振动习题答案
机械振动、机械波练习题(答案)
机械振动、机械波练习题(参考答案)3. 【答案】B【解析】由单摆周期公式知,T 1=2πL 1g =0.6π s ,T 2=2π L 2g =π s ,摆球从左到右的时间为t =T 1+T 24=0.4π s 。
4. 【答案】 BD5. 【答案】A6. 【答案】AC9. 【答案】AB10.【答案】C11.【答案】A【解析】 由题意得知,该波的周期为T=4s ,则波长λ=vT=1×4m=4mA 、ac 间距离等于一个波长,则波由a 传到c 的时间为4s ,c 起振方向向上,则在4秒<t <5秒这段时间内,c 点从平衡位置向上运动,加速度逐渐增大.故A 正确.B 、由于周期为4s ,所以在4秒<t <5秒这段时间内,质点a 从平衡位置向上运动,速度逐渐减小.故B 错误.C 、ad 间距离等于3/4 波长,则波由a 传到d 的时间为3s ,d 起振方向向上,则在4秒<t <5秒这段时间内,d 点从波峰向平衡位置运动,即向下运动.故C 错误.D 、af 间距离等于1.25个波长,波传到f 点需要5s 时间,所以在4秒<t <5秒这段时间内,f 还没有振动.故D 错误.12.【答案】ABE【解析】两列波相遇后不改变波的性质,所以振幅不变,振幅仍然为2cm ,A 正确;由图知波长λ=0.4m ,由v =λT 得,波的周期为T =λv =1s ,两质点传到M 的时间为34T ,当t =1s 时刻,两波的波谷恰好传到质点M ,所以位移为-4cm ,B 正确,C 错误;质点不随波迁移,只在各自的平衡位置附近振动,所以质点P 、Q 都不会运动到M 点,C 错误;由波的传播方向根据波形平移法可判断出质点的振动方向:两列简谐横波分别沿x 轴正方向和负方向传播,则质点P 、Q 均沿y 轴负方向运动,故E 正确。
13.【答案】AB【解析】图示时质点a 处是波峰与波谷相遇,两列波引起的位移正负叠加的结果是总位移为零,A 正确,质点b 是波峰与波峰相遇,c 点是波谷与波谷相遇,振动都增强,振幅最大,振幅是一列波振幅的两倍,振动最强 ,B 正确。
11.振动 大学物理习题答案
由上述方程可解得:
( 2)
k 2 m J / R2 , T 2 k m J / R2 mg k mg , 。 x cos( t ) k k m J / R2
( 3) t 0 , v 0 0 , A x 0
11-4 一质量为 m 的小球在一个光滑的半径为 R 的球形碗底作微小振动, 如图 11-4 所示。 设 t=0 时, =0, 小球的速度为 v0,并向右运动。求在振幅很小的情况下,小球的运动方程。 解:在切向应用牛顿定律
- -
11-6 质量为 0.01kg 的物体,以振幅 1.010 2m 作简谐运动,其最大加速度为 4.0m·s 2。求: (1)振动的周 期; (2)物体通过平衡位置时的总能量和动能; (3)当物体的位移大小为振幅的一半时,动能和势能 各占总能量的多少? 解: (1) a m A ,
2 2 , , x 0.12 cos( t ) 3 T 2 3 dx dv ( 2) v 0.12 sin( t ) , a 0.12 2 cos( t ) dt 3 dt 3
t 0.5 s , x 0.1039 m , v 0.1885 m/s , a 1.03 m/s 2
大学物理练习册—振动
11-1 一物体作简谐运动的曲线如图 11-1 所示,试求其运动方程。 解:设振动方程为 x A cos( t ) , A 4 10 由旋转矢量法知 ,
2
x /cm 4 O
2 2
m
3 4
/4 , 0.5 2
0.5
t /s
mg 。 k
m 图 11-3
分别取重物、滑轮和弹簧为研究对象,则有
振动习题答案
振动习题答案振动习题答案振动是物体在固定轴线附近做往复运动的现象。
它在我们的日常生活中随处可见,比如钟摆的摆动、弹簧的振动等等。
振动习题是学习振动理论的重要一环,通过解答习题可以加深对振动原理的理解和应用。
下面是一些常见的振动习题及其答案,希望对大家的学习有所帮助。
1. 一个质点沿直线做简谐振动,振幅为2cm,周期为4s,求该质点的速度和加速度。
解答:简谐振动的速度和加速度与位置的关系可以通过振动的位移方程得到。
位移方程为:x = A * sin(ωt + φ),其中A为振幅,ω为角频率,t为时间,φ为初相位。
根据周期和角频率的关系,可知ω = 2π / T,其中T为周期。
根据题目中的数据,振幅A = 2cm,周期T = 4s。
代入上述公式可得ω = 2π /4 = π / 2。
因此,位移方程可写为:x = 2 * sin(π/2 * t + φ)。
速度v = dx / dt,加速度a = dv / dt。
对位移方程求一次导数得到速度和加速度的表达式:v = d(2 * sin(π/2 * t + φ)) / dt = 2 * (π/2) * cos(π/2 * t + φ) = π * cos(π/2 * t + φ),a = d(π * cos(π/2 * t + φ)) / dt = - (π/2)^2 * sin(π/2 * t + φ) = - (π^2 / 4) *sin(π/2 * t + φ)。
2. 一个弹簧的振动周期为2s,振幅为5cm,求该弹簧的角频率和振动频率。
解答:角频率ω = 2π / T,振动频率f = 1 / T,其中T为周期。
根据题目中的数据,周期T = 2s。
代入上述公式可得角频率ω = 2π / 2 = π,振动频率f = 1 / 2 = 0.5Hz。
3. 一个质点的振动方程为x = 3sin(2πt + π/4),求该质点的振幅、周期、角频率、初相位、速度和加速度。
大学物理-机械振动习题-含答案
大学物理-机械振动习题-含答案一、选择题1. 质点作简谐振动,距平衡位置 2。
0cm 时, ,则该质点从一端运动到 C )C:2.2s --- 加速度 a=4.0cm /s 另一端的时间为( A:1.2s B: 2.4sD:4.4sX ,22.2s.2上 2 42 •—个弹簧振子振幅为2 10 2m 当t 0时振子在x 1.0 10 2m 处,且向 正方向运动,则振子的振动方 程是:[A ]A : 1.2题图22 10 cos( t )m ;3’6)m; 3)m;2 10 2 cos( t2 10 2 cos( tD :2x 2 10 cos( t —)m;解:由旋转矢量可 以得出振动的出现初相为:?3 •用余弦函数描述一简谐振动,若其速度与时间 -1v (m.s )1.3题图t (s )—►o 1 —v 2 m vm如图示,则振动的初相位为: (v —t )关系曲线[A ]A: e ; B : 3 ; C : 2 ;D : 2- ;E :「3丁6解:振动速度为:V V max Si n( t 0)t 0时,sin 01,所以。
-或。
2 6由知1.3图,t 0时,速度的大小是在增加,由旋转矢量图知,旋转矢量在 第一象限内,对应质点的运动是由正最大 位移向平衡位置运动,速度是逐渐增加的, 旋转矢量在第二象限内,对应质点的运动 是由平衡位置向负最大位移运动,速度是 逐渐减小的,所以只有。
-是符合条件的。
64 •某人欲测钟摆摆长,将钟摆摆锤上移 1毫 米,测得此钟每分快0。
1秒,则此钟摆的 ) B:30cm C:45cm丄理丁 160mm 30cm2 dT 2 ( 0.1):、填空题1 •有一放置在水平 面上的弹簧振子。
振幅A = 2.0 X 0_2m 周期摆长为( A:15cm D:60cm 解:单摆周期 有: 他2 . g,两侧分别对「和l 求导,j*T = 0.50s ,根据所给初始条件,作出简谐振动的矢量图,并写出振动方程式或初位相。
机械振动现象练习题(含答案)
机械振动现象练习题(含答案)1. 一个弹簧常数为3000 N/m, 质量为0.2 kg的物体,在弹簧下端受到一个向下的力2 sin(10t) N,其中t为时间(秒)。
求物体的振动方程。
根据牛顿第二定律,可以得到物体的振动方程为:m * x'' + k * x = F(t)其中,m是物体的质量,x是物体的位移,x''是位移对时间的二阶导数,k是弹簧的常数,F(t)是作用在物体上的外力。
根据题目中给出的数据,代入上述公式,我们可以得到:0.2 * x'' + 3000 * x = 2 sin(10t)这就是物体的振动方程。
2. 一个质点在受到一个力F(t) = 0.1 cos(3t) N的作用下进行振动,已知质点的质量为0.5 kg。
求质点的角频率和振动周期。
根据振动方程的形式,我们可以知道物体的振动频率和周期与力的形式有关。
在这个题目中,我们可以看出力的形式为cos(3t),它是一个正弦函数。
如果将cos(3t)函数展开,我们可以得到下面的表达式:F(t) = a cos(wt)其中,a是振幅,w是角频率。
根据题目中给出的数据,我们可以得到:a = 0.1 N,w = 3 rad/s由于振动的频率与角频率之间是有关联的,振动的周期T可以表示为:T = 2π/w代入上述数据,我们可以得到:T = 2π/3 s这就是质点的振动周期。
3. 一个质点质量为0.3 kg,在一竖直方向上的弹簧中振动,弹簧的劲度系数为2000 N/m。
当质点受到一个外力F(t) = 0.5 cos(5t) N时,求质点的振动方程。
根据题目中给出的数据,我们可以得到:m = 0.3 kg,k = 2000 N/m,F(t) = 0.5 cos(5t)代入振动方程的一般形式,我们可以得到:0.3 * x'' + 2000 * x = 0.5 cos(5t)这就是质点的振动方程。
《振动力学》习题集(附答案解析)
(1)保持水平位置:
(2)微幅转动:
故:
2.10求图T 2-10所示系统的固有频率,刚性杆的质量忽略不计。
图 T 2-10答案图 T 2-10
解:
m的位置:
, ,
,
,
2.11 图T 2-11所示是一个倒置的摆。摆球质量为m,刚杆质量可忽略,每个弹簧的刚度为 。
(1)求倒摆作微幅振动时的固有频率;
(3)
故:
由(3)得:
2.5在图E2.3所示系统中,已知m,c,k, 和 ,且t=0时, , ,求系统响应。验证系统响应为对初值的响应和零初值下对激励力响应的叠加。
图E2.3
解:
,
求出C,D后,代入上面第一个方程即可得。
2.7 由一对带偏心质量的等速反向旋转齿轮构成的振动机械安装在弹簧和阻尼器构成的支承上,如图E2.7所示。当齿轮转动角速度为 时,偏心质量惯性力在垂直方向大小为 。已知偏心重W= 125.5N,偏心距e=15.0cm,支承弹簧总刚度系数k= 967.7N/cm,测得垂直方向共振振幅 ,远离共振时垂直振幅趋近常值 。求支承阻尼器的阻尼比及在 运行时机器的垂直振幅。
,当 时
重复n次得到:
,等号两边左乘
故:
,等号两边左乘
,当 时
即 ,当 时
重复运算:
,当 时
重复n次。
2.10图T 4-11所示的均匀刚性杆质量为m1,求系统的频率方程。
图 T 4-11
解:
先求刚度矩阵。
令 , ,得:
令 , ,得:
答
则刚度矩阵为:
再求质量矩阵。
令 , ,得:
,
令 , ,得:
,
则质量矩阵为:
(2)摆球质量m为0.9 kg时,测得频率 为1.5 Hz,m为1.8 kg时,测得频率为0.75 Hz,问摆球质量为多少千克时恰使系统处于不稳定平衡状态?
大学物理振动习题含答案
一、选择题:1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。
若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π (B) π/2 (C) 0 (D) θ [ ]2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。
第一个质点的振动方程为x 1 = A cos(ωt + α)。
当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。
则第二个质点的振动方程为:(A))π21cos(2++=αωt A x (B) )π21cos(2-+=αωt A x (C))π23cos(2-+=αωt A x (D) )cos(2π++=αωt A x [ ]3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。
若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是(A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 [ ]4.3396:一质点作简谐振动。
其运动速度与时间的曲线如图所示。
若质点的振动规律用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 [ ]5.3552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。
将它们拿到月球上去,相应的周期分别为1T '和2T '。
则有(A) 11T T >'且22T T >' (B) 11T T <'且22T T <'(C) 11T T ='且22T T =' (D) 11T T ='且22T T >' [ ] 6.5178:一质点沿x 轴作简谐振动,振动方程为)312cos(1042π+π⨯=-t x (SI)。
大学物理振动习题含答案
一、选择题:1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。
若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π (B) π/2 (C) 0 (D) θ [ ]2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。
第一个质点的振动方程为x 1 = A cos(ωt + α)。
当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。
则第二个质点的振动方程为:(A))π21cos(2++=αωt A x (B) )π21cos(2-+=αωt A x (C))π23cos(2-+=αωt A x (D) )cos(2π++=αωt A x [ ]3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。
若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是(A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 [ ]4.3396:一质点作简谐振动。
其运动速度与时间的曲线如图所示。
若质点的振动规律用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 [ ]5.3552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。
将它们拿到月球上去,相应的周期分别为1T '和2T '。
则有(A) 11T T >'且22T T >' (B) 11T T <'且22T T <'(C) 11T T ='且22T T =' (D) 11T T ='且22T T >' [ ] 6.5178:一质点沿x 轴作简谐振动,振动方程为)312cos(1042π+π⨯=-t x (SI)。
大学物理第九章振动学基础习题答案
第九章 振动学习题9-1 一小球与轻弹簧组成的振动系统,按(m) 3ππ8cos 05.0⎪⎭⎫ ⎝⎛+=t x ,的规律做自由振动,试求(1)振动的角频率、周期、振幅、初相、速度最大值和加速度最大值;(2)t=1s ,2s ,10s 等时刻的相位;(3)分别画出位移、速度和加速度随时间变化的关系曲线。
解:(1)ω=8πs -1,T=2π/ω=0.25s ,A=0.05m ,ϕ0=π/3,m A ω=v ,2m a A ω=(2)π=8π3t φ+ (3)略9-2 一远洋货轮质量为m ,浮在水面时其水平截面积为S 。
设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力。
(1)证明货轮在水中做振幅较小的竖直自由运动是谐振动;(2)求振动周期。
解:(1)船处于静止状态时gSh mg ρ=,船振动的一瞬间()F gS h y mg ρ=-++ 得F gSy ρ=-,令k gS ρ=,即F ky =-,货轮竖直自由运动是谐振动。
(2)ω==,2π2T ω==9-3 设地球是一个密度为ρ的均匀球体。
现假定沿直径凿通一条隧道,一质点在隧道内做无摩擦运动。
(1)证明此质点的运动是谐振动;(2)计算其振动周期。
解:以球心为原点建立坐标轴Ox 。
质点距球心x 时所受力为324433x mF G G mx x πρπρ=-=-令43k G m πρ=,则有F kx =-,即质点做谐振动。
(2)ω==2πT ω== 9-4 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T s 。
当t =0时,(1)物体在正方向端点;(2)物体在平衡位置,向负方向运动;(3)物体在x ×10-2m 处,向负方向运动;(4)物体在x =-×10-2 m 处,向正方向运动。
求以上各种情况的振动方程。
解:ω=2π/T=4πs -1(1)ϕ0=0,0.02cos4(m)x t π=(2)ϕ0=π/2,0.02cos 4(m)2x t ππ⎛⎫=+ ⎪⎝⎭(3)ϕ0=π/3,0.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭(4)ϕ0=4π/3,40.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭9-5 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ×10-2 m 。
大学物理机械振动习题附答案要点
一、选择题:1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。
若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π (B) π/2 (C) 0 (D) θ [ ]2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。
第一个质点的振动方程为x 1 = A cos(ωt + α)。
当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。
则第二个质点的振动方程为:(A))π21cos(2++=αωt A x (B) )π21cos(2-+=αωt A x (C))π23cos(2-+=αωt A x (D) )cos(2π++=αωt A x [ ]3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。
若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是(A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 [ ]4.3396:一质点作简谐振动。
其运动速度与时间的曲线如图所示。
若质点的振动规律用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 v 与a5.3552期分别为T 1和T 2。
将它们拿到月球上去,相应的周期分别为1T '和2T '。
则有(A) 11T T >'且22T T >' (B) 11T T <'且22T T <'(C) 11T T ='且22T T =' (D) 11T T ='且22T T >'[ ] 6.5178:一质点沿x 轴作简谐振动,振动方程为)312cos(1042π+π⨯=-t x (SI)。
从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为(A) s 81 (B) s 61 (C) s 41 (D) s 31 (E)[ ]7.5179:一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动。
(完整版)大学机械振动课后习题和答案(1~4章总汇)
1.1 试举出振动设计、系统识别和环境预测的实例。
1.2 如果把双轴汽车的质量分别离散到前、后轴上去,在考虑悬架质量和非悬架质量两个离散质量的情况下,画出前轴或后轴垂直振动的振动模型简图,并指出在这种化简情况下,汽车振动有几个自由度?1.3 设有两个刚度分别为1k ,2k 的线性弹簧如图T —1.3所示,试证明:1)它们并联时的总刚度eq k 为:21k k k eq +=2)它们串联时的总刚度eq k 满足:21111k k k eq +=解:1)对系统施加力P ,则两个弹簧的变形相同为x ,但受力不同,分别为:1122P k xP k x=⎧⎨=⎩由力的平衡有:1212()P P P k k x =+=+故等效刚度为:12eq Pk k k x ==+2)对系统施加力P ,则两个弹簧的变形为: 1122Px k Px k ⎧=⎪⎪⎨⎪=⎪⎩,弹簧的总变形为:121211()x x x P k k =+=+故等效刚度为:122112111eq k k P k x k k k k ===++1.4 求图所示扭转系统的总刚度。
两个串联的轴的扭转刚度分别为1t k ,2t k 。
解:对系统施加扭矩T ,则两轴的转角为: 1122t t Tk T k θθ⎧=⎪⎪⎨⎪=⎪⎩系统的总转角为:121211()t t T k k θθθ=+=+,12111()eq t t k T k k θ==+故等效刚度为:12111eq t t k k k =+1.5 两只减振器的粘性阻尼系数分别为1c ,2c ,试计算总粘性阻尼系数eq c1)在两只减振器并联时,2)在两只减振器串联时。
解:1)对系统施加力P ,则两个减振器的速度同为x &,受力分别为:1122P c x P c x =⎧⎨=⎩&& 由力的平衡有:1212()P P P c c x =+=+&故等效刚度为:12eq P c c c x ==+& 2)对系统施加力P ,则两个减振器的速度为: 1122P x c P x c ⎧=⎪⎪⎨⎪=⎪⎩&&,系统的总速度为:121211()x x x P c c =+=+&&& 故等效刚度为:1211eq P c x c c ==+&1.6 一简谐运动,振幅为0.5cm,周期为0.15s,求最大速度和加速度。
振动、波动练习题及答案
振动、波动练习题一.选择题1.一质点在X 轴上作简谐振动,振幅A=4cm。
周期T=2s。
其平衡位置取作坐标原点。
若t=0 时刻质点第一次通过x= -2cm 处,且向X 轴负方向运动,则质点第二次通过x= -2cm 处的时刻为()。
A 1sB 2sC 4sD 2s332.一圆频率为ω的简谐波沿X 轴的正方向传播,t=0 时刻的波形如图所示,则t=0 的波形t=0 时刻,X 轴上各点的振动速度υ与X轴上坐标的关系图应()3.图示一简谐波在 t=0 时刻的波形图,波速υ =200m/s ,则图中O 点的振动加速度的表达式为()2A a 0.4 2 cos( t ) 2 23B a 0.4 2 cos( t )22C a 0.4 2cos(2 t ) 4.频率为 100Hz ,传播速度为 300m/s 的平面简谐波,波线上两 点振动的相位差为 3 ,则这两点相距( )A 2mB 2.19mC 0.5mD 28.6m5.一平面简谐波在弹性媒质中传播,媒质质元从平衡位置运动到最大位置处的过程中, ( )。
A 它的动能转换成势能B它的势能转换成动C 它从相邻的一段质元获得能量其能量逐渐增大Da20.4 2 cos(2 t2)υ (m/s)Bυ (m/s)DX(m)D 它把自己的能量传给相邻的一段质元,其能量逐渐减小6.在下面几种说法中,正确的说法是:()。
A 波源不动时,波源的振动周期与波动的周期在数值上是不同的B 波源振动的速度与波速相同C 在波传播方向上的任一质点振动位相总是比波源的位相滞后D 在波传播方向上的任一质点振动位相总是比波源的位相超前7.一质点作简谐振动,周期为T,当它由平衡位置向X 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为()。
A TBTCTDT4 12 6 88.在波长为λ的驻波中两个相邻波节之间的距离为()。
A λB 3 λ/4C λ/2D λ /49.在同一媒质中两列相干的平面简谐波的强度之比I1I 4是,则两列波的振幅之比是:()A A1 4 BA1 2 CA1 16 DA11A2 A2 A2 A2 410.有二个弹簧振子系统,都在作振幅相同的简谐振动,二个轻质弹簧的劲度系数K 相同,但振子的质量不同。
燕山大学振动理论习题答案
k123
k1k23 k1 k23
2k 3
k1234
k123k4 k123 k4
1k 2
(1) mg
k1234 x0 , x0
2mg k
(2)
xt
x0
cosnt
,
xm a x
2x0
4mg k
2-7 图 2-7 所示系统,质量为 m2 的均质圆盘在水平面上作无滑动的滚动,鼓轮 绕轴的转动惯量为 I,忽略绳子的弹性、质量及各轴承间的摩擦力。试求此系统 的固有频率。
2π l a
h 3g
2-3 一半圆薄壁筒,平均半径为 R, 置于粗糙平面上做微幅摆动,如图 2-3 所示。 试求
其摆动的固有频率。
图 2-3
图 2-4
2-4 如图 2-4 所示,一质量 m 连接在一刚性杆上,杆的质量忽略不计,试求下 列情况
系统作垂直振动的固有频率: (1)振动过程中杆被约束保持水平位置; (2)杆可以在铅垂平面内微幅转动; (3)比较上述两种情况中哪种的固有频率较高,并说明理由。
n
ke m
2-5 试求图 2-5 所示系统中均质刚性杆 AB 在 A 点的等效质量。已知杆的质量为 m,A
端弹簧的刚度为 k。并问铰链支座 C 放在何处时使系统的固有频率最高?
图 2-5
图 2-6
2-6 在图 2-6 所示的系统中,四个弹簧均未受力。已知 m=50kg,k1 9800 N m , k2 k3 4900 N m , k4 19600 N m 。试问: (1)若将支撑缓慢撤去,质量块将下落多少距离?
E P02
2
k (1 2 )2 (2)2
证明
E T c2B2 cos(t )dt cB2 0
(完整版)大学物理振动习题含答案
一、选择题:1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。
若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π (B) π/2 (C) 0 (D) θ [ ]2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。
第一个质点的振动方程为x 1 = A cos(ωt + α)。
当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。
则第二个质点的振动方程为:(A))π21cos(2++=αωt A x (B) )π21cos(2-+=αωt A x (C))π23cos(2-+=αωt A x (D) )cos(2π++=αωt A x [ ]3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。
若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是(A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 [ ]4.3396:一质点作简谐振动。
其运动速度与时间的曲线如图所示。
若质点的振动规律用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 [ ]5.3552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。
将它们拿到月球上去,相应的周期分别为1T '和2T '。
则有(A) 11T T >'且22T T >' (B) 11T T <'且22T T <'(C) 11T T ='且22T T =' (D) 11T T ='且22T T >' [ ] 6.5178:一质点沿x 轴作简谐振动,振动方程为)312cos(1042π+π⨯=-t x (SI)。
大学物理-机械振动习题思考题及答案15页word文档
习题7-1. 原长为m 5.0的弹簧,上端固定,下端挂一质量为kg 1.0的物体,当物体静止时,弹簧长为m 6.0.现将物体上推,使弹簧缩回到原长,然后放手,以放手时开始计时,取竖直向下为正向,写出振动式。
(g 取9.8)解:振动方程:cos()x A t ωϕ=+,在本题中,kx mg =,所以9.8k =;ω=== 振幅是物体离开平衡位置的最大距离,当弹簧升长为0.1m 时为物体的平衡位置,以向下为正方向。
所以如果使弹簧的初状态为原长,那么:A=0.1,当t=0时,x=-A ,那么就可以知道物体的初相位为π。
所以:0.1cos x π=+) 即)x =-7-2. 有一单摆,摆长m 0.1=l ,小球质量g 10=m .0=t 时,小球正好经过rad 06.0-=θ处,并以角速度rad/s 2.0=•θ向平衡位置运动。
设小球的运动可看作简谐振动,试求:(g 取9.8)(1)角频率、频率、周期;(2)用余弦函数形式写出小球的振动式。
解:振动方程:cos()x A t ωϕ=+ 我们只要按照题意找到对应的各项就行了。
(1)角频率: 3.13/rad s ω===,频率:0.5Hz ν=== ,周期:22T s π=== (2)根据初始条件:A θϕ=0cos可解得:32.2088.0-==ϕ,A所以得到振动方程:0.088cos 3.13 2.32t θ=-()7-3. 一竖直悬挂的弹簧下端挂一物体,最初用手将物体在弹簧原长处托住,然后放手,此系统便上下振动起来,已知物体最低位置是初始位置下方cm 0.10处,求:(1)振动频率;(2)物体在初始位置下方cm 0.8处的速度大小。
解:(1)由题知 2A=10cm ,所以A=5cm ;1961058.92=⨯=∆=-x g m K 又ω=14196==m k ,即 (2)物体在初始位置下方cm 0.8处,对应着是x=3cm 的位置,所以:03cos 5x A ϕ== 那么此时的04sin 5v A ϕω=-=± 那么速度的大小为40.565v A ω== 7-4. 一质点沿x 轴作简谐振动,振幅为cm 12,周期为s 2。
振动习题答案
x ω
(a)
x0 1 (a) 解: t = 0时,cos A 2 ∵ t 稍大于零时,x增大,且ω逆时针方向
4 3
4 3
3 2
x0 = –1
x
A=2 t=0
ω
t = 1s
3 4 ∴ 2 3 6
4 ∴ 3 ∵ t = 1s时,x第一次为零 4 3 此时的相位 3 2
10 A 2( cm ) 5
3 x 2 cos(5t )cm 2
3.93m s 1
P.41. 5. 劲度为K1的轻弹簧与劲度为K2的弹簧如图 连接, 在K2 的下端挂一质量为m的物体, (1) 证明当 m在竖直方向发生微小位移后, 系统作谐振动。 (2) 将m从静止位置向上移动a, 然后释放任其运动 写出振动方程(取物体开始运动为计时起点, X轴向 下为正方向) (1) 证明:
得
k1
k1 l1 k2l2
k1
k1 l1
2k1 k 2 mg k l 2k1 k 2
k
kl
取静平衡位置为坐标原点向下 为x轴正向,则物在x处时受合力
k2l2
k2
等效
m
mg
m
mg
F mg k (l x ) kx
即 F kx 可见物体所受合力为线性回复力
所以系统做简谐振动
平衡时有 2 k1 l1 k 2 l 2 mg 得 l mg l mg 1 2 2k1 k2 等效弹簧伸长量 2k1 k 2 l l1 l 2 mg 2k1 k 2
k1
k1 l1 k2l2
k1
k1 l1
k
kl
6.机械振动 习题及答案
一、选择题1、一质点作简谐振动,其运动速度与时间得曲线如图所示,若质点得振动按余弦函数描述,则其初相为[D](A ) (B)(C)(D) (E)2、已知一质点沿y轴作简谐振动,如图所示。
其振动方程为,与之对应得振动曲线为[ B ]3、一质点作简谐振动,振幅为,周期为,则质点从平衡位置运动到离最大振幅处需最短时间为[B](A) (B) (C) (D)4、如图所示,在一竖直悬挂得弹簧下系一质量为得物体,再用此弹簧改系一质量为得物体,最后将此弹簧截断为两个弹簧后并联悬挂质量为得物体,此三个系统振动周期之比为(A) (B) [C](C) (D)5、一质点在轴上作简谐振动,振幅,周期,其平衡位置取坐标原点、若时刻质点第一次通过处,且向轴负方向运动,则质点第二次通过处得时刻为(A) (B) (C) (D) [B]6、一长度为,劲度系数为得均匀轻弹簧分割成长度分别为得两部分,且,则相应得劲度系数,为[ C ](A) (B)(C) (D)7、对一个作简谐振动得物体,下面哪种说法就是正确得? [ C](A)物体处在运动正方向得端点时,速度与加速度都达到最大值;(B)物体位于平衡位置且向负方向运动时,速度与加速度都为零;(C)物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(D)物体处于负方向得端点时,速度最大,加速度为零。
8、一个质点作简谐振动,振幅为A,在起始时刻质点得位移为,且向x轴得正方向运动,代表此简谐振动得旋转矢量图为[B]9、弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作得功为(A) kA2. (B) 、(C)(1/4)kA2. (D) 0. [D]10、图中所画得就是两个简谐振动得振动曲线、若这两个简谐振动可叠加,则合成得余弦振动得初相为[C](A) .(B) .(C) .(D) 0、二、填空题1决定、对于给定得谐振动系统,其振幅、初相由2、一个弹簧振子,第一次用力把弹簧压缩x后开始振动,第二次把弹簧压缩2x 后开始振动,则两次振动得周期之比为1:4。
振动理论习题答案汇总
《振动力学》——习题第二章 单自由度系统的自由振动2-1 如图2-1 所示,重物1W 悬挂在刚度为k 的弹簧上并处于静止平衡位置,另一重物2W 从高度为h 处自由下落到1W 上且无弹跳。
试求2W 下降的最大距离和两物体碰撞后的运动规律。
解:222221v gW h W =,gh v 22=动量守恒:122122v gW W v g W +=,gh W W W v 221212+=平衡位置:11kx W =,kW x 11=1221kx W W =+,kW W x 2112+=故:kW x x x 21120=-= ()2121W W kgg W W k n +=+=ω故:tv t x txt x x n nn n nn ωωωωωωsin cos sin cos 12000+-=+-=xx 0x 1x 12平衡位置2-2 一均质等直杆,长为l ,重量为w ,用两根长h 的相同的铅垂线悬挂成水平位置,如图2-2所示。
试写出此杆绕通过重心的铅垂轴做微摆动的振动微分方程,并求出振动固有周期。
解:给杆一个微转角θ2aθ=h α2F =mg由动量矩定理:ah a mg a mg Fa M ml I M I 822cos sin 12122-=-≈⋅-====αθαθ其中12cossin ≈≈θααh l ga p ha mg ml n 22222304121==⋅+θθ g h a l ga h l p T n 3π23π2π222===2-3 一半圆薄壁筒,平均半径为R , 置于粗糙平面上做微幅摆动,如图2-3所示。
试求其摆动的固有频率。
图2-3 图2-42-4 如图2-4 所示,一质量m连接在一刚性杆上,杆的质量忽略不计,试求下列情况系统作垂直振动的固有频率:(1)振动过程中杆被约束保持水平位置;(2)杆可以在铅垂平面内微幅转动;(3)比较上述两种情况中哪种的固有频率较高,并说明理由。
图T 2-9 答案图T 2-9解:(1)保持水平位置:m kk n 21+=ω(2)微幅转动:mglllF2112+=mgl1l2xx2xx'mglll2121+=k2k1ml1l2()()()()()()()()()mgk k l l k l k l mgk k l l k l l k l l l k l mg k k l l k l k l l l l k l l mg l mgk l l l k l l l l l l k l l mg l l l l x x k F x x x 2122122212121221221121212221212211211121212122211211121221112111 ++=+-++=+-⋅+++=⎥⎦⎤⎢⎣⎡+-++++=+-+='+=故:()22212121221k l k l k k l l k e++=mk en =ω 2-5 试求图2-5所示系统中均质刚性杆AB 在A 点的等效质量。
《大学物理》振动练习题及答案解析
《大学物理》振动练习题及答案解析一、简答题1、如果把一弹簧振子和一单摆拿到月球上去,它们的振动周期将如何改变? 答案:弹簧振子的振动周期不变,单摆的振动周期变大。
2、完全弹性小球在硬地面上的跳动是不是简谐振动,为什么?答案:不是,因为小球在硬地面上跳动的运动学方程不能用简单的正弦或余弦函数表示,它是一种比较复杂的振动形式。
3、简述符合什么规律的运动是简谐运动答案:当质点离开平衡位置的位移`x`随时间`t`变化的规律,遵从余弦函数或正弦函数()ϕω+=t A x cos 时,该质点的运动便是简谐振动。
或:位移x 与加速度a 的关系为正比反向关系。
4、怎样判定一个振动是否简谐振动?写出简谐振动的运动学方程和动力学方程。
答案:物体在回复力作用下,在平衡位置附近,做周期性的线性往复振动,其动力学方程中加速度与位移成正比,且方向相反:x dtxd 222ω-=或:运动方程中位移与时间满足余弦周期关系:)cos(φω+=t A x 5、分别从运动学和动力学两个方面说明什么是简谐振动?答案:运动学方面:运动方程中位移与时间满足正弦或余弦函数关系)cos(φω+=t A x 动力学方面:物体在线性回复力作用下在平衡位置做周期性往复运动,其动力学方程满足 6、简谐运动的三要素是什么? 答案: 振幅、周期、初相位。
7、弹簧振子所做的简谐振动的周期与什么物理量有关?答案: 仅与振动系统的本身物理性质:振子质量m 和弹簧弹性系数k 有关。
8、如果弹簧的质量不像轻弹簧那样可以忽略,那么该弹簧的周期与轻弹簧的周期相比,是否有变化,试定性说明之。
答案:该振子周期会变大,作用在物体上的力要小于单纯由弹簧形变而产生的力,因为单纯由形变而产生的弹力中有一部分是用于使弹簧产生加速度的,所以总体的效果相当于物体质量不变,但弹簧劲度系数减小,因此周期会变大。
9、伽利略曾提出和解决了这样一个问题:一根线挂在又高又暗的城堡中,看不见它的上端而只能看见其下端,那么如何测量此线的长度?答案:在线下端挂一质量远大于线的物体,拉开一小角度,让其自由振动,测出周期T ,便可依据单摆周期公式glT π2=计算摆长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《振动力学》——习题第二章 单自由度系统的自由振动2-1 如图2-1 所示,重物1W 悬挂在刚度为k 的弹簧上并处于静止平衡位置,另一重物2W 从高度为h 处自由下落到1W 上且无弹跳。
试求2W 下降的最大距离和两物体碰撞后的运动规律。
解:222221v gW h W =,gh v 22=动量守恒:122122v gW W v g W +=,gh W W W v 221212+=平衡位置:11kx W =,kW x 11=1221kx W W =+,kW W x 2112+=故:kW x x x 21120=-= ()2121W W kgg W W k n +=+=ω故:tv t x txt x x n nn n nn ωωωωωωsin cos sin cos 12000+-=+-=xx 0x 1x 12平衡位置2-2 一均质等直杆,长为l ,重量为w ,用两根长h 的相同的铅垂线悬挂成水平位置,如图2-2所示。
试写出此杆绕通过重心的铅垂轴做微摆动的振动微分方程,并求出振动固有周期。
解:给杆一个微转角q2aq =ha2F =mg由动量矩定理:ah a mg a mg Fa M ml I M I 822cos sin 12122-=-≈⋅-====αθαθ其中12cossin ≈≈θααh l ga p ha mg ml n 22222304121==⋅+θθ g h a l ga h l p T n 3π23π2π222===2-3 一半圆薄壁筒,平均半径为R , 置于粗糙平面上做微幅摆动,如图2-3所示。
试求其摆动的固有频率。
图2-3 图2-42-4 如图2-4 所示,一质量m连接在一刚性杆上,杆的质量忽略不计,试求下列情况系统作垂直振动的固有频率:(1)振动过程中杆被约束保持水平位置;(2)杆可以在铅垂平面内微幅转动;(3)比较上述两种情况中哪种的固有频率较高,并说明理由。
图 T 2-9 答案图 T 2-9解:(1)保持水平位置:m kk n 21+=ω(2)微幅转动:mglllF2112+=mgl1l2xx2xx'mglll2121+=k2k1ml1l2()()()()()()()()()mg k k l l k l k l mg k k l l k l l k l l l k l mgk k l l kl k l l l l k l l mg l mgk l l l k l l l l l l k l l mg l l l l x x k F x x x 2122122212121221221121212221212211211121212122211211121221112111 ++=+-++=+-⋅+++=⎥⎦⎤⎢⎣⎡+-++++=+-+='+= 故:()22212121221k l k l k k l l k e++=mk en =ω 2-5 试求图2-5所示系统中均质刚性杆AB 在A 点的等效质量。
已知杆的质量为m ,A端弹簧的刚度为k 。
并问铰链支座C 放在何处时使系统的固有频率最高?图2-5 图2-62-6 在图2-6所示的系统中,四个弹簧均未受力。
已知m =50kg ,19800N m k =,234900N m k k ==,419600N m k =。
试问:(1)若将支撑缓慢撤去,质量块将下落多少距离? (2)若将支撑突然撤去,质量块又将下落多少距离?{2.17} 图T 2-17所示的系统中,四个弹簧均未受力,k 1= k 2= k 3= k 4= k ,试问: (1)若将支承缓慢撤去,质量块将下落多少距离? (2)若将支承突然撤去,质量块又将下落多少距离?图 T 2-17解:kk kk k k k k k k k k k k k k 213224123412312342312311233223=+==+==+=(1)01234x k mg =,kmgx 20=(2)()t x t x n ωcos 0=,kmgx x 420max == 2-7 图2-7所示系统,质量为m 2的均质圆盘在水平面上作无滑动的滚动,鼓轮绕轴的转动惯量为I ,忽略绳子的弹性、质量及各轴承间的摩擦力。
试求此系统的固有频率。
图2-7解:系统动能为:k 1k 2k 3k 4m222221222222221212321 2121212121x m x m R I m r x r m x m R x I x m T e =⎪⎪⎭⎫ ⎝⎛++=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+=系统动能为:2222211222112221 21 2121x k x R R k k x R R k x k V e =⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+=根据:max max V T =,max max x xn ω= 2221222112223m R I m R R k k n +++=ω 2-8 如图2-8所示的系统中,钢杆质量不计,建立系统的运动微分方程,并求临界阻尼系数及阻尼固有频率。
图2-8解:0=⋅+⋅+⋅b b k a a c l l m θθθ 0222=++θθθkb ca ml mkl b ml kb n ==22ω n ml ca ξω222=,kmmlb ca ml ca n 22222==ωξ 42222222422421411a c b kml mlk m b l m a c m k l b n d -=⋅-=-=ξωω 由mk ablc 221=⇒=γξ 2-9 图2-9所示的系统中,m =1kg ,k =224N/m ,c =48N.s/m ,l 1=l =0.49m ,l 2=l /2,l 3=l /4,不计钢杆质量。
试求系统的无阻尼固有频率n ω及阻尼ζ。
图2-9{2.26} 图T 2-26所示的系统中,m = 1 kg ,k = 144 N / m ,c = 48 N •s / m ,l 1 =l = 0.49 m ,l 2 = 0.5 l , l 3 = 0.25 l ,不计刚杆质量,求无阻尼固有频率n ω及阻尼ζ。
ablb k θa c θl m θ图 T 2-26答案图 T 2-25解:受力如答案图T 2-26。
对O 点取力矩平衡,有:0223311=⋅+⋅+⋅l l k l l c l l m θθθ 0222321=++θθθkl cl ml 041161=++θθθk c m 36412=⋅=⇒mkn ω s rad n / 6=⇒ωnmcζω2161=25.02116=⋅=⇒nm c ωζ第三章 单自由度系统的强迫振动3-1 如图3-1所示弹簧质量系统中,两个弹簧的连接处有一激振力0()sin P t P t ω=。
试求质量块的振幅。
图3-1解:设弹簧1,2的伸长分别为x 1和x 2,则有,21x x x += (A ) 由图(1)和图(2)的受力分析,得到t P x k x k ωsin 02211+= (B )mOθ2l k θ⋅1l m θ ⋅3l c θ ⋅l 1m kcl 2l 322x k xm -= (C ) 联立解得,t P k k k x k k k k x m ωsin 02122121+++-=tP m k k k x m k k k k xωsin )()(02122121+=++ 所以)(2121k k m k k p n =,n = 0,得, 2102222222)(11)2()1(1)2()(nn p k P kHn p hB ωςλλωω-=+-=+-=图3-23-2 图3-2所示系统中,刚性杆AB 的质量忽略不计,B 端作用有激振力0()sin P t P t ω=,写出系统运动微分方程,并求下列情况中质量m 作上下振动的振幅值:(1)系统发生共振;(2)ω等于固有频率n ω的一半。
解:图(1)为系统的静平衡位置,以q 为系统的广义坐标,画受力如图(2)t lP l k l l c l I ωθθθsin 3)3(3)2(20+⋅⋅-⋅⋅⋅-=又 I =ml 2t P ml m k m c ωθθθsin 340=9++∴则⎪⎪⎩⎪⎪⎨⎧===ml p h m c n m k p n 023,42922222222)2()()2()(ωωωωθθn p hllB B n p hB n n +-==+-=mgθBP 0sin ωtAX AY AF CF K1)系统共振,即ω=npkmcpmkmclmlpnphlBn494)/3(2=⨯⨯==∴2)nP21=ω3-3 建立图3-3所示系统的运动微分方程,并求出系统的固有频率nω,阻尼比ζ以及稳态响应振幅。
图3-3解:以刚杆转角ϕ为广义坐标,由系统的动量矩定理ϕϕϕ22)(4cllxlkmls---=即tlkamkmcωϕϕϕsin44=++令,mkpn4=,mcn42=,nnmpcpn8==ς,mlkah4=,n pωλ=得到2222)2()(ωωϕnphBn+-=mkckpmkmcmklmlpnpphlBnn81641194944273)(432222222+=+⎪⎭⎫⎝⎛⨯=+⎪⎭⎫⎝⎛=∴22222222)2()1(2)2()1(242ςλλωωϕ+-=+-⨯==a p p n p pl mlka l B B n n nn3-4 一机器质量为450kg ,支撑在弹簧隔振器上,弹簧静变形为0.5cm ,机器有一偏心重,产生偏心激振力20 2.254P g ω=,其中ω是激振频率,g 是重力加速度。
试求:(1)在机器转速为1200r/min 时传入地基的力;(2)机器的振幅。
解:设系统在平衡位置有位移x ,则0mx kx F +=即0F kx x m m +=又有st mg k δ= 则st mgk δ=(1)所以机器的振幅为2021F B k λλ=-(2)且n p ωλ=,40rad s ωπ=(3) 又有2n st k g p m δ==(4) 将(1)(2)(4)代入(2)得机器的振幅B =0.584 mm则传入地基的力为514.7T p kB N ==2-9一个粘性阻尼系统在激振力t F t F ωsin )(0=作用下的强迫振动力为⎪⎭⎫ ⎝⎛+=6πsin )(t B t x ω,已知6.190=F N ,B =5 cm ,π20=ωrad/s ,求最初1秒及1/4秒内,激振力作的功1W 及2W 。
0110101100140201400:()sin 19.6sin 20()cos()cos(20)66W =P(t)x(t)19.6sin 20cos(20)6| 4.9(1cos80)15.39()()19.6sin 20c P t P wt tx t Bw wt t dtt t dtt dtJW P t x t dtt πππππππππππππ===+=+=⋅+=---=-===⋅⎰⎰⎰⎰⎰由已知可得同理可得:os(20)60.0395t dtJππ+=3-5 证明:粘滞阻尼利在一个振动周期内消耗的能量可表示为202222(1)(2)P E k πςλλςλ∆=-+ 证明()()()222222002222222cos()/21412TE c B t dt c B BF k F E c kωωϕπωπζλπωλξλλζλ∆=--=-=∆=-=-+-+⎰3-6 单自由度无阻尼系统受图3-6所示的外力作用,已知(0)(0)0x x ==。