2022高考数学(理)一轮复习讲义--矩阵与变换

合集下载

高考数学总复习矩阵与变换第2课时逆变换与逆矩阵矩阵的特征值4-2

高考数学总复习矩阵与变换第2课时逆变换与逆矩阵矩阵的特征值4-2

选修4-2 矩阵与变换第2课时 逆变换与逆矩阵、矩阵的特征值与特征向量(对应学生用书(理)189~191页)1. 设M =⎣⎢⎢⎡⎦⎥⎥⎤0110,N =⎣⎢⎢⎡⎦⎥⎥⎤1012,求MN . 解:MN =⎣⎢⎢⎡⎦⎥⎥⎤0110⎣⎢⎢⎡⎦⎥⎥⎤10012=⎣⎢⎢⎡⎦⎥⎥⎤01210. 2. 已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤a 273,若矩阵M 的逆矩阵M -1=⎣⎢⎢⎡⎦⎥⎥⎤b -2-7a,求a 、b 的值.解:由题意,知MM-1=E ,⎣⎢⎢⎡⎦⎥⎥⎤a 273⎣⎢⎢⎡⎦⎥⎥⎤b -2-7a =⎣⎢⎢⎡⎦⎥⎥⎤1001,即⎣⎢⎢⎡⎦⎥⎥⎤ab -1407b -213a -14=⎣⎢⎢⎡⎦⎥⎥⎤1001, 即⎩⎪⎨⎪⎧ab -14=1,7b -21=0,3a -14=1,解得a =5,b =3.3. 求矩阵⎣⎢⎢⎡⎦⎥⎥⎤ 12-12的特征多项式. 解:f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1-21λ-2=(λ-1)(λ-2)+2=λ2-3λ+4.4. (选修42P 73习题第1题改编)求矩阵M =[ 1 6-2-6]的特征值.解:矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1-62λ+6=(λ+2)·(λ+3)=0,令f(λ)=0,得M 的特征值为λ1=-2,λ2=-3.5. (选修42P 73习题第1题改编)求矩阵N =⎣⎢⎢⎡⎦⎥⎥⎤3652的特征值及相应的特征向量.解:矩阵N 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-3-6-5λ-2=(λ-8)·(λ+3)=0,令f(λ)=0,得N 的特征值为λ1=-3,λ2=8, 当λ1=-3时⎩⎪⎨⎪⎧-6x -6y =0,-5x -5y =0,一个解为⎩⎪⎨⎪⎧x =-1,y =1, 故特征值λ1=-3的一个特征向量为⎣⎢⎢⎡⎦⎥⎥⎤-1 1;当λ2=8时⎩⎪⎨⎪⎧5x -6y =0,-5x +6y =0,一个解为⎩⎪⎨⎪⎧x =6,y =5,故特征值λ2=8的一个特征向量为⎣⎢⎢⎡⎦⎥⎥⎤65.1. 逆变换与逆矩阵(1) 对于二阶矩阵A 、B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵.(2) 若二阶矩阵A 、B 均存在逆矩阵,则AB 也存在逆矩阵,且(AB )-1=B -1A -1.(3) 利用行列式解二元一次方程组. 2. 特征值与特征向量(1) 设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使Aα=λα,那么λ称为A 的一个特征值,而α称为A 的属于特征值λ的一个特征向量.(2) 从几何上看,特征向量的方向经变换矩阵A 的作用后,保持在同一条直线上,这时特征向量或者方向不变(λ>0),或者方向相反(λ<0).特别地,当λ=0时,特征向量就变换成零向量.[备课札记]题型1 求逆矩阵与逆变换例1 用解方程组的方法求下列矩阵M 的逆矩阵.(1) M =⎣⎢⎢⎡⎦⎥⎥⎤1101; (2) M =⎣⎢⎢⎡⎦⎥⎥⎤1221. 解:(1) 设M-1=⎣⎢⎢⎡⎦⎥⎥⎤a b c d , 则由定义知⎣⎢⎢⎡⎦⎥⎥⎤1101⎣⎢⎢⎡⎦⎥⎥⎤a b c d =⎣⎢⎢⎡⎦⎥⎥⎤1001,即⎩⎪⎨⎪⎧a +c =1,b +d =0,c =0,d =1,解得⎩⎪⎨⎪⎧a =1,b =-1,c =0,d =1,故M-1=⎣⎢⎢⎡⎦⎥⎥⎤1-10 1. (2) 设M-1=⎣⎢⎢⎡⎦⎥⎥⎤a b c d , 则由定义知⎣⎢⎢⎡⎦⎥⎥⎤1221⎣⎢⎢⎡⎦⎥⎥⎤a b c d =⎣⎢⎢⎡⎦⎥⎥⎤1001, 即⎩⎪⎨⎪⎧a +2c =1,b +2d =0,2a +c =0,2b +d =1,解得⎩⎪⎪⎨⎪⎪⎧a =-13,b =23,c =23,d =-13,故M-1=⎣⎢⎢⎡⎦⎥⎥⎤-13 23 23-13. 备选变式(教师专享) 已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤2-31-1所对应的线性变换把点A(x ,y)变成点A′(13,5),试求M 的逆矩阵及点A 的坐标.解:依题意,由M =⎣⎢⎢⎡⎦⎥⎥⎤2-31-1,得|M |=1,则M -1=⎣⎢⎢⎡⎦⎥⎥⎤-13-12.从而由⎣⎢⎢⎡⎦⎥⎥⎤2-31-1⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤135,得⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤-13-12⎣⎢⎢⎡⎦⎥⎥⎤135=⎣⎢⎢⎡⎦⎥⎥⎤-1×13+3×5-1×13+2×5=⎣⎢⎢⎡⎦⎥⎥⎤2-3, 故⎩⎪⎨⎪⎧x =2,y =-3,∴ A 点坐标为(2,-3).题型2 求特征值与特征向量 例2 已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤2a 21,其中a∈R ,若点P(1,-2)在矩阵M 的变换下得到点P′(-4,0).(1) 求实数a 的值;(2) 求矩阵M 的特征值及其对应的特征向量.解:(1) 由⎣⎢⎢⎡⎦⎥⎥⎤2a 21⎣⎢⎢⎡⎦⎥⎥⎤ 1-2=⎣⎢⎢⎡⎦⎥⎥⎤-4 0, 得2-2a =-4a =3.(2) 由(1)知M =⎣⎢⎢⎡⎦⎥⎥⎤2321,则矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=(λ-2)(λ-1)-6=λ2-3λ-4.令f(λ)=0,得矩阵M 的特征值为-1与4.当λ=-1时,⎩⎪⎨⎪⎧(λ-2)x -3y =0,-2x +(λ-1)y =0x +y =0,∴ 矩阵M 的属于特征值-1的一个特征向量为⎣⎢⎢⎡⎦⎥⎥⎤1-1;当λ=4时,⎩⎪⎨⎪⎧(λ-2)x -3y =0,-2x +(λ-1)y =02x -3y =0.∴ 矩阵M 的属于特征值4的一个特征向量为⎣⎢⎢⎡⎦⎥⎥⎤32.变式训练已知M =⎣⎢⎢⎡⎦⎥⎥⎤1221,β=⎣⎢⎢⎡⎦⎥⎥⎤17,计算M 5β. 解:矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1-2-2λ-1=λ2-2λ-3.令f(λ)=0,解得λ1=3,λ2=-1,从而求得对应的一个特征向量分别为α1=⎣⎢⎢⎡⎦⎥⎥⎤11,α2=⎣⎢⎢⎡⎦⎥⎥⎤1-1.令β=m α1+n α2,则m =4,n =-3.M 5β=M 5(4α1-3α2)=4(M 5α1)-3(M 5α2) =4(λ51α1)-3(λ52α2) =4×35⎣⎢⎢⎡⎦⎥⎥⎤11-3×(-1)5⎣⎢⎢⎡⎦⎥⎥⎤ 1-1=⎣⎢⎢⎡⎦⎥⎥⎤975969. 题型3 根据特征值或特征向量求矩阵 例3矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤1102有特征向量为e 1=⎣⎢⎢⎡⎦⎥⎥⎤11,e 2=⎣⎢⎢⎡⎦⎥⎥⎤10, (1) 求e 1和e 2对应的特征值; (2) 对向量α=⎣⎢⎢⎡⎦⎥⎥⎤41,记作α=e 1+3e 2,利用这一表达式间接计算M 4α,M 10α.解:(1) 设向量e 1、e 2对应的特征值分别为λ1、λ2,则⎣⎢⎢⎡⎦⎥⎥⎤1102⎣⎢⎢⎡⎦⎥⎥⎤11=λ1⎣⎢⎢⎡⎦⎥⎥⎤11,⎣⎢⎢⎡⎦⎥⎥⎤1102⎣⎢⎢⎡⎦⎥⎥⎤10=λ2⎣⎢⎢⎡⎦⎥⎥⎤10, 故λ1=2,λ2=1,即向量e 1,e 2对应的特征值分别是2,1. (2) 因为α=e 1+3e 2,所以M 4α=M 4(e 1+3e 2)=M 4e 1+3M 4e 2=λ41e 1+3λ42e2=⎣⎢⎢⎡⎦⎥⎥⎤1916, M 10α=M 10(e 1+3e 2)=M 10e 1+3M 10e 2=λ101e 1+3λ102e 2=⎣⎢⎢⎡⎦⎥⎥⎤210+3210.备选变式(教师专享)已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤200-1有特征向量e 1→=⎣⎢⎢⎡⎦⎥⎥⎤10,e 2→=⎣⎢⎢⎡⎦⎥⎥⎤01,相应的特征值为λ1,λ2.(1) 求矩阵M 的逆矩阵M -1及λ1,λ2;(2) 对任意向量α→=⎣⎢⎢⎡⎦⎥⎥⎤x y ,求M 100α→.解:(1) 由矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤200-1变换的意义知M -1=⎣⎢⎢⎡⎦⎥⎥⎤1200-1, 又Me 1→=λ1e 1→,即⎣⎢⎢⎡⎦⎥⎥⎤200-1⎣⎢⎢⎡⎦⎥⎥⎤10=λ1⎣⎢⎢⎡⎦⎥⎥⎤10,故λ1=2,同理Me 2→=λ2e 2→,即⎣⎢⎢⎡⎦⎥⎥⎤200-1⎣⎢⎢⎡⎦⎥⎥⎤01=λ2⎣⎢⎢⎡⎦⎥⎥⎤01,故λ2=-1. (2) 因为α→=⎣⎢⎢⎡⎦⎥⎥⎤x y =x e 1→+y e 2→,所以M 100α→=M 100(x e 1→+y·e 2→)=xM 100e 1→+yM 100e 2→=xλ1001e 1→+yλ2100e 2→=⎣⎢⎢⎡⎦⎥⎥⎤2100x y .1. 求函数f(x)=⎪⎪⎪⎪⎪⎪⎪⎪2cosx sinx -1的值域.解:f(x)=-2-sinxcosx =-2-12sin2x ∈⎣⎢⎡⎦⎥⎤-52,-32.2. 已知矩阵A 的逆矩阵A-1=⎣⎢⎢⎡⎦⎥⎥⎤-14 34 12-12,求矩阵A 的特征值.解:∵ A -1A =E ,∴ A =(A -1)-1.∵ A-1=⎣⎢⎢⎡⎦⎥⎥⎤-14 34 12-12,∴ A =(A -1)-1=⎣⎢⎢⎡⎦⎥⎥⎤2321.∴ 矩阵A 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=λ2-3λ-4.令f(λ)=0,解得矩阵A 的特征值λ1=-1,λ2=4.3. (2013·江苏)已知矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤-10 02,B =⎣⎢⎢⎡⎦⎥⎥⎤1206,求矩阵A -1B .解:设矩阵A的逆矩阵为⎣⎢⎢⎡⎦⎥⎥⎤a b c d , 则⎣⎢⎢⎡⎦⎥⎥⎤-10 02⎣⎢⎢⎡⎦⎥⎥⎤a b c d =⎣⎢⎢⎡⎦⎥⎥⎤1001, 即⎣⎢⎢⎡⎦⎥⎥⎤-a -b 2c 2d =⎣⎢⎢⎡⎦⎥⎥⎤1001, 故a =-1,b =0,c =0,d =12.∴ 矩阵A 的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤-10 012,∴ A -1B =⎣⎢⎢⎡⎦⎥⎥⎤-10012⎣⎢⎢⎡⎦⎥⎥⎤1206=⎣⎢⎢⎡⎦⎥⎥⎤-1-2 0 3. 4. 设曲线2x 2+2xy +y 2=1在矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤a 0b 1(a>0)对应的变换作用下得到的曲线为x 2+y 2=1.(1) 求实数a 、b 的值; (2) 求A 2的逆矩阵.解:(1) 设曲线2x 2+2xy +y 2=1上任一点P(x ,y)在矩阵A 对应的变换下的象是P′(x′,y ′),由⎣⎢⎢⎡⎦⎥⎥⎤x′y′=⎣⎢⎢⎡⎦⎥⎥⎤a 0b 1⎣⎢⎢⎡⎦⎥⎥⎤x y =[]axbx +y,得⎩⎪⎨⎪⎧x′=ax ,y ′=bx +y.因为P′(x′,y ′)在圆x 2+y 2=1上, 所以(ax)2+(bx +y)2=1,化简可得(a 2+b 2)x 2+2bxy +y 2=1, 依题意可得a 2+b 2=2,2b =2a =1,b =1或a =-1,b =1,而由a>0可得a =b =1.(2) 由(1)A =⎣⎢⎢⎡⎦⎥⎥⎤1011,A 2=⎣⎢⎢⎡⎦⎥⎥⎤1011⎣⎢⎢⎡⎦⎥⎥⎤1011=⎣⎢⎢⎡⎦⎥⎥⎤1021|A 2|=1,(A 2)-1=⎣⎢⎢⎡⎦⎥⎥⎤ 10-21. 1. 已知矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤1 -1a1,若点P(1,1)在矩阵A 对应的变换作用下得到点P′(0,-8).(1) 求实数a 的值; (2) 求矩阵A 的特征值.解:(1) 由⎣⎢⎢⎡⎦⎥⎥⎤1-1a1⎣⎢⎢⎡⎦⎥⎥⎤11=⎣⎢⎢⎡⎦⎥⎥⎤ 0-8,得a +1=-8, 所以a =-9. (2) 由(1)知A =⎣⎢⎢⎡⎦⎥⎥⎤ 1 -1-91,则矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1 19 λ-1=(λ-1)2-9=λ2-2λ-8,令f(λ)=0,所以矩阵A 的特征值为-2或4.2. 已知M =⎣⎢⎢⎡⎦⎥⎥⎤2-1-43,N =⎣⎢⎢⎡⎦⎥⎥⎤4-1-31,求二阶方阵X ,使MX =N .解:(解法1)设X =⎣⎢⎢⎡⎦⎥⎥⎤x y z w ,据题意有⎣⎢⎢⎡⎦⎥⎥⎤2-1-43⎣⎢⎢⎡⎦⎥⎥⎤x y z w =⎣⎢⎢⎡⎦⎥⎥⎤4-1-31,根据矩阵乘法法则有⎩⎪⎨⎪⎧2x -z =4,2y -w =-1,-4x +3z =-3,-4y +3w =1.解得⎩⎪⎨⎪⎧x =92,y =-1,z =5,w =-1,所以X =⎣⎢⎢⎡⎦⎥⎥⎤92-15-1. (解法2)因为MX =N ,所以X =M -1N ,M -1=⎣⎢⎢⎡⎦⎥⎥⎤321221.所以X =M-1N =⎣⎢⎢⎡⎦⎥⎥⎤321221⎣⎢⎢⎡⎦⎥⎥⎤4-1-31=⎣⎢⎢⎡⎦⎥⎥⎤92-15-1. 3. 已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤2a 21,其中a∈R ,若点P(1,-2)在矩阵M 的变换下得到点P′(-4,0),求实数a 的值;并求矩阵M 的特征值及其对应的特征向量.解:由⎣⎢⎢⎡⎦⎥⎥⎤2a 21⎣⎢⎢⎡⎦⎥⎥⎤1-2=⎣⎢⎢⎡⎦⎥⎥⎤-40,∴ 2-2a =-4a =3.∴ M =⎣⎢⎢⎡⎦⎥⎥⎤2321,则矩阵M 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=(λ-2)(λ-1)-6=λ2-3λ-4令f(λ)=0,得矩阵M 的特征值为-1与4. 当λ=-1时, ⎩⎪⎨⎪⎧(λ-2)x -3y =0-2x +(λ-1)y =0x +y =0,∴ 矩阵M 的属于特征值-1的一个特征向量为⎣⎢⎢⎡⎦⎥⎥⎤1-1;当λ=4时, ⎩⎪⎨⎪⎧(λ-2)x -3y =0-2x +(λ-1)y =02x -3y =0,∴ 矩阵M 的属于特征值4的一个特征向量为⎣⎢⎢⎡⎦⎥⎥⎤32.4. 设矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤a 00b (其中a>0,b>0).(1) 若a =2,b =3,求矩阵M 的逆矩阵M -1;(2) 若曲线C :x 2+y 2=1在矩阵M 所对应的线性变换作用下得到曲线C′:x 24+y 2=1,求a 、b 的值.解:(1) 设矩阵M 的逆矩阵M-1=⎣⎢⎢⎡⎦⎥⎥⎤x 1y 1x 2y 2,则MN -1= ⎣⎢⎢⎡⎦⎥⎥⎤1001.又M =⎣⎢⎢⎡⎦⎥⎥⎤2003,所以⎣⎢⎢⎡⎦⎥⎥⎤2003⎣⎢⎢⎡⎦⎥⎥⎤x 1y 1x 2y 2=⎣⎢⎢⎡⎦⎥⎥⎤1001,所以2x 1=1,2y 1=0,3x 2=0,3y 2=1,即x 1=12,y 1=0,x 2=0,y 2=13,故所求的逆矩阵M -1=⎣⎢⎢⎡⎦⎥⎥⎤120013.(2) 设曲线C 上任意一点P(x ,y),它在矩阵M 所对应的线性变换作用下得到P′(x′,y ′),则⎣⎢⎢⎡⎦⎥⎥⎤a 00b ⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x′y′,即⎩⎪⎨⎪⎧ax =x′,by =y′.又点P′(x′,y ′)在曲线C′上,所以x′24+y′2=1,则a 2x 24+b 2y2=1为曲线C 的方程.又已知曲线C 的方程为x 2+y 2=1,故⎩⎪⎨⎪⎧a 2=4,b 2=1.又a>0,b>0,所以⎩⎪⎨⎪⎧a =2,b =1.1. 矩阵的逆矩阵(1) 已知A 、B 、C 为二阶矩阵,且AB =AC ,若矩阵A 存在逆矩阵,则B =C .(2) 对于二阶可逆矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤a b c d (ad -bc≠0),它的逆矩阵为A-1=⎣⎢⎢⎡⎦⎥⎥⎤d ad -bc -b ad -bc-c ad -bca ad -bc . 2. 二阶行列式与方程组的解对于关于x 、y的二元一次方程组⎩⎪⎨⎪⎧ax +by =m ,cx +dy =n ,我们把⎪⎪⎪⎪⎪⎪⎪⎪a b c d 称为二阶行列式,它的运算结果是一个数值(或多项式),记为det(A)=⎪⎪⎪⎪⎪⎪⎪⎪a b c d =ad -bc. 若将方程组中行列式⎪⎪⎪⎪⎪⎪⎪⎪a b c d 记为D ,⎪⎪⎪⎪⎪⎪⎪⎪m b n d 记为D x ,⎪⎪⎪⎪⎪⎪⎪⎪a m c n 记为D y,则当D≠0时,方程组的解为⎩⎪⎨⎪⎧x =D xD,y =DyD .请使用课时训练(B )第2课时(见活页).[备课札记]。

版高考数学一轮总复习线性代数与矩阵的运算与变换

版高考数学一轮总复习线性代数与矩阵的运算与变换

版高考数学一轮总复习线性代数与矩阵的运算与变换高考数学一轮总复习:线性代数与矩阵的运算与变换在高考数学的复习中,线性代数和矩阵是一个重要的考点。

掌握线性代数和矩阵的运算与变换是解决各类数学问题的基础。

本文将对线性代数和矩阵的相关知识进行总结和讲解。

一、线性代数的基本概念1. 向量向量是线性代数中的基本对象,可以表示为一个有序的数列。

向量既可以是一个单独的元素,又可以是一组元素的组合。

向量可以进行加法和数乘运算,也就是说,可以将向量与标量相乘或将两个向量相加。

2. 矩阵矩阵是线性代数中另一个重要的概念,它是由多行多列元素构成的矩形阵列。

矩阵可以进行加法、数乘和乘法运算。

加法和数乘运算与向量类似,而矩阵乘法是矩阵运算中的一种特殊运算。

二、矩阵的运算1. 加法和数乘运算矩阵的加法运算是将两个相同行列数的矩阵对应位置的元素相加得到新矩阵。

数乘运算是将一个标量与矩阵的每个元素相乘得到新矩阵。

这两种运算的结果都符合运算法则,即满足交换律和结合律。

2. 矩阵乘法矩阵乘法是矩阵运算中的重要部分。

两个矩阵的乘法要求第一个矩阵的列数与第二个矩阵的行数相等。

乘法的结果是一个新的矩阵,新矩阵的行数等于第一个矩阵的行数,列数等于第二个矩阵的列数。

矩阵乘法不满足交换律,即AB≠BA。

3. 转置和逆矩阵矩阵的转置是将矩阵的行和列进行互换得到新的矩阵。

逆矩阵是指对于一个矩阵A,存在一个矩阵B,使得AB=BA=I,其中I是单位矩阵。

逆矩阵只存在于非奇异矩阵中。

三、线性变换与矩阵线性变换是指将一个向量空间中的向量映射到另一个向量空间中的过程。

在线性变换中,矩阵扮演了重要的角色。

给定一个线性变换,可以找到一个矩阵与之对应。

线性变换的复合对应于矩阵的乘法,而线性变换的逆对应于矩阵的逆。

四、应用举例1. 线性方程组线性方程组是线性代数中的重要应用之一。

可以通过矩阵的方法来解决线性方程组。

将系数矩阵和常数项列向量组合成增广矩阵,通过高斯消元法或矩阵的逆来求解方程组的解。

2021-2022年高考数学一轮复习专题11.6矩阵与变换测理

2021-2022年高考数学一轮复习专题11.6矩阵与变换测理

2021年高考数学一轮复习专题11.6矩阵与变换测理1. 已知矩阵,求矩阵的特征值和特征向量.【答案】属于特征值的一个特征向量属于特征值的一个特征向量2.已知直线在矩阵对应的变换作用下变为直线,求矩阵.【答案】【解析】设直线上任意一点在矩阵的变换作用下,变换为点 .由''01x m n x mx ny y y y +⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦,得 …………5分 又点在上,所以,即依题意,解得, …………10分3.选修4—2:矩阵与变换求矩阵⎣⎢⎡⎦⎥⎤3 11 3的特征值及对应的特征向量.【答案】属于λ1=2的一个特征向量为⎣⎢⎡⎦⎥⎤1-1,属于λ1=4的一个特征向量为⎣⎢⎡⎦⎥⎤11.4.(选修4—2:矩阵与变换)设矩阵的一个特征值为,若曲线在矩阵变换下的方程为,求曲线的方程.【答案】【解析】由题意,矩阵的特征多项式,因矩阵有一个特征值为2,,所以. …………4分所以 2 0M 2 1x x x y y y '⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦⎣⎦,即, 代入方程,得,即曲线的方程为.…10分5.选修4 2:矩阵与变换(本小题满分10分)已知二阶矩阵M 有特征值=3及对应的一个特征向量,并且矩阵M 对应的变换将点(-1,2)变换成(9,15) ,求矩阵M .【答案】6.已知矩阵A =⎣⎢⎡⎦⎥⎤2a 1 3,其中a ∈R ,若点P (1,2)在矩阵A 对应的变换作用下得到点P ′(6,7).(1)求实数a 的值与矩阵A ;(2)求矩阵A 的特征值及相应的特征向量.【答案】(1)a =2,∴A =⎣⎢⎡⎦⎥⎤221 3.(2)属于特征值1的一个特征向量为⎣⎢⎡⎦⎥⎤-2 1,属于特征值4的一个特征向量为⎣⎢⎡⎦⎥⎤11. 【解析】解:(1)由题意知,⎣⎢⎡⎦⎥⎤2 a 1 3⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤2+2a 7=⎣⎢⎡⎦⎥⎤67, ∴2+2a =6,∴a =2,∴A =⎣⎢⎡⎦⎥⎤221 3.(2)由(1)知,A =⎣⎢⎡⎦⎥⎤2 21 3,其特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-2 -2-1 λ-3=(λ-2)(λ-3)-2, 令f (λ)=0,即λ2-5λ+4=0,解得λ1=1,λ2=4. 当λ1=1时,设对应的特征向量为α=⎣⎢⎡⎦⎥⎤m n , 则⎣⎢⎡⎦⎥⎤2 21 3⎣⎢⎡⎦⎥⎤m n =⎣⎢⎡⎦⎥⎤m n ,即⎩⎪⎨⎪⎧ 2m +2n =m ,m +3n =n ,取n =1,则m =-2,故α=⎣⎢⎡⎦⎥⎤-21; 当λ2=4时,设对应的特征向量为β=⎣⎢⎡⎦⎥⎤x y , 则⎣⎢⎡⎦⎥⎤2 21 3⎣⎢⎡⎦⎥⎤x y =4⎣⎢⎡⎦⎥⎤x y ,即⎩⎪⎨⎪⎧ 2x +2y =4x ,x +3y =4y ,取x =1,则y =1,故β=⎣⎢⎡⎦⎥⎤11.∴矩阵A 的属于特征值1的一个特征向量为⎣⎢⎡⎦⎥⎤-2 1,属于特征值4的一个特征向量为⎣⎢⎡⎦⎥⎤11. 7. 设M 是把坐标平面上点的横坐标不变、纵坐标沿y 轴方向伸长为原来5倍的伸缩变换.(1)求直线4x -10y =1在M 作用下的方程;(2)求M 的特征值与相应的特征向量.【答案】(1)4x -2y =1.(2)当λ1=1时,特征向量α1=⎣⎢⎡⎦⎥⎤10;当λ2=5时,特征向量α2=⎣⎢⎡⎦⎥⎤01.8.已知矩阵A =⎣⎢⎡⎦⎥⎤6 244. (1)求矩阵A 的特征值及对应的特征向量;(2)计算矩阵A n . 【答案】(1)当λ1=8时,A 属于λ1的特征向量为α1=⎣⎢⎡⎦⎥⎤11;当λ2=2时,A 属于λ2的特征向量为α2=⎣⎢⎡⎦⎥⎤1-2. (2)⎣⎢⎢⎡⎦⎥⎥⎤2×8n +2n 3 8n -2n 32×8n -2n +13 8n +2n +13c =2×8n -2n +13,d =8n +2n +13. 故A n =⎣⎢⎢⎡⎦⎥⎥⎤2×8n +2n 3 8n -2n 32×8n -2n +13 8n +2n +139.已知a,b,若=所对应的变换T M 把直线2x - y = 3变换成自身,试求实数a,b.【答案】【解析】10.已知曲线:,若矩阵222222M⎡⎢⎥=⎥⎢⎥⎣⎦对应的变换将曲线变为曲线,求曲线的方程.【答案】【解析】试题解析:设曲线一点对应于曲线上一点,22 22 22 22x x y y '⎡⎤⎡⎤-⎢⎥⎢⎥⎢⎥⎢⎥⎥=⎢⎥⎢⎥⎥⎢⎥⎢⎥⎥'⎣⎦⎣⎦⎣⎦,,,……5分,,,曲线的方程为. …10分11.变换是逆时针旋转的旋转变换,对应的变换矩阵是;变换对应用的变换矩阵是(Ⅰ)求点在作用下的点的坐标;(Ⅱ)求函数的图象依次在,变换的作用下所得曲线的方程。

高考数学一轮复习 第十五章 第2讲 矩阵与变换课件 理 苏教版

高考数学一轮复习 第十五章 第2讲 矩阵与变换课件 理 苏教版
第2讲 矩阵与变换
考点梳理
1.乘法规则 (1)行矩阵[a11 [a11 a12]
b11 的乘法规则: a12]与列矩阵 b 21
b11 [a11×b11+a12×b21] . = __________________ b21 x a12 与列向量 0 的乘法规则: a22 y0
b 的特 d
A 的分别属于特征值 λ1、
λ2 的一个特征向量.
【助学· 微博】 常见考查角度 (1)矩阵的概念和常见变换的识别与简单应用,重点是变 换前后的方程表达式;
(2)矩阵的乘法和运算性质及矩阵与逆矩阵;
(3)考查求二阶矩阵的特征值与特征向量; (4)二阶矩阵的特征值与特征向量简单应用.
考点自测
1.(2012· 徐州调研)曲线 C1:x +2y =1 在矩阵 作用下变换为曲线 C2,求 C2 的方程.
2 2
1 M= 0
2 1的

设 P(x, y)为曲线 C2 上任意一点, P′ (x′, y′ )为曲
线 x2+ 2y2= 1 上与 P 对应的点,
1 则 0 x′ x x= x′+ 2y′, x′= x- 2y, 2 = ,即 ⇒ 1y′ y y= y′ y′= y.
Байду номын сангаас
b 可逆,那么 d
-b d ad- bc ad- bc -1 其中 A = . -c a ad- bc ad- bc
3.二阶矩阵的特征值和特征向量 (1)特征值与特征向量的概念 设A是一个二阶矩阵,如果对于实数λ,存在一个非零 向量α,使得Aα=λα,那么λ称为A的一个特征值,而α

x1 x2 ξ1= , ξ2= . y1 y2 a A= c

一轮复习配套讲义:选修4-2 矩阵与变换.pdf

一轮复习配套讲义:选修4-2 矩阵与变换.pdf

选修4-2 矩阵与变换A[最新考纲]1.了解二阶矩阵的概念,了解线性变换与二阶矩阵之间的关系.2.了解旋转变换、反射变换、伸缩变换、投影变换、切变变换这五种变换的概念与矩阵表示.3.理解变换的复合与矩阵的乘法;理解二阶矩阵的乘法和简单性质. 4.理解逆矩阵的意义,会求出简单二阶逆矩阵.5.理解矩阵的特征值与特征向量,会求二阶矩阵的特征值与特征向量.知 识 梳 理1.矩阵的乘法规则(1)行矩阵[a 11 a 12]与列矩阵⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21的乘法规则: [a 11 a 12]⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21=[a 11×b 11+a 12×b 21]. (2)二阶矩阵⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21 a 12a 22与列向量⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0的乘法规则: ⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21 a 12a 22⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0=⎣⎢⎢⎡⎦⎥⎥⎤a 11×x 0+a 12×y 0a 21×x 0+a 22×y 0. 设A 是一个二阶矩阵,α、β是平面上的任意两个向量,λ、λ1、λ2是任意三个实数,则①A (λα)=λAα;②A (α+β)=Aα+Aβ; ③A (λ1α+λ2β)=λ1Aα+λ2Aβ.(3)两个二阶矩阵相乘的结果仍然是一个矩阵,其乘法法则如下: ⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21 a 12a 22⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21 b 12b 22= ⎣⎢⎢⎡⎦⎥⎥⎤a 11×b 11+a 12×b 21a 21×b 11+a 22×b 21 a 11×b 12+a 12×b 22a 21×b 12+a 22×b 22 性质:①一般情况下,AB ≠BA ,即矩阵的乘法不满足交换律;②矩阵的乘法满足结合律,即(AB )C =A (BC );③矩阵的乘法不满足消去律. 2.矩阵的逆矩阵(1)逆矩阵的有关概念:对于二阶矩阵A ,B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵.若二阶矩阵A 存在逆矩阵B ,则逆矩阵是唯一的,通常记A 的逆矩阵为A -1,A -1=B .(2)逆矩阵的求法:一般地,对于二阶可逆矩阵A =⎣⎢⎡⎦⎥⎤a b c d (det A =ad -bc ≠0),它的逆矩阵为A-1=⎣⎢⎢⎡⎦⎥⎥⎤dad -bc-b ad -bc -c ad -bc a ad -bc . (3)逆矩阵与二元一次方程组:如果关于变量x ,y 的二元一次方程组⎩⎨⎧ax +by =m ,cx +dy =n的系数矩阵A =⎣⎢⎡⎦⎥⎤a b c d 可逆,那么该方程组有唯一解⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤a b c d -1⎣⎢⎡⎦⎥⎤m n , 其中A -1=⎣⎢⎢⎡⎦⎥⎥⎤dad -bc-b ad -bc-c ad -bca ad -bc . 3.二阶矩阵的特征值和特征向量 (1)特征值与特征向量的概念设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使得Aα=λα,那么λ称为A 的一个特征值,而α称为A 的一个属于特征值λ的一个特征向量.(2)特征多项式与特征方程 设λ是二阶矩阵A =⎣⎢⎡⎦⎥⎤ab c d 的一个特征值,它的一个特征向量为ξ=⎣⎢⎡⎦⎥⎤x y ,则A ⎣⎢⎡⎦⎥⎤x y =λ⎣⎢⎡⎦⎥⎤x y , 即⎣⎢⎡⎦⎥⎤x y 满足二元一次方程组⎩⎨⎧ax +by =λx ,cx +dy =λy , 故⎩⎨⎧(λ-a )x -by =0-cx +(λ-d )y =0⇔⎣⎢⎡⎦⎥⎤λ-a -b -c λ-d ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤00(*)则(*)式有非零解的充要条件是它的系数矩阵的行列式 ⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =0.记f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d 为矩阵A =⎣⎢⎡⎦⎥⎤a b c d 的特征多项式;方程⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =0,即f (λ)=0称为矩阵A =⎣⎢⎡⎦⎥⎤ab c d 的特征方程. (3)特征值与特征向量的计算如果λ是二阶矩阵A 的特征值,则λ是特征方程f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =λ2-(a +d )λ+ad -bc =0的一个根.解这个关于λ的二元一次方程,得λ=λ1、λ2,将λ=λ1、λ2分别代入方程组(*),分别求出它们的一个非零解⎩⎨⎧ x =x 1,y =y 1,⎩⎨⎧x =x 2,y =y 2,记ξ1=⎣⎢⎡⎦⎥⎤x 1y 1,ξ2=⎣⎢⎡⎦⎥⎤x 2y 2.则Aξ1=λ1ξ1、Aξ2=λ2ξ2,因此λ1、λ2是矩阵A =⎣⎢⎡⎦⎥⎤ab cd 的特征值,ξ1=⎣⎢⎡⎦⎥⎤x 1y 1,ξ2=⎣⎢⎡⎦⎥⎤x 2y 2为矩阵A 的分别属于特征值λ1、λ2的一个特征向量. 诊 断 自 测1. ⎣⎢⎡⎦⎥⎤1 00 -1 ⎣⎢⎡⎦⎥⎤57=________.解析 ⎣⎢⎡⎦⎥⎤1 00 -1⎣⎢⎡⎦⎥⎤57=⎣⎢⎢⎡⎦⎥⎥⎤ 1×5+0×7 0×5+(-1)×7=⎣⎢⎡⎦⎥⎤5-7.答案 ⎣⎢⎡⎦⎥⎤5-72.若A =⎣⎢⎢⎡⎦⎥⎥⎤12 121212,B =⎣⎢⎢⎡⎦⎥⎥⎤12 -12-1212,则AB =________. 解析AB =⎣⎢⎢⎡⎦⎥⎥⎤12 1212 12⎣⎢⎢⎡⎦⎥⎥⎤ 12 -12-12 12 =⎣⎢⎢⎡⎦⎥⎥⎤12×12+12×⎝ ⎛⎭⎪⎫-12 12×⎝ ⎛⎭⎪⎫-12+12×1212×12+12×⎝ ⎛⎭⎪⎫-12 12×⎝ ⎛⎭⎪⎫-12+12×12=⎣⎢⎡⎦⎥⎤0 00 0.答案 ⎣⎢⎡⎦⎥⎤0 00 0 3.设A =⎣⎢⎡⎦⎥⎤-1 0 0 1,B =⎣⎢⎡⎦⎥⎤0 -11 0,则AB 的逆矩阵为________. 解析 ∵A-1=⎣⎢⎡⎦⎥⎤-1 0 0 1,B -1=⎣⎢⎡⎦⎥⎤0 1-1 0 ∴(AB )-1=B -1A -1=⎣⎢⎡⎦⎥⎤ 0 1-1 0 ⎣⎢⎡⎦⎥⎤-1 0 0 1=⎣⎢⎡⎦⎥⎤0 11 0. 答案 ⎣⎢⎡⎦⎥⎤0 11 0 4.函数y =x 2在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤10014变换作用下的结果为________. 解析 ⎣⎢⎢⎡⎦⎥⎥⎤1 00 14 ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤ x 14y =⎣⎢⎡⎦⎥⎤x ′y ′⇒x =x ′,y =4y ′, 代入y =x 2,得y ′=14x ′2,即y =14x 2. 答案 y =14x 25.若A =⎣⎢⎡⎦⎥⎤1 56 2,则A 的特征值为________. 解析 A 的特征多项式f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1 -5 -6 λ-2 =(λ-1)(λ-2)-30=λ2-3λ-28=(λ-7)(λ+4), ∴A 的特征值为λ1=7,λ2=-4. 答案 7和-4考点一 矩阵与变换【例1】 (2014·苏州市自主学习调查)已知a ,b 是实数,如果矩阵M =⎣⎢⎡⎦⎥⎤2a b 1所对应的变换将直线x -y =1变换成x +2y =1,求a ,b 的值.解 设点(x ,y )是直线x -y =1上任意一点,在矩阵M 的作用下变成点(x ′,y ′),则⎣⎢⎡⎦⎥⎤2 a b1 ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′, 所以⎩⎨⎧x ′=2x +ay ,y ′=bx +y .因为点(x ′,y ′),在直线x +2y =1上,所以 (2+2b )x +(a +2)y =1,即⎩⎨⎧2+2b =1,a +2=-1,所以⎩⎪⎨⎪⎧a =-3,b =-12.规律方法 理解变换的意义,掌握矩阵的乘法运算法则是求解的关键,利用待定系数法,构建方程是解决此类题的关键.【训练1】 已知变换S 把平面上的点A (3,0),B (2,1)分别变换为点A ′(0,3),B ′(1,-1),试求变换S 对应的矩阵T . 解 设T =⎣⎢⎡⎦⎥⎤a c bd ,则T :⎣⎢⎡⎦⎥⎤30→⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤a c b d ⎣⎢⎡⎦⎥⎤30=⎣⎢⎡⎦⎥⎤3a 3b =⎣⎢⎡⎦⎥⎤03,解得⎩⎨⎧a =0,b =1;T :⎣⎢⎡⎦⎥⎤21→⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤a c b d ⎣⎢⎡⎦⎥⎤21=⎣⎢⎡⎦⎥⎤2a +c 2b +d =⎣⎢⎡⎦⎥⎤ 1-1, 解得⎩⎨⎧c =1,d =-3,综上可知T =⎣⎢⎡⎦⎥⎤0 11 -3. 考点二 二阶逆矩阵与二元一次方程组【例2】 已知矩阵M =⎣⎢⎡⎦⎥⎤2 -31 -1所对应的线性变换把点A (x ,y )变成点A ′(13,5),试求M 的逆矩阵及点A 的坐标.解 依题意得由M =⎣⎢⎡⎦⎥⎤2 -31 -1,得|M |=1, 故M -1=⎣⎢⎡⎦⎥⎤-13-12. 从而由⎣⎢⎡⎦⎥⎤2 -31 -1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤135得⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤-1-1 32⎣⎢⎢⎡⎦⎥⎥⎤135=⎣⎢⎡⎦⎥⎤-1×13+3×5-1×13+2×5=⎣⎢⎡⎦⎥⎤ 2-3,故⎩⎨⎧x =2,y =-3,∴A (2,-3)为所求. 规律方法 求逆矩阵时,可用定义法解方程处理,也可以用公式法直接代入求解.在求逆矩阵时要重视(AB )-1=B -1A -1性质的应用. 【训练2】 已知矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤21 32, (1)求矩阵A 的逆矩阵;(2)利用逆矩阵知识解方程组⎩⎨⎧2x +3y -1=0,x +2y -3=0.解 (1)法一 设逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤a c b d , 则由⎣⎢⎢⎡⎦⎥⎥⎤2132⎣⎢⎢⎡⎦⎥⎥⎤a cb d =⎣⎢⎢⎡⎦⎥⎥⎤1001,得⎩⎨⎧2a +3c =1,2b +3d =0,a +2c =0,b +2d =1,解得⎩⎨⎧a =2,b =-3,c =-1,d =2,A -1=⎣⎢⎢⎡⎦⎥⎥⎤2-1-32. 法二 由公式知若A =⎣⎢⎢⎡⎦⎥⎥⎤a c b d =⎣⎢⎢⎡⎦⎥⎥⎤2132,(2)已知方程组⎩⎨⎧2x +3y -1=0,x +2y -3=0,可转化为⎩⎨⎧2x +3y =1,x +2y =3,即AX =B ,其中A =⎣⎢⎢⎡⎦⎥⎥⎤21 32,X =⎣⎢⎢⎡⎦⎥⎥⎤x y ,B =⎣⎢⎢⎡⎦⎥⎥⎤13,且由(1), 得A -1=⎣⎢⎢⎡⎦⎥⎥⎤2-1 -32. 因此,由AX =B ,同时左乘A -1,有 A -1AX =A -1B =⎣⎢⎢⎡⎦⎥⎥⎤2-1 -32⎣⎢⎢⎡⎦⎥⎥⎤13=⎣⎢⎢⎡⎦⎥⎥⎤-75. 即原方程组的解为⎩⎨⎧x =-7,y =5.考点三 求矩阵的特征值与特征向量【例3】 已知a ∈R ,矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤1a21对应的线性变换把点P (1,1)变成点P ′(3,3),求矩阵A 的特征值以及每个特征值的一个特征向量. 解 由题意⎣⎢⎢⎡⎦⎥⎥⎤1a21 ⎣⎢⎢⎡⎦⎥⎥⎤11=⎣⎢⎢⎡⎦⎥⎥⎤3a +1=⎣⎢⎢⎡⎦⎥⎥⎤33, 得a +1=3,即a =2,矩阵A 的特征多项式为 f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1-2 -2λ-1=(λ-1)2-4=(λ+1)(λ-3), 令f (λ)=0,所以矩阵A 的特征值为λ1=-1,λ2=3. ①对于特征值λ1=-1,解相应的线性方程组⎩⎨⎧ x +y =0,2x +2y =0得一个非零解⎩⎨⎧x =1,y =-1.因此,α=⎣⎢⎢⎡⎦⎥⎥⎤1-1是矩阵A 的属于特征值λ1=-1的一个特征向量; ②对于特征值λ2=3,解相应的线性方程组⎩⎨⎧2x -2y =0,-2x +2y =0得一个非零解⎩⎨⎧x =1,y =1.因此,β=⎣⎢⎢⎡⎦⎥⎥⎤11是矩阵A 的属于特征值λ2=3的一个特征向量. 规律方法 已知A =⎣⎢⎢⎡⎦⎥⎥⎤a cb d ,求特征值和特征向量,其步骤为: (1)令f (λ)=⎪⎪⎪⎪⎪⎪(λ-a )-c -b(λ-d )=(λ-a )(λ-d )-bc =0,求出特征值λ; (2)列方程组⎩⎪⎨⎪⎧(λ-a )x -by =0,-cx +(λ-d )y =0;(3)赋值法求特征向量,一般取x =1或者y =1,写出相应的向量.【训练3】 (2014·扬州质检)已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤3-1-13,求M 的特征值及属于各特征值的一个特征向量.解 由矩阵M 的特征多项式f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-311λ-3= (λ-3)2-1=0,解得λ1=2,λ2=4,即为矩阵M 的特征值. 设矩阵M 的特征向量为⎣⎢⎡⎦⎥⎤x y ,当λ1=2时,由M ⎣⎢⎡⎦⎥⎤x y =2⎣⎢⎡⎦⎥⎤x y ,可得⎩⎨⎧-x +y =0,x -y =0.可令x =1,得y =1,∴α1=⎣⎢⎡⎦⎥⎤11是M 的属于λ1=2的特征向量.当λ2=4时,由M ⎣⎢⎡⎦⎥⎤x y =4⎣⎢⎡⎦⎥⎤x y ,可得⎩⎨⎧x +y =0,x +y =0,取x =1,得y =-1,∴α2=⎣⎢⎡⎦⎥⎤1-1是M 的属于λ2=4的特征向量.用坐标转移的思想求曲线在变换作用下的新方程【典例】 二阶矩阵M 对应的变换T 将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2). (1)求矩阵M ;(2)设直线l 在变换T 作用下得到了直线m :x -y =4,求l 的方程.[审题视点] (1)变换前后的坐标均已知,因此可以设出矩阵,用待定系数法求解. (2)知道直线l 在变换T 作用下的直线m ,求原直线,可用坐标转移法. 解 (1)设M =⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎢⎡⎦⎥⎥⎤-1-1, ⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-2 1=⎣⎢⎡⎦⎥⎤ 0-2, 所以⎩⎪⎨⎪⎧ a -b =-1,c -d =-1,且⎩⎪⎨⎪⎧-2a +b =0,-2c +d =-2,解得⎩⎪⎨⎪⎧a =1,b =2,c =3,d =4,所以M =⎣⎢⎡⎦⎥⎤1 23 4. (2)因为⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤1 23 4⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x +2y 3x +4y 且m :x ′-y ′=4, 所以(x +2y )-(3x +4y )=4,即x +y +2=0,∴直线l 的方程是x +y +2=0.[反思感悟] (1)本题考查了求变换矩阵和在变换矩阵作用下的曲线方程问题,题目难度属中档题.(2)本题突出体现了待定系数法的思想方法和坐标转移的思想方法 .(3)本题的易错点是计算错误和第(2)问中坐标转移的方向错误. 【自主体验】(2014·南京金陵中学月考)求曲线2x 2-2xy +1=0在矩阵MN 对应的变换作用下得到的曲线方程,其中M =⎣⎢⎢⎡⎦⎥⎥⎤10 02,N =⎣⎢⎢⎡⎦⎥⎥⎤ 1-101. 解 MN =⎣⎢⎢⎡⎦⎥⎥⎤1002⎣⎢⎢⎡⎦⎥⎥⎤ 1-101=⎣⎢⎢⎡⎦⎥⎥⎤ 1-202. 设P (x ′,y ′)是曲线2x 2-2xy +1=0上任意一点,点P 在矩阵MN 对应的变换下变为点P ′(x ,y ), 则⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤ 1-202⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤ x ′-2x ′+2y ′, 于是x ′=x ,y ′=x +y2,代入2x ′2-2x ′y ′+1=0,得xy =1.所以曲线2x 2-2xy +1=0在MN 对应的变换作用下得到的曲线方程为xy =1.一、填空题1.已知变换T :⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤3x +4y 5x +6y ,则该变换矩阵为________. 解析 ⎩⎪⎨⎪⎧x ′=3x +4y ,y ′=5x +6y ,可写成⎣⎢⎡⎦⎥⎤3 45 6⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′. 答案 ⎣⎢⎡⎦⎥⎤3 45 6 2.计算⎣⎢⎡⎦⎥⎤3 75 8⎣⎢⎡⎦⎥⎤2-1等于________. 解析 ⎣⎢⎡⎦⎥⎤3 75 8⎣⎢⎡⎦⎥⎤ 2-1=⎣⎢⎢⎡⎦⎥⎥⎤3×2-75×2-8=⎣⎢⎡⎦⎥⎤-1 2. 答案 ⎣⎢⎡⎦⎥⎤-1 23.矩阵⎣⎢⎡⎦⎥⎤5 00 1的逆矩阵为________. 解析 ⎣⎢⎡⎦⎥⎤5 00 1=5,∴⎣⎢⎡⎦⎥⎤5 00 1的逆矩阵为⎣⎢⎢⎡⎦⎥⎥⎤15 0 0 1. 答案 ⎣⎢⎢⎡⎦⎥⎥⎤15 0 0 1 4.若矩阵A =⎣⎢⎡⎦⎥⎤3 a b 13把直线l :2x +y -7=0变换成另一直线l ′:9x +y -91=0,则a =________,b =________. 解析 取l 上两点(0,7)和(3.5,0),则⎣⎢⎡⎦⎥⎤3 a b 13⎣⎢⎡⎦⎥⎤07=⎣⎢⎡⎦⎥⎤7a 91,⎣⎢⎡⎦⎥⎤3 a b 13⎣⎢⎡⎦⎥⎤3.5 0=⎣⎢⎡⎦⎥⎤10.53.5b . 由已知(7a,91),(10.5,3.5b )在l ′上,代入得a =0,b =-1. 答案 0 -15.矩阵M =⎣⎢⎡⎦⎥⎤6 -36 -3的特征值为________. 解析 f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-6 3-6 λ+3=(λ-6)(λ+3)+18=0. ∴λ=0或λ=3. 答案 0或3 6.已知矩阵M =⎣⎢⎡⎦⎥⎤1234,α=⎣⎢⎡⎦⎥⎤12,β=⎣⎢⎡⎦⎥⎤ 0-3,则M (2α+4β)=________.解析 2α+4β=⎣⎢⎡⎦⎥⎤24+⎣⎢⎡⎦⎥⎤ 0-12=⎣⎢⎡⎦⎥⎤ 2-8,M (2α+4β)=⎣⎢⎡⎦⎥⎤1 23 4⎣⎢⎡⎦⎥⎤ 2-8=⎣⎢⎢⎡⎦⎥⎥⎤-14-26.答案 ⎣⎢⎡⎦⎥⎤-14-26 7.曲线C 1:x 2+2y 2=1在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤121的作用下变换为曲线C 2,则C 2的方程为________.解析 设P (x ,y )为曲线C 2上任意一点,P ′(x ′,y ′)为曲线x 2+2y 2=1上与P 对应的点,则⎣⎢⎢⎡⎦⎥⎥⎤10 21⎣⎢⎢⎡⎦⎥⎥⎤x ′ y ′=⎣⎢⎢⎡⎦⎥⎥⎤x y ,即⎩⎪⎨⎪⎧ x =x ′+2y ′,y =y ′⇒⎩⎪⎨⎪⎧x ′=x -2y ,y ′=y . 因为P ′是曲线C 1上的点, 所以C 2的方程为(x -2y )2+y 2=1. 答案 (x -2y )2+y 2=18.已知矩阵A =⎣⎢⎡⎦⎥⎤2 -1-4 3,B =⎣⎢⎡⎦⎥⎤4 -1-3 1,则满足AX =B 的二阶矩阵X 为________.解析 由题意,得A -1= AX =B , ∴X =A -1B =. 答案 ⎣⎢⎢⎡⎦⎥⎥⎤92 -1 5 -1 9.已知矩阵A 将点(1,0)变换为(2,3),且属于特征值3的一个特征向量是⎣⎢⎢⎡⎦⎥⎥⎤11,则矩阵A 为________.解析 设A =⎣⎢⎢⎡⎦⎥⎥⎤a c b d ,由⎣⎢⎢⎡⎦⎥⎥⎤a c b d ⎣⎢⎢⎡⎦⎥⎥⎤10=⎣⎢⎢⎡⎦⎥⎥⎤23,得⎩⎪⎨⎪⎧a =2,c =3. 由⎣⎢⎢⎡⎦⎥⎥⎤a cb d ⎣⎢⎢⎡⎦⎥⎥⎤11=3⎣⎢⎢⎡⎦⎥⎥⎤11=⎣⎢⎢⎡⎦⎥⎥⎤33,得⎩⎪⎨⎪⎧ a +b =3,c +d =3.所以⎩⎪⎨⎪⎧b =1,d =0.所以A =⎣⎢⎢⎡⎦⎥⎥⎤23 10.答案 ⎣⎢⎢⎡⎦⎥⎥⎤23 10 二、解答题10.(2012·江苏卷)已知矩阵A 的逆矩阵A -1=错误!,求矩阵A 的特征值. 解 因为AA -1=E ,所以A =(A -1)-1.因为A -1=错误!,所以A =(A -1)-1=错误!, 于是矩阵A 的特征多项式为 f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2-2 -3λ-1=λ2-3λ-4. 令f (λ)=0,解得A 的特征值λ1=-1,λ2=4. 11.已知矩阵A =⎣⎢⎡⎦⎥⎤ 1a -1b ,A 的一个特征值λ=2,其对应的特征向量是α1=⎣⎢⎡⎦⎥⎤21.(1)求矩阵A ;(2)若向量β=⎣⎢⎡⎦⎥⎤74,计算A 5β的值.解 (1)A =⎣⎢⎡⎦⎥⎤1 2-1 4. (2)矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-1 -2 1 λ-4=λ2-5λ+6=0,得λ1=2,λ2=3,当λ1=2时,α1=⎣⎢⎡⎦⎥⎤21,当λ2=3时,得α2=⎣⎢⎡⎦⎥⎤11.由β=m α1+n α2,得⎩⎨⎧2m +n =7,m +n =4,解得m =3,n =1.∴A 5β=A 5(3α1+α2)=3(A 5α1)+A5α2=3(λ51α1)+λ52α2=3×25⎣⎢⎡⎦⎥⎤21+35⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤435339.12.(2012·福建卷)设曲线2x 2+2xy +y 2=1在矩阵A =⎣⎢⎡⎦⎥⎤a0b1(a >0)对应的变换作用下得到的曲线为x 2+y 2=1. (1)求实数a ,b 的值; (2)求A 2的逆矩阵.解 (1)设曲线2x 2+2xy +y 2=1上任意点P (x ,y )在矩阵A 对应的变换作用下的像是P ′(x ′,y ′). 由⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤a 0b1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤ ax bx +y ,得⎩⎨⎧x ′=ax ,y ′=bx +y .又点P ′(x ′,y ′)在x 2+y 2=1上,所以x ′2+y ′2=1, 即a 2x 2+(bx +y )2=1,整理得(a 2+b 2)x 2+2bxy +y 2=1,依题意得⎩⎨⎧ a 2+b 2=2,2b =2,解得⎩⎨⎧ a =1,b =1或⎩⎨⎧a =-1,b =1.因为a >0,所以⎩⎨⎧a =1,b =1.(2)由(1)知,A =⎣⎢⎡⎦⎥⎤1011,A 2=⎣⎢⎡⎦⎥⎤1 01 1⎣⎢⎡⎦⎥⎤1 01 1=⎣⎢⎡⎦⎥⎤1 02 1. 所以|A 2|=1,(A 2)-1=⎣⎢⎡⎦⎥⎤10-21.。

高考数学一轮复习 热点难点精讲精析 选修系列(第5部分:矩阵与变换)

高考数学一轮复习 热点难点精讲精析 选修系列(第5部分:矩阵与变换)

高考一轮复习热点难点精讲精析: 选修系列(第5部分:矩阵与变换)一、 线性变换与二阶矩阵 (一)矩阵相等的应用 〖例〗已知A=32ad b c ⎡⎤⎢⎥+⎣⎦,B=542b c a d +⎡⎤⎢⎥+⎣⎦,若A=B ,求a ,,,b c d 。

思路解析:由矩阵相等的定义,知矩阵A ,B 对应元素相等,列出方程组后求解。

解答:由矩阵相等的定义知53422a b c d b c a d=⎧⎪=+⎪⎨=⎪⎪+=+⎩,解得15,10,7, 4.a b c d ===-= (二)二阶矩阵与平面向量乘法的应用〖例〗在平面直角坐标系xOy 中,设椭圆2241x y +=在矩阵2001⎡⎤⎢⎥⎣⎦对应的变换作用下得到曲线F ,求F 的方程。

思路解析:由已知矩阵可得坐标变换公式,从而得到椭圆上点与曲线上F 上点坐标间的关系,再代入椭圆方程即可得F 的方程。

解答:设000(,)P x y 是椭圆上任意一点,点P 在矩阵A=2001⎡⎤⎢⎥⎣⎦的作用下的像为00(,)P x y '''。

∵A=2001⎡⎤⎢⎥⎣⎦,∴坐标变换公式'0'002,x x y y ⎧=⎪⎨=⎪⎩∴'0'00,2x x y y ⎧=⎪⎨⎪=⎩∵点P 在椭圆上,故220041x y +=, ∴'2'200()()1x y +=,∴曲线F 的方程为221x y +=。

(三)线性变换性质的应用〖例〗二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变成点(-1,-1)与(0,-2)。

(1)求矩阵M ;(2)设直线l 在变换M 作用下得到了直线: 4.m x y -=求直线l 的方程。

思路解析:由已知条件下可利用待定系数法求矩阵M ,再通过矩阵M 对应的坐标变换公式确定直线l 与直线m 上点坐标间的关系,即可求直线l 的方程。

解答:1120(1),.1112120,,122120,.1221212,34a b a b a b M c d c d c d a b a b c d c d a b a b c d c d a b M c d --⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦---+⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥---+-⎣⎦⎣⎦⎣⎦⎣⎦-=--+=⎧⎧⎨⎨-=--+=-⎩⎩=⎧⎪=⎪=⎨=⎪⎪=⎩设则有,也就是所以且解得所以.34⎡⎤⎢⎥⎣⎦122(2),,3434(,):4(2)(34)4,20,20.x x y M y x y x y m x y x y x y x y l x y '=+⎡⎤⎧=∴⎨⎢⎥'=+⎣⎦⎩''-=∴+-+=++=∴++=坐标变换公式为是直线上的点.即直线的方程为 二、变换的复合与二阶矩阵的乘法及逆变换与逆矩阵 (一)与矩阵乘法的相关问题〖例〗⊿ABC 的顶点为A (0,0),B (0,0),C (0,1)。

高考江苏数学大一轮精准复习课件矩阵与变换

高考江苏数学大一轮精准复习课件矩阵与变换

旋转变换
利用三维旋转矩阵,可将 空间图形绕某一轴旋转一 定角度。
缩放变换
通过三维缩放矩阵,可将 空间图形沿某一方向进行 缩放。
利用矩阵求解几何问题举例
点线距离问题
01
通过构造点线距离的矩阵表达式,可快速求解点到直线的距离

点面距离问题
02
利用点面距离的矩阵表达式,可便捷地求解点到平面的距离。
直线与直线、直线与平面的位置关系问题
克拉默法则应用条件
系数矩阵A的行列式D≠0,即A满秩。若D=0,则克拉默法则不适用,需采用其他方法 求解。
03
特征值与特征向量
特征值与特征向量定义及性质
特征值定义
设A是n阶方阵,如果存在数λ和非零n维 列向量x,使得Ax=λx成立,则称λ是A的 特征值,x是A的对应于特征值λ的特征向 量。
VS
特征向量性质
矩阵数乘与乘法运算
矩阵数乘
一个数与矩阵中的每一个元素相乘,得到的结果按照原矩阵的形状排列,即为该数与该矩阵的数乘。
矩阵乘法
设A为$m times p$的矩阵,B为$p times n$的矩阵,那么称$m times n$的矩阵C为矩阵A与B的乘 积,记作C=AB。其中,矩阵C中的第i行第j列元素可以表示为A的第i行元素与B的第j列对应元素乘积 之和。需要注意的是,两个矩阵相乘时,第一个矩阵的列数必须等于第二个矩阵的行数。
03
矩阵表示方法:矩阵通常用大写的英文字母表示,如A、B 、C等。矩阵的维度用“行×列”表示,如$3 times 3$矩 阵表示该矩阵有3行3列。
矩阵相等与加减法运算
矩阵相等
两个矩阵的行数相等、列数相等且对应位置上的元素相等,则称这两个矩阵相 等。

2021-2022年高考数学一轮复习专题11.6矩阵与变换练理

2021-2022年高考数学一轮复习专题11.6矩阵与变换练理

2021年高考数学一轮复习专题11.6矩阵与变换练理1.在平面直角坐标系中,设点在矩阵对应的变换作用下得到点,将点绕点逆时针旋转得到点,求点的坐标.【答案】2.选修4—2:矩阵与变换已知a,b是实数,如果矩阵A=所对应的变换T把点(2,3)变成点(3,4).(1)求a,b的值.(2)若矩阵A的逆矩阵为B,求B2.【答案】(1)a=-1,b=5.(2)【解析】(1)由题意,得,得6+3a=3,2b-6=4,…………………4分所以a=-1,b=5.…………………………………………………………6分(2)由(1),得.由矩阵的逆矩阵公式得……………………8分所以……………………………………………………………10分3.选修4—2:矩阵与变换(本小题满分10分)变换T1是逆时针旋转角的旋转变换,对应的变换矩阵是M1;变换T2对应的变换矩阵是M2=.(1)点P(2,1)经过变换T1得到点P',求P'的坐标;(2)求曲线y=x2先经过变换T1,再经过变换T2所得曲线的方程.【答案】(1)P'(-1,2).(2)y-x=y2.4.选修4—2:矩阵与变换已知曲线C:x2+2xy+2y2=1,矩阵A=所对应的变换T把曲线C变成曲线C1,求曲线C1的方程.【答案】x2+y2=2【解析】设曲线C上的任意一点P(x,y),P在矩阵A=对应的变换下得到点Q(x′,y′).5.选修4—2:矩阵与变换已知变换把平面上的点,分别变换成,,试求变换对应的矩阵.【答案】113520 211 520⎡⎤--⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦M【解析】设,由题意,得,…………3分∴342513415 2.a bac dc-=⎧⎪=-⎪⎨-=-⎪⎪=⎩,,,…………5分解得1,513,202,51120abcd⎧=-⎪⎪⎪=-⎪⎨⎪=⎪⎪⎪=⎩. …………9分即113520211520⎡⎤--⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦M.…………10分6. 曲线C1:x2+2y2=1在矩阵M=⎣⎢⎡⎦⎥⎤1 20 1的作用下变换为曲线C2,求C2的方程.【答案】(x-2y)2+2y2=1.7. 求出曲线y2=4x依次经过矩阵A=⎣⎢⎡⎦⎥⎤t00 1,B=⎣⎢⎡⎦⎥⎤0 -11 0作用下变换得到的曲线方程x2=2y,求实数t. 【答案】2【解析】解:由已知得BA=⎣⎢⎡⎦⎥⎤0 -11 0⎣⎢⎡⎦⎥⎤t00 1=⎣⎢⎡⎦⎥⎤0 -1t0.任取曲线y2=4x上一点P(x0,y0),它在矩阵AB对应的变换作用下变为P′(x′,y′),即有⎣⎢⎡⎦⎥⎤0 -1t0⎣⎢⎡⎦⎥⎤x0y0=⎣⎢⎡⎦⎥⎤x′y′,则有⎩⎪⎨⎪⎧-y 0=x ′,tx 0=y ′⇒⎩⎪⎨⎪⎧y 20=-x ′2,2tx 0=2y ′.∵P ′在曲线x 2=2y 上,∴x ′2=2y ′. 即y 20=2tx 0,①y 20=4x 0,②比较①②得2t =4⇒t =2.8.已知曲线C :x 2+y 2=1在矩阵M 对应的变换作用下得到曲线C ′:x 24+y 2=1,求矩阵M .【答案】⎣⎢⎡⎦⎥⎤2001 【解析】解:在曲线C 上任取一点P (x ,y ),点P 在矩阵M 作用下得点P ′(x ′,y ′),设M =⎣⎢⎡⎦⎥⎤a b cd ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′, ∴⎩⎪⎨⎪⎧x ′=ax +by ,y ′=cx +dy .由题意⎩⎪⎨⎪⎧x =12x ′,y =y ′,即⎩⎪⎨⎪⎧x ′=2x ,y ′=y ,∴a =2,b =0,c =0, d =1,∴M =⎣⎢⎡⎦⎥⎤2 00 1.9.已知向量e 1=⎣⎢⎡⎦⎥⎤11是二阶矩阵M =⎣⎢⎡⎦⎥⎤a 10b 的属于特征值λ1=2的一个特征向量.(1)求矩阵M ;(2)若a =⎣⎢⎡⎦⎥⎤21,求M 10a .【答案】(1)⎣⎢⎡⎦⎥⎤1 10 2(2)⎣⎢⎡⎦⎥⎤1 0251 02410.设矩阵A =⎣⎢⎡⎦⎥⎤m00n ,若矩阵A 属于特征值1的一个特征向量为⎣⎢⎡⎦⎥⎤10,属于特征值2的一个特征向量为⎣⎢⎡⎦⎥⎤01,求实数m ,n 的值.【答案】⎩⎪⎨⎪⎧m =1,n =2.【解析】解:由题意得⎩⎪⎨⎪⎧⎣⎢⎡⎦⎥⎤m 00 n ⎣⎢⎡⎦⎥⎤10=1⎣⎢⎡⎦⎥⎤10,⎣⎢⎡⎦⎥⎤m 00 n ⎣⎢⎡⎦⎥⎤01=2⎣⎢⎡⎦⎥⎤01,化简得⎩⎪⎨⎪⎧m =1,0·n =0,0·m =0,n =2,所以⎩⎪⎨⎪⎧m =1,n =2.11. 如果曲线x 2+4xy +3y 2=1在矩阵⎣⎢⎡⎦⎥⎤1a b1的作用下变换得到曲线x 2-y 2=1,求a +b 的值. 【答案】a +b =2.12.若一个变换所对应的矩阵是⎣⎢⎡⎦⎥⎤-1 00 2,求抛物线 y 2=-4x 在这个变换下所得到的曲线的方程.【答案】y 2=16x .【解析】解:设P (x ,y )为y 2=-4x 上任意一点,P ′(x ′,y ′)为变换后所得曲线上对应P 的点,由题意⎩⎪⎨⎪⎧x ′=-x ,y ′=2y ,∴⎩⎪⎨⎪⎧x =-x ′,y =y ′2.∴⎝⎛⎭⎪⎫y ′22=-4(-x ′),即y ′2=16x ′.∴抛物线y 2=-4x 经变换后的曲线方程为y 2=16x . 13. 已知矩阵A =⎣⎢⎡⎦⎥⎤0 1a 0,B =⎣⎢⎡⎦⎥⎤0 2b 0,直线l 1:x -y +4=0经矩阵A 所对应的变换得到直线l 2,直线l 2又经矩阵B 所对应的变换得到直线l 3:x +y +4=0,求直线l 2的方程. 【答案】x -2y -4=0.【解析】解:BA =⎣⎢⎡⎦⎥⎤02b 0⎣⎢⎡⎦⎥⎤0 1a 0=⎣⎢⎡⎦⎥⎤2a 00 b , 设P (x ,y )是l 1上的任意一点,其在BA 所对应的变换作用下的像为(x ′,y ′),则⎣⎢⎡⎦⎥⎤2a 00 b ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′,得⎩⎪⎨⎪⎧x ′=2ax ,y ′=by .由题意可得,点(x ′,y ′)在直线l 3上,所以2ax +by +4=0即为直线l 1:x -y +4=0,故a =12,b =-1.此时B =⎣⎢⎡⎦⎥⎤2-1 0,同理可设Q (x 0,y 0)为l 2上的任意一点,其在B 所对应的变换作用下的像为(x ′0,y ′0),则⎣⎢⎡⎦⎥⎤ 0 2-10⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x ′0y ′0,得⎩⎪⎨⎪⎧x ′0=2y 0,y ′0=-x 0.,又(x ′0,y ′0)在直线l 3上,所以2y 0-x 0+4=0,故直线l 2的方程为2y -x +4=0,即x -2y -4=0. 14.已知矩阵A =⎣⎢⎡⎦⎥⎤33cd ,若矩阵A 属于特征值6的一个特征向量为α1=⎣⎢⎡⎦⎥⎤11,属于特征值1的一个特征向量为α2=⎣⎢⎡⎦⎥⎤3-2.求矩阵A ,并写出A 的逆矩阵. 【答案】⎣⎢⎢⎡⎦⎥⎥⎤23 -12-13 12。

2022高考数学一轮复习 矩阵与变换教案 理 选修4-2

2022高考数学一轮复习 矩阵与变换教案 理 选修4-2

2022高考数学(理)一轮复习教案:选修4-2矩阵与变换【2022年高考会这样考】1.本部分高考命题的一个热点是矩阵变换与二阶矩阵的乘法运算,考题中多考查求平面图形在矩阵的对应变换作用下得到的新图形,进而研究新图形的性质.2.本部分高考命题的另一个热点是逆矩阵,主要考查行列式的计算、逆矩阵的性质与求法以及借助矩阵解决二元一次方程组的求解问题.【复习指导】1.认真理解矩阵相等的概念,知道矩阵与矩阵的乘法的意义,并能熟练进行矩阵的乘法运算.2.掌握几种常见的变换,了解其特点及矩阵表示,注意结合图形去理解和把握矩阵的几种变换.3.熟练进行行列式的求值运算,会求矩阵的逆矩阵,并能利用逆矩阵解二元一次方程组.基础梳理1.乘法规则1行矩阵[a11a12]与列矩阵错误!=错误!错误!N 对应的变换作用下得到的曲线方程,其中M=错误!N,再求变换公式.解MN=错误!N对应的变换下变为点N对应的变换作用下得到的曲线方程为=1【训练1】四边形ABCD和四边形A′B′C′D′分别是矩形和平行四边形,其中点的坐标分别为A-1,2,B3,2,C3,-2,D-1,-2,A′-1,0,B′3,8,C′3,4,D′-1,-4,求将四边形ABCD变成四边形A′B′C′D′的变换矩阵M解该变换为切变变换,设矩阵M为错误!为错误!=错误!,其中a∈R,若点的变换下得到点的特征值及其对应的特征向量.[审题视点] fλ=错误!=错误!,则矩阵M的特征多项式为fλ=错误!=λ-2λ-1-6=λ2-3λ-4令fλ=0,得矩阵M的特征值为-1与4当λ=-1时,错误!⇒+=0所以矩阵M的属于特征值-1的一个特征向量为错误!当λ=4时,错误!⇒2-3=0所以矩阵M的属于特征值4的一个特征向量为错误!【训练3】已知二阶矩阵A=错误!,矩阵A属于特征值λ1=-1的一个特征向量为a1=错误!,属于特征值λ2=4的一个特征向量为a2=错误!,求矩阵A解由特征值、特征向量定义可知,A a1=λ1a1,即错误!错误!=-1×错误!,得错误!同理可得错误!解得a=2,b=3,c=2,d=1因此矩阵A=错误!错误!矩阵的有关问题及其求解方法矩阵与变换是理科附加题的选考题,题型主要有矩阵与变换、矩阵的乘积与逆矩阵,求矩阵的特征值与特征向量.熟悉变换问题的解题,掌握矩阵乘法法则和求矩阵特征值与特征向量的方法,会用待定系数法求逆矩阵.【示例】►本题满分10分2022·福建设矩阵M=错误!其中a>0,b>0.1若a=2,b=3,求矩阵M的逆矩阵M-1;2若曲线C:2+2=1在矩阵M所对应的线性变换作用下得到曲线C′:错误!+2=1,求a,b 的值.用待定系数法求逆矩阵.[解答示范] 1设矩阵M的逆矩阵M-1=错误!,则MM-1=错误!又M=错误!,所以错误!错误!=错误!,所以21=1,21=0,32=0,32=1,即1=错误!,1=0,2=0,2=错误!,故所求的逆矩阵M-1=错误!5分2设曲线C上任意一点所对应的线性变换作用下得到点P′′,′,则错误!错误!=错误!,即错误!又点P′′,′在曲线C′上,所以错误!+′2=1,则错误!+b22=1为曲线C的方程.又已知曲线C的方程为2+2=1,故错误!又a>0,b>0,所以错误!10分【试一试】2022·江苏已知矩阵A=错误!,向量β=错误!,求向量α,使得A2α=β[尝试解答] 设α=错误!,由A2α=β,得错误!错误!=错误!,即错误!解得错误!故α=错误!。

高三数学高考(理)第一轮复习精品课件:第15单元 矩阵与变换 新人教A

高三数学高考(理)第一轮复习精品课件:第15单元 矩阵与变换 新人教A
6.二阶矩阵的乘法
(1)设 A=ac11
db11,B=ac22
b2 d2
a1a2+b1c2 a1b2+b1d2
则 AB=
c1a2+d1c2
c1b2+d1d2
.
(2)对直角坐标系 xOy 的任意向量 α,有 A(Bα)= (AB)α . (3)二阶矩阵的乘法满足结合律,即(AB)C= A(BC) .
(2)对于两个二阶矩阵 A 与 B,如果它们的 对应元素 都分 别相等,则称矩阵 A 与矩阵 B 相等,记作 A=B.
4.矩阵与向量的乘法
第70讲│知识梳理

A=
a c
b d
,a=xy ,规定二阶矩阵
A
与向量
a
的乘积为
向量acxx++dbyy,记为 Aa 或ac dbxy,
即 Aa=ac dbxy=acxx++dbyy,这是矩阵ac db与向量xy的乘
2 2
2

2 2
2.
2
任意选取双曲线 x2-y2=1 上的一点 P(x0,y0),
它在变换 TM 作用下变为 P′(x′0,y′0),
则有
Mxy00=xy′′00,故xy′′00==
22(x0-y0) 22(x0+y0)

第70讲│要点探究
x0= ∴
22(x′0+y′0),
y0= 22(y′0-x′0).
【点评】本题较好地体现了矩阵的工具性作用。
第70讲│要点探究
变式题 将双曲线 C:x2-y2=1 上点绕原点逆时 针旋转 45°,得到新图形 C′,试求 C′的方程.
【思路】先用旋转变换,再用转移代入法.
第70讲│要点探究
【解答】 由题意,得旋转变换矩阵

高考一轮复习理数课件第十二章第一节选修4-2《矩阵与变换》

高考一轮复习理数课件第十二章第一节选修4-2《矩阵与变换》

3.特征值与特征向量 (1)设A是一个二阶矩阵,如果对于实数λ,存在一个非 零向量α,使得Aα=_λ_α_,那么λ称为A的一个特征值,而α称 为A的属于特征值λ的一个特征向量. (2)从几何上看,特征向量的方向经变换矩阵A的作用 后,与原向量保持在同一条直线上,这时特征向量或者方向 不变(λ >0),或者方向相反(λ < 0).特别地,当λ=0时,特 征向量就被变换成零向量.
考点贯通 抓高考命题的“形”与“神”
矩阵的运算
[例 1]
(1)已知 A=01 00,B=0-11 0,C=- 0 1-01,
计算 AB,AC.
(2)已知 A=10 00,B=00 10,计算 AB.
1 (3)已知 A=12
2
1 21,B=-1 1 2
-1 1,计算 A2,B2.Fra bibliotek[解]
(1)AB=10
02 突破点(二) 矩阵的逆矩阵、特征值与特征向量
基础联通 抓主干知识的“源”与“流”
1.逆矩阵 对于二阶矩阵 A,B,若有 AB=BA=E,则称 A 是_可__逆_ 的,B 称为 A 的逆矩阵. 2.二阶行列式 我们把ac db称为二阶行列式,它的运算结果是一个数值 (或多项式),记为 det(A)= ad-bc .
解:(1)由题意得a1
-1 1
11=a+01=-03,
所以 a+1=-3,所以 a=-4.
(2)由(1)知 A=-1 4-1
1,令
f(λ)=λ-41
λ-1 1=(λ-1)2-4=0.
解得 A 的特征值为 λ=-1 或 3.
当 λ=-1 时,由-4x-2x+2y=y=00, 得矩阵 A 的属于特征值-1 的
(2)矩阵 A-1 的特征多项式为 f(λ)=λ--21 λ--12=λ2-4λ+ 3=(λ-1)(λ-3),

高考数学总复习第讲矩阵与变换优秀课件

高考数学总复习第讲矩阵与变换优秀课件

,M
3
=
轾 犏- 1 犏 臌0 -
0 1
y TM1 :( x,y) ( x,- y) y
M1
O
x
O
x
M2
y
M3
y
O
x
TM2 :( x,y) (- x,y)
O
x
TM3 :( x,y) (- x,- y)
旋转变换
·
旋转变换—— M =
轾 犏cos 犏 臌sin
-
sin cos
y
y
M
A( + ) = A + A.
破解难点:逆矩阵
问题研究
存在逆矩阵的条件是什么? 如何求逆矩阵?
基础知识
对二阶矩阵A,B,若有 AB=BA=E,
则称A是可逆的,B称为A的逆矩阵.
若二阶矩阵A,B均存在逆矩阵,则AB也 存在逆矩阵 ,且 ( AB )-1 = B-1A-1 .
经典例题3

2
=

4

从而-a+2b=-2,-c+2d=4.
解得
a=6,b=2,c=4,b=4.所以
M=
6 4
2 4 .
回顾反思
(1)思维策略:将已知条件具体化. (2)思想方法:方程思想.
经典例题5

5
已知二阶矩阵
M
满足
M
1 0

10,M
1 1

M
2
1 1
=
2

12
1 0

22

1 1
=
2 4
.
回顾反思
(1)思维策略: 挖掘题设隐藏信息.
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2022高考数学(理)一轮复习讲义--矩阵与变换【2020年高考会如此考】1.本部分高考命题的一个热点是矩阵变换与二阶矩阵的乘法运算,考题中多考查求平面图形在矩阵的对应变换作用下得到的新图形,进而研究新图形的性质. 2.本部分高考命题的另一个热点是逆矩阵,要紧考查行列式的运算、逆矩阵的性质与求法以及借助矩阵解决二元一次方程组的求解问题. 【复习指导】1.认真明白得矩阵相等的概念,明白矩阵与矩阵的乘法的意义,并能熟练进行矩阵的乘法运算.2.把握几种常见的变换,了解其特点及矩阵表示,注意结合图形去明白得和把握矩阵的几种变换.3.熟练进行行列式的求值运算,会求矩阵的逆矩阵,并能利用逆矩阵解二元一次方程组.基础梳理1.乘法规则(1)行矩阵[a 11 a 12]与列矩阵⎣⎡⎦⎤b 11b 21的乘法规则: [a 11 a 12]⎣⎡⎦⎤b 11b 21=[a 11×b 11+a 12×b 21].(2)二阶矩阵⎣⎡⎦⎤a 11a 21 a 12a 22与列向量⎣⎡⎦⎤x 0y 0的乘法规则: ⎣⎡⎦⎤a 11a 21 a 12a 22 ⎣⎡⎦⎤x 0y 0=⎣⎡⎦⎤a 11×x 0+a 12×y 0a 21×x 0+a 22×y 0.(3)两个二阶矩阵相乘的结果仍旧是一个矩阵,其乘法法则如下: ⎣⎡⎦⎤a 11a 21 a 12a 22 ⎣⎡⎦⎤b 11b 21 b 12b 22=⎣⎡⎦⎤a 11×b 11+a 12×b 21a 21×b 11+a 22×b 21 a 11×b 12+a 12×b 22a 21×b 12+a 22×b 22(4)两个二阶矩阵的乘法满足结合律,但不满足交换律和消去律.即(AB )C =A (BC ),AB ≠BA ,由AB =AC 不一定能推出B =C .一样地两个矩阵只有当前一个矩阵的列数与后一个矩阵的行数相等时才能进行乘法运算. 2.常见的平面变换恒等变换、伸压变换、反射变换、旋转变换、投影变换、切变变换六个变换. 3.逆变换与逆矩阵(1)关于二阶矩阵A 、B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵;(2)若二阶矩阵A 、B 均存在逆矩阵,则AB 也存在逆矩阵,且(AB )-1=B -1A -1. 4.特点值与特点向量设A 是一个二阶矩阵,假如关于实数λ,存在一个非零向量α,使Aα=λα,那么λ称为A 的一个特点值,而α称为A 的属于特点值λ的一个特点向量.双基自测1.(2011·南通调研测试)曲线C 1:x 2+2y 2=1在矩阵M =⎣⎡⎦⎤10 21的作用下变换为曲线C 2,求C 2的方程.解 设P (x ,y )为曲线C 2上任意一点,P ′(x ′,y ′)为曲线x 2+2y 2=1上与P 对应的点,则⎣⎡⎦⎤10 21⎣⎡⎦⎤x ′y ′=⎣⎡⎦⎤x y ,即⎩⎨⎧ x =x ′+2y ′,y =y ′⇒⎩⎨⎧x ′=x -2y ,y ′=y . 因为P ′是曲线C 1上的点, 因此C 2的方程为(x -2y )2+2y 2=1.2.已知矩阵A 将点(1,0)变换为(2,3),且属于特点值3的一个特点向量是⎣⎡⎦⎤11,求矩阵A .解 设A =⎣⎡⎦⎤a c b d ,由⎣⎡⎦⎤a c b d ⎣⎡⎦⎤10=⎣⎡⎦⎤23,得⎩⎨⎧a =2,c =3. 由⎣⎡⎦⎤a cb d ⎣⎡⎦⎤11=3⎣⎡⎦⎤11=⎣⎡⎦⎤33,得⎩⎨⎧ a +b =3,c +d =3.因此⎩⎨⎧b =1,d =0. 因此A =⎣⎡⎦⎤23 10.3.(2011·苏州调研测试)已知圆C :x 2+y 2=1在矩阵形A =⎣⎡⎦⎤a 0 0b (a >0,b >0)对应的变换作用下变为椭圆x 29+y 24=1,求a ,b 的值.解 设P (x ,y )为圆C 上的任意一点,在矩阵A 对应的变换下变为另一个点P ′(x ′,y ′),则⎣⎡⎦⎤x ′y ′=⎣⎡⎦⎤a 0 0b ⎣⎡⎦⎤x y ,即⎩⎨⎧x ′=ax ,y ′=by .又因为点P ′(x ′,y ′)在椭圆x 29+y 24=1上,因此a 2x 29+b 2y 24=1.由已知条件可知,x 2+y 2=1,因此a 2=9,b 2=4. 因为a >0,b >0,因此a =3,b =2.4.(2011·南京市模拟)已知a =⎣⎡⎦⎤21为矩阵A =⎣⎡⎦⎤ 1-1 a 4属于λ的一个特点向量,求实数a ,λ的值及A 2.解 由条件可知⎣⎡⎦⎤ 1-1 a 4 ⎣⎡⎦⎤21=λ⎣⎡⎦⎤21, 因此⎩⎨⎧2+a =2λ,-2+4=λ,解得a =λ=2. 因此A =⎣⎡⎦⎤ 1-1 24. 因此A 2=⎣⎡⎦⎤ 1-1 24 ⎣⎡⎦⎤ 1-124=⎣⎡⎦⎤-1-5 1014.考向一 矩阵与变换【例1】►求曲线2x 2-2xy +1=0在矩阵MN 对应的变换作用下得到的曲线方程,其中M =⎣⎡⎦⎤10 02,N =⎣⎡⎦⎤ 1-1 01.[审题视点] 先求积MN ,再求变换公式. 解 MN =⎣⎡⎦⎤10 02⎣⎡⎦⎤ 1-1 01=⎣⎡⎦⎤1-2 02.设P (x ′,y ′)是曲线2x 2-2xy +1=0上任意一点,点P 在矩阵MN 对应的变换下变为点P (x ,y ),则⎣⎡⎦⎤x y =⎣⎡⎦⎤ 1-2 02⎣⎡⎦⎤x ′y ′=⎣⎢⎡⎦⎥⎤ x ′-2x ′+2y ′, 因此x ′=x ,y ′=x +y2,代入2x ′2-2x ′y ′+1=0,得xy =1.因此曲线2x 2-2xy +1=0在MN 对应的变换作用下得到的曲线方程为xy =1.【训练1】 四边形ABCD 和四边形A ′B ′C ′D ′分别是矩形和平行四边形,其中点的坐标分别为A (-1,2),B (3,2),C (3,-2),D (-1,-2),A ′(-1,0),B ′(3,8),C ′(3,4),D ′(-1,-4),求将四边形ABCD 变成四边形A ′B ′C ′D ′的变换矩阵M .解 该变换为切变变换,设矩阵M 为⎣⎡⎦⎤1k 01, 则⎣⎡⎦⎤1k 01⎣⎡⎦⎤-1 2=⎣⎡⎦⎤-10.因此-k +2=0,解得k =2. 因此M 为⎣⎡⎦⎤12 01.考向二 矩阵的乘法与逆矩阵【例2】►已知矩阵A =⎣⎢⎡⎦⎥⎤1 00 2,B =⎣⎢⎡⎦⎥⎤0 -11 0,求(AB )-1. [审题视点] 求矩阵A =⎣⎢⎡⎦⎥⎤a b c d 的逆矩阵,一样是设 A -1=⎣⎢⎡⎦⎥⎤x y z w ,由⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤x y z w =⎣⎢⎡⎦⎥⎤1 00 1求得. 解 AB =⎣⎢⎡⎦⎥⎤100 2 ⎣⎢⎡⎦⎥⎤0 -11 0=⎣⎢⎡⎦⎥⎤0 -12 0. 设(AB )-1=⎣⎢⎡⎦⎥⎤a b cd ,则由(AB )·(AB )-1=⎣⎢⎡⎦⎥⎤100 1,得⎣⎢⎡⎦⎥⎤0 -12 0 ⎣⎢⎡⎦⎥⎤ab c d =⎣⎢⎡⎦⎥⎤1001,即⎣⎢⎡⎦⎥⎤-c -d 2a 2b =⎣⎢⎡⎦⎥⎤1001,因此⎩⎨⎧-c =1,-d =0,2a =0,2b =1,解得⎩⎪⎨⎪⎧a =0,b =12,c =-1,d =0.故(AB )-1=⎣⎢⎢⎡⎦⎥⎥⎤ 0 12-10. 【训练2】 已知矩阵A =⎣⎢⎡⎦⎥⎤1021,B =⎣⎢⎡⎦⎥⎤130 1,求矩阵AB 的逆矩阵.解 设矩阵A 的逆矩阵为A -1=⎣⎢⎡⎦⎥⎤a cb d , 则⎣⎢⎡⎦⎥⎤1021 ⎣⎢⎡⎦⎥⎤ac bd =⎣⎡⎦⎤a 2a +b c 2c +d =⎣⎢⎡⎦⎥⎤1001,解之得,a =1,b =-2,c =0,d =1, 因此A -1=⎣⎢⎡⎦⎥⎤10-21.同理得,B -1=⎣⎢⎡⎦⎥⎤1 -30 1.又(AB )-1=B -1A -1, 因此(AB )-1=⎣⎢⎡⎦⎥⎤1 -30 1⎣⎢⎡⎦⎥⎤ 1 0-21=⎣⎢⎡⎦⎥⎤7 -3-2 1.考向三 矩阵的特点值与特点向量【例3】►已知矩阵M =⎣⎢⎡⎦⎥⎤2a 2 1,其中a ∈R ,若点P (1,-2)在矩阵M 的变换下得到点P ′(-4,0),求: (1)实数a 的值;(2)矩阵M 的特点值及其对应的特点向量. [审题视点] f (λ)=⎪⎪⎪⎪⎪⎪λ-2 -2 -3λ-1=(λ-2)(λ-1)-6. 解 (1)由⎣⎢⎡⎦⎥⎤2a 21⎣⎢⎡⎦⎥⎤ 1-2=⎣⎢⎡⎦⎥⎤-4 0,因此2-2a =-4.因此a =3. (2)由(1)知M =⎣⎢⎡⎦⎥⎤2321,则矩阵M 的特点多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-2 -3-2 λ-1=(λ-2)(λ-1)-6=λ2-3λ-4.令f (λ)=0,得矩阵M 的特点值为-1与4. 当λ=-1时,⎩⎨⎧(λ-2)x -3y =0,-2x +(λ-1)y =0⇒x +y =0. 因此矩阵M 的属于特点值-1的一个特点向量为⎣⎢⎡⎦⎥⎤1-1. 当λ=4时,⎩⎨⎧(λ-2)x -3y =0,-2x +(λ-1)y =0⇒2x -3y =0. 因此矩阵M 的属于特点值4的一个特点向量为⎣⎢⎡⎦⎥⎤32.【训练3】 已知二阶矩阵A =⎣⎢⎡⎦⎥⎤a b c d ,矩阵A 属于特点值λ1=-1的一个特点向量为a 1=⎣⎢⎡⎦⎥⎤ 1-1,属于特点值λ2=4的一个特点向量为a 2=⎣⎢⎡⎦⎥⎤32,求矩阵A . 解 由特点值、特点向量定义可知,A a 1=λ1a 1, 即⎣⎢⎡⎦⎥⎤ab cd ⎣⎢⎡⎦⎥⎤ 1-1=-1×⎣⎢⎡⎦⎥⎤1-1,得⎩⎨⎧a -b =-1,c -d =1.同理可得⎩⎨⎧3a +2b =12,3c +2d =8.解得a =2,b =3,c =2,d =1. 因此矩阵A =⎣⎢⎡⎦⎥⎤2 321.矩阵的有关问题及其求解方法矩阵与变换是理科附加题的选考题,题型要紧有矩阵与变换、矩阵的乘积与逆矩阵,求矩阵的特点值与特点向量.熟悉变换问题的解题,把握矩阵乘法法则和求矩阵特点值与特点向量的方法,会用待定系数法求逆矩阵. 【示例】► (本题满分10分)(2011·福建)设矩阵M =⎣⎢⎡⎦⎥⎤a 00 b (其中a >0,b >0).(1)若a =2,b =3,求矩阵M 的逆矩阵M -1;(2)若曲线C :x 2+y 2=1在矩阵M 所对应的线性变换作用下得到曲线C ′:x 24+y 2=1,求a ,b 的值.用待定系数法求逆矩阵.[解答示范] (1)设矩阵M 的逆矩阵M -1=⎣⎢⎡⎦⎥⎤x 1 y 1x 2 y 2,则MM -1=⎣⎢⎡⎦⎥⎤1 00 1.又M =⎣⎢⎡⎦⎥⎤2 00 3,因此⎣⎢⎡⎦⎥⎤200 3⎣⎢⎡⎦⎥⎤x 1 y 1x 2 y 2=⎣⎢⎡⎦⎥⎤100 1,因此2x 1=1,2y 1=0,3x 2=0,3y 2=1, 即x 1=12,y 1=0,x 2=0,y 2=13,故所求的逆矩阵M -1=⎣⎢⎢⎡⎦⎥⎥⎤12 0013.(5分)(2)设曲线C 上任意一点P (x ,y ),它在矩阵M 所对应的线性变换作用下得到点P ′(x ′,y ′),则⎣⎢⎡⎦⎥⎤a 00 b ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′,即⎩⎨⎧ax =x ′,by =y ′,又点P ′(x ′,y ′)在曲线C ′上,因此x ′24+y ′2=1, 则a 2x 24+b 2y 2=1为曲线C 的方程.又已知曲线C 的方程为x 2+y 2=1,故⎩⎨⎧a 2=4,b 2=1, 又a >0,b >0,因此⎩⎨⎧a =2,b =1.(10分) 【试一试】 (2011·江苏)已知矩阵A =⎣⎢⎡⎦⎥⎤1 12 1,向量β=⎣⎢⎡⎦⎥⎤12,求向量α,使得A 2α=β.[尝试解答] 设α=⎣⎢⎡⎦⎥⎤x y ,由A 2α=β,得⎣⎢⎡⎦⎥⎤324 3⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤12,即⎩⎪⎨⎪⎧3x +2y =1,4x +3y =2,解得⎩⎪⎨⎪⎧x =-1,y =2.故α=⎣⎢⎡⎦⎥⎤-1 2.。

相关文档
最新文档