表格、计算,让学生不断地进行尝试,猜测,验证,不断地调整自己的猜测,直至得到正确的结果,并在经历了曲折的尝试和猜测之路后,学会选择最优的策略。在探索点阵中的规律时,也

是一样的,要求学生大胆猜测点阵的变化规律,并加以验证。从一组点阵的变化中,抽象概括出规律的本质,并加以归纳推理。因此“点阵中的规律”这个内容是培养学生抽象概括、归纳推理的能力的最好素材。

3、这是一场“数形结合,数形转化”的思想盛宴。

数形结合是数学解题中常用的思想方法。“点阵中的规律”这一课特别适宜于学生充分感受“数形结合”的思想魅力。教材一开始就呈现古代希腊数学家们用图形来研究数的情境。在正方形点阵的研究中,教材从三种不同的角度引导学生观察点阵,列出不同的算式,发现不同的规律,从得出像1、4、9、16……这样一组数所具备的三种不同特点。这组数既可以看作为一组连续的完全平方数,也可以看作是几个连续奇数相加,还可以看作是从1连续加到几,再加回到1。这是一个从形到数的过程。教材在学生概括规律,归纳推理出下一个点阵的点数后,又让学生画出这个点阵图,这是一个从数到形的过程。充分体现了“数形结合,数形转化”的思想方法。

三、学生分析:

1、学生的知识基础

五年级学生在数的方面,已经认识了自然数和整数,倍数因数,奇数偶数,质数合数,小数、分数等。在形的方面,对长方形、正方形、平行四边形,三角形,梯形的特征也有了深刻的认识。但是学生对利用图形研究数,寻找数和图形之间的联系,还有困难。学生对线围成的基本图形有深刻的认识,但是点阵中的几何图形,只有点,没有线,学生要利用自己的想象加以补充和延伸,这对学生来说会感觉比较陌生。

2、学生的能力基础

学生在一年级学过找规律填数,二年级学过按规律接着画,四年级学过探索图形的规律。因此五年级学生具备一定的观察能力、抽象概括能力、逻辑推理能力等。北师大版的数学

五年级数学教案

但是小学生的思维特点是从具体形象思维逐步向抽象思维过渡,这种抽象逻辑思维在很大程度上仍然依靠感性经验的支持。而这节课完全是数学思想、数学方法的教学,极为抽象,因此对部分学生来说还是会感觉有点困难。

3、学生的情感态度基础

小学生好奇心强,对新奇的事物感兴趣,点阵对于学生是完全新鲜的,因此学生研究的兴趣比较浓厚,课堂的注意力会比较集中。但这一课的抽象性也会使学生的兴趣停留在短暂的直接兴趣,很难转化为对数学研究的间接兴趣。因此我们在教学中根据小学生的心理年龄特点,将这些单调静止的点阵图加以生活化、童趣化、动态化。

●四、教学目标:

1、能观察发现点阵中的规律,体会“图形与数”的联系。

2、发展归纳和概括的能力。

3、感受“数形结合”的神奇之美,并获得“我能发现”之成功体验。

●五、教学重、难点:

探究发现点阵中的规律是教学的重点。难点是独立发现同一点阵中不同的规律。

●六、教法上的突出特点:

1、用儿童喜闻乐见的情境演化出各种点阵,从而激发学生研究的兴趣。

2、尽量减少教师的介入,让学生或独立或合作探究规律。

3、鼓励学生有自己的发现、有不同的发现。

●七、学法上的突出特点:

1、让学生多角度探究规律,充分感受美图美思。

2、大胆让学生画一画、摆一摆、算一算,大胆说出自己的发现。

3、本节课以独立研究为主,辅以合作交流。

●八、教学过程

(一)激qing导入,抛砖引玉

同学们,见过阅兵式吗?(出示阅兵式录象)。这些解放军战士的队伍排得多么整齐啊!如果我们用一个点表示一个士兵,那么由战士组成的兵阵就变成了我们今天要学习的点阵。(板书课题:点阵中的规律)

(课一开始,先用雄壮的阅兵式导入新课。这样一下子就抓住了学生的注意力,接着又出人意料地把兵阵变成点阵,不仅自然地引出了新课,还让学生感到点阵并不神秘,点阵就在我们生活中。这种先声夺人的开篇,为学生下面的学习作好了情感上的准备。)

(二)多方观察,探求规律

出示第一幅点阵图。

1、一探

“图中有几个点阵,每个点阵各有几个点?”

“怎么数得这样快?有窍门吗?”

这时学生会说:“我是用算式算出来的。”教师根据学生的回答,板书第一组算式

第1个1×1=1

第2个2×2=4

第3个3×3=9

第4个4×4=16

(一个“算”字,使学生的思维顺利的实现了由形——数的第一次转换。)师:“这种数法真是又快又方便!照这样下去,第五个点阵有多少个点呢?第六个呢?第七个?八个?……第100个呢?”

师:“好像很有规律哦?谁发现了?”

(有了前面的铺垫,学生很容易就总结出“第几个点阵就用几乘几”,也有的学生会说,“第几个点阵就是几的平方。”)(教师板书:)师:那第n个点阵呢?你们能画出第五个点阵吗?

(这个画点阵的过程虽然简单,但体现了由数——形的转换。培养了学生主动进行数形转换的意识。)

师:“能不能换个角度观察?”

2、二探

相关文档
最新文档