电力系统自动装置原理知识点[文]
电力系统自动装置原理
电力系统自动装置原理电力系统自动装置是一种高科技电气装置,它的作用是消除电力系统中出现的故障,确保电力系统运行安全可靠,提高电力系统的自动化程度。
电力系统自动装置应用广泛,包括变电站自动化、电力线路故障隔离、保护配电系统、自动调控电力负载等。
下面将详细介绍电力系统自动装置的原理。
1. 电力系统自动装置的分类电力系统自动装置按照作用原理可以分为三种:(1)过电流保护过电流保护是一种常见的保护方式,它通过检测电路中的电流大小来判断是否存在故障。
当电流大于额定值或持续时间超过一定时间时,保护装置会触发,使故障线路与电力系统隔离。
(2)差动保护差动保护是一种常用的变压器保护和母线保护方式,它是通过检测两侧的电流差异,判断电路是否存在故障,来实现快速隔离故障电路。
(3)接地保护接地保护是针对系统接地故障而设计的保护装置,它是通过检测系统中的接地电流大小和存在的故障类型来进行分析,针对不同类型的故障进行自动隔离和恢复。
2. 电力系统自动装置的工作原理电力系统自动装置的工作原理主要包括三个步骤:检测、判断和操作。
(1)检测电力系统自动装置通过传感器或直接连接到线路的电流和电压信号检测电力系统中的各种信号,如故障电流、电压等。
(2)判断当检测到电力系统中存在异常信号时,电力系统自动装置会进行判断,判断出异常信号的类型和位置,并作出相应的处理。
例如,若判断出存在过电流故障,就会针对不同类型的故障进行不同的处理,如瞬时短路、接地故障或欠电压故障。
(3)操作电力系统自动装置会根据判断结果对电力系统进行相应的操作,如切断故障电路、自动重建回路、调整电力系统运行状态等,保证电力系统的运行安全和可靠性。
3. 电力系统自动装置的优点电力系统自动装置具有以下优点:(1)自动化程度高,能够快速准确地诊断和处理电力系统的各种故障。
(2)具有可靠性强的故障传递能力,当有部分装置发生故障时,其余装置仍能正常工作。
(3)能够大幅度提高电力系统的运行效率,减少电力损耗和能源浪费。
电力系统自动装置原理
电力系统自动装置原理电力系统自动装置是指利用自动化技术,对电力系统进行监测、控制和保护的装置。
它可以实现对电力系统的实时监测,及时发现故障并采取相应的措施,保障电力系统的安全稳定运行。
本文将从电力系统自动装置的原理入手,对其工作原理进行详细介绍。
首先,电力系统自动装置的原理基于电力系统的特点和运行需求。
电力系统是由发电厂、变电站、输电线路和配电设备等组成的复杂系统,其运行需要保持稳定的电压、频率和功率因数。
同时,电力系统还面临着各种故障和突发事件的影响,如短路、过载、接地故障等。
因此,电力系统自动装置需要具备对电力系统各种参数和状态进行监测和分析的能力,能够根据系统运行情况进行自动调节和控制。
其次,电力系统自动装置的原理基于先进的传感器和监测设备。
电力系统自动装置需要通过传感器对电力系统的各项参数进行实时监测,如电压、电流、频率、功率因数等。
这些传感器可以将监测到的数据传输给自动装置的控制器,实现对电力系统运行状态的实时监测。
同时,监测设备还可以对电力系统的各种故障和异常情况进行检测和诊断,为自动装置的控制和保护提供准确的依据。
此外,电力系统自动装置的原理基于先进的控制算法和逻辑。
自动装置需要根据监测到的数据和系统运行状态,通过预设的控制算法和逻辑进行分析和判断,实现对电力系统的自动控制和保护。
例如,当监测到电力系统发生过载或短路时,自动装置可以根据预设的保护逻辑,迅速切除故障部分,保护系统设备不受损坏。
同时,自动装置还可以根据系统运行需求,实现对电力系统的自动调节和优化,提高系统的运行效率和稳定性。
最后,电力系统自动装置的原理基于先进的通信技术和网络系统。
随着信息技术的发展,电力系统自动装置还需要具备远程通信和监控能力,实现对分布式电力系统的远程监测和控制。
通过先进的通信技术和网络系统,自动装置可以实现与电力系统各个部分的信息交互和数据传输,及时掌握系统运行情况,实现对电力系统的远程监控和调度。
电力系统自动装置原理
电力系统自动装置原理第一章1)电能质量的两个最主要指标:电压、频率。
2)自动装置的首要任务:将连续的模拟信号采集并转换成离散的数字信号后进入计算机,即数据采集和模拟信号的数字化。
3)香农采样定理:采样频率必须大于原模拟信号频谱中最高频率的两倍,则模拟信号可由采样信号唯一表示()。
第二章1)恒定越前时间的准同期并列装置中的合闸信号控制单元有哪些环节组成:由滑差角频率检测、电压检测和越前时间信号等环节组成。
2)同步发电机的两种并列方式:准同期并列和自同期并列。
3)同步发电机并列操作时,冲击电流最大瞬时值一般不应超过待并发电机额定电流的1~2倍。
4)什么是整步电压:自动并列装置检测并列条件的电压。
5)频率差调整的任务:将待并发电机的频率调整到接近于电网电压频率,使频率差趋向并列条件允许的范围,以促成并列的实现。
6)运行母线电压的三个状态量:幅值、频率、相角。
7)发电机电压落后电网电压时,发电机吸收电网功率。
8)发电机并列操作时,相角差较小时,其冲击电流主要分量是有功。
9)按照提前时间不同,准同期并列分为哪两种:恒定越前相角准同期并列、恒定越前时间准同期并列。
10)准同期并列的理想条件:频率相等()、电压幅值相等()、相角差为零()。
11)什么是同步发电机自动准同期并列?有什么特点?适用什么场合?为什么?答:调节发电机的电压Ug,使Ug与母线电压Ux相等,满足条件后进行合闸的过程。
特点:并列时冲击电流小,不会引起系统电压降低;但并列操作过程中需要对发电机电压、频率进行调整,并列时间较长且操作复杂。
适用场合:由于准同步并列冲击电流小,不会引起系统电压降低,所以适用于正常情况下发电机的并列,是发电机的主要并列方式,但因为并列时间较长且操作复杂,故不适用紧急情况的发电机并列。
12)什么是同步发电机自同期并列?有什么特点?适用什么场合?为什么?答:是将一台未加励磁电流的发电机组升速到接近电网频率,滑差角频率不超过允许值,且在机组的加速度小于某一给定值的条件下,首先合上断路器QF,接着合上励磁开关开关SE,给转子加励磁电流,在发电机电动势逐渐增长的过程中,又电力系统将并列的发电机组拉入同步运行。
电力系统自动装置原理
2、现场总线系统中路由器的功能:主要起到路由、中继、数据交换等功能。
3、发电机并列的理想条件:W G=W X或f G=f x (频率相等);U G=U X (电压幅值相等);6 e=0 (相角差为零)4、同步发电机的并列方法:准同期并列、自同期并列。
5、脉动电压波形中载有准同期并列所需检测的信息:电压幅值差、频率差以及相角差随时间变化的规律。
6、准同期并列装置主要组成:频率差控制单元、电压差控制单元、合闸信号控制单元。
7、同步发电机的准同期并列装置按自动化程度分为:半自动并列装置、自动并列装置。
8、同步发电机的励磁系统组成:励磁功率单元、励磁调节器。
9、直流励磁机励磁系统按励磁机励磁绕组供电方式的不同分为:自励式、他励式。
10、按照电压调节的原理来划分,电压调节可分为:反馈型、补偿型。
11、励磁控制系统动态特性指标:上升时间y、超调量。
p、调整时间ts.12、系统频率f和发电机转速n的关系:f=pn/60(p发电机极对数,n机组每分钟转数)13、负荷的频率调节效应系数:阮*=工n i=1ia i fi T* 发电机组的调差系数R=- f/A P G14、调速器分为:机械液压调速器、电气液压调速器。
(PI、PID)15、汽轮发电机组调速器的不灵敏区为0.1%~0.5%,水轮发电机组调速器的不灵敏区为0.1%~0.7%16、汽轮机长期低于49~49.5Hz以下运行时,叶片容易产生裂纹。
1、量化:把采样信号的幅值与某个最小数量单位的一系列整数倍比较,以最接近于采样信号幅值的最小数量单位倍数来表示该幅值。
编码:把量化信号的数值用二进制数码表示。
2、同步发电机自动并列过程中脉动电压:方向不变,大小随时间周期性变化的电压。
3、恒定越前相角并列装置:在脉动电压U S到达6 e=0之前的某一恒定越前6 YJ相角时发出合闸信号。
恒定越前时间并列装置:在脉动电压U S到达两电压相量U G、U X重合(6 e=0)之前的某一恒定t YJ时间差时发出合闸信号。
电力系统自动装置原理
1.并列操作:将同步发电机并入电力系统参加并列运行的操作2.不恰当并列操作影响:①产生巨大冲击电流;②系统电压严重下降;③使电力系统震荡以致瓦解3. 同步发电机并列原则:①并列断路器合闸时,冲击电流应尽可能小,其瞬时最大值一般不超过1~2倍;②发电机组并入电网后,应能迅速同步,暂态过程要短,以减小对电力系统的扰动。
4. 同步发电机并列方法:准同期并列、自同期并列5. 并列的理想条件:① ƒG =ƒX ②U G =U X ③ δe=0 (即相角差为0)6. 存在电压幅值差时,冲击电流主要为无功电流分量;存在合闸相角差时,冲击电流主要是有功电流分量;存在频率差时,待并发电机需经很长暂态过程才能同步,严重时甚至失步。
7.准同期并列主要是对脉动电压Us 和滑差角频率ωs 进行检测和控制。
8.准同期并列装置采用的提前量有恒定越前相角和恒定越前时间。
9. 计算题: 例:一次系统的参数为:发电机交轴次暂态电抗"q X 为0.125;系统等值机组的交轴次暂态电抗与线路电抗X X 为0.25;断路器QF t =0.5s,它的最大可能误差时间为±20%QF t ;自动并列装置最大误差时间为±0.05s ,待并发电机允许的冲击电流值为"i hm =2GN I 。
试计算允许合闸误差角ey δ、允许滑差角频率sy ω,与相应的脉动电压周期s T 。
解:按题意求解如下:① 取''q E =1.05,允许合闸误差角ey δ=''q ""21.82arcsin 2E X X i X q hm ⨯+)(=2arcsin 05.128.1225.0125.012⨯⨯+⨯⨯)(=11.38°=0.199 rad PS:若记不住以上公式,可用"''28.1h hm I i =和2sin X 2ey ''q "q"δX h X E I +=推导。
电力系统自动装置原理:第02章_同步发电机的自动并列-(4_5)
第四节 频率差和电压差的调整
2. 电压差调整 •任务:在并列操作过程中自动调节待并发电机的
电压值,使电压差条件符合并列的要求。 (1) UG < U X ,发升压脉冲; (2) UG > U X ,发降压脉冲;
•实施原理、原则:与频率差调整相似。
主要内容
1. 概述 2. 准同期并列的基本原理 3. 自动并列装置的工作原理 4. 频率差与电压差的调整 5. 数字型并列装置的组成
) 重点:
并列操作的两种方式; 准同期并列的理想条件;
自动准同期装置的组成;
恒定越前时间并列装置的基本原理 ;
微机式准同期装置的原理与优点。
本章作业:
1、 什么叫并列操作,简述同步发电机并列时应遵循的两条基 本原则。 2、并列操作有哪两种方式?它们是如何实现的? 3、什么是准同期的恒定越前时间?它的整定值与哪些因素有 关,应当如何整定? 4、自动准同期装置由哪三个控制单元组成?它们各自的主要任 务是什么? 5、何谓滑差、滑差周期?与相角差δ有什么关系? 6、简述微机型自动准同期装置实现电压差检测、频率差检 测、相角差检测以及恒定越前时间检测的原理和方法。
第五节 数字式并列装置
一、概述
用大规模集成电路微处理器(CPU)等器件构成的数字式并 列装置,由于硬件简单,编程方便灵活,运行可靠,且技术上 已日趋成熟,成为当前自动并列装置发展的主流。
模拟式并列装置为简化电路,在一个滑差周期Ts时间内, 把ωs假设为恒定。数字式并列装置可以克服这一假设的局限性 ,采用较为精确的公式,按照δe当时的变化规律,选择最佳的 越前时间发出合闸信号,可以缩短并列操作的过程,提高了自 动并列装置的技术性能和运行可靠性。
原理:驱动器控制的三相电形成电磁场, 转子(永磁铁)在此磁场作用下转动; 同时电动机自带的编码器反馈信号给驱动器, 驱动器根据反馈值与目标值进行比较, 调整转子转动的角度。
电力系统自动装置原理-第06章_电力系统自动装置原理
原则2:级差不强调选择性
• 由于实际系统中运行方式和事故的不同,造成 功率缺额具有很大的分散性。若低频减载装置 采用试探法逐级求解,分级切除少量负荷,以 达到比较好的效果。这时要求n较大,这就使得 每级切除的负荷较少,即使两级间无选择性起 动,也不会造成负荷切除量过大,因而频率恢 复值不致于太高 。
26
自动低频减载装置的动作时延
• 原则上,动作应尽可能地快,以便延缓f 的下 降。然而,在事故期间可能的电压下降(f 不一 定不满足要求)可能会引起装置误动作,这时人
为设定一0.3~0.5秒的时间延迟以躲过可能的误
动作。
27
第2节 自动低频减载
一、概述 二、电力系统频率 静特性€ 三、电力系统频率的动 态特性€ 四、自动低频减载 的工作原理€ 五、自动低频减载的接线与运行
Phmax PLmax PLN PLmax
K L*f * P Lmax
Phmax KL* PLNf* 1 KL*f*
13
14
自动低频减载装置的动作顺序
• 为防止非最严重事故下切除过多的负荷,自动低 频减载装置可采取分批断开负荷并逐步修正负荷 切除量的方法进行。自动低频减载装置在系统频 率下降过程中,按照频率的不同数值将负荷切除 分成多级,每级的动作频率由整定值确定。
• 原则1:按选择性确定级差‘ • 原则2:级差不强调选择性‘ • 前后两级动作的频率间隔:前后两级动作的时间
间隔是受频率测量元件的动作误差和开关固有跳 闸时间限制的。
18
原则1:按选择性确定级差
• 该原则强调动作的顺序,后一级只有在前一 级动作以后还不能制止频率下降的情况下才 允许动作。
• 在留有适当的频差裕度fy后,频差应该满足 如下关系: f =2f+ft+fy
电力系统自动装置原理第五版
电力系统自动装置原理第五版第一章介绍本书是关于电力系统自动装置原理的第五版,旨在向读者全面介绍电力系统自动装置的工作原理、设计方法和应用技术。
通过对电力系统自动装置原理的深入研究,读者将能够理解并掌握电力系统自动装置的运行机制,提高电力系统的稳定性和可靠性。
第二章电力系统自动装置的基本原理本章主要介绍电力系统自动装置的基本原理。
首先,需要了解电力系统的结构和组成,包括输电线路、变电站和负荷等。
其次,介绍电力系统的运行状态和故障类型,以及自动装置对故障的检测和处理的基本原理。
最后,介绍电力系统自动装置的分类和应用技术,例如保护自动装置、自动重合闸装置和补偿装置等。
第三章电力系统保护自动装置的原理和设计本章主要介绍电力系统保护自动装置的原理和设计方法。
首先,需要了解电力系统保护的基本概念和目标,以及保护自动装置在电力系统中的作用。
其次,介绍保护自动装置的基本工作原理,包括故障检测、故障定位和故障隔离等。
最后,介绍保护自动装置的设计方法和应用技术,例如差动保护、过电压保护和接地保护等。
第四章电力系统自动重合闸装置的原理和设计本章主要介绍电力系统自动重合闸装置的原理和设计方法。
首先,需要了解自动重合闸的基本概念和作用,以及在电力系统中的应用场景。
其次,介绍自动重合闸装置的工作原理,包括故障检测、故障排除和系统恢复等。
最后,介绍自动重合闸装置的设计方法和应用技术,例如自动重合闸时间的设置和重合闸控制策略的优化等。
第五章电力系统补偿装置的原理和设计本章主要介绍电力系统补偿装置的原理和设计方法。
首先,需要了解电力系统补偿的基本概念和目的,以及在电力系统中的应用场景。
其次,介绍补偿装置的工作原理,包括无功补偿、功率因数调节和电压调节等。
最后,介绍补偿装置的设计方法和应用技术,例如容性补偿和电容器组的选择与配置等。
第六章电力系统自动装置的现状与发展趋势本章主要介绍电力系统自动装置的现状和发展趋势。
首先,分析电力系统自动装置的发展历程和应用现状。
电力系统自动装置 知识点整理
何谓并列操作?对未投入运行的待并网发电机组进行适当操作,使其电压与并列点电压之间满足并列条件的一系列操作。
并列原则1.并列断路器合闸时,冲击电流应尽可能小,其瞬时最大值不超过允许值(1~2倍的额定电流);2.发电机组并入电网后,应能迅速(暂态过程要短)进入同步运行状态,以减小对系统的扰动。
并列方法分类1.自同步合闸瞬间,发电机无电势而被拉入同步2.准同步合闸瞬间,发电机电势与系统母线电压、频率和相位接近而被拉入同步2.1发电机并网发电机“并”到系统2.2两系统并网两系统间的并列操作2.2.1差频并网尚未有电气联系(并网前两系统相互独立,频率一般不同;需满足三个条件时才能进行并列。
存在频率差,实现易)2.2.2同频并网已有电气联系(并列前两侧已存在电气联系,电压可能不同,但频率相同;相当于在两侧之间增加一条连线;因此也叫做“合环”。
)自同步并列优缺点优:1.不需选择并列合闸时机,操控简单2.在电力系统发生事故、频率波动较大的情况下,可迅速并列,避免故障扩大缺:1.不能用于两个系统之间的并列操作2.冲击电流大;会引起附近电压降低准同步并列理想并列条件(冲击电流为零)ωG=ωx(或fG= fx),UG= Ux,δe= 0(实际运行中,理想并列条件难以完全实现,也没有必要完全实现。
实际上,只要满足并列操作的两项原则即可。
)准同步并列偏离理想并列条件时的后果分析实际上,电压幅值差、频率差和相位差均存在,分析较繁琐。
为此,做如下简化:1.仅存在电压幅值差(即fG=fx, δe=0,UG≠Ux)冲击电流最大瞬时值冲击电流的电动力对发电机端部绕组产生影响(定子绕组端部的机械强度最弱)2.仅存在合闸相角差(即fG=fx, δe≠0,UG=Ux)冲击电流有效值合闸后发电机与系统立刻进行有功功率交换,使机组联轴受到突然冲击,对机组和系统运行均不利3.仅存在频率差 (即fG≠fx, δe=0,UG=Ux)此时断路器QF两侧电压差为脉动电压设幅值(称为正弦整步电压)频率差限制的重要性:过大可能导致功率振荡并失去同步,故必须对合闸时的频率差进行限制。
自动装置知识点
《电力系统自动装置原理》知识点杨冠城主编绪论1.电力系统自动装置对发电厂、变电所电气设备运行的控制与操作的自动装置,是直接为电力系统安全、经济和保证电能质量服务的基础自动化设备。
电力系统自动装置有两种类型:自动调节装置和自动操作装置。
2.电气设备的操作分正常操作和反事故操作两种类型。
(1)按运行计划将发电机并网运行的操作为正常操作。
(2)电网突然发生事故,为防止事故扩大的紧急操作为反事故操作。
防止电力系统的系统性事故采取相应对策的自动操作装置称为电力系统安全自动控制装置。
3.电力安全装置发电厂、变电所等电力系统运行操作的安全装置,是为了保障电力系统运行人员的人身安全的监护装置。
自动装置及其数据的采集处理电力系统运行的主要参数是连续的模拟量,而计算机内部参与运算的信号是离散的二进制数字信号,所以,自动装置的首要任务是数据采集和模拟信号的数字化。
1、硬件组成形式从硬件方面看,目前电力系统自动装置的结构形式主要有四种:即微型计算机系统、工业控制机系统、集散控制系统(Distributed control system——DCS)和现场总线系统(Field bus Control System——FCS)。
2、采样对连续的模拟信号x(t),按一定的时间间隔T S,抽取相应的瞬时值,这个过程称为采样。
采样过程就是一个在时间和幅值上连续的模拟信号x(t),通过一个周期性开闭(周期为T S,开关闭合时间为τ)采样开关S后,在开关输出端输出一串在时间上离散的脉冲信号x S(nT S)。
3、采样定理采样周期T S决定了采样信号的质量和数量: T S太小,会使x S(nT S)的数据剧增,占用大量的内存单元;T S太大,会使模拟信号的某些信息丢失,当将采样后的信号恢复成原来的信号时,就会出现信号失真现象,而失去应有的精度。
因此,选择采样周期必须有一个依据,以保证x S(nT S)能不失真地恢复原信号x(t)。
这个依据就是采样定理。
电力系统自动装置知识点总结,电力系统自动装置资料,历届考题
不同性质的负荷吸收的有功功率与频率的关系有以下三类(负荷吸收的有功功率与频率无关)、负荷吸收的有功功率与频率的一次方成正比、负荷吸收的有功功率与频率的二次方或(更高次方)成正比。
负荷吸收的有功功率随频率变化的现象称为(负荷调节效应),一般可用(负荷调节效应系数)来描述。
由于负荷的调节效应,当系统频率下降时,总负荷吸收的总有功功率(随之下降);当系统频率上升时,总负荷吸收的总有功功率(随之上升)。
同步发电机的进相运行:同步发电机欠励磁运行时,由滞后功率因数变为超前功率因数,发电机从系统吸收无功功率,这种运行方式称为同步发电机的进相运行。
移相触发单元的同步信号:由同步变压器从主回路电源中取得,当晶闸管承受正向电压的某一刻,向它的门极送出触发脉冲使其导通的信号为移相触发单元的同步信号。
频率崩溃现象:当频率下降到47~48Hz时,火电厂的厂用机械(如给水泵等)的出力将显著降低,使锅炉出力减少,导致发电厂输出功率进一步减少,致使功率缺额更为严重。于是系统频率进一步下降,这样恶性循环将使发电厂运行受到破坏,从而造成所谓“频率崩溃”现象。
电压崩溃现象:当频率降至46~45Hz时,系统电压水平受到严重影响,当某些中枢点电压低于某一临界值时,将出现所谓的“电压崩溃”现
改变自动励磁调节器的(发电机基准电压值) ,可以平移发电机的外特性。励磁调节器静特性的调整包括(调差系数的调整)和(外特性的平移)。
励磁调节器接入正调差单元后,使发电机外特性(下倾) ,发电机端电压随(无功电流)增大而降低。
励磁调节器接入负调差单元后,使发电机外特性呈(水平)和(上翘)两种特性。
线性整步电压:与时间具有线性函数关系的整步电压。
励磁系统:供给同步发电机励磁电流的电源及其附属设备统称为励磁系统。
《电力系统自动装置原理》(第五版)复习题
Zong_Yang
ΔU * /
(QG1N QG 2 N ) ΔU * / δ QG1N QG 2 N ( ) δ1 δ2
P72
答:①发电机投入和退出运行时能平稳地改变无功负荷,不致发生无功功率冲击。
答:由 R* ε / ΔPw* 知: ΔPw* 与失灵度 ε 成正比,而与调差系数 R* 成反比,过小的 调差系数将会引起较大的功率分配误差,所以 R* 不能太小。汽轮发电机组调速器的不 灵敏区为 0.1% ~ 0.5% ,水轮发电机的调速器的不灵敏区为 0.1% ~ 0.7% 。 17、什么是电力系统的功率——频率特性? 变的特性称为电力系统的功率——频率特性。 P135
答:自动并列装置检测并列条件的电压人们称为整步电压。 8、简述自动并列装置的输出控制信号有哪些。 答:①调节发电机转速的增速、减速信号。 ②调节发电机电压的升压、降压信号。 ③并列断路器合闸脉冲控制信号。 P43
Zong_Yang
9、同步发电机励磁控制系统的任务是什么?
P45
答:①、三大任务:维持电压稳定、无功分配、提高电力系统运行的稳定性 ②、五大任务:电压控制、控制无功分配、提高同步发电机并联运行的稳定 性、改善系统的运行条件、水轮发电机组要求实行强行减磁。 10、什么是励磁电压响应比? P52
图 3-1 磁自动控制系统构成框图 3、画出励磁控制系统的框图。 P68 图 3-31
图 3-31 励磁控制系统框图
Zong_Yang
4、机械液压调速器原理分析。
P136
电力系统自动装置原理
电力系统自动装置原理
电力系统自动装置原理是指利用电气传动和控制技术对电力系统的运行进行监控、控制和保护的一套技术系统。
其包括各种自动装置及所需的电源、灯光、信号、指示器等各种设备,它是保证电力系统工作稳定、可靠的关键设备,具有很高的安全性和可靠性。
其中,自动装置是自动化工程设备中最基本的部分,它能够根据瞬态过程的特点自行完成相应的判断和动作,自动对电力系统进行控制和保护,从而减轻操作员的负担。
电力系统自动装置分为保护、自动控制和辅助设备三种类型,每种类型都有其独特的原理。
保护装置的原理是通过对电力系统中各种故障状态进行检测,当电力系统出现故障时以最短的时间将故障分离出去,从而保护系统的正常运行。
保护装置的种类比较繁多,但其原理都是相似的,都是通过对电流、电压、功率等参数进行检测,并与预设参数进行比较,以判断是否存在故障,并触发相应的保护动作,从而避免故障向系统传递,减轻对电力系统的影响。
自动控制装置的原理则是根据电力系统的工作条件、设定值和控制规律,对电力系统进行控制,以达到系统的最佳运行状态。
其主要特点是具有自动调整功能,它能够以较高的速度、精度、稳定性来自动完成各种电力系统的控制任务,提高电力系统的可靠性和运行效率。
辅助装置的原理主要是通过对电力系统进行测量、计算、记录和报告等手段,获取电力系统的各项参数数据,以提供控制保护、预警报警、运行维护等方面的支持。
辅助装置还可以对电力系统进行实时监测、故障诊断和状态评估,以提高系统的可靠性和运行效率。
总之,电力系统自动装置原理是一种基于电气传动和控制技术的电力系统监测、控制和保护技术,它具有很高的安全性和可靠性,在电力系统的规划、设计和运行中起着至关重要的作用。
电力系统自动装置原理知识点
电力系统自动装置原理知识点电力系统自动装置原理是指通过电力系统的监测、保护、控制等设备来实现电力系统的自动化运行。
它能够实时监测电力系统的状态和参数,并根据设定的逻辑和策略进行保护和控制操作,以确保电力系统的安全稳定运行。
下面将详细介绍电力系统自动装置原理的相关知识点。
一、电力系统自动装置的分类1.监测装置:用于实时监测电网的电压、电流、频率、功率等参数,通常包括电能表、电流互感器、电压互感器、数字及模拟量传感器等。
2.保护装置:用于实现电力系统的过电流保护、跳闸保护、接地保护等功能,通常包括继电保护装置、保护继电器等。
3.控制装置:用于实现电力系统的继电控制、重合闸控制、柜内控制等功能,通常包括继电控制装置、远动装置等。
4.辅助装置:用于辅助监测、保护和控制装置的运行,通常包括组合仪表、RTU装置、通讯设备、故障录波器等。
二、电力系统自动装置的工作原理1.监测装置的工作原理:将监测装置与电力系统的测量点相连,通过传感器将电能、电流、电压等参数转化为电信号,并送入测量装置,经过放大、滤波、数字转换等处理后,得到与电力系统参数相关的信息。
2.保护装置的工作原理:将保护装置与电力系统的主要设备相连,通过传感器将电流、电压等参数转化为电信号,并送入保护装置中,经过比较、判别等处理后,得到保护动作信号,控制断路器等设备进行跳闸保护。
3.控制装置的工作原理:将控制装置与电力系统的控制设备相连,通过接受上级控制信号或自动逻辑控制信号,对电力系统的断路器、隔离开关等设备进行控制操作。
4.辅助装置的工作原理:将辅助装置与监测、保护和控制装置相连,通过通讯设备实现与上级或下级系统之间的数据传输和命令控制,为自动装置的运行提供支持和保障。
三、电力系统自动装置的应用范围1.电力系统的监测:通过实时监测电能、电压、电流、频率、功率因数等参数,了解电网的运行状态和负荷情况,为电力系统的管理和调度提供数据支持。
2.电力系统的保护:通过实时监测电力系统的电流、电压等参数,及时发现电力系统中的故障和异常情况,并对故障设备进行跳闸保护,以防止故障扩大和对电力系统的危害。
自动装置第1章知识点
《电力系统自动装置原理》知识点杨冠城主编绪论一、电力系统及其运行调度控制中心对所管辖的电力系统进行监视和控制,其主要任务是合理地调度所属各发电厂的出力,制定运行方式,及时处理电力系统运行中所发生的问题,确保系统的安全经济运行。
二、电力系统自动控制的划分根据电力系统的组成和运行特点,电力系统中的自动控制大致划分为如下几个不同内容的控制系统:1.电力系统自动监视和控制其主要任务是提高电力系统的安全、经济运行水平。
2.电厂动力机械自动控制电厂动力机械的自动控制是电厂自动控制的主要组成部分。
200MW以上的汽轮发电机组,需配置专用计算机进行监控。
3.电力系统自动装置对发电厂、变电所电气设备运行的控制与操作的自动装置,是直接为电力系统安全、经济和保证电能质量服务的基础自动化设备。
电气设备的操作分正常操作和反事故操作两种类型。
(1)按运行计划将发电机并网运行的操作为正常操作。
(2)电网突然发生事故,为防止事故扩大的紧急操作为反事故操作。
防止电力系统的系统性事故采取相应对策的自动操作装置称为电力系统安全自动控制装置。
4.电力安全装置发电厂、变电所等电力系统运行操作的安全装置,是为了保障电力系统运行人员的人身安全的监护装置。
电压和频率是电能质量的两个主要指标。
另外,还有波形也是指标之一。
电力系统自动装置有两种类型:自动调节装置和自动操作装置。
如何认识各类自动控制系统的相同和相异之处?第一章自动装置及其数据的采集处理第一节自动装置的组成电力系统运行的主要参数是连续的模拟量,而计算机内部参与运算的信号是离散的二进制数字信号,所以,自动装置的首要任务是数据采集和模拟信号的数字化。
一、硬件组成形式从硬件方面看,目前电力系统自动装置的结构形式主要有三种:即微型计算机系统、工业控制机系统、集散控制系统(Distributed control system——DCS)和现场总线系统(Field bus Control System——FCS)。
电力系统自动装置原理重点
总结人:张英杰电力系统自动装置原理重点·绪论1. 电能在生产、传输和分配过程中遵循着功率平衡的原则。
2. 调度控制中心对所管辖的电力系统进行监视和控制、其主要任务是合理地调度所属各发电厂的出力,制定运行方式,及时处理电力系统运行中所发生的问题,确保系统安全经济运行。
3. 电力系统自动控制的划分:①电力系统自动监视和控制;②发电厂动力机械自动控制;③电力系统自动装置;④灵活交流输电系统;⑤电力安全装置。
4.·第二章 同步发电机的自动并列1. 并列操作:将同步发电机并入电力系统参加并列运行的操作。
2. 任一母线电压瞬时值:sin()m u U t ωϕ=+ (电压幅值、频率、相角)3. 同步发电机组并列时遵循的原则:(问答)① 并列断路器合闸时,冲击电流应尽可能小,其瞬时最大值一般不应超过待并发电机额定电流的1~2倍。
② 发电机组并入电网后,应能迅速进入同步运行状态,其暂态过程要短,以减小对电力系统的扰动。
4. 同步发电机并列方法:①准同期并列;②自同期并列。
(一般采用准同期并列) 准同期并列:设待并发电机组G 已经加上励磁电流,其端电压为G U •,调节待并发电机组G U •的状态参数使之符合并列条件。
5. 并列的理想条件:6. 不满足准同期并列的后果?① 电压幅值差:冲击电流主要为无功电流分量;② 合闸相角差:当相角差较小时,这种冲击电流主要为有功电流分量;③ 频率不相等:待并发电机需经历一个很长的暂态过程才能进入同步运行状态,严重时甚至失步。
7. 自同期并列:自同期并列操作是将一台未加励磁电流的发电机组升速到接近于电网频率,滑差角频率x ω不超过允许值,且在机组的加速度小于某一给定值的条件下,首先合上并列断路器QF ,接着立即合上励磁开关SE ,给转子加上励磁电流,在发电机电动势逐渐增长的过程中,由电力系统将并列的发电机组拉入同步运行。
(不能用于两个系统间并列操作)8. 准同期并列装置的两种原理:恒定越前相角、恒定越前时间。
电力系统自动装置知识点总结
电力系统自动装置是指利用计算机技术、通信技术和自动控制技术等,对电力系统进行监测、控制和保护的装置。
它是电力系统运行的重要组成部分,具有提高电力系统安全性、可靠性和经济性的作用。
以下是电力系统自动装置的一些知识点总结:1. 监测系统:监测系统通过采集电力系统的各种参数数据,如电压、电流、功率、频率等,实时监测电力系统的运行状态。
监测系统可以采用传感器、测量仪表等设备进行数据采集,并通过通信网络将数据传输到监控中心。
2. 控制系统:控制系统根据监测系统获取的数据,对电力系统进行控制操作。
控制系统可以实现对电力系统的开关操作、调节发电机的输出功率、调节负荷的接入和脱离等功能。
控制系统可以通过遥控装置、自动开关等设备进行操作。
3. 保护系统:保护系统是电力系统自动装置中最重要的部分,它主要用于检测和切除故障电路,保护电力设备免受损坏。
保护系统可以通过电流、电压等参数的监测,判断电力系统是否存在故障,并采取相应的措施,如切除故障电路、切换备用电源等。
4. 通信系统:通信系统是电力系统自动装置的基础,它用于实现各个自动装置之间的信息传输。
通信系统可以采用有线通信或无线通信方式,如光纤通信、微波通信等。
通信系统可以实现远程监控和控制,提高电力系统的运行效率和安全性。
5. 数据处理与分析:电力系统自动装置通过采集的数据,进行数据处理和分析,以提供给运行人员参考和决策。
数据处理与分析可以包括数据存储、数据传输、数据统计、数据分析等功能,以实现对电力系统运行状态的全面监测和分析。
6. 安全与可靠性:电力系统自动装置的设计和运行必须考虑到安全和可靠性。
安全性包括对电力设备和人员的保护,可靠性包括对电力系统运行的稳定性和可靠性的保证。
电力系统自动装置需要具备故障检测和切除、备用电源切换、故障恢复等功能,以提高电力系统的安全性和可靠性。
以上是电力系统自动装置的一些知识点总结,它们是电力系统自动化技术的基础,对于电力系统的运行和管理具有重要意义。
电力系统自动装置原理
电力系统自动装置原理
电力系统自动装置是指在电力系统中,通过各种自动装置和保护设备来实现对电力系统的监测、控制和保护。
其原理是利用各种电气、电子设备和控制系统,对电力系统中的各种故障和异常情况进行监测和判断,然后采取相应的措施,以确保电力系统的安全、稳定和可靠运行。
首先,电力系统自动装置需要实时监测电力系统的各种参数,如电压、电流、频率、功率因数等。
通过各种传感器和监测装置,可以实时获取电力系统的运行状态,及时发现电力系统中的异常情况。
其次,电力系统自动装置需要对电力系统中的各种故障和异常情况进行判断和识别。
通过对监测到的各种参数进行分析,可以判断出电力系统中是否存在短路、过载、接地故障等情况,从而及时采取相应的保护措施。
然后,电力系统自动装置需要实现对电力系统的控制。
一旦发现电力系统中存在故障或异常情况,自动装置需要能够自动切除故障部分,实现对电力系统的局部或整体控制,以防止故障扩大,保证电力系统的安全运行。
最后,电力系统自动装置需要实现对电力系统的保护。
通过各种保护装置和自动开关,可以对电力系统中的各种设备和线路进行保护,确保在发生故障时能够及时切除故障部分,保护设备和线路不受损坏。
总之,电力系统自动装置的原理是通过实时监测、判断、控制和保护,对电力系统进行全面的监测和保护,以确保电力系统的安全、稳定和可靠运行。
这不仅提高了电力系统的运行效率,也保障了电力系统的安全性,对于现代化电力系统的建设和运行具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力系统自动装置原理知识点[文]
1. 电力系统自动装置的定义
电力系统自动装置是指一种通过自动化技术对电力系统进行监测、控制和保护的装置。
它能够对电力系统的电源、传输电网、电力负荷等进行监测,及时发现和处理电力系统中
出现的故障或异常情况,确保电力系统的稳定运行。
(1) 监测:对电力系统中的电源、输电线路、变电站和电力负荷等进行实时监测和数
据采集,获取电力系统的电量、电压、电流、频率等参数。
(2) 控制:通过电力系统自动装置对电力系统进行控制,如对输电线路的电压、电流、电力因数进行调节、将备用电源接入电网、调节并控制电力负荷。
(3) 保护:对电力系统中的设备和电力负荷进行保护,如对输电线路、变电站和电力
设备进行过载保护、短路保护、地闸保护等。
(1) 发电厂自动装置:发电厂自动装置主要负责发电机的控制、保护和监测等任务,
包括电机启动、电压调节、频率调节、过载保护、欠电压保护等。
(3) 输电线路自动装置:输电线路自动装置主要负责对电力系统输电线路的监测、保
护和控制,如输电线路的电流、电压、功率、电力因数调节和无功补偿等。
(1) 自动化程度高:采用电力系统自动装置能够实现电力系统的自动化控制和保护,
提高电力系统的运行效率和稳定性。
(2) 操作简便:电力系统自动装置具有易于操作和维护的特点,方便电力工程师的日
常工作和维护。
(3) 节省能源:电力系统自动装置能够对电力系统的参数进行自动化调节,合理分配
电力资源和负荷,节约电力资源和能源。
6. 总结
电力系统自动装置是一种重要的电力系统控制、保护和监测装置,能够通过自动化技
术实现电力系统的自动化控制和保护,提高电力系统的稳定性和运行效率。
电力系统自动
装置具有自动化程度高、操作简便、节省能源、提高电力系统可靠性和稳定性等优点,是
电力系统不可或缺的核心设备之一。