电力系统继电保护典型故障分析案例

合集下载

电力系统继电保护不稳定产生原因及事故处理 马文文

电力系统继电保护不稳定产生原因及事故处理 马文文

电力系统继电保护不稳定产生原因及事故处理马文文摘要:目前,我国社会经济正处于迅猛增长的状态,经济之所以增长快速,离不开电力系统的支持,而电力行业也自然而然地成为促进我国经济发展的重要支柱。

可以说,电力系统的可靠、稳定运行,能够保障广大电力用户的正常用电,而电力系统在人们的生活与工作中,也取得了必不可缺的地位。

所以,在电力系统运行期间,加强其继电保护装置的检查与维修显得十分必要。

电力系统的继电保护是指当电力出现故障时,技术人员可在极短的时间内,或者在极小的区域内迅速地解决电力问题,保障人们用电正常。

本文将对导致电力系统机电保护不稳定所引发的原因进行论述与分析,继而探讨出如何处理继电保护事故的策略与方法,以供参考。

关键词:电力系统;继电保护;事故处理;策略推动电力系统向智能化方向发展,是电力部门的核心管理目标,因此,工作人员需要安装新型电力设备来提高电力系统的自动化程度。

继电保护则是现代化电力系统的核心结构,起到了维修和保护电力系统的作用,在电力系统结构逐渐复杂的形势下,继电保护工作量也在加大,维修人员需要加大对继电保护技术的应用力度。

1电力系统继电保护不稳定的原因1.1继电保护硬件装置问题继电保护装置中能够直接影响继电保护可靠性与稳定性的构成模块主要有数字量输入与输出、电源供应模块、中央处理模块以及模拟量输入模块。

辅助装置中可以对继电保护装置起到辅助作用的包括两种方式,分别是三相操作与分相操作。

还有交流电压切换箱等辅助装置发生故障也会降低继电保护的稳定性。

此外影响继电保护装置发生故障的原因中二次回路也比较常见,比如因为二次回路使得绝缘体裸露或老化而发生接地问题。

最后机电保护装置的通道、通信与接口容易发生阻断问题,从而无法保证机电保护装置的正确性。

1.2继电保护软件问题计算机技术的发展和现代科技成果的迅速普及,让很多现代化电力系统继电保护装置中都安装了相对的程序设计和管理软件,这些软件设计的程序在继电保护中起到了指导性作用,并且掌握了对继电保护系统的绝对操作权。

一起电力系统继电保护事故分析处理

一起电力系统继电保护事故分析处理

案例 : 某一 1 1 0 KV 终 端变 电站, 采用 ( V 进 线备 自投方 式 ,在 主供 电源 失 电备 } 动作过程 当中,备 自投联跳主供线路 ,却 f 能够合备用线路 ,最终导致整个终端变 电
: 压。
} 致 电力系统继 电保护事故发生的原
电力系 统线 路本 身是一 个 比较复 杂 的系 统,其复杂 性也就导致其在不同的环节上容易 发生各 种各 样的问题 ,例如会 :电力系统的保 护装置 可能会再布 线的过程中通常过密或者过 紧,这样就 导致在 集成度相对较高的地方 ,由 于存在 静电作用力 增加的可能性 ,就直接造成 了电力设施 的外表 覆盖上 大量的灰尘 ,电力设 备在高频率 的运转条 件下 ,插件 接线焊点的地 方 ,静 电尘埃就容 易在这 里聚集 ,这样也就最 终造成 了断开 的焊 点重新 形成导 电通路 ,最终 导致设备短路
有像频拍之类的异常情况的发生 ;而也有些继 电保 护装置则没有办法很好地投入直流 电源 , 在投入 的过程当中会出现误动的现象 ,除此以 外,还 可能会出现其他问题 ,诸如有些微机保 护的动态特性 与静 态特性之间存在着很大的反 差 ,导 致操 作结果 的正确性无法得到保障 ,这
键 词】电力系统 继 电保护 事故分析处理
分 内容进 行 的深刻 的 阐述 ,不难 看 出 ,继 电保 护 就 整 个 电 网 系统 稳定安全运行 而言的重要性作用 。
使得指示信号无法对故 障原 因——是人为引发 还是设备本身原 因作出相应的判断 ,从而给电 力系统的故 障分析 、作业带来了首先就要重视 人为原因在故 障当 中产生的可能性 , 对 真实情 况进行 即时眭 时候就 需要话 费人力资源 ,让操作人员花大量 的汇报 ,从而避免 较大人力 和较多时间浪费在 的时间对动态 和静 态两种特性之间的偏 差进行 故 障 排 除上 。 验证 ,很大程度上提升 了工作 的难度 。 3 . 2 利用好故障录波和故障时间记 录是作 出正 1 . 3插件 的绝缘与 高频信号 确 处 理 的保 证

继电保护故障案例分析

继电保护故障案例分析

继电保护故障案例分析【摘要】在国家基础能源建设中,电力对于国民经济的发展起到了至关重要的作用。

随着人民生活水平的逐年提高,对于电力系统的运行也提出了高要求。

电力系统不断地扩容,是电网的结构设计日益繁琐,随之而来的是系统不断出现故障,严重地妨碍了电力系统的正常运营。

继电保护装置对于电力系统具有保护功能,主要体现在电力系统运行方式发生改变的时候,其会实时地将保护的性能以及定值有所改变,以维持机电保护系统的处在良性的运行状态。

本论文以案例解析的方式,对于继电保护的故障进行分析。

【关键词】继电保护;故障分析;故障智能信息系统电力系统的运行状况直接关乎到民生。

在一些不可抗拒的各种干扰因素的影响下,系统在运行的过程中,就容易在干扰的作用下而发生故障。

为了避免出现重大的事故而影响到电力系统的正常运行,就需要对电力系统的继电保护装置进行维护,以降低设备损坏率。

电力系统运行只有建立在安全性和高质量性的基础之上,才可以实现其良好的经济性。

然而在实际运营中,对于继电保护故障问题,具有针对性地处理。

本论文从实例的角度对于继电保护故障进行分析并提出有效策略。

一、电缆断面裸露所引起的继电保护故障(一)继电保护故障案例在重庆发生了一次继电保护故障。

某供电分公司架设的是220千伏电网,一名变电所的值班员在对变压器保护屏后面的地面进行清理的时候,由于拖布碰到了电缆的断面,随之出现了报警。

经过检查之后,才发现是直流接地信号继电器掉牌了。

一次设备并没有出现异常现象,当故障信息被传送到调度中心之后,按照调度中心的指令将220千伏的该线路断路器拉开,将旁路断路器合上之后,线路开始正常共组。

(二)分析故障发生的原因分析事故发生的原因,按照扩建工程的设计要求,主变压器要实现接地保护功能,那么就应该是旁断路器出现跳动。

从旁路综合重合闸屏到主变电器屏以及接线带,回路“R33”两芯也已经接线通电,两者之间需要采用零序保护,直接接入到2段时间继电器的互动触电位置。

年度故障跳闸事件总结(3篇)

年度故障跳闸事件总结(3篇)

第1篇一、前言随着我国电力工业的快速发展,电力系统的规模和复杂程度日益增加,故障跳闸事件也随之增多。

为了提高电力系统的安全稳定运行,降低故障跳闸对电力供应的影响,本总结对2023年度发生的故障跳闸事件进行了梳理和分析,旨在总结经验教训,为今后的电力系统运行和故障处理提供参考。

二、2023年度故障跳闸事件概述2023年度,我国电力系统共发生各类故障跳闸事件X起,其中主变压器故障跳闸X 起,线路故障跳闸X起,继电保护装置故障跳闸X起,其他故障跳闸X起。

以下将对部分典型故障跳闸事件进行详细分析。

三、典型故障跳闸事件分析1. 某热电厂2号主变冷却器全停机组跳闸事件(1)事件经过:2023年10月8日,某热电厂2号主变冷却器两路电源同时发生接地故障,导致2号主变冷却器全停,机组跳闸。

(2)原因分析:直接原因在于2号主变冷却器两路电源同时发生接地故障,间接原因包括:1)热网加热器等涉水系统检修时未采取有效措施,导致2号机2C热网循环水泵出口电动门电气部分进水,使B相发生接地故障;2)2号炉渣浆池搅拌器电源冗余配置,双电源切换装置闭锁机构被违规拆除,两路电源处于同时送电状态,导致2号机厂用380V系统A、B段电源合环;3)运行人员未在保护规定的60分钟内恢复2号主变冷却器运行。

(3)教训:加强设备检修管理,严格执行操作规程;加强人员培训,提高运行人员对主变冷却器保护动作逻辑的掌握程度。

2. 某电厂1号机组运行凝泵故障、备用凝泵联启后汽化导致机组跳闸事件(1)事件经过:2017年2月7日,某电厂1号机组因A凝泵机械密封损坏,B凝泵入口吸入空气,造成凝泵出力降低,除氧器水位低保护动作跳二台给水泵,触发锅炉MFT保护,机组跳闸。

(2)原因分析:A凝泵机械密封损坏导致凝泵出力降低,B凝泵入口吸入空气导致凝泵联启后汽化,最终触发除氧器水位低保护动作,导致机组跳闸。

(3)教训:加强设备巡检和维护,及时发现并处理设备缺陷;提高运行人员对设备异常情况的判断和处理能力。

电力系统继电保护典型故障分析

电力系统继电保护典型故障分析

电力系统继电保护典型故障分析电力系统继电保护是电力系统中的重要组成部分,它具有保护设备和系统安全运行的作用。

在实际运行过程中,电力系统继电保护可能会出现一些故障,影响系统的正常运行。

本文将对电力系统继电保护的典型故障进行分析,并提出相应的解决方案。

一、继电保护元件的故障继电保护元件包括接触器、继电器等,它们是继电保护系统中最基本的组成部分。

在使用过程中,这些元件可能会出现接触不良、线圈烧毁等故障。

这些故障可能会导致继电保护无法有效地进行判断和保护,从而使系统处于不安全的状态。

针对这种故障,首先应定期对继电保护元件进行检测和维护,及时更换有故障的元件。

在设计继电保护系统时应合理设置备用元件,以备不时之需。

二、继电保护装置的误动故障继电保护装置的误动是指在没有故障发生的情况下,保护装置错误地进行动作,导致对合闸或分闸装置的误动。

这种故障可能会给电力系统带来严重的危害,甚至导致事故的发生。

针对这种故障,首先应加强对继电保护装置的测试和校验,确保其工作可靠。

在设计保护装置时应合理设置过滤器和延时元件,以避免误动的发生。

三、继电保护的接线故障继电保护的接线故障是指在接线过程中出现的错误连接或松动等故障。

这种故障可能会导致保护装置无法正常工作,甚至对系统造成更严重的故障。

针对这种故障,首先应加强对继电保护接线的检查和维护,确保其接线正确可靠。

在接线过程中应做好记录和标记,方便日后的检修和维护工作。

四、继电保护与其他系统的干扰故障继电保护系统通常与其他系统共同工作,可能会受到其他系统的干扰。

当继电保护系统与通信系统共用一条电缆时,电缆中的干扰可能影响到继电保护的正常工作。

针对这种故障,首先应确保继电保护系统与其他系统的正常工作不会相互干扰。

在设计继电保护系统时应考虑到可能的干扰因素,采取相应的屏蔽和隔离措施,以消除干扰的影响。

电力系统继电保护在实际运行过程中可能会出现多种故障,影响系统的正常运行。

针对这些故障,我们可以采取一系列的措施,如定期检测和维护保护元件、加强测试和校验、加强接线检查和维护,以及防止与其他系统的干扰等,从而保障电力系统的安全运行。

电力系统继电保护典型故障分析

电力系统继电保护典型故障分析

电力系统继电保护典型故障分析电力系统继电保护是保障电力系统安全稳定运行的重要组成部分,其作用是在电力系统出现故障时及时采取措施,保护系统设备和电网的安全运行。

继电保护系统本身也可能发生故障,导致了正常的电力系统通常运行。

本文将重点分析电力系统继电保护的典型故障,以及应对这些故障的措施。

希望通过本文的分析,能够帮助电力系统继电保护工程师和相关人员更好地了解继电保护系统故障的原因和解决方法。

一、继电保护系统的基本原理1.测量:继电保护系统通过电流互感器、电压互感器等传感器对电力系统中的电流、电压等参数进行测量,获取实时的电力系统运行参数。

2.比较:继电保护系统将测量得到的参数与预设的电压、电流等阈值进行比较,并根据比较的结果判断电力系统是否处于正常运行状态。

3.判断:当继电保护系统检测到电力系统出现故障时,会根据故障的性质和位置进行判断,确定是否需要对电力系统进行保护动作。

继电保护系统是复杂的电气设备,它的运行涉及到电力系统的多个方面,包括电流、电压、频率等参数的测量和分析,因此也容易发生各种故障。

下面我们将对继电保护系统的典型故障进行分析。

1.测量误差导致的故障继电保护系统中使用的电流互感器、电压互感器等传感器设备可能出现测量误差,这是导致继电保护系统故障的常见原因之一。

测量误差可能是由于传感器设备老化、安装位置不当、外部干扰等多种原因导致的。

当传感器设备出现测量误差时,会导致继电保护系统对电力系统状态的判断出现偏差,甚至错误地对电力系统进行保护动作,从而影响到电力系统的正常运行。

针对测量误差导致的故障,我们可以采取以下措施进行解决:-定期对传感器设备进行校准和检测,确保传感器设备的精度和准确性;-合理安排传感器设备的安装位置,避免外部干扰;-加强对传感器设备的维护保养,延长设备的使用寿命。

2.逻辑判断错误导致的故障继电保护系统中的逻辑控制单元是核心部分,它负责对测量得到的参数进行分析和判断,并根据判断结果执行相应的保护动作。

继电保护作业典型案例

继电保护作业典型案例

继电保护作业典型案例【案例1】××地区供电局保护人员试验返送电造成人员触电死亡专业:继电保护事故类型:人身触电1997年3月13日,XX公司110kVXX变电站进行10kV开关及电容器设备春检予试。

上午11时25分,办理了10kV电容器间设备清扫、刷漆工作票的许可手续之后,工作负责人宁X X 安排杨X X 在电容器棚内对电抗器、电容器、放电PT 支柱瓶等进行清扫及刷漆工作。

此后,工作票签发人贾X X 又安排进行电容器及其设备保护试验工作。

保护负责人李XX、成员王XX、王XX三人在电容器开关柜上做完过流、速断、差流保护试验后,王X X 重新接好做过电压保护试验的接线,把试验接在A611、C611端子上,未打开放电PT的二次电缆线。

约12时5分左右,当王X X给上试验电源时、刷漆工崔X X触电,瘫倒电抗器和放电PT中间。

后送医院经抢救无效死亡。

暴露问题:1、保护人员进行电容器电压继电器校验时违反了《国家电网公司电力安全工作规程》第10.15条关于“电压互感器的二次回路通电试验时,为防止由二次侧向一次侧反充电,除应将二次回路断开外,还应取下电压互感器高压熔断器或断开电压互感器一次刀闸”的规定,没有断开通往电容器放电PT的二次回路就通电试验,造成二次侧向一次侧反充电,致使人身触电死亡是这次事故的主要原因。

2、电容器设备清扫、刷漆工作在工作票上,对PT二次侧可能返送电的问题,未采取明显断开点的措施,致使设备停电的技术措施不完善,也是事故发生的重要原因之一。

3、保护工作负责人责任人责任心不强,监护不认真,致使保护工作人员在工作过程中错误的试验做法未得到及时纠正,也是原因之一。

防范措施:1、在PT二次回路加装联锁接点,母线刀闸拉开后,PT二次回路要断开。

2、多班组作业时,工作总负责人要协调好各专业人员的工作,密切配合。

3、现场作业中各类人员要各负责任,认真做好各自范围的工作,相互之间要互相监督和提醒,及时纠正违章行为。

电力系统继电保护典型故障分析案例

电力系统继电保护典型故障分析案例

电力系统继电保护典型故障分析案例线路保护实例一:单相故障跳三相某220kV线路发生A相单相接地故障,第一套主保护(CKJ-2)发出A相跳闸令,第二套主保护(WXB—101)发出三跳相跳闸令。

原因分析:由于两面保护屏的重合闸工作方式选择开关把手不一致造成。

保护是否选相跳闸,与重合闸工作方式有关。

当重合闸方式选择为单重和综重时,单相故障跳开单相,而当重合闸方式选择为三重和停用时,任何故障都跳开三相两套保护时一般只投入一套重合闸。

另一套保护屏的重合闸出口压板应在断开位置.由于另一套保护的中重合闸方式选择放在停用位置,致使该保护发出三跳命令.线路保护实例二:未接入外部故障停信开关量某变电所母线PT爆炸,CT与开关之间发生三相短路,电厂侧高频保护拒动。

由后备保护距离II段跳闸.故障发生后,由于对高频保护来说,认为是外部故障,变电所侧高频保护一直处于发信状态。

将电厂侧高频保护闭锁.变电所侧认为母线故障,母差保护动作.事故后检查发现,高频保护没有接入母差停信和断路器位置停信。

微机保护的停信接口:1、本侧正方向元件动作保护停信。

2、其它保护动作停信(一般接母差保护的出口)。

3、断路器跳闸位置停信。

线路保护实例三微机保护没有经过方向元件控制而误动出口。

问题:整定中,方向元件没有投入。

硬压板,软压板(由控制字整定)1、二者之间具有逻辑“与”的关系。

缺一不可。

2、硬压板:保护屏上的实际压板。

3、软压板:在软件中通过定值单中的控制字的某位为1或0控制保护功能的投退。

线路保护实例四:1993年11月19日,葛双II回发生A相单相接地故障,线路两侧主保护60ms动作跳开A相。

葛厂侧过电压保护(1。

4U N/0。

3S)于420ms动作跳开三相,重合闸被闭锁。

联切葛厂两台机投水阻600MW,切鄂东负荷200MW.事故原因分析1、PT接线图2、接线的问题:(1)PT三点接地,违反《反措要点》,PT二次侧中性线只允许一点接地。

(2)开口三角的N与两星形中性线相连,违反《反措要点》,PT二次回路与三次回路独立。

电力系统继电保护典型故障分析

电力系统继电保护典型故障分析

电力系统继电保护典型故障分析电力系统继电保护是保障电网安全运行的重要保障措施,但由于各种因素的影响,时间长了就会出现各种故障。

下面就常见的故障进行分析,以便增加管理和处理的经验。

1. 继电保护误动继电保护误动是继电保护常见的故障之一,一般因为继电保护本身故障或者被保护设备接线错误或运行不稳定,造成误动。

误动的继电保护会导致原系统设备断电,甚至整个系统的停电。

主要是因为继电保护三个要素(电源、电流、电压)中的一个或多个出现问题时造成的。

故障处理要求对继电保护系统的电源、电流、电压进行全面的检查,并及时排除各种故障,同时加强对继电保护设备的管理,方便及时发现和排除故障。

继电保护漏动是继电保护系统常见的故障类型,它一般是因为装置或线路的绝缘损坏、变形或老化,继电保护附加档错误等引起,会影响到继电保护的正常运行,造成电网运行事故。

处理任务是针对使用环境采取一系列措施,包括加强对接线排布维护管理,对附加档混送、多送进行特别注意,对维护次数特别密集的继电保护装置进行重点检查。

3. 继电保护开断装置损坏继电保护的开断装置是为了保障电力装置的安全运行而设立的,如果发现继电保护的开断装置损坏,则需要及时进行维修或更换工作,可以保证设备运行过程中的安全。

继电保护系统要求刚性高,运行平稳,在检查继电保护时必须对其进行严格要求性检查。

继电保护接线错误是继电保护失去保护作用的一种故障,会对系统造成很大的风险。

因此,在安装和检查继电保护时应该扎实规范地进行继电保护装置的接线检查。

特别是在新设备施工时,应先制定好防止安装继电保护接线错误的措施,如对开关、接地等进行明确号码牌之类的标识。

5. 继电保护撞击、振动导致失效继电保护在运行过程中,往往会受到撞击和振动引起的故障,例如起动发动机时,发动机产生的较大冲击力会造成继电保护的故障;在移动设备运输时,由于振动造成继电保护的失效。

因此,需要采取相应的措施防止继电保护设备受到撞击和振动的影响,避免继电保护设备的失效。

电力系统继电保护典型故障分析

电力系统继电保护典型故障分析

电力系统继电保护典型故障分析电力系统继电保护是电力系统中最重要的安全保护措施之一,为电力系统提供了重要的保护和控制功能。

但是在实际运行中,继电保护也会出现故障和失效的情况,严重影响到电力系统的稳定和安全运行。

因此,对继电保护故障的分析和处理非常的重要。

本文将详细介绍电力系统继电保护的典型故障及其原因分析。

1. 开合闸失灵开合闸失灵是一种极为常见的继电保护故障,主要原因是触头接触不良、脱扣或磨损严重、机构卡滞以及继电保护设备的故障等。

在实际运行中,开合闸失灵往往是由多种因素共同导致的。

因此,对于开合闸失灵的处理,需要综合考虑各种因素。

2. 误动作故障误动作故障是指继电保护在电力系统正常运行时误动作的情况。

误动作故障可能会导致系统的不必要的停机,甚至对系统造成不良的影响。

误动作故障的主要原因是电路变更、信号衰退、噪声干扰以及其他设备的影响等。

3. 缺相故障缺相故障是指继电保护在电力系统中出现相间电压缺失时,无法正常工作的情况。

缺相故障的主要原因是输入电源中相线断开或者过压、过流等原因导致的电源波形变形。

在电力系统中,缺相故障极易引发其他故障,例如线路接地故障、过载及短路等。

4. 过流保护误动作过流保护是电力系统中常用的一种保护装置,主要用于保护输电线路等设备。

但是在实际应用中,过流保护也会出现误动作的情况。

误动作的主要原因是电源电压波形畸变、补偿电容器引起的谐波、相序错位及浪涌等。

因此,针对过流保护误动作的问题,需要对电源波形进行分析,并对保护装置进行合理的设置。

5. 量测误差量测误差指的是继电保护装置在测量电力系统各种参数时误差较大的情况。

量测误差的主要原因是继电保护装置的参数设置不正确、测量电流和电压传感器的精度不够、测量误差等。

针对量测误差问题,需要对继电保护装置进行校准,确保其精度符合要求。

综上所述,电力系统继电保护故障的原因较为复杂,涉及电源波形、电路变更、信号干扰等多种因素。

因此,在实际运行中,需要综合考虑各种因素,对故障进行精细化的分析和处理,确保电力系统的稳定运行。

电力系统继电保护装置故障处理分析

电力系统继电保护装置故障处理分析

电力系统继电保护装置故障处理分析摘要:随着生产与生活中对电力的应用越来越多,对用电的保护设施显得愈加重要,其中最主要的就是继电保护装置,然而在日常使用中,由于各种原因导致该装置发生故障,这就需要电力企业中各部门人员相互协调,平时做好对维护设备的检修与维护工作,及时发现电力系统中产生的故障,制定出继电保护故障的处理方案并加以实施。

本文对电力系统继电保护装置常见故障进行分析,进而提出处理方法。

关键词:电力系统;继电保护;替换;参照法1电力系统继电保护装置故障分析1.1继电保护装置中电流互感器的饱和故障由于现在正常生产、生活中所用电容的不断增加,使得电力设备的负荷增重,产生的电流较大,而在正常短路的发生状态下,电流互感器的误差是随着发生短路时增大的电流倍数增大而增大的,当电流速增时就会导致保护装置的灵敏度下降,进而发生阻断保护装置动作的可能。

而发生短路时,电流互感器出现了饱和,在二次的电流较小时就无法再次感应到,这样又会导致保护装置无法动作。

配电系统的出口线中电流过大时,保护装置不发生动作,而进口线的保护装置却发生动作,这样又发生了断电的现象。

1.2电压互感器二次电压回路故障电压互感器是继电保护测量设备的起始点,因此,它工作正常与否将会对二次系统的运行产生十分重要的影响。

由于PT二次电压回路上的故障而导致的严重后果主要有保护误动或拒动。

PT二次电压回路上的故障主要集中在以下几方面:PT二次中性点接地方式异常。

表现为二次未接地(虚接)或多点接地。

二次未接地(虚接)除了变电站接地网的原因,更多是由接线工艺引起的。

PT开口三角电压回路异常。

PT开口三角电压回路断线,有机械上的原因,短路则与某些习惯做法有关。

PT二次失压。

PT二次失压是困扰使用电压保护的经典问题,纠其根本就是各类开断设备性能和二次回路不完善引起的。

1.3继电器触点故障继电器触点是继电器的最重要组成部分。

它们的性能受以下因素的很大影响,诸如触点的材料,所加电压及电流值(特别是使触点激励和去激励时的电压及电流波形),负载的类型,工作频率,大气环境,触点配置及跳动。

_继电保护装置及二次回路故障检修典型实例_

_继电保护装置及二次回路故障检修典型实例_

S42 | ・电力电气专刊・2007年第1期/总第2期电气安全连,并保证其接地的可靠性及电气的连续性。

严禁利用存储、输送可燃性介质的金属管道、设备以及与之相关的金属构件进行接地连接。

3.接地干线、接地标识接地干线长度若超过10m或周围有强磁场设备,应采取屏蔽措施,将接地干线穿钢管保护,或采用屏蔽电缆,钢管或电缆的屏蔽层应单端接地。

如接地干线在室外走线并距离超过10m,应采用双层屏蔽,内层单点接地,外层两端接地,以防雷击及电磁脉冲的干扰。

对隐蔽工程,包括在接地网上的接入点和接地基本位置应设置标识,接地线应有颜色标识:接地系统的颜色应为绿色或绿黄色。

接地连接的要求1.连接电阻和接地电阻连接电阻是指从控制系统的接地端子到总接地板间的导体及连接点电阻的总和,DCS控制系统的连接电阻应小于1Ω。

接地电阻是指接地极对地电阻和总接地板、接地总干线及接地总干线两端的连接点电阻之和,DCS控制系统的接地电阻为工频接地电阻,应小于4Ω。

2.接地连线的规格接地系统的导线应采用多股绞合铜芯绝缘电线或电缆。

根据连接设备的数量和长度,可参考下表数据范围进行接地线的截面选用。

3.接地连接结构的要求DCS系统所有接地连线在接到接地汇流排前均应绝缘良好,所有接地分干线在接到接地汇总板前均应绝缘良好,所有接地干线在接到总接地板前均应绝缘良好。

接地汇流排、接地汇总板、总接地板应用绝缘支架固定。

接地系统的各种连接应保证良好的导电性。

接地连线、接地分干线、接地干线、接地总干线与接地汇流排、接地汇总板的连接应采用铜线片和镀锌钢质螺栓,并采用防松和防滑脱件,以保证连接的牢固可靠或采用焊接。

结束语在DCS控制系统的调试运行过程中,从多次排除故障的经验可以看出,接地系统是否完好对DCS控制系统的安全、正常运行非常关键。

不断从该系统的接地完善过程中总结经验、查找技术规范和相关安装要求,逐步完善了接地系统,从而保障了DCS系统安全、稳定运行。

表 接地线截面选用数据。

电力系统继电保护典型故障分析案例

电力系统继电保护典型故障分析案例

电力系统继电保护典型故障分析案例————————————————————————————————作者:————————————————————————————————日期:电力系统继电保护典型故障分析案例 线路保护实例一:单相故障跳三相某220kV 线路发生A 相单相接地故障,第一套主保护(CKJ-2)发出A 相跳闸令,第二套主保护(WXB-101)发出三跳相跳闸令。

重合闸出口停用三相综合单相停用三相综合单相原因分析:由于两面保护屏的重合闸工作方式选择开关把手不一致造成。

保护是否选相跳闸,与重合闸工作方式有关。

当重合闸方式选择为单重和综重时,单相故障跳开单相,而当重合闸方式选择为三重和停用时,任何故障都跳开三相两套保护时一般只投入一套重合闸。

另一套保护屏的重合闸出口压板应在断开位置。

由于另一套保护的中重合闸方式选择放在停用位置,致使该保护发出三跳命令。

线路保护实例二:未接入外部故障停信开关量某变电所母线PT 爆炸,CT 与开关之间发生三相短路,电厂侧高频保护拒动。

由后备保护距离II 段跳闸。

电厂系统变电所F (3)母差高频保护母差故障发生后,由于对高频保护来说,认为是外部故障,变电所侧高频保护一直处于发信状态。

将电厂侧高频保护闭锁。

变电所侧认为母线故障,母差保护动作。

事故后检查发现,高频保护没有接入母差停信和断路器位置停信。

微机保护的停信接口:1、本侧正方向元件动作保护停信。

2、其它保护动作停信(一般接母差保护的出口)。

3、断路器跳闸位置停信。

线路保护实例三微机保护没有经过方向元件控制而误动出口。

问题:整定中,方向元件没有投入。

硬压板,软压板(由控制字整定)1、二者之间具有逻辑“与”的关系。

缺一不可。

2、硬压板:保护屏上的实际压板。

3、软压板:在软件中通过定值单中的控制字的某位为1或0控制保护功能的投退。

线路保护实例四:1993年11月19日,葛双II回发生A相单相接地故障,线路两侧主保护60ms动作跳开A相。

电力系统继电保护典型故障分析

电力系统继电保护典型故障分析

电力系统继电保护典型故障分析1. 引言1.1 电力系统继电保护典型故障分析电力系统继电保护是保障电力系统安全运行的重要组成部分,其作用在于对系统发生的故障进行快速、准确地判断,并采取相应的措施保护系统的设备和人员安全。

典型故障分析是对不同类型的故障进行深入研究和分析,为提高继电保护系统的可靠性和性能提供重要依据。

在电力系统中,继电保护扮演着识别故障、保障设备安全、稳定系统运行的重要角色。

只有加强对典型故障案例的分析,才能更好地掌握继电保护的工作原理和运行机制,提高系统的抗干扰能力和准确性。

本文将通过分析继电保护的基本概念、常见的继电保护装置以及典型的故障案例,探讨电力系统继电保护典型故障分析的重要性和未来发展趋势。

通过对故障案例的深入研究,我们可以不断总结经验教训,提高继电保护系统的可靠性和稳定性,确保电力系统运行的安全和可靠。

2. 正文2.1 继电保护概述继电保护是电力系统中重要的安全保护装置,其作用是在系统发生故障时及时采取措施,将受故障影响的部分与系统隔离,保护系统设备不受到进一步损坏。

继电保护的设计原则是在保证系统正常运行的前提下,对系统进行全面监测和保护,确保系统设备的安全运行。

继电保护系统通常由传感器、信号处理器、逻辑单元和执行单元组成。

传感器负责感知系统的状态信息,信号处理器对传感器采集的数据进行处理,逻辑单元进行逻辑判断,确定故障类型和位置,并通过执行单元采取相应的措施进行保护动作。

继电保护系统按照功能可以分为过电压保护、过流保护、差动保护等多种类型。

过电压保护主要用于保护系统设备不受过电压损害,过流保护用于检测系统中的过电流故障,差动保护用于保护系统设备的短路故障。

继电保护系统是电力系统中必不可少的部分,它的性能直接影响到系统的可靠性和安全性。

对继电保护系统的设计、调试和运行都需要高度重视,以确保系统设备和人员的安全。

在电力系统继电保护典型故障分析中,继电保护概述是基础,只有深入了解继电保护系统的原理和功能,才能更好地分析和解决系统中的故障问题。

继电保护典型故障分析

继电保护典型故障分析

继电保护典型故障分析继电保护是电力系统中非常重要的组成部分,主要作用是在电力系统发生故障时,迅速检测到故障信号,并采取相应的措施,防止故障扩大,保护设备和人员的安全。

在电力系统中,常见的故障类型包括短路故障、过电流故障、接地故障等。

以下将针对这些典型故障进行详细的分析。

1.短路故障短路故障是指电力系统中两个或多个电流导体直接接触或距离非常接近,从而引起电流瞬间大幅增加的故障。

短路故障会导致线路电流急剧升高,电源电压下降,可能引发设备损坏、线路过载等问题。

常用的短路保护方法包括过电流保护、差动保护、距离保护等。

2.过电流故障过电流故障是指电力系统中电流异常增大,超过设备额定运行电流的情况。

过电流故障通常是由设备本身缺陷、短路故障等引起的。

过电流保护是保护系统中常见的一种保护方式,通过电流互感器检测电流大小,一旦检测到电流超过设定值,则触发保护动作。

3.接地故障接地故障是指电力系统中出现电流通过接地回流路径形成的故障。

接地故障常常会导致设备的损坏、电压的波动以及对人身安全产生威胁。

常见的接地保护方式包括过电流接地保护、零序电流保护等。

针对以上故障案例,继电保护装置需要具备以下特性:1.灵敏性:能够在故障发生时迅速检测到故障信号,将其准确地传递给保护装置。

2.可靠性:能够正确触发保护装置,确保在电力系统故障发生时能够及时做出响应。

3.实用性:保护装置需要具备一定的调整性和适应性,能够适应不同负荷和运行条件下的保护需求。

4.灵活性:保护装置需要具备灵活的配置和调整能力,能够满足不同电力系统的保护要求。

在实际应用中,继电保护通常是综合应用多种保护装置和技术手段,以提高保护的安全性和可靠性。

继电保护系统的设计、调试和运行需要经验丰富的工程师进行,通过对系统中不同故障类型的典型案例进行分析,可以更好地指导实际工程中的保护装置选择、配置和调试。

综上所述,继电保护在电力系统中的作用重大,它能够及时准确地检测到电力系统的故障信号,并采取相应的措施,防止故障扩大,保护设备和人员的安全。

电力系统继电保护故障分析

电力系统继电保护故障分析



线错 误等情况,在更换设备之后,继 电保护 装 置依然不能正常工作, 则应检查接线 问题, 参 照同类 设备的接线情况。如果继 电器的现 场 测试值 与整定值相差较远 ,不能简单将其 归结为继 电器性能不好 ,也不能即刻调整继 电器,应 将该继 电器与其他 同类继 电器的测 量值 进行 比较分析,找出其存在 的问题 。 ( 三 )直观 法 对那 些不能逐点排查或者无法更换的设 备 ,可以通过直观法进行处理 。在操作命令 下达之后,查看跳闸线圈或者合闸接触器能 否正常动作,如果正常动作则表 明电气回路 处于正常状态,则故障应为机构 内部装置 。 如果发现继电器 内部有发黄的情况 ,或者是 元 器件在运行过程中发 出浓烈焦味 ,则能够 快速 判断故障的位置,及时更换 已损坏的元 件 即可排除故障。 ( 四)短接 法 将回路的一部分或者某一段 以短接的方 式接入, 以此判断故 障是否在短线范 围之 内, 这 样能大大缩小故障的范围 。短接法主要适 用 于切换继电器拒动、转换开关接点等故障 检 测中。 ( 五)逐项拆 除法 当并联的二次回路脱开后再接入时,如 果出现故障,则能够迅速判断故障点 。再 以 须在相 关保 护屏 内一点接地 ,当选择在 配电 同样得到方法来查找更小范围的支路 ,在找 装置现 场接 地时,当发生线路 区外接地 故障 出故障点之后才停止动作。逐项拆除法主要 时, 可 能导致差 流变 化引起 误动作;2 、独立 适 用于直流接地等情况 ,在交流 电源熔丝上 的、与其它电流互感器二次 回路没 有电的联 不 能 进 行 测 量 。 四、电力系统的继 电保护发展方 向 系 的二 次绕 组应在 开关场一点接地 。 C T二次 点接 地 主要 是保 护二 次设 备和 人身 的安 随着 电力系统的不断发展, 对继 电保护智 全 ,如 果二次开路会产生很 高的电压 ,此时 能化 信息化方面 的要求也越来越高,继电保 点接地会起 到一定 的保护作用 ,当一次绕 护 必须根据电网运行的实际需要,实行智能 组击 穿时接 地线最短 ,也可有效 限制高电压 化 、信息化的保护措施。在继 电 保护过程中, 传入 二次回路 。现场旆工过程 中常常将 公用 应充分利用现代科学技术 , 以高性能的计算机 电流互 感器 与 独立 电流 互感 器 的接地 点 弄 实现继 电保护的智能化系统 。 再者, 继电保护 错 ,引发保 护装置不正确动作。 的数据采样与数据发送, 要求继 电保护的网络 与传统 电压电流互感器相 比,电子 式光 化建设的发展。G O O S E网络通过对继电保护 纤 电压 电流 互感器 由于不使用传统 电缆,抗 出口跳 闸及其他重要信息的传递, 对继电保护 干扰 能力得 到很大提高 ,能够保证 二次侧电 有非常重要的作用 。再者 ,光互感器 的应用, 压 电流 测量 的准确性 ,继 电保护 的效率大大 对信号传输和数据 网络化有重要影响, 这些都 提高 。 对未来的继电保护指明了发展方向。 三 、电力系统 继电保 护故障的处理方法 五、结束语 : ( 一)替换法 电力系统与传统变 电站在技术方面有很 该方法主要用于综合 自动化继电保护装置 大 的改进 ,继电保护问题成为 电网运行的重 故障的查找,以正常运行的元件替换疑似故障 要 问题 。本 文通 过对电力系统的继电保护故 的元件,来判断元件是否能够正常运行,缩小 障进行分析 ,从 电力系统运行 调度出发,提 故障范围,尽快解 决继电保护故障 ,恢复 电网 �

继电保护误动故障案例分析与处理

继电保护误动故障案例分析与处理

继电保护误动故障案例分析与处理摘要:文章通过对一起10 kV供电线路送电不成功的原因查找,分析了三段式馈线保护在10kV供电系统中的配置情况,根据存在的问题提出了解决办法。

关键词:继电保护;误动;分析处理1 故障现象及经过漾泉蓝焰煤层气公司35 kV变电站是2012年7月才投入运行的一座新变电站,采用一台主变单母线不分段运行方式,该站共有5条10 kV出线,总负荷约为3 200 kW,馈线保护装置选用了北京清大继保电力技术有限公司的THL-302A 型数字线路保护测控装置。

2012年11月10日07:20,10 kV南二区624线路过流一段保护动作跳闸,运行人员对开关、断路器和保护装置进行检查均正常,对线路进行巡查,最终确定了故障为线路落鸟造成相间短路,故障点找到且已排除,09:02对线路试送电,试送不成功。

保护动作数据如表1,波形如图1所示。

南二区624;事件类型:保护事件;事件时间:2012/11/10-09:02:17.0562 故障原因分析10 kV南二区624线路全长15.3 km,接带22台变压器,单台最大容量315 kV A,最小80 kV A,总容量为2 480 kV A,该线路平均负荷约为650 kW,平均电流52 A。

该线路电流互感器采用两相星形接法,变比为200/5,选用的THL-302A 型线路保护装置,具有三段低电压闭锁方向过流保护,低电压闭锁方向反时限过流保护,三相一次自动重合闸、失压保护、测控及现场总线通信等功能,过流保护的低电压闭锁和方向闭锁可单独投退。

南二区624线路保护定值单如表2所示。

10 kV架空线路常见故障有单相接地、两相和三相短路等故障。

该线路所投过流I段、II段保护可以保护线路相间短路故障,绝缘监察配合系统专门配置的小电流接地选线装置可判定单相接地故障,所以南二区624回路所配保护种类基本合理,能够满足线路出现的各种故障对于继电保护的需求。

上面的分析表明继电保护配置能够满足线路故障的需求,下面对继电保护的整定计算进行检查分析:空载变压器投入送电时会出现很高的励磁涌流,其幅值可以达到变压器额定电流的6~8倍同时含有大量的非周期分量和高次谐波分量,对于线路接带的多台变压器,每台变压器的励磁涌流对于整条线路的影响会因安装位置和距离电源侧的长度有所不同,南二区线路总长15.3 km,线路中后段安装的变压器对整条线路的启动电流影响较小,根据以往的经验线路的送电冲击电流按照所有变压器额定电流的3倍计算,即:I=3×2 480/10/1.732≈429.6 A,折算到二次侧i=429.6/40≈10.7 A。

继电保护所典型事故案例讲解

继电保护所典型事故案例讲解

继电保护所典型事故、事件案例讲解一、电网事故:(一)“2.24”220kV普吉变电站误接线导致母差失灵保护误动的一般电网事故1、事故经过简介:2004年2月24日,220kV普吉变电站110kV普张线高阻接地(线路断线),导致220kV#2、#3主变中性点过流跳闸,同时,220kV母差失灵保护动作跳220kV 开关(包括#1主变高压侧开关),此次事故造成220kV普吉站全站失电,普吉发电厂减列。

事故分析表明:110kV普张线147开关保护正确动作,220kV#2、#3主变保护正确动作,但220kV母差失灵保护属于误动,保护误动使220Kv#1变压器停电,导致35kV负荷失电。

2、原因分析:220kV#2、#3主变保护更换施工过程:在进行#1主变保护更换过程中,施工人员发现主变保护动作起动母差失灵保护回路接线错误,及时联系设计人员,设计人员同意更改回路,并将发放#2、#3主变的设计更改通知单,但在随后的施工中,设计人员一直未发更改通知单,我所施工人员即自行更改相关回路,出现更改错误。

由于保护人员在进行#1主变保护装置更换过程中,将220kV#2、#3主变保护启动母差失灵保护的回路接线接错,导致保护出口动作起动元件短接,使母差失灵保护仅变为有流起动,同时存在母差失灵保护装置低电压闭锁继电器接点粘死,导致母差失灵保护误动,引起事故范围的扩大。

3、暴露问题:(1)继电保护工作人员在对主变保护进行改造时,工作责任心不强,未经设计人员发送回路更改通知单,就擅自更改回路接线;且在施工完毕后不认真、细致地检查回路;致使启动失灵回路出现接线错误。

(2)加强保护装置投产前的验收工作,对每一个关键回路都要进行认真、细致的检查。

4、防范措施:(1)工作负责人要对工程每个环节都认真把握,特别是对关键环节的把握;(2)在施工过程中要严格按照图纸施工,对回路更改要遵守相关规定,不得擅自更改回路;(3)工作中要严格按照相关作业指导书施工;(4)验收过程中要严格把关;(5)加强员工技术培训;(6)管理手段上要采取有效措施;(7)加强工程的技术监督和检验管理,对110kV以上验收所内必须先进行初验,合格后才能申请验收,并且要有试验报告;(8)生计室要加强现场施工安全管理,重点现场要亲自监督。

电力系统继电保护典型故障分析案例

电力系统继电保护典型故障分析案例

电力系统继电保护典型故障分析案例一、引言电力系统继电保护是电力系统中非常重要的组成部分,其主要功能是在电力系统发生故障时,迅速切除故障区域,保护电力设备和人员的安全。

本文将通过分析几个典型的电力系统继电保护故障案例,来探讨故障原因、分析方法以及解决方案。

二、故障案例分析1. 案例一:变电站电流互感器故障故障描述:某变电站A相电流互感器发生故障,导致保护装置误动作,引起了系统的不必要停电。

故障原因:经过仔细分析,发现电流互感器内部绝缘失效,导致测量误差增大,进而引起保护装置误动作。

解决方案:更换故障的电流互感器,并进行绝缘测试,确保其正常工作。

2. 案例二:线路短路故障故障描述:某条输电线路发生短路故障,但保护装置未能及时切除故障区域,导致系统停电。

故障原因:经过分析,发现保护装置的动作时间设置过长,未能及时检测到短路故障并切除。

解决方案:调整保护装置的动作时间,使其能够及时检测到短路故障并切除。

3. 案例三:发电机过电流故障故障描述:某台发电机出现过电流故障,导致发电机停机维修。

故障原因:经过分析,发现发电机内部绝缘失效,导致过电流现象。

解决方案:更换发电机的绝缘材料,并进行绝缘测试,确保其正常运行。

三、故障分析方法1. 实地调查:对发生故障的设备和现场进行详细的调查,了解故障发生的具体情况,包括设备的工作状态、环境条件等。

2. 数据分析:收集故障发生时的各种数据,如电流、电压、功率等,通过对数据的分析,找出异常现象和规律。

3. 故障模拟:利用电力系统模拟软件对故障进行模拟,通过模拟结果来验证故障原因和解决方案的可行性。

4. 经验总结:将已解决的故障案例进行总结,形成故障分析经验,为今后类似故障的处理提供参考。

四、故障解决方案1. 及时维护:定期对继电保护设备进行检修和维护,确保其正常工作。

2. 技术改进:引入先进的继电保护装置和技术,提高系统的故障检测和切除能力。

3. 增加备用设备:在关键位置增加备用设备,以备发生故障时能够快速切换。

继电保护故障案例分析

继电保护故障案例分析
分析:经检查发现,对侧高频阻波器特性变差,该线路高频收发讯机在进行正常的高频通道试验检查时,接收电平仅为9dB。在相邻线路对侧发生单相接地时,高频通道衰耗增大,收发讯机收信输出SX发生间断,致使高频闭锁零序保护误动作。
分析:因二次回路出问题造成事故扩大的典型案例。
案例22:某220kV变电站,220kV二母发生母线接地故障,220kV母差保护动作跳闸,母联开关B相拒动,母联失灵保护动作出口跳开220kV一母,与该站相连的220kV线路对侧保护均动作跳闸,本站全站失压。
分析:备自投跳闸出口接点误接于断路器操作箱的手跳回路,应接于断路器操作箱的保护跳回路。
案例9:某110kV变电站,10kV采用分段备自投方式,在带开关传动过程中,备自投联跳进线,却未能合分段开关。
案例10:某10kV开关站,采用分段备自投方式,在带开关传动过程中,备自投联跳进线,合分段信号发出,分段开关无法成功合闸。
分析:调度下达整定值有误,未考虑LFP942A保护采用相电流差方式。
案例12:在某110kV电网中一条110kV线路因故障正确跳闸后,引起另一220kV变电站的一条110kV线路过负荷,LFP942A线路保护误动作出口,造成两个110kV变电站全站失压。
分析:二次回路出问题,直流空气开关上下级参数不配合,造成事故扩大。
01
分析:瓦斯继电器防雨罩在年检后未盖好,导致下雨时进水,瓦斯回路绝缘击穿,保护误动作出口。
02
分析:未做好充分可靠的安全措施,造成信号正电与差动回路信号继电器线圈尾端相搭接,主变三侧全切。
案例17:某110kV变电站,继电保护人员在运行的主变保护屏上完善远动遥信回路时,主变保护三侧跳闸,无任何信号掉牌。
案例13:某110kV变电站,10kV分段开关爆炸,二次回路短路,直流电源降低,主变保护无法出口,上一级110kV线路保护跳闸,本站110kV进线备自投动作,合闸于故障后本站主变低后备保护动作跳开10kV总路开关。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力系统继电保护典型故障分析案例线路保护实例一:单相故障跳三相某220kV线路发生A相单相接地故障,第一套主保护(CKJ-2)发出A相跳闸令,第二套主保护(WXB-101)发出三跳相跳闸令。

原因分析:由于两面保护屏的重合闸工作方式选择开关把手不一致造成。

保护是否选相跳闸,与重合闸工作方式有关。

当重合闸方式选择为单重和综重时,单相故障跳开单相,而当重合闸方式选择为三重和停用时,任何故障都跳开三相两套保护时一般只投入一套重合闸。

另一套保护屏的重合闸出口压板应在断开位置。

由于另一套保护的中重合闸方式选择放在停用位置,致使该保护发出三跳命令。

线路保护实例二:未接入外部故障停信开关量某变电所母线PT爆炸,CT与开关之间发生三相短路,电厂侧高频保护拒动。

由后备保护距离II段跳闸。

(3)故障发生后,由于对高频保护来说,认为是外部故障,变电所侧高频保护一直处于发信状态。

将电厂侧高频保护闭锁。

变电所侧认为母线故障,母差保护动作。

事故后检查发现,高频保护没有接入母差停信和断路器位置停信。

微机保护的停信接口:1、本侧正方向元件动作保护停信。

2、其它保护动作停信(一般接母差保护的出口)。

3、断路器跳闸位置停信。

线路保护实例三微机保护没有经过方向元件控制而误动出口。

问题:整定中,方向元件没有投入。

硬压板,软压板(由控制字整定)1、二者之间具有逻辑“与”的关系。

缺一不可。

2、硬压板:保护屏上的实际压板。

3、软压板:在软件中通过定值单中的控制字的某位为1或0控制保护功能的投退。

线路保护实例四:1993年11月19日,葛双II回发生A相单相接地故障,线路两侧主保护60ms动作跳开A相。

葛厂侧过电压保护(1.4U N/0.3S)于420ms动作跳开三相,重合闸被闭锁。

联切葛厂两台机投水阻600MW,切鄂东负荷200MW。

事故原因分析1、PT接线图2、接线的问题:(1)PT三点接地,违反《反措要点》,PT二次侧中性线只允许一点接地。

(2)开口三角的N与两星形中性线相连,违反《反措要点》,PT二次回路与三次回路独立。

(3)多点接地造成PT开口三角经电阻短路。

(4)电压互感器两组星形中性线在开关厂相连,违反《反措要点》,中性线从开关厂至保护室之间相互独立。

3、误动原因:注意到PT 开口三角的相电压是PT 二次侧相电压的3倍。

过电压保护误动是在线路A 相跳开后发生的A CB A E U U U U .....03-=++=零序电压归算到PT 二次侧A E U..'033-=Z3U 0‘N N600E A =0N600BC葛厂母线电压一般为:540kV PT 变比:3/100V 3/500KV 与100V3/500KV由向量图可得:A NN E U 3600-= A AN E U 3600-=A AB BN E E E U 394.2|3|||600=-= A AC CN E E E U 394.2|3|||600=-=所以:PT 二次电压:150V 50003/540000394.2≈⨯线路保护实例五:电流互感器极性接反引起高频保护误动1998年3月27日20点11分,某电网220KV 线路1由于雷击发生AC 相短路,线路1两侧的高频保护(WXB-11C,WXB-15)正确动作。

然而线路2两侧的方向高频保护(WXB-15)同时误动跳开线路2。

在线路2恢复供电后,21点25分,线路1又发生BC两相故障,线路2的方向高频保护再次误动。

事故原因:事故后检查发现,电厂侧线路2的两套保护的电流互感器极性接反,致使电厂侧的方向元件误判,而系统侧本来就是正方向,所以造成保护误动。

电网接线图如下:发电机差动保护误动原因分析1 定值整定不合理发电机二次额定电流为3.59A其最小动作电流为0.5A,相当于额定电流的0.14,比率制动系数为0.2,拐点电流为发电机额定二次电流。

发电机在并网时因冲击电流过大造成保护误动。

显然,保护的最小动作电流整定太小,比率制动系数偏低。

重新修改定值为:最小动作电流为0.3额定二次电流,比率制动系数为0.4,拐点电流为0.7-1.0倍额定电流。

2 发电机机端与中性点两侧的电流互感器特性差别大西北某发电厂的400MW机组,定子额定电流为14256A双Y接线机端CT变比为18000/5,中性点为每分支CT变比9000/5,两CT并联。

另加中间变流器为2/1。

1997年月上旬,距电厂较远的330线路上发生A相单相接地故障,发电机差动保护误动,经检查发现,发电机中性点侧的TA在500V 左右开始出现饱和,而机端TA在700V时仍保持线性,这样在外部故障的暂态过程中,两侧CT的特性差异使差回路有电流造成保护误动。

西北某电厂5号机组为6MW,与同容量另一台机组构成大单元接线,经110KV母线与系统联系。

1998年3月18日,110KV出线发生AB相间短路,5号发电机差动保护误动。

事故后检查了A相差动的TA特性,发现中性点侧与机端的TA 特性有很大的差异。

中性点TA的饱和电压只有20V,而机端TA的饱和电压达200V。

变压器差动保护拒动原因分析1 动作电流过大,灵敏度低1996年7月13日,1号主变高压侧(220KV)B相穿墙套管折断,但不接地(相当于一相断开)1号主变差动保护拒动。

中性点零序保护动作,先跳开3、4、5号不接地变压器(变压器经间隙接地)后又跳开1、2号接地变压器。

造成全厂停电。

原因是主变差动保护灵敏度低,而零序保护设计不合理。

由于采用的是老的BCH电磁型继电器构成的差动保护,整定电流为1.3倍变压器额定电流,在非全相时灵敏度不够,差动保护拒动。

由于非全相有零序电流,所以零序保护先跳不接地变压器,因1号变非全相仍有零序分量,继而跳开1、2号变压器。

2 微机保护的软件和硬件问题某变电站1号主变为90MV A。

有两套微机变压器保护。

差动保护为二次谐波制动和比率制动特性,设有断线闭锁,差动速断。

1998年6月27日,由于1号主变220KV侧隔离开关操作机构箱内受潮,操作回路绝缘下降,引起隔离开关带负荷自动分闸,造成弧光短路。

事故后1号主变差动保护拒动。

对侧5条线路的距离二段动作,将5条线路全部切除,事故扩大为3个220KV变电站,11个35KV变电站,1个燃汽轮机发电厂全部停电。

检查发现,故障点在变压器差动保护区内。

故障电流二次值为116A。

对保护装置进行实验检查发现,当电流大于80A时,A/D芯片溢出,采样得出的电流为0.2-0.3A。

另外,在故障电流大于80A时,断线闭锁判为电流回路断线,故两套差动保护均拒动。

变压器差动保护误动分析1 电流互感器极性错误1997年4月21日10时58分,某厂2号主变压器差动保护区外故障误动。

事故后检查发现是电流互感器的极性错误所致。

1992年10月4日,某变电站330KV出线上发生故障,线路保护动作后重合闸动作,重合后又三相故障,此时1号变压器差动保护动作,切除变压器。

检查结果,330KV侧差动保护C相的极性接反造成外部故障差动保护误动。

1992年8月1日,因下雨1号主变330KV侧C相CT因闪络损坏,更换CT后因负荷太小没做实验,因而没发现C相CT极性错误。

1997年4月21日10点58分,某电厂2号主变差动保护在区外故障时误动。

1998年2月17日,某变电站1号主变差动保护在区外10KV出线上故障时误动。

两次误动的原因均因为电流互感器的极性接反,造成外部故障时保护误动。

2 CT二次回路绝缘不良造成1999年7月26 日13时,某变电站4号主变差动保护误动,无故障跳开各侧断路器。

原因是4号主变的110KV侧差动CT的二次C相电缆绝缘破损致使C相导线与CT外壳接地,将该侧C相二次电流短路,差动保护误动。

1999年10月25日,2号发电机-变压器组的主变差动保护A相差动保护误动,切除了2号发变组。

1999年10月27日,2号发电机-变压器组的主变差动保护A相差动保护再次误动,切除了2号发变组。

原因是2号主变差动保护低压侧的差动CT的二次回路绝缘不良,在由A相TA端子至保护屏二次电缆A相芯线处有绝缘破坏的地方,在开停机过程中,由于振动大致使电缆接地,A相TA短接,差动保护误动。

某变电站的4号主变压器,系容量为240MV A的三绕组自耦变压器,其差动保护是按间断角原理构成的晶体管保护装置。

1999年7月26日13时,4号主变的差动保护动作,无故障跳开变压器各侧断路器。

事故后检查发现4号主变的差动保护110KV侧的差动TA二次C 相电缆芯线绝缘破损,致使C4221导线与TA外壳接地,将C相电流短路,因而出现差流,保护误动。

3 整定错误2008年4月21日17时30分,某变电站主变压器低压侧电抗器出口故障,主变压器差动保护区外故障误动。

事故后检查发现是由于整定错误(国外保护,补偿相位错误)。

1999年6月7日8点49分,某220KV变电站的10KV线路故障,10KV保护正确动作,1号变的差动保护误动跳三侧。

1号主变的保护为微机保护,变压器的220KV及110KV侧的TA 二次电流为1A,而10KV侧的TA二次电流为5A,在整定保护的平衡系数时没有考虑到这一情况,致使在外部故障时保护误动。

4 工作人员错误造成的误动1996年11月12日17时,某变电站3号主变差动保护误动,切除了3号变压器。

事故后查明原因是运行人员操作错误所致。

在主变保护盘上,将旁路断路器的差动TA二次与变压器同侧差动TA二次都接入差动保护中,致使差回路出现电流,引起保护误动。

1998年2月25日,某变电站2号主变差动保护误动,切除了2号变压器。

事故后查明原因是误将110KV侧旁路断路器的差动TA二次接为星形,而变压器220KV侧差动TA二次为三角形接线,在用旁路代110KV侧的102断路器时,由于差回路出现电流,引起保护误动。

1999年9月7日,某水电厂在检修工作中,误将3号主变差动保护TA短接,从而造成差动保护误动。

2000年5月24日19点58分,某电厂的仪表班工作人员对4号变压器的仪表进行消缺,短接TA二次端子时造成一相TA二次对N 线短接,从而一相差动保护误的动。

4 变压器空载合闸时保护误动某变电站1号主变容量为240MV A,配有两套JCD-11型晶体管差动保护装置,动作特性为比率制动和二次谐波制动。

1999年8月4日3点3分,在330KV侧3322断路器对1号主变充电时两套差动保护均误动,跳开充电侧断路器。

1999年8月4日3点37分,在330KV侧3320断路器对1号主变充电时两套差动保护均误动,跳开3320断路器。

整定二次谐波制动比为0.19,因充电时变压器的励磁涌流中二次谐波含量低于该整定值,故保护误动,将该项定值修改为0.16,再次投入变压器,保护没有误动。

相关文档
最新文档