胶体系统的分类

合集下载

五种胶体系统的分类

五种胶体系统的分类

五种胶体系统的分类胶体是指一种由较小的颗粒或分子组成的混合物,其中颗粒或分子的直径在1至100纳米之间。

这些颗粒或分子在其中的稀释剂中分散并形成一个稳定的体系。

胶体是我们日常生活中经常可以发现的一种材料,它们包括许多物质,例如纸浆、泡沫、沥青、石墨、淀粉、粘土、染料等等。

在本文中,我们将根据它们的特点和不同的形成机制来分类胶体系统。

一、溶胶体系溶胶体系是指颗粒或分子分散在液体中形成的稳定体系。

其中,颗粒或分子的大小小于10纳米。

溶胶体系的散射作用很弱,光通过溶胶体系时,不会使光的方向发生改变。

相反,它会通过溶液中的微小波纹和局部密度变化而发生散射。

这种胶体体系比其他胶体体系稳定性更高,并且在光学和化学方面都有广泛的应用。

二、凝胶体系凝胶体系是指颗粒或分子在其溶剂中凝聚形成的硬固体。

在凝胶体系中,颗粒或分子虽然没有明显的形状,但是它们却始终保持在一起形成固体结构。

凝胶体系具有较高的粘度和流变性,具有优异的力学性能和材料特性。

例如,玻璃、纸张和护肤品等都是由凝胶体系组成的。

三、泡沫体系泡沫体系是指由气泡和液体两种相组成的复合材料。

在泡沫体系中,气泡和液体之间的界面可以有效地防止液体分散,确保泡沫保持稳定。

泡沫是一种轻质、低密度和多孔的材料,广泛用于医疗、建筑、农业和其他工业领域。

四、溶胀胶体溶胀胶体是指由高分子链形成的体系,其中高分子链相互交缠并在溶剂中呈现出弹性固体的特性。

高分子的交联结构使液体无法渗透到体系内部,并且无法使高分子链之间的结构发生更改。

溶胀胶体是一种重要的材料,在制药、医疗、化妆品、食品等许多领域中广泛应用。

五、乳液体系乳液体系是指由两种互不溶的液体混合而成的体系。

在乳液中,液滴通过表面活性剂的作用保持稳定。

这些液滴的直径通常在1至100纳米之间,由于它们的大小和表面阻力的作用,液滴会漂浮在体系中而不容易沉淀。

乳液在制药、化妆品、食品和农业等领域中都有广泛的应用。

综上所述,胶体体系包括溶胶体系、凝胶体系、泡沫体系、溶胀胶体和乳液体系。

补充胶体的作用

补充胶体的作用

胶体是一种由两种互不相溶的物质构成的系统,其中一种物质以微粒的形式分散在另一种物质中。

胶体系统包括胶体溶液、胶体悬浮液和胶体凝胶等,它在许多领域中具有重要的作用。

以下是一些胶体的作用:
1. 稳定乳液和乳剂:胶体能够稳定乳液和乳剂,使两种不相溶的液体能够均匀地混合在一起。

这在食品工业、药品制备和油漆等领域中很常见。

2. 改善药物传递:胶体可以用作药物传递系统的载体,有助于提高药物的生物利用度和降低副作用。

纳米颗粒胶体在这方面有着广泛的应用。

3. 增稠剂和凝胶: 一些胶体在适当的条件下能够形成凝胶,使得它们能够用作增稠剂,这在食品、制药和化妆品等行业中常见。

4. 润滑剂: 胶体可以在润滑方面发挥作用,例如在润滑油中,能够减少摩擦并提高润滑效果。

5. 光学应用: 胶体的折射率不同于周围介质,因此它们在光学器件中有广泛的应用,包括悬浮在液晶中的胶体颗粒用于调制光的传播
6. 污水处理:胶体在污水处理中可以用于分散和吸附悬浮的污染物质,有助于提高污水的处理效率。

7. 印刷和涂料工业:胶体在印刷油墨和涂料中常用作分散剂,确保颜料均匀分布并提高涂层的质量。

8. 生物学中的应用: 胶体在生物学研究中也有广泛的应用,例如在细胞学和生物成像中,胶体可以用于标记和追踪生物分子和细胞。

总体而言,胶体在科学、工业和生活中有着多样化的应用,其特殊的性质使其成为许多技术和过程中不可或缺的一部分。

物化 第十二章 胶体化学

物化  第十二章 胶体化学

二、 胶体系统的分类
1、按胶体溶液的稳定性可分为两类 憎液溶胶:难溶物分散在介质中,有很大 的相界面,易聚沉,是热力学上不稳定、 不可逆体系。 亲液溶胶: 大分子分散在合适的溶剂中, 是热力学稳定、可逆体系。
2、按分散相和分散介质的聚集状态可分为
气溶胶、液溶胶和固溶胶三大类
分散介质 分散相 气 液 液 固 气 液 固 气 液 固 名 称 实 例

(液 )气 溶 胶 (固 )气 溶 胶 (气 )液 溶 胶 -泡 沫 (液 )液 溶 胶 -乳 状 液 (固 )液 溶 胶 -悬 浮 液 (气 )固 溶 胶 (液 )固 溶 胶 (固 )固 溶 胶
云、雾、油烟 烟尘、粉尘 肥皂泡沫 牛奶、含水原油 AgI 溶 胶 、 油 墨 泡沫塑料 珍珠、蛋白石 有色玻璃、合金
热力学不稳定性 :胶核粒子有互相聚集而降低 其表面积的趋势
因为粒子小,比表面大,表面自由能高,是热力 学不稳定体系,有自发降低表面自由能的趋势,即小 粒子会自动聚结成大粒子。
四、胶体的特征
动力稳定性强 散射作用明显 扩散速度慢 渗透压低 不能通过半透膜
五、胶体系统的制备与净化
1、胶体系统的制备
沉降平衡时粒子的高度分布公式
通过沉降速率的测定求算粒子半径
利用在超离心力场中的沉降平衡测定胶团或大分子物质的摩尔质量
14-4 胶体系统的电学性质
1、电动现象
电泳、电渗、沉降电势和流动电势统称为
溶胶的电动现象。
电泳是带电的胶粒在电场作用下作定向移动
若在多孔膜(或毛细管)的两端施加一 定电压,液体将通过多孔膜而定向流动,这 种现象称为电渗。
( z 1)cRT
唐南平衡(Donnan)
NazP NaCl

胶体化学(物化重难点)

胶体化学(物化重难点)

电势的值小于热力学电势且受外加电解质的影响很大;决定胶粒电泳速度的物理量是
电势,而不是热力学电势;向溶胶中加入电解质,可改变 电势,但对热力学电势无影响;
电势等于零的状态称为等电态,在等电态,扩散层厚度为零,胶粒不带电,在电场作用
下,无电泳现象。 10.2.7 胶团结构 溶胶的胶团结构分为胶核、 胶粒及胶团三个层次。 以AgCl溶胶为例, 当用KCl与AgNO 3 制备AgCl溶胶时,胶粒和胶团的组成、结构与KCl和AgNO 3 相对用量有关,若AgNO 3 过量, 则胶粒与胶团结构如图 2,即 胶体粒子 滑动面
10.2.1 胶体定义:分散相粒子在某维上的线度为 1 nm~100nm 时的高分散系统称为胶 体。按分散相粒子线度分类:分子分散系统(真溶液,如乙醇水溶液) 、胶体分散系统(如 碘化银溶胶) 、粗分散系统(如牛奶) 。 10.2.2 按胶体系统稳定性分类 憎液溶胶: 分散相不能溶于分散介质中所形成的胶体系统。 对于由金属及难溶于水的卤 化物、硫化物或氢氧化物等在水中形成的胶体称憎液溶胶(简称为胶体) 。憎液溶胶的粒子 均是由数目众多的分子构成,存在着很大的相界面,因此憎液溶胶具有高分散性、多相性以 及热力学不稳定性的特点。如氢氧化铁溶胶、碘化银溶胶等。 形成憎液溶胶的必要条件是: (1)分散相的溶解度要小; (2)必须有稳定剂存在,否则 胶粒易聚结而聚沉。 憎液溶胶的制备:分散法包括研磨法、胶溶法(如 Fe(OH)3 溶胶的制备) 、超声分散法、电 弧法; 凝聚法包括化学凝聚法 (如水解反应制氢氧化铁溶胶) 和物理凝聚法 (如更换溶剂法、 蒸气骤冷法等) 。 憎液溶胶的净化:目的是除去对新制备的溶胶的稳定性不利的过多的电解质或其它杂 质。净化的方法主要有渗析法和超过滤法。 亲液溶胶: 半径落在胶体粒子范围内的大分子溶解在合适的溶剂中所形成的系统。 高分 子溶液为亲液溶胶。将溶剂蒸发,大分子化合物凝聚,再加入溶剂,又可形成溶胶。因此,

胶体

胶体

四. 纳米粒子和纳米技术
纳米粒子:尺度为1~100 nm之间的粒子 1. 纳米粒子的结构和特性 (1) 小尺寸效应 (2) 表面效应 (3) 量子尺寸效应 (4) 宏观量子隧道效应 2.纳米粒子的制备方法 基本方法与制备憎液溶胶雷同 纳米组装材料的制备技术 (1)自组织技术 (2) 模板合成法 3.纳米技术在药学中的应用
(1)Browm运动与Einstein方程
Browm运动:溶胶粒子在介质中无规则的运动 原因:粒子受各个方向介质分子的撞击 撞击的动量不能完全抵消而移动 分子热运动的宏观表现。 Einstein公式:Brown运动平均位移的计算 若在时间 t 内观察布朗运动位移 x ,其关系:
x
RT t L 3r
第九章 胶体分散系统


胶体是多相系统,一种或多种物质分散在另一 种分子中所形成的体系称为分散体系。被分散的物 质称作分散相,另一种物质称作分散介质。 胶体是一种高度分散的分散系统。胶体化学与 化学其他分支的不同之处是,后者研究对象均属小 分子,胶体化学除了分子之外 ,更注意胶体大小的 粒子 。 在分散系统中,分散相粒子(质点)半径为10-9 ~10-7m的称胶体,通常所说的胶体多指粒子分散在液 体介质中 ,又称溶胶 。


由于胶体的高度分散,致使它有很大的相 界面(例如直径为10nm的金溶胶,当其粒子的 总体积为1立方厘米时,其表面积可达600平方 米),从而有很高的界面能。 胶体的许多性质都与界面能有密切关系, 因此对界面性质的研究构成胶体化学的重要内 容之一。 所以,研究表(界)面性质的表面化学是胶 体化学中极其重要和不可分割的一部分,二者常 被联系在一起而命名为胶体和表面化学。
不能透过滤纸,扩散慢,超显微镜下可见。热力学不稳定 体系),但动力学稳定体系----布朗运动。

胶体高考化学知识点

胶体高考化学知识点

胶体高考化学知识点胶体是高考化学中一个非常重要的概念。

在高考化学中,胶体是一个关键的知识点,涉及到物质的性质、结构和应用等方面。

本文将从胶体的定义、性质、分类和应用等方面,全面介绍高考化学中与胶体相关的知识点。

一、胶体的定义胶体是指由两种或两种以上物质组成的混合系统,其中一种物质呈胶态,即粒径在1纳米(nm)到1000纳米之间,分散在另一种物质中形成的稳定混合物。

胶体由胶体溶质和分散介质组成,其中溶质是胶粒,分散介质是胶体液体或固体。

二、胶体的性质胶体具有一些独特的性质,主要包括稳定性、散射性、过滤性、浑浊性和凝胶性。

1. 稳定性:胶体的稳定性是指胶体系统中胶粒之间的相互作用力使胶粒和分散介质保持分散状态的能力。

胶体的稳定性分为物理稳定性和化学稳定性。

物理稳定性是指胶体中胶粒之间的静电相互作用、凡德华力以及吸附层等相互作用力所保持的稳定性;化学稳定性是指胶体中存在表面活性物质或化学稳定剂等,可以通过化学反应来保持稳定性。

2. 散射性:胶体溶液对光的散射现象称为散射性。

由于胶粒的尺寸与光的波长接近,所以会导致光的散射现象。

胶体溶液的散射性可以用来研究胶粒的尺寸和浓度等信息。

3. 过滤性:胶体溶液可以使用过滤纸、滤膜等进行过滤分离。

胶体溶液中的胶粒尺寸较小,可以通过过滤纸或滤膜的微孔被截留下来,从而实现对胶粒的分离。

4. 浑浊性:胶体溶液在光的照射下,会导致光的透明度降低,呈现出一种浑浊的样子。

浑浊性是胶体中胶粒悬浮在分散介质中的体现。

5. 凝胶性:一些胶体溶液在一定条件下可以形成凝胶,凝胶是一种类似固体但又具有一定流动性的物质。

凝胶形成是由于胶粒之间的相互作用力增强,使得整个系统形成了一个网状结构。

三、胶体的分类胶体可以根据胶粒的性质和分散介质的性质进行分类。

根据胶粒的性质,胶体可分为溶胶、凝胶和胶体溶液。

溶胶是指胶粒尺寸较小,无明显的流变性质;凝胶是指由胶粒形成的三维网络结构,可以保持一定形状;胶体溶液是指胶粒悬浮在液体中,没有形成明显的凝胶结构。

10胶体化学

10胶体化学
2NaAuO2 + 3HCHO + NaOHAu(s) + 3HCOONa+ 2H2O
NaAuO2是上述方法制得金溶胶的稳定剂,写出该金溶胶
胶团结构的表示式。
解:该金溶胶胶团结构为: {[Au]m nAuO2- (n-x)Na+}x- xNa+
12.11.在Ba(NO3)2溶液中滴加Na2SO4溶液可制备BaSO4溶 胶。分别写出(1) Ba(NO3)2溶液过量,(2) Na2SO4溶液过量 时的胶团结构表示式。 解:(1) Ba(NO3)2溶液过量时,胶团结构为: {[BaSO4]m nBa2+(2n-x)NO3-}x+ xNO3(2) Na2SO4溶液过量时,胶团结构为: {[BaSO4]m nSO42-(2n-x)Na+}x- xNa+
胶核:胶体粒子内由分子、原子或离子
形成的固态微粒
胶团:整个扩散层及其所包围的胶体粒子
构成的电中性的整体
例: AgNO3 + KI AgI + KNO3 KI过量 :
AgI溶胶吸附I-带负电,K+为反离子 AgNO3过量: AgI溶胶吸附Ag+带正电,NO3-为反离子
特点:
(1) 胶 核 : 首 先 吸附过量的成 核离子,然后 吸附反离子; (2) 胶 团 整 体 为 电中性。
分散系统分类(按分散相与分散介质的聚集状态): (1) 均相系统(真溶液) 分散相以分子形式溶于分散介质 (2) 多相系统 分散相不溶于分散介质
分散 分散相 介质 气
名称 气溶胶 泡沫 乳状液 液溶胶或悬浮液
实例
液 固
气 液 固 气 液 固
云、雾 烟、尘
肥皂泡沫 牛奶 泥浆、油漆 泡沫塑料 珍珠 有色玻璃

化学胶体

化学胶体

【细颗粒物】
细颗粒物比表面大,吸附性强,可携带重金属等,对人体影响十分严重 人类开始把空气中细颗粒物含量作为重要的大气质量标准:
PM2.5年均值不超过10μg/m3,日均值不超过25μg/m3
第三节
高分子溶液
第三节 高分子溶液
高分子化合物:单个分子相对分子量在 以上的大分子 (一般来说)
包括:蛋白质、核酸、糖原、存在体液中重要物质
非均相 热力学不稳定 分散相粒子不能透过
滤纸和半透膜
葡萄糖水溶液
氢氧化铁溶胶 蛋白质溶液 超过或达到临界浓度 的十二烷基硫酸钠溶
液 乳汁 泥浆
【比表面】
■ 分散度:分散相在介质中分散的程度(常用比表面来表示) ■ 比表面(S0):单位体积物质所具有的表面积
S0=S/V 该式说明,胶体分散相粒子的总表面积随分散程度增大时,比表面积也相应增大 溶胶是高度分散的多相分散系统,高度分散使得分散相表面积急剧增大。 当物质形成高度分散系统时,因表面积大大增加,表面性质就十分突出。 界面:相与相之间的接触面 表面:习惯上,把固相或液相与气相的界面称为表面
■ Fe(OH)3溶胶
溶胶
FeCl3 (aq) +3H2O (l) → Fe(OH)3 (aq) + 3HCl (aq)
Fe(OH)3 (s) + HCl (aq) → FeOCl (aq) + 2H2O (l) FeOCl (aq) → FeO+ (aq) + Cl- (aq)
Fe(OH)3胶核吸附溶胶中与其组成类似的FeO而带正电,而溶胶中电性相反的Cl-则
的次数叫聚合度,以n表示。
• 天然橡胶 链节为异戊二烯单位(-C5H8-) 。化学式可写作(C5H8)n • 纤维素、淀粉、糖原或高分子右旋糖酐,链节为葡萄糖单位(-

9胶体化学详解

9胶体化学详解
d=1—1000 nm 包括悬浮体,乳状液
(emulsion),泡沫
(二)胶体的基本特征 (1)多相(multiphase)性 在胶体系 统中,分散相粒子由众多分子或离子 组成,粒子内部与外部分散介质的许 多物理和化学性质都不相同,所以性 质是不均匀的,因而是多相系统。包 围胶体粒子的界面是相界面。
(一)分散(dispersion)法
直接将大块物质粉碎为小颗粒,并
使之分散于介质中。
机械分散法; 超声波(ultrasonic)
分散法; 电分散法; 胶溶法。
(二)凝聚(agglomeration)法
将分子或离子凝聚成胶体颗粒。
化学凝聚法
通过化学反应(如复分解反应、水解反应、氧化或还原反 应等)使生成物呈过饱和状态,然后粒子再结合成溶胶。
(二)沉降(sedimentation)平衡

当溶胶中颗粒的密度大 于介质时,颗粒在重力场作 用下有向下沉降的趋势;沉 降的结果使底部粒子浓度大 于上部,即造成上下的浓差, 而粒子的扩散将促使浓度趋 于均一。当沉降与扩散达平 衡时,称为沉降平衡;此时, 颗粒浓度自下而上降低,有 一个分布。
沉降平衡中粒子的分布
热力学电势ф0 :固体表面与溶液本体间的电势差 斯特恩电势фδ :斯特恩面同溶液本体之间的电势差 ξ电势:滑动面与溶液本体之间的电势差
ξ 电势的特点:
ξ 电势的绝对值小于热力学电势 的绝对值ф 0 •ξ 电势是衡量胶粒所带净电荷多 少的物理量; •ξ 电势的符号由胶粒所吸附离子
的电荷决定
•胶粒表面吸附正离子,ξ 电势为 正;胶粒表面吸附负离子,ξ 电 势为负 •少量外加电解质会对ξ 电势产生 很大的影响 •处于等电态的胶体质点不带电
(3)斯特恩双电层模型

食品物性学思考题带答案_(2)

食品物性学思考题带答案_(2)

食品物性学思考题1.食品物性学研究的主要内容。

(1)食品质地:用来表示食品的组织状态、口感及美味感觉。

(2)力学特性(流变性):它包括食品在力的作用下变形、振动、流动、破断等各种变化规律,以及作用规律等等。

(3)光特性:食品的光学性质是指食品物质对光的吸收、反射及其感官反应的性质。

(4)电特性:食品及其原料的导电特性、介电特性,以及其它电磁和物理特性。

(5)热特性:研究内容常见的热物性指标,主要有:比热、潜热、相变规律、传热规律以及与温度有关的热膨胀规律等等。

2.食品物性学要解决的主要问题。

(1)了解食品与加工、烹饪有关的物理特性(2)建立食品品质客观评价的方法。

(3)通过对物性的试验研究,可以了解食品的组织结构和生化变化。

(4)为快速无损检测食品品质提供理论依据。

(5)为改善食品的风味,发挥食品的嗜好功能提供科学依据。

(6)为研究食品分子水平的变化提供试验依据。

3.食品胶体系统的分类有哪些?胶体系统是一种多相分散系统,亦称非均质分散系统。

按分散相分散粒子大小的不同,胶体系统可划分为三类:4.非牛顿流体的分类有哪些?液体在流动过程中不符合牛顿流体定律的称为非牛顿流体的流动。

根据流动状态方程中σ0的有无和n的取值范围,非牛流动还可以如下分类:(1)假塑性流动:(0 <n <1)(2)胀塑性流动:(1 <n <∞)(3)塑性流动:宾汉流动(σ0 ≠0 ,n=1)非宾汉塑性流动(σ0 ≠0 ,n≠1)(4)触变性流动(5)胶变性流动5.假塑性液体的流动特征及特性曲线。

在非牛顿流动状态方程式中,当0<n<1时,即:表观黏度随着剪切应力或剪切速率的增大而减少的流动,称作假塑性流动,亦称准塑性流动或拟塑性流动。

符合假塑性流动规律的液体称为假塑性液体。

特点:无屈服应力,即应力应变曲线通过坐标原点;随着流速的增加,表观黏度减少。

假塑性液体的流动特性曲线为:6.黏弹性体的特点有哪些?当给物质施以作用力时,把既有弹性,又可以流动的现象称为黏弹性。

物理化学14章_胶体与大分子溶液

物理化学14章_胶体与大分子溶液

物理化学14章_胶体与大分子溶液一、胶体胶体是一种分散体系,其中分散相的粒子大小在1-100nm之间。

这种分散体系具有一些特殊的性质,例如光学、电学和动力学性质,这使得胶体在许多领域都有广泛的应用。

1、胶体的分类胶体可以根据其分散相的不同分为不同类型的胶体,例如:(1)金属胶体:以金属或金属氧化物为分散相的胶体,如Fe(OH)3、TiO2等。

(2)非金属胶体:以非金属氧化物、硅酸盐、磷酸盐等为分散相的胶体,如SiO2、Al2O3、Na2SiO3等。

(3)有机胶体:以高分子化合物为分散相的胶体,如聚合物、蛋白质、淀粉等。

2、胶体的制备制备胶体的方法有多种,例如:(1)溶解法:将物质溶解在适当的溶剂中,通过控制浓度和温度等条件使物质析出形成胶体。

(2)蒸发法:将溶剂蒸发,使溶质析出形成胶体。

(3)化学反应法:通过化学反应生成胶体粒子。

3、胶体的性质胶体具有一些特殊的性质,例如:(1)光学性质:胶体粒子对光线有散射作用,因此胶体具有丁达尔效应。

(2)电学性质:胶体粒子可以带电,因此胶体具有电泳现象。

(3)动力学性质:胶体粒子由于其大小限制,表现出不同于一般粒子的动力学性质,例如扩散速度较慢、沉降速度较慢等。

二、大分子溶液大分子溶液是一种含有高分子化合物的溶液,其中高分子化合物通常具有较大的分子量。

这种溶液具有一些特殊的性质,例如分子量较大、分子链较长、分子间相互作用较强等。

1、大分子溶液的分类大分子溶液可以根据其组成的不同分为不同类型的溶液,例如:(1)合成高分子溶液:由合成高分子化合物组成的溶液。

(2)天然高分子溶液:由天然高分子化合物组成的溶液,如蛋白质、淀粉、纤维素等。

2、大分子溶液的制备制备大分子溶液的方法有多种,例如:(1)溶解法:将大分子化合物溶解在适当的溶剂中,通过控制浓度和温度等条件使其溶解。

(2)化学反应法:通过化学反应合成大分子化合物并将其溶解在适当的溶剂中。

3、大分子溶液的性质大分子溶液具有一些特殊的性质,例如:(1)粘度:大分子溶液通常具有较高的粘度,这是因为大分子链较长,运动较困难。

胶体化学

胶体化学
数均摩尔质量 质均摩尔质量 粘均摩尔质量 Z均摩尔质量
二、 高分子溶液的性质
表11-8
高分子溶液的渗透压:溶质分子的柔性及溶剂化,渗透压 较相同浓度的小分子溶液大。
高分子溶液的黏度:黏度大
原因:
1)高分子的柔性使得高分子在溶液中占的体积很大,对介 质流动形成阻力
2)高分子溶剂化,溶剂分子被高分子束缚,流动性差 3)高分子链段间相互作用形成一定结构,流动阻力增大,
乳状液的制备
自然乳化分散法 瞬间成皂法 界面复合物生成法 交替添加法
三 乳状液的转型与破坏
(1)乳状液转型 转型:由W/O变成O/W或者由O/W变成W/O 外加物质使乳化剂的性质发生改变而引起
加入量少------不能转型 加入量适中---转型 加入量多------破坏乳液 温度改变(非离子型表面活性剂) 转型温度
溶胶的净化
在制备溶胶的过程中,常生成一些多余的电解质,
在制备溶胶的过程中,常生成一些多余的 如制电备解F质e(O,H如)3溶制胶备时生Fe成(O的HH)C3l溶。胶时生成的HCl。
少量电解质可以作为溶胶的稳定剂,但是过多的电解质存在会 使溶胶不稳定,容易聚沉,所以必须除去。 净化的方法主要有渗析法和超过滤法。
第二节 溶胶的制备和净化
制备: 1)由小分子溶液聚集 物理聚集法、化学反应法、更换溶剂法 2)由粗分散系统分散
研磨法、电弧法、超声分散法
由小分子溶液聚集
水解反应制氢氧化铁溶胶 FeCl3 (稀)+3H2O (热)→ Fe(OH)3 (溶胶)+3HCl
由粗分散系统分散
电弧法主要用于制备金、银、铂等金属溶胶。制备过程包括先分 散后凝聚两个过程。将金属做成两个电极,浸在水中,盛水的盘子放 在冷浴中。在水中加入少量NaOH 作为稳定剂。 制备时在两电极上施加 100V 左右的直流电,调节电极之间的距离,使 之发生电火花,这时表面金属蒸发,是分散过程,接着金属蒸气立即 被水冷却而凝聚为胶粒。

胶体化学

胶体化学

的形状对胶体性质有重要影响。
胶粒的形状
例如:(1)聚苯乙烯胶乳是球形质点
(2) V2O5 溶胶是带状的质点 (3) Fe(OH)3 溶胶是丝状的质点
§14.5 溶胶的稳定和聚沉
溶胶是热力学不稳定系统,但有些溶胶却能在相 当长时间内稳定存在。 1、溶胶的经典稳定理论—DLVO理论 胶体带电是其稳定存在的主要原因 (1)胶团之间既存在引力势能,也存在斥力势能。
例1:AgNO3 + KI→KNO3 + AgI↓ 过量的 KI 作稳定剂 胶团的结构表达式 : [(AgI)m n I – (n-x)K+]x– xK+ 胶核 胶粒(带负电) 胶团的图示式: 胶核 胶粒
胶团
胶团(电中性)
例2:AgNO3 + KI → KNO3 + AgI↓
过量的 AgNO3 作稳定剂
溶胶的电动现象体现在以下四个方面: 电泳:在外电场作用下,胶体粒子在分散介质中定 向移动的现象。
1、溶胶的电动现象 电渗:在多孔膜(或毛细管)两端施加一定电压,
液体将通过多孔膜而定向移动。在外电场作用下,胶
体粒子相对静止,分散介质定向移动的现象。 流动电势:在外力的作用下,迫使液体通过多孔膜 (或毛细管)定向流动,多孔膜两端所产生的电势差 沉降电势:分散相粒子在重力场或离心力场的作用
的最简便的方法。
光散射现象 当光束通过分散系统时,一部分自由地通过,一 部分被吸收、反射或散射。 入射光频率与分子的固有频率相同时,吸收 入射光波长小于分散粒子尺寸时,反射
入射光波长大于分散粒子尺寸时,散射
散射光的强度可利用瑞利公式进行计算
2、瑞利公式 I=
9π2V 2C
2λ4l 2
2 n2 - n 0 2 ( 2 ) (1 + cos2α)I0 2 n + 2n 0

常见的胶体分散系

常见的胶体分散系

常见的胶体分散系胶体分散系是由两种或多种物质组成的复合系统,其中一种物质以微粒形式分散在另一种物质中。

胶体分散系广泛存在于日常生活和工业生产中,对于我们的生活和科学研究都有着重要的影响。

一、乳液分散系统乳液是一种常见的胶体分散系统,由两种不互溶的液体相组成。

其中一种液体以微小的液滴形式分散在另一种液体中。

常见的乳液包括牛奶、乳霜、油漆等。

乳液的稳定性取决于胶体粒子的尺寸、浓度以及表面活性剂的存在。

表面活性剂能够降低胶体粒子之间的表面张力,使其更加稳定。

乳液在食品工业中广泛应用,用于制作各种乳制品、饮料和调味品。

二、凝胶分散系统凝胶是一种由液体和固体组成的胶体分散系统。

凝胶的特点是具有一定的流动性,但在静止状态下呈现固体的性质。

凝胶的形成是由于胶体粒子之间的相互作用力导致的。

常见的凝胶包括明胶、琼脂和硅胶等。

明胶是由动物骨骼、皮肤或软骨提取的胶原蛋白制成的,可以用于制作果冻、糖果和蛋糕等食品。

硅胶是一种多孔的胶体材料,常用于吸附湿气和过滤杂质。

三、胶体溶液分散系统胶体溶液是由固体微粒以胶体形式分散在液体中的分散系统。

胶体溶液的稳定性取决于胶体粒子的电荷性质和电解质的存在。

当胶体粒子带有电荷时,它们会相互排斥,保持分散状态。

常见的胶体溶液包括胶体金、胶体银和胶体二氧化硅等。

胶体金和胶体银具有优异的光学性能,广泛应用于生物医学和光学领域。

胶体二氧化硅是一种多孔材料,可用于制备载药微球和催化剂。

四、气溶胶分散系统气溶胶是由固体或液体微粒分散在气体中的胶体分散系统。

气溶胶的形成主要是由于微粒与空气分子之间的碰撞和吸附。

常见的气溶胶包括雾、烟雾和空气中的尘埃等。

烟雾是由燃烧产生的固体和液体微粒组成的气溶胶,对人体健康有害。

空气中的尘埃是由颗粒物质和微生物等形成的气溶胶,会影响空气质量和人体呼吸。

胶体分散系在医药、食品、化工等领域都有着广泛的应用。

它们不仅能够改善产品的质地和口感,还可以调整产品的性能和功能。

胶体与界面化学的理论与应用

胶体与界面化学的理论与应用

胶体与界面化学的理论与应用胶体与界面化学是物理化学的一个分支,研究物质的微观粒子在液态介质中的行为和相互作用,以及物质在不同相之间的表面现象和性质变化。

胶体分散系统是广泛存在于自然和工业生产中的一类复杂体系,如乳液、胶体、泡沫、纳米粒子等,它们具有很强的稳定性和特定的物理、化学和生物性质,因此在材料科学、化学、生物和医学等领域有着广泛的应用前景。

1. 胶体系统的定义和特点胶体系统是由粒子大小在介于分子和宏观颗粒之间的物质构成的,一般指分散相为固体或液体的胶体分散体系。

胶体粒子的大小通常在1-1000nm之间,具有较大的比表面积和表面能,而且有一定的表面电荷或分子表面活性剂的存在,使其易于形成和维持分散状态,同时还表现出很多异于均相系统的独特性质,如乳浊液稳定性、浊度、渗透性等。

2. 胶体的形成机制和分类胶体的形成机制主要涉及两种方式:一是物理自组装,即由独立体通过物理过程形成胶体分散体系;另一种是化学合成,即通过化学反应控制或调节粒子大小、形状和表面性质来制备胶体分散体系。

按照胶体粒子的组成和形态特征,胶体系统可分为晶体、胶体、凝胶、泡沫和乳状液等多种类型。

其中,凝胶是一种具有可逆或不可逆的三维网络结构的胶体分散体系,一般由连续介质中的高分子、生物大分子或固体微粒等组成,具有较大的比表面积和孔隙度,广泛应用于吸附、分离、催化、电极材料和组织工程等领域。

3. 界面化学的基本概念和原理界面化学是研究不同物质相间的分界面和相互作用的一门学科,其中界面指的是两种物质相接触的地方,主要是化学和物理交互作用所形成的区域。

在界面上,物质的性质、状态和反应行为会发生显著的变化,如表面张力、表面活性剂的吸附和脱附、分子扩散等现象。

在界面化学中,五类基本相互作用力具有重要的作用:静电作用力、范德华力、亲水力、亲油力和化学键作用力。

静电作用力是在有电性情况下分子间作用的一种长程力,是物理化学中最基本和最普遍的相互作用力,它能够对物质的分子形态和生物活性等产生很大影响。

胶体体系的分类和制备

胶体体系的分类和制备

§1.1 胶体的分类
一、习惯上,按物系体相中有无相界面 存在把胶体分为: 亲液溶胶—高分子溶胶:单相,热力学稳定, 可逆 疏液溶胶—溶胶:多相,热力学不稳定, 不可逆
二、由分散质和分散剂聚集状态的不同, 胶体可分为几类:
分散剂 分散质
气体 液体 L S G L S G L S
名称
实例
气-液溶胶 气-固溶胶 液-气溶胶 液-液溶胶 液-固溶胶
4、1907年,奥斯特创办《胶体化学和工业杂 志》,从此时胶体化学真正成为一门独立 的学科。
5、我国古代胶体的应用
胶泥作“活字”(应用了粘土胶体的性质)
食用饧饴(淀粉与糊性在麦芽糖与葡萄糖溶液 中形成稳定的胶体体系)
墨(明胶作保护剂使碳粒均匀稳定的散开),
豆腐,粉条,皮蛋,药用胶丸,膏药,制革, 染色,油漆,印记,陶器,瓷器, 。
4、聚结稳定性 胶体分散质粒子表面也象真溶液中会形成溶剂化而具有 分散剂的性质。这种膜对分散质粒子起保护作用,使粒 子在相互碰撞时不会结合在一起。胶体粒子能够保持单 个独立状态而不相互结合的这种稳定性,即聚结稳定性 5、动力稳定性(说明胶体粒子非常活跃) 根据分子热运动的观点,在恒温条件下,分散粒子的运 动速度与粒子质量的平方根成反比。粒子小,速度快, 胶体具有高的扩散性,这种扩散性能使胶体粒子克服它 自身的重力而免于向下沉积,能均匀自如地分散在整个 介质中,表现为一定的稳定性。
溶胶与其他分散系的差异: 粒子大小不同;粒子构造不同 例如: 真溶液:分子或离子是比较简单的个体 溶胶 :胶团结构较为复杂
3、聚结不稳定性 多相和高度分散导致热力学不稳定性,胶体粒 子有聚结而降低表面积和表面能的趋势。即具 有聚结不稳定性。这就是为什么形成溶胶必需 有稳定剂的原因。

胶体化学

胶体化学
亲液溶胶: 均相,无相界面 高分子溶液, 例如:氨基酸
系统 真溶液 胶体系统 粗分散系统
分散系统的分类及特征(总结)
分散相粒子 直径 d
系统相态
热力学稳定性
实例
d < 1 nm
均相
各种分子、原子、离子溶液
稳定
多相不稳定, 如乙醇水溶液、NaCl 水溶液、
空气等
多相 1<d<1000nm
不稳定
为什么? 各种溶胶
二 胶体系统的动力学性质
解释胶粒能扩散、渗透以及因重力作用而不聚沉下来的原因。
以后发现,线度小于4000nm的粒子,在分散介质中都 有这种运动。(胶体尺度 1 ~ 1000nm)
这种现象产生的原因是,分 散介质分子处于不断的热运动中, 从四面八方不断的撞击分散相粒 子。对于大小在胶体尺度下的分 散相粒子,粒子受到撞击次数较 小,从各个方向受到的撞击力不能 完全互相抵消,在某一时刻,粒子 从某一方向得到的冲量即可发生 位移。此即布朗运动。
h1 h2
4.沉降速度与粒子半径的关系
阻力F为: F=4/3лr3dg-4/3 лr3dog
= 4/3лr3(d-do)g
根据斯托克斯公式: 4/3лr3(d-do)g=6 лŋru 因此: r=[9 ŋu/2(d-do)g]1/2
r-粒子半径; d-粒子密度; d0-分散介质密度;u-粒子沉降速度; ŋ-介质粘度
溶胶是一个高度分散的非均相系统。分散相粒子 与分散介质间有明显的相界面。实验发现,在外电场 下,固、液两相可发生相对运动;反之,若迫使固、 液两相作相对运动时,又可产生电势差。溶胶的这种 与电势差有关的相对运动称为电动现象,电泳和电渗 都属于电动现象
电动现象说明,溶胶粒子表面带有电荷。而溶胶粒 子带有电荷也正是它能长期稳定存在的原因。

胶体系统的微观结构研究及应用

胶体系统的微观结构研究及应用

胶体系统的微观结构研究及应用胶体系统是指具有固体和液体之间特殊物态的系统。

研究胶体系统的微观结构对于理解其物理、化学性质及应用有着重要的意义。

一、胶体系统的定义和分类
胶体是指固体、液体或气体微粒子在另一种物质中所组成的分散体系。

根据不同的分散介质,可以将胶体分为三种类型:气体胶体、液体胶体和固体胶体。

液体胶体是研究的重点,其中包含大量的乳液、胶体、泡沫、溶胶等。

二、胶体系统的微观结构
1. 粒子形态与分散相互作用
液体胶体中的粒子大多呈球形,粒子间的相互作用力有几种,如静电作用力、范德华力、呈现作用力等。

2. 浓度与胶体微结构
浓度是影响胶体微观结构的一个关键因素,随着浓度的增加,粒子见距会缩小,从而形成更加紧密的胶体微结构。

3. 胶体粒子形态与性质的关系
胶体粒子的形态会对其性质产生影响,如带电荷的球形粒子,因为具有静电作用力的影响,其颗粒更难聚集、形成络合物等。

三、胶体系统的应用
1. 环保领域
在污水处理中,可通过添加胶体来清除污水中的沉淀、悬浮物等有害物质。

2. 医疗领域
胶体也广泛应用在医学中,如在口腔镶牙时使用胶体黏结剂将假牙固定在口腔中。

3. 化妆品领域
由于胶体液态和稳定性,如蜂蜜、植物粘液等,常被应用于化妆品中,如面霜、口红等。

总之,胶体系统的微观结构的研究可以为其应用提供更好的理论和技术依据,也为我们更好地理解自然界的物理化学现象提供了研究途径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

胶体系统的分类
胶体系统是指由两种或两种以上不同的物质组成的混合物,其中一种物质呈现胶状或分散态,另一种物质则是连续相。

胶体系统无论在自然界还是工业领域都有广泛的应用。

根据胶体系统中分散相和连续相的物质性质和组成,可以将其分为不同的类型。

一、溶胶体系
溶胶体系是指分散相是固体,连续相是液体。

固体颗粒的尺寸通常小于1微米。

在胶体溶液中,分散相很容易被液体包围和包裹,形成一个小的、稳定的胶体颗粒,又称为溶胶。

二、凝胶体系
凝胶体系是指分散相是固体,连续相是液体,而且分散相的颗粒尺寸大于1微米,由于颗粒之间有较强的吸引力,因此形成了一种非常稳定的三维网络结构,也就是凝胶。

三、乳胶体系
乳胶体系是指分散相是液体,连续相是液体,分散相和连续相都是不相溶的,但是通过特殊的处理方式,使得分散相被包裹在连续相之中,形成了一种小的胶体颗粒。

四、气溶胶体系
气溶胶体系是指分散相是固体或液体,连续相是气体,分散相的粒子尺寸非常小,通常在0.001-10微米之间。

由于粒子尺寸非常小,因此气溶胶体系可以形成非常稳定的胶体颗粒。

五、泡沫体系
泡沫体系是指分散相是气体,连续相是液体,气泡的尺寸通常在0.1-1000微米之间。

泡沫体系通常是不稳定的,需要通过添加一些表面活性剂或者其他稳定剂来维持其稳定性。

相关文档
最新文档