降压斩波电路课程设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
一、引言⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2
二、设计要求与方案⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2
2.1 设计要求⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..2
2.2 方案确定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.3
三、主电路设计⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.3
3.1 主电路方案⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..3 3.2 工作原理⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..4
3.3 参数分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..5
四、控制电路设计⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.5
4.1 控制电路方案选择⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..5 4.2 工作原理⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..6
4.3 控制芯片介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..7
五、驱动电路设计⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.9
5.1 驱动电路方案选择⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ (9)
5.2 工作原理⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..10
六、保护电路设计⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.11
6.1 过压保护电路⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..11
6.2 过流保护电路⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..12
七、系统仿真及结论⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.13
八、结论⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.16
九、参考文献⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.16
十、致谢⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.17
引言
随着电力电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多。电子设备的小型化和低成本化使电源向轻,薄,小和高效率方向发展。开关电源因其体积小,重量轻和效率高的优点而在各种电子信息设备中得到广泛的应用。伴随着人们对开关电源的进一步升级,低电压,大电流和高效率的开关电源成为研究趋势。
开关电源分为AC/DC 和DC/DC ,其中DC/DC 变换已实现模块化,其设计技术和生产工艺已相对成熟和标准化。DC/DC 变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波电路主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等。IGBT 降压斩波电路就是直流斩波中最基本的一种电路,是用IGBT 作为全控型器件的降压斩波电路,用于直流到直流的降压变换。IGBT 是MOSFET 与双极晶体管的复合器件。它既有MOSFET 易驱动的特点,又具有功率晶体管电压、电流容量大等优点。其频率特性介于MOSFET 与功率晶体管之间,可正常工作于几十千赫兹频率范围内,故在较高频率的大、中功率应用中占据了主导地位。所以用IGBT 作为全控型器件的降压斩波电路就有了IGBT 易驱动,电压、电流容量大的优点。
IGBT 降压斩波电路由于易驱动,电压、电流容量大在电力电子技术应用领域中有广阔的发展前景,也由于开关电源向低电压,大电流和高效率发展的趋势,促进了IGBT 降压斩波电路的发展。
、设计要求与方案
2.1 设计要求
2.1.1 课程设计目的
1 、培养文献检索的能力,特别是如何利用Internet 检索需要的文献资料
2、培养综合分析问题、发现问题和解决问题的能力。
3、培养运用知识的能力和工程设计的能力。
4、提高课程设计报告撰写水平。
2.1.2 课程设计要求
降压斩波电路设计要求:
1、输入直流电压:U d=100V
2、开关频率5KHz
3、输出电压20V
4 、最大输出电流:20A
5. L=100mH
6. 输出功率:400W
7. 占空比0.2
2.2 方案确定
电力电子器件在实际应用中,一般是由控制电路,驱动电路,保护电路和以电力电子器件为核心的主电路组成一个系统。由信息电子电路组成的控制电路按照系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的导通或者关断来完成整个系统的功能,当控制电路所产生的控制信号能够足以驱动电力电子开关时就无需驱动电路。
根据降压斩波电路设计任务要求设计主电路、控制电路、驱动及保护电路,设计出降压斩波电路的结构框图如图 1 所示。
图1 降压斩波电路结构框图
在图 1 结构框图中,控制电路是用来产生降压斩波电路的控制信号,控制电路产生的控制信号传到驱动电路,驱动电路把控制信号转换为加在开关控制端,可以使其开通或关断的信号。通过控制开关的开通和关断来控制降压斩波电路的主电路工作。控制电路中的保护电路是用来保护电路的,防止电路产生过电流现象损害电路设备。
三、主电路设计
3.1 主电路方案
根据所选课题设计要求设计一个降压斩波电路, 可运用电力电子开关来控制电路的通断 即
改变占空比,从而获得我们所想要的电压。 这就可以根据所学的 buck 降压电路作为主电路, 这个方案是较为简单的方案,直接进行直直变换简化了电路结构。而另一种方案是先把直流 变交流降压,再把交流变直流,这种方案把本该简单的电路复杂化,不可取。至于开关的选 择,选用比较熟悉的全控型的 IGBT 管,而不选半控型的晶闸管,因为 IGBT 控制较为简单, 且它既具有输入阻抗高、开关速度快、驱动电路简单等特点,又用通态压降小、耐压高、电 流大等优点。
3.2 工作原理
根据所学的知识,直流降压斩波主电路如图 2 所示:
直流降压斩波主电路使用一个全控器件 IGBT 控制导通。用控制电路和驱动电路来控制 IGBT 的通断,当t=0 时,驱动 IGBT 导通,电源 E 向负载供电,负载电压 u 0 =E ,负载电流 i 0 按指数曲线上升。电路工作时波形图如图 3 所示:
E M
图 2 主电路图
E O a) t t 2
t
t