第3章 化学热力学基础

合集下载

第三章化学热力学基础汇总

第三章化学热力学基础汇总

3-1 热力学第一定律 什么叫“热力学” • 热力学是研究热和其他形式的 能量互相转变所遵循的规律的一门科学。 什么叫“化学热力学” • 应用热力学原理,研究化学反 应过程及伴随这些过程的物理现象,就 形成了“化学热力学”。
4
化学热力学研究什么问题(研究对象) • 合成NH3 N2 (g) + 3H2(g) = 2 NH3 (g) • 例:298.15K,各气体分压101.325KPa下, • N2 (g) + 3H2(g) = 2 NH3 (g) △fGm ø/ kJ/mol 0 0 -16.5
QP = (U2 + pV2)-(U1 + pV1) H = U + pV H:新的状态函数-------焓 Qp = H2 –H1 = H(H称为焓变)
为什么定义焓的原因:
其变化量可以测定(等于等温等压工程不做其他功时的热效应);
具有实际应用价值(通常的化学反应都是在等压下进行的)。 试问焓是不是状态函数?注:等温、等压、无功。
摩尔质量M:
1mol物质的质量。单位Kg.mol-1或g.mol-1。
摩尔分数(物质的量分数):混合物中某组分的物质的量与
混合物中各物质的量的总和之比。
例: xB = nB/(nA + nB)
11
摩尔反应:
反应物按方程式的计量系数完全转化为生成
物的反应。必须注意,摩尔反应是与特定的化学方程式一一
对应的。(注:计量系数v为纯数,反应物取正值,生成物取负值)
第3章 化学热力学基础
Chapter 3 Primary Conception of Chemical Thermodynamics
1
本章要求
1、了解热力学的概况——反应是否发生;描述大量原子、

3 化学热力学基础

3 化学热力学基础

●在恒压过程中 U Q p p ex V
U 2 U1 Q p p ex V2 V1
Q p ( U 2 p 2 V2 ) U1 p1 V1
U 2 U1 Q p p 2 V2 p1 V1
焓: H U pV 焓变: Qp H 2 H1 H
2 2 2 θ -1 2 2 2 θ -1
kPa 下进行 时,习惯上可不再予以注明。 (3)焓变值与一定的反应式相对应。 N2(g) + 3H2(g) = 2NH3(g) Hθ =-92.20 KJ.mol-1 (4)在相同条件下,正向反应和逆向反应的反应热绝 2NH3(g) = N2(g) + 3H2(g) Hθ =+92.20 KJ.mol-1 对值相等,符号相反。
Inorganic Chemistry
第三章 化学热力学基础
无机化学
H
θ
热力学 标准态
当反应物或生成物都是气体时各物
质分压为1×105 Pa;
当反应物及生成物都是溶液状态时,
各物质的浓度为1mol•L-1;
固体和液体的标准态则指处于标准
压力下的纯物质。
Inorganic Chemistry
Inorganic Chemistry
第三章 化学热力学基础
无机化学
过程与途径的关系
30℃,1atm 始态 途径Ⅰ 80℃, 2atm 终态
途径Ⅱ 恒温过程 30 ℃,2atm
恒压过程
Inorganic Chemistry
第三章 化学热力学基础
无机化学
实际上,热力学的实际过程都是十分复杂 的,因此,相应的计算也十分困难,但我们在 处理时,可以利用状态函数的性质,把复杂过 程分解成相应的简单过程去简化计算。如:

第三章 化学热力学基础

第三章 化学热力学基础



令H=U+pV——焓 (状态函数),则 化学反应的恒压热效应等于系统焓的变化。放热为负,吸热为正。
3. 热化学方程式
热化学方程式:表示化学反应及其热效应关系的化学方程式

标准摩尔焓变:在标准条件下反应或过程的摩尔焓变,△rHmθ,简写 △Hθ。 θ——标准状态, p θ=101.325kPa 气态的标准状态:温度为T,压力为p 体纯物质(假想)状态。
过程:系统状态发生变化时,变化的经过称之为过程。常
见如下

定温过程:过程中系统的温度保持不变,且始终与环境的 温度相等,即T1=T2=Te 定压过程:过程中系统的压力保持不变,切始终与环境的

压力相等,即p1=p2=pe

定容过程:过程中系统的体积始终保持不变 绝热过程:过程中系统与环境之间没有热交换,Q=0 循环过程:系统经一系列变化之后又恢复到起始状态的过 程。

晶体:粒子按一定规则排列,各向异性,有一定沸点 无定形体:内部粒子无规则排列,没有固定熔点,各向同 性

(微晶体):某些物质虽呈无定形,当发现由极微小的晶 粒组成(比晶体小千百倍)
3.2 化学反应热力学
化学反应基本规律

质量守恒定律
能量守恒定律
3.2.1 质量守恒定律

参加化学反应的各种物质的总质量一定等于反应后各种物质的总质 量。 化学方程式(化学反应计量方程式): 根据质量守恒定律,用规定的化学符号和化学式来表示化学反应的 式子。

△Hfθ (物质,相态,T)
指定单质的标准生成焓为零。 △Hfθ (参考态单质,相态,T)=0 例:

反应式中C的指定单质是石墨,指定单质一般都是在该条件下最稳

第3章 化学热力学基础

第3章 化学热力学基础

3.152mol Hg(l)在沸点温度(630K)蒸发过程中所吸收的热量为109.12kJ。

则汞的标准摩尔蒸发热ΔvapHm=(54.46)kJ ;该过程中对环境做功W=(10.48kJ),ΔU=(98.64kJ),ΔS=(173.2J·K-1),ΔG=(0)3.16有A,B,C,D四个反应,在298K时的反应的热力学函数分别为反应 A B C DΔ10.5 1.80 -126 -11.7 rHm/(kJ·mol-1)Δ30.0 -113 84.0 -105 rSm/(kJ·mol-1)则在标准状态下,任何温度都能自发进行的反应是(C),任何温度都不能自发进行的反应是(B);另两个反应中,在温度高于(77)℃时可自发进行的反应是(A),在温度低于(-161.6)℃时可自发进行的反应是(D)3.171mol液态的苯完全燃烧生成的CO2(g)和H2O(l),则该反应的Qp与Qv的差值(-3.72)kJ(温度25℃)3.18已知25℃时,ΔfHm(Br,g)=30.71kJ·mol-1,ΔfGm(Br,g)=3.14kJ·mol-1,则Br2(l)的标准摩尔蒸发熵为(92.52)J·mol-1·K-1,正常沸点为(58.93)℃3.19反应2HgO(s)===2Hg(l)+O2(g)ΔrHm=181.4kJ·mol-1,则ΔfHm(HgO,s)=(-90.7kJ·mol-1)。

已知Ar(Hg)=201,生成1gHg(l)的焓变是(0.451)kJ3.20已知反应CaCO3(s)===CaO(s)+CO2(g)在298K时ΔrGm=130kJ·mol-1,1200K时ΔrGm=-15.3kJ·mol-1,则该反应的ΔrHm 为(161J·mol-1·K-1)3.21将下列物质按摩尔熵值由小到大排列,其顺序为Li(s)<LiCl(s)<Ne(g)<Cl2(g)<I2(g)3.22在25℃时,NaCl在水中的溶解度为6mol·dm-3,在此温度下,若将100gNaCl置于500g水中,则NaCl溶解过程中ΔrG(<)0,ΔrS(>)0 3.23若3mol理想气体向真空膨胀,该过程的Q,W,ΔU,ΔH,ΔS,ΔG中不为零的是(ΔS,ΔG)。

第三章 化学热力学基础及化学平衡

第三章 化学热力学基础及化学平衡
第三章 化学热力学基础及化学平衡
无 机 及 分 析 化 学 湖 南 农 业 大 学 应 用 化 学 系
热力学:定量研究能量相互转化所遵循规律的学科,其 中心内容是热力学第一定律和第二定律
化学热力学:把热力学基本原理用于研究化学现象以及与化
学有关的物理现象,主要解决3个问题: ⑴ 反应过程中是否伴随能量的变化? ⑵ 在一定条件下,反应能否发生? ⑶ 如果反应能够发生,其程度如何? 能量关系问题; 过程方向性问题; 化学平衡问题。
第三章 化学热力学基础及化学平衡
无 机 3.3 化学反应的方向和限度 及 3.3.1 自发过程 分 凡是不需要外力而能自动发生的过程。 析 化 1、特点 学 ⑴ 自发过程有一定的方向性,它的逆过程是非自发的 湖 ⑵ 自发和非自发均有可能发生 南 农 ⑶ 自发过程具有对外做功的能力 业 ⑷ 自发过程有一定的限度 大 ⑸ 自发过程不受时间的约束,与速率无关 学 应 如: 水从高处流向低处; 用 热从高温物体传向低温物体; 化 铁在潮湿的空气中锈蚀; 学 系 锌置换硫酸铜溶液反应。
第三章 化学热力学基础及化学平衡
无 机 令:H = U + pV, H 称为焓。 及 由于U 、 p、V均为系统的状态函数,所以焓(H)也是 分 系统的状态函数。 析 化 所以有:Qp = △H 学 湖 南 农 业 大 学 应 用 化 学 系 对于在等温等压条件下进行的气体反应而言:
△U = Qp + W ,
W p V 0
第三章 化学热力学基础及化学平衡
无 机 及 分 析 化 学 湖 南 农 业 大 学 应 用 化 学 系
பைடு நூலகம்
3.2.2 化学反应热
反应热:当产物与反应物温度相同并且在化学反应时只做 膨胀功的条件下,化学反应过程中系统吸收或放出的热量。 1 定容反应热(Qv) 若系统在变化过程中保持体积恒定,此时的热称为定容热. W=-p △V=0 2 定压反应热(Qp ) △U = Qv + W Qv= △U

第3章-化学热力学基础-习题及全解答

第3章-化学热力学基础-习题及全解答

第3章化学热力学基础1.状态函数的含义及其基本特征是什么?T、p、V、△U、△H、△G、S、G、Q p、Q u、Q、W、W e最大中哪些是状态函数?哪些属于广度性质?哪些属于强度性质?答:状态函数的含义就是描述状态的宏观性质,如T、p、V、n、m、ρ等宏观物理量,因为体系的宏观性质与体系的状态之间存在对应的函数关系。

状态函数的基本特点如下:(1)在条件一定时,状态一定,状态函数就有一定值,而且是唯一值。

(2)条件变化时,状态也将变化,但状态函数的变化值只取决于始态和终态,与状态变化的途径无关。

(3)状态函数的集合(和、差、积、商)也是状态函数。

其中T、p、V、S、G是状态函数,V、S、G、H、U属于广度性质(具有加和性),T、p属于强度性质。

2.下列叙述是否正确?试解释之。

(1)Q p=△H,H是状态函数,所以Q p也是状态函数;(2)化学计量数与化学反应计量方程式中各反应物和产物前面的配平系数相等;(3)标准状况与标准态是同一个概念;(4)所有生成反应和燃烧反应都是氧化还原反应;(5)标准摩尔生成热是生成反应的标准摩尔反应热;(6)H2O(l)的标准摩尔生成热等于H2(g)的标准摩尔燃烧热;(7)石墨和金刚石的燃烧热相等;(8)单质的标准生成热都为零;(9)稳定单质的△f HΘm、SΘm、△f GΘm均为零;(10)当温度接近绝对零度时,所有放热反应均能自发进行。

(11)若△r H m和△r S m都为正值,则当温度升高时反应自发进行的可能性增加;(12)冬天公路上撒盐以使冰融化,此时△r G m值的符号为负,△r S m值的符号为正。

答:(1)错。

虽然H是状态函数,△H并不是状态函数,所以Qp当然不是状态函数;。

(2)错。

因为反应物的化学计量数为负,与反应计量方程式中反应物前面为正的系数不相等;(3)错。

如气体的标准状况是指0℃和101.325KPa条件,而标准态对温度没有限定;(4)错。

如由石墨生成金刚石的生成反应就不是氧化还原反应;(5)对。

第3章 化学热力学基础

第3章  化学热力学基础
上一内容 下一内容 回主目录
缸内气体承 受的外压p外
大砖头和两块 小砖头的重量 所致的压力
一块大砖头 的重量所致 的压力
始态
大砖头和一块 小砖头的重量 所致的压力
终态
中间态
图3-1 理想气体恒温膨胀示意图
上一内容 下一内容 回主目录
始态经不同途径恒温膨胀到终态: 一次膨胀过程 p1=405.2kPa 始态 V1=1.00L T1=273K (I) 二次膨胀过程 p1=202.6kPa V1=2.00L T1=273K
途径Ⅰ 始态上一内容 下一内容回主目录终态途径Ⅱ
恒压过程 在状态变化过程中,压力始终恒定 等压变化 p始态=p终态=p环境,而不考虑过程中的压力
恒温过程 在状态变化过程中,温度始终恒定 等温变化 T始态=T终态=T环境,而不考虑过程中的温度
恒容过程 在状态变化过程中,体积始终恒定
绝热过程 体系与环境之间无热交换
dU = δQ + δW
上一内容 下一内容 回主目录
例1. 设有1mol理想气体,由487.8K、20L的始态,反抗恒外压 101.325kPa迅速膨胀至101.325kPa、414.6K的状态。因膨胀迅 速,体系与环境来不及进行热交换。试计算W、Q及体系的热 力学能变△U。
解:按题意此过程可认为是绝热膨胀,故Q=0。 W =―p外△V = ―p外(V2 ― V1) V2 =nRT2 /p2 =(1 × 8.314 × 414.6)/101.325=34( L) W = ―101.325×(34 – 20)= ―1420.48( J)
上一内容
下一内容
回主目录
热力学方法是一种宏观的研究方法。
它只研究大量微观粒子(宏观体系)的平均
行为(宏观性质),而不讨论其微观结构。 本章主要讨论平衡态的热力学,重点掌握化学 反应的热效应计算和自发进行方向的判断。

第三章 化学热力学基础

第三章 化学热力学基础

第三章化学热力学基础§3-1热力学基本概念教学目的及要求:掌握热力学中的基本概念。

教学重点:体系与环境、状态与状态函数、过程与途径的概念。

引言热力学是在研究提高热机效率的实践中发展起来的,十九世纪建立起来的热力学第一、第二定律奠定了热力学的基础,是热力学成为研究热能和机械能以及其他形式能量之间的转化规律的一门科学。

二十世纪建立的热力学第三定律使得热力学理论更加完善。

用热力学的理论和方法研究化学,则产生了化学热力学。

化学热力学可以解决化学反应的方向和限度等问题,着眼于性质的宏观变化,不涉及到物质的微观结构,只需知道研究对象的起始状态和最终状态,无需知道其变化过程的机理。

一、体系与环境体系——研究的对象环境——体系以外与体系密切相关的部分举例:按照体系与环境之间能量和物质的交换关系,通常将体系分为三类:敞开体系:同时存在能量和物质的交换;封闭体系:只存在能量交换;孤立体系:既无能量交换,又无物质交换。

举例:在热力学中,我们主要研究封闭体系。

二、状态和状态函数状态——有一系列表征体系性质的物理量所确定下来的体系的存在形式。

状态函数: 用来说明、确定体系所处状态的宏观物理量。

如:温度、压力、体积等。

举例:始态——体系发生变化前的状态;终态——体系发生变化后的状态。

状态函数的变化量用希腊字母Δ表示,例如始态温度是T1,终态温度是T2,则状态函数T的改变量是ΔT = T2 - T1。

状态函数具有以下特点:1、状态一定,状态函数的值一定;2、殊途同归(即状态函数变化量只取决于体系的始态和终态);3、周而复始变化为零(无论经过什么变化,只要回到始态,状态函数变化量为零)。

状态函数的变化与过程的途径无关。

体系的量度性质或广延性质——体系的强度性质——三、过程与途径体系的状态发生变化,从始态变到终态,我们说体系经历了一个热力学过程,简称过.程.。

上述变化过程可以采取许多种不同的方式,我们把这每一种具体的方式成为一种途径..。

工科基础化学-热力学

工科基础化学-热力学

热量计的种类
保温瓶 常用于测量在溶液中进行的化 学反应的热效应。 常在等压下操作,测量的热效 应是化学反应的等压热效应。
(a) 绝热热量计
(b) 冰热量计
有冰水混合物的密闭容器 反应所释放的热使0℃的冰融 化为0℃的水 测量反应前后冰水混合物的 体积差,可求得反应的热效应。 是等温热量计,能直接测得 等温条件下的反应热效应
化学变化时发生系统与环境间的能量转换和传递 → → 系统内能的变化
3.1.5 过程(process)和途径(approach) 过程:系统状态发生的任何变化
等温过程 (isothermal):T始= T终 等压过程 (isobar) : 压力恒定 等容过程 (isovolume): 容积恒定 绝热过程 (adiabatic) : q = 0
与反应热测量有关的两个问题
常用钢弹热量计测得的热效应是qv ,如何求算qp ?
有些反应的热效应难以测量,例如:碳不完全燃烧而生 成CO时,总有CO2生成,有关反应的热效应如何求得?
反应热效应的理论计算
3.3.3.1 qp与qv的关系
qv :反应在弹式热量计中进行时所测得的反应热效应 qp :反应在敞口容器中(大气压、定压)进行时所测得的反应
(c)弹式热量计
基本条件: 耐高压的密闭容器 能吸收热量的介质 常用的弹式热量计:钢 弹/水 测量的热效应是化学反 应的等容热效应。
3.3.2 化学反应的反应热与焓
3.3.2.1 恒容过程反应热
恒容变化过程: V 0
体积功为零(W=0)
UV q W qV
在恒容条件下(密闭容器)进行的化学反应,其反 应热等于该系统中热力学能的改变量
简化2: 当反应中气态反应物的化学计量数之和与气态生成物的化学计 量数之和相等时,V ≈ 0 (∵ 恒压,理想气体), qv ≈ qp

无机化学教学3章化学热力学基础PPT课件

无机化学教学3章化学热力学基础PPT课件

反应自发性的判断
1 2
自发反应的定义
自发反应是指不需要外界作用就能自动进行的反 应。
自发性的判断依据
根据热力学第二定律,自发反应总是向着能量降 低、熵增加的方向进行。
3
自发性与焓变和熵变的关系
自发反应总是向着ΔH - TΔS < 0的方向进行,其 中ΔH为焓变,ΔS为熵变,T为绝对温度。
反应热的计算
表述
$Delta U = Q + W$,其中$Delta U$表示系统内能的变化,$Q$表示系统吸 收或放出的热量,$W$表示外界对系统做的功。
热和功的转化
热转化为功
当系统体积膨胀对外做功时,吸收的 热量会部分转化为对外做功。
功转化为热
当外界对系统做功使得系统体积压缩 时,外界所做的功会全部转化为系统 内的热量。
表述
熵增加原理指出,在封闭系统中,总熵(即系统熵与环境熵 的和)总是增加的。
卡诺循环与熵的概念
卡诺循环
卡诺循环是理想化的热机工作过程, 由四个可逆过程组成(等温吸热、等 温放热、绝热膨胀、绝热压缩)。
熵的概念
熵是描述系统混乱度或无序度的物理 量,其值越大,系统的无序度越高。
熵增加原理
表述
解释
应用
04 热力学第三定律
定义与表述
热力学第三定律通常表述为
在绝对零度时,任何完美晶体的熵值为零。
另一种表述为
不可能通过有限步骤将绝对温度降到绝对零度。
绝对熵的求算
根据热力学第三定律,绝对熵可以通 过计算完美晶体在绝对零度时的熵值 来获得。
在计算过程中,需要考虑晶体的原子 排列、分子振动等因素对熵值的影响。
热力学的主要概念
状态函数

chapter3化学热力学基础讲解

chapter3化学热力学基础讲解

例: 在大气中的反应均为等压反应。 根据热力学第一定律:ΔU = Q + W 在等温等压,W = -pΔV
ΔU = Qp- pΔV 移项展开得: Qp=(U2+P2V2)-(U1+P1V1) 令 H=U+PV 引入一个新的状态函数H,称为焓 则 ΔH =H2-H1= Qp ΔH称为焓变 结论:在等温等压,不作非体积功的过程中,反应 吸收的热全部用来增加系统的焓。
= 1364 kJ
2018/10/24
27
小结


热力学第一定律: ΔU =Q+W
在等温等容,不作非体积功的封闭系统中:ΔU=Qv 在等温等压,不作非体积功的封闭系统中:ΔH=Qp ΔH 与ΔU的关系: ΔH =ΔU + p外ΔV ΔH 与ΔU的近似换算式:(有气体参与的反应) ΔH =ΔU + n RT
系统对环境做功,功取负值(W<0,系统能量降低)
2018/10/24
14
热力学能
热力学能 即内能,它是系统内部各种形式能量的总和,用
符号U表示,单位J或kJ ,包括系统中分子的平动能、转动
能、振动能、电子运动和原子核内的能量以及系统内部分子 与分子间的相互作用的位能等。 在实际化学过程中,U的绝对值不可能得到!!!!!

例如: 反应 N2(g) + 3H2(g) = 2NH3(g) 反应过程中有1mol N2和3molH2完全反应生成2molNH3。 反应进度变化以N2的物质的量改变量来计算: (0 1) = 1mol
1
以H2的物质的量改变量来计算:
(0 3) = 1mol 3
以NH3的物质的量改变量来计算:
2018/10/24

Chap03 第三章 化学热力学基础

Chap03 第三章  化学热力学基础

图:集合化学热力学、光合 作用、电力。可作背景,也 可放在右边,看那种效果好。
第三章 化学热力学基础
3.1 基本概念
3.1.1 体系与环境 3.1.2 状态和状态函数 3.1.3 广度性质和强度性质 3.1.4 过程和途径 3.1.5 热和功 3.1.6 热力学第一定律
第三章 化学热力学基础
3.2 热化学
S 孤 0 ,逆过程自发进行;
S 孤=0 ,达平衡状态。
自然界中孤立体系不可能自发发生熵减少的变化, 这就是热力学第二定律。 熵变判据
热力学第三定律
在绝对零度时,任何纯物质的完美晶体,熵值都 等于零。这就是热力学第三定律。 据此可计算熵值。
标准摩尔熵
1mol纯物质在标准状态下的熵称为标准摩尔熵, Sm 用符号 表示,单位J· -1· -1。附录Ⅰ列出一 K mol 些物质在298K时的标准摩尔熵。 熵的绝对值可以知道 熵的性质
ΔV = 0 ΔU = Qv
弹式量热计
定容过程中吸收的热量全部增加系统的热力学能。
3.2.2 化学反应热
定压热
ΔU = Qp - p Δ V ΔU + p Δ V = Qp 焓 H = U + PV ΔHp = Qp
定压过程中吸收的热量全部用于焓的增加。
3.2.2 化学反应热
定压热和定容热的关系
例2-9 求298K、标准状态下反应
Cl2(g)+2HBr(g)=Br2(l)+2HCl(g)的 r Gm
并判断反应的自发性。 (书P36)

Gibbs-Helmholtz方程
G H TS
在P 及温度TK下
rGm (T ) r Hm (T ) Tr Sm (T )

无机化学课件 第三章 化学热力学基础:反应方向与反应限度

无机化学课件 第三章 化学热力学基础:反应方向与反应限度

第三章化学热力学基础——反应方向与反应限度3.1 什么是化学热力学Fe 2O 3(s) + 3 CO(g) →2 Fe(l) + 3 CO 2(g)为什么不能用同样的方法进行高炉炼铝?NO ,CONO 和CO 是汽车尾气中的有毒成分,它们能否相互反应生成无毒的N 2和CO 2?2NO (g) + 2CO(g) →N 2(g) + 2CO 2 (g)石墨金刚石C (石墨) →C (金刚石)库里南1号?化学热力学的作用:●体系(System)●环境(Surrounding)(一)The system is the sample or reaction mixture in which we are interested. Outside the system are the surroundings. The system plus its surroundings is sometimes called the universe.体系环境能量敞开体系封闭体系孤立体系●封闭体系(closed system):●敞开体系(open system):●孤立体系(isolated system):(二)●热(heat, Q):Q的符号——体系吸热取正值,放热取负值。

●功(work, W):Work = (Force) ×(Distance)体积膨胀功W的符号——环境对体系做功取正值,体系对环境做功取负值。

●体积膨胀功:The gas does work as it expands isothermally, but heat flows in torestore the energy lost as work.The gas does no work as it expands isothermally into a vacuum.W = -F ⋅d =-(P ⋅A ) ⋅h = -P ⋅ΔV W =-P ext ⋅ΔV(三)——恒压反应热(Q p)和恒容反应热(Q v)铝热剂(thermite)可引发强烈的放热反应(Al + Fe2O3),其可熔化所产生的金属铁,并产生“铁花”。

第三章化学热力学基础含答案

第三章化学热力学基础含答案

第三章 化学热力学基础1、以下物质在什么情况下⊿f H θm 、⊿f G θm 、S θm 数值为零。

H 2、O 2、Cl 2、Br 2、I 2、P 、Ag 、C 、Sn2、什么时候⊿r H θm =⊿f H θm (B )3、估算反应的温度条件:低温、高温、任何温度自发或不自发4、哪些属于状态函数:H 、G 、S 、U 、p 、V 、T 、n 、W 、Q 、Q p 、Q v5、方程式相加、减、倍数(分数)、正逆,⊿H 、⊿G 、⊿S 变化?6、转变温度计算7、标态下反应自发性计算判定:⊿r G θm练习:一、单选题1、如果一个反应的吉布斯自由能变为零,则反应:A 、能自发进行B 、 是吸热反应C 、是放热反应D 、 处于平衡状态2、已知: Mg(s) + Cl 2(g) = MgCl 2(s) mr H ∆= -642 kJ·mol -1,则: A 、在任何温度下,正向反应是自发的B 、在任何温度下,正向反应是不自发的C 、高温下,正向反应是自发的;低温下,正向反应不自发D 、高温下,正向反应是不自发的;低温下,正向反应自发3、某化学反应可表示为A(g) + 2B(s)−→−2C(g)。

已知 m r H ∆< 0,下列判断正确的是 :A 、 仅常温下反应可以自发进行B 、 仅高温下反应可以自发进行C 、 任何温度下反应均可以自发进行D 、 任何温度下反应均难以自发进行4、已知 CO(g) = C(s) +21O 2(g) 的 m r H ∆> 0, m r S ∆< 0, 则此反应A 、 低温下是自发变化B 、 高温下是自发变化C 、 低温下是非自发变化,高温下是自发变化D 、 任何温度下都是非自发的5、稳定单质在298 K ,100 kPa 下,下述正确的是:A 、 m S , m f G ∆为零B 、 m f H ∆不为零C 、 m S 不为零, m f H ∆为零D 、 m S , m f G ∆, m f H ∆均为零6、在下列反应中,焓变等于AgBr(s) 的 m f H ∆的反应是:A 、 Ag +(aq) + Br -(aq) = AgBr(s)B 、 2Ag(s) + Br 2(g) = 2AgBr(s)C 、 Ag(s) +21Br 2(l) = AgBr(s) D 、 Ag(s) +21Br 2(g) = AgBr(s)7、已知下列数据,哪个反应表示Δr H m Θ=Δf H m Θ (C 2H 5OH, l )A .2C(金)+3H 2(l)+1/2O 2(g ) = C 2H 5OH (l)B .2C(石)+3H 2(g l)+1/2O 2(l) =C 2H 5OH (l)C .2C(石)+3H 2(g)+1/2O 2(g )= C 2H 5OH (l)D .2C(石)+3H 2(g)+1/2O 2(g ) = C 2H 5OH (g)8、下列各热力学函数中,哪些函数值不是零?A 、⊿f H θm (O 2,g,298K);B 、⊿f G θm (I 2,s,298K);C 、 ⊿f H θm (Br 2,l,298K);D 、S θ(H 2,g,298K)9、一种反应在高温下能自发进行,而在低温下不能自发进行的条件是:A . Δr H θ m < 0 ,Δr S θ m < 0 ; B. Δr H θ m < 0,Δr S θ m > 0 ;C. Δr H θ m > 0,Δr S θ m > 0 ;D. Δr H θ m > 0,Δr S θ m < 010、 “反应3H 2(g)+N 2(g)=2NH 3(g)在标准状态下进行”的含义是:A 、在p(H 2)=p(N 2)=p(NH 3)=100KPa 条件下进行;B 、298K ,保持p(H 2)=p(N 2)=p(NH 3)=100KPa 条件下进行;C 、反应系统保持压力100KPa 条件下进行;D 、p=100KPa 的H 2和N 2混合,反应发生。

第三章 化学热力学基础

第三章 化学热力学基础

二、标准摩尔生成焓
在温度T的标准状态下,由稳定单质生成1mol指定相态
物质的焓变,称为该物质的标准摩尔生成焓,符号为
(B,T),单位kJ/mol。 f Hm
其中,下标“f” 表示生成反应,“m” 表示摩尔反应, “ ”指各种物质均处于标准态;若为298.15K,温度可 略,具体物质还要注明状态。
首页
上页
下页
返回
298.15K时任意化学反应的标准摩尔反应焓为
r Hm B f H m (B)
B
r Hm
(3-22)
——化学反应的标准摩尔反应焓,kJ/mol;
f Hm (B)——反应物质B在指定相态的标准摩尔生成焓,kJ/mol;
首页
上页
下页
返回
二、系统和环境 热力学研究的对象,称为系统;与系统密切相 关的部分为环境。
根据系统与环境之间有无物质及能量传递,可将系统分为三类: (1) 封闭系统 与环境只有能量传递,而没有物质传递的系统。 (2) 敞开系统 与环境既有能量传递,又有物质传递的系统。 (3) 隔离系统 与环境既无能量传递,又无物质传递的系统,或 称孤立系统。
首页
上页
下页
返回
四、功
除热以外,系统与环境之间的其他能量传递统称为 功,其符号为W,单位为J或kJ。 热力学规定 环境对系统做功时,W>0;
系统对环境做功时,W<0。
功也是过程变量(途径函数),无限小量用δW表示。
热力学功分为体积功和非体积功(如机械功、电功等)。
通常,热力学系统发生变化时,只做体积功。 如图3-2所示,当气缸受热,气 体反抗环境压力(p环)使活塞(面 积A)膨胀dl,体积变化为dV时,系 统做功为 W = v p环 dV

宋天佑无机化学 第3章 化学热力学基础

宋天佑无机化学 第3章 化学热力学基础

△fHθm(Br2,g)=30.907
3.4 标准摩尔燃烧焓△cHθm ,单位kJ· -1 mol
定义:在100kPa的压强下(即标准态),1mol物质 完全燃烧,生成相同温度下的指定产物时的热效应, 叫该物质的标准摩尔燃烧热。
完全燃烧产物的规定: C→CO2(g);H→H2O(l); S→SO2(g);N→N2(g);Cl→HCl(aq)
3.过程与途径
过程:系统由一个状态变为另一个状态。 途径:完成一个过程的具体步骤。 过程分类:等压过程、等容过程、等温过程、绝热过程、 循环过程等。 ※ 状态函数的特征 :状态函数的改变量只决定于过程的 始态和终态,与变化所经历的途径无关。
4.反应进度ξ(zeta) 设有反应: νAA + νBB →νGG +νHH t=0 t n0(A) n(A) n0(B) n(B) n0(G) n(G) n0(H) n(H)
气体
7. 热力学能(内能)
热力学系统内各种形式的能量总和。
用“U”表示,单位J或kJ
“U”是状态函数,但无绝对值。理想气体的U 只与温度有关。状态发生变化时,△U仅取决 于始态和终态。 思考问题:功和热是不是状态函数?
热力学第一定律
内容:能量在转化和传递过程中数量保持不变能量守恒及转换定律。
状态Ⅰ,U1 系统对外作功 W
C(金刚石)+O2(g)→CO2(g)△γHm= -395.4kJ· -1 mol
注意:对有不同晶态或形态的物质来说,规定只 有最稳定态的单质的标准摩尔生成热才等于零。
△ fHθ m
△ fHθ m △ fHθ m
(石墨)= 0;
(金刚石)=1.897 kJ· -1 mol (Br2,l)=0; kJ· -1 mol

无机化学 课件 PPT 第三章 化学热力学基础

无机化学 课件 PPT 第三章 化学热力学基础
循环过程是指系统由始态出发,经历一系列具体变 化途径后又回到原来状态的过程。循环过程的特点是系 统所有状态函数变化量均为零,但变化过程中,系统与 环境交换的功与热却往往不为零。
第一节 热力学基本概念
7. 可逆过程
可逆过程是热力学中一个重要的概念,指在系统状态变化的全 过程中,不仅系统内部任何瞬间都无限接近平衡态,而且系统与环 境间也无限接近平衡。例如,系统与环境间在无限小的温度差下发 生的热交换过程,即T(环)=T±dT(dT为具有正值的无限小量);又如 在无限小的压力差下发生的体积变化过程,即p(环)=p±dp(dp为具 有正值的无限小量)。上述在一系列无限接近平衡条件下进行的过程, 在热力学中称为可逆过程。可逆过程是一种理想化的过程。这种过 程实际上是不可能的,因为每个过程的发生都要引起状态的改变, 而状态的改变一定会破坏平衡。
第一节 热力学基本概念
三、 状态与状态函数
在热力学中,系统所处的状态是由系统的物理性质和化学 性质确定的。状态是系统所有性质的总体表现。换言之,系统 所有的性质确定后,状态就完全确定。反之,系统状态确定后, 它的所有性质均有确定值,与系统到达该状态前的经历无关。 鉴于状态与性质之间的这种单值对应关系,所以系统的热力学 性质又称作状态函数。
第一节 热力学基本概念
2. 定压过程
状态变化的过程中,p(系)=p(环)=常 数的过程称为定压过程。若系统的始态压 力p1及终态压力p2与环境压力相等,即 p1=p2=p(环)=常数时,称为等压过程。
第一节 热力学基本概念
3. 定外压过程
当系统状态改变时,环境 压力恒定,即p(环)=常数,而 系统的始态压力p1不等于环境 压力p(环),但终态压力p2等于 p(环)的过程,称为定外压过程。 定压过程与定外压过程是两个 不同的概念。

第3章 化学热力学基础

第3章  化学热力学基础
① ② ③ 定义U 为体系的热力学能(内能),其SI单位为J 热力学能是体系的状态函数 体系热力学能的绝对值无法测量,可测量的只是ΔU 体系经由不同途径发生同一变化时,不同途径中的功 或热不一定相同,但功和热的代数和却只与过程有关,与 途径无关。
例3-1 某过程中,体系从环境吸收热量 1000 J,对环境 做体积功 300 J。求过程中体系热力学能的改变量和环境 热力学能的改变量。 解:体系的热力学能的变化 ΔU = Q-W =1000 J - 300 J = 700 J 把环境作为研究对象 Q´ = -1000 J, W´ = -300 J 环境热力学能改变量为ΔU´ = Q´ - W´= - 700 J
利用盖斯定律时应注意 ① 正、逆反应的ΔrHm ,绝对值相等,符号相反。 ② 反应的ΔrHm 与反应式的写法有关。 ③ 各反应中,同一物质的聚集状态等条件应相同。 ④ 所选取的有关反应,数量越少越好,以避免误差积累
3-2-3
1
生成热的定义
生成热
化学热力学规定,某温度下,由处于标准状态的各种 元素的指定单质生成标准状态的 1 mol 某纯物质的热效 应,叫做该温度下该物质的标准摩尔生成热 符号:ΔfHmӨ(T) SI 单位: kJ·mol -1
2
盖斯定律(Hess定律)
理论基础:热力学第一定律 一个反应若能分多步进行,则总反应的恒压(容)热效 应等于各分步反应恒压(容)热效应的代数和。
热化学循环
始 C(石墨)+O (g) 2 态
ΔrHm(1)
CO2(g)
终 态
ΔrHm(2)
CO(g) + 1/2 O2(g)
ΔrHm(3)
H 是状态函数,ΔH(2) = H2-H1,H1 和 H2与反应 经过的途径无关,所以ΔH 只与始态与终态有关 ΔrHmӨ (1)= ΔrHmӨ(2) + ΔrHmӨ(3)

化学热力学

化学热力学
在任何过程中,系统热力学能的增加等于 系统从环境吸收的热与环境对系统所做的功之 和。
热力学第一定律数学表达式 从环境吸 一封闭系统,热力学能U1, 收热Q,环境对其做功W, 变到状态2, 热力学能U2
Q>0
W>0
则有:
ΔU=U2-U1
ΔU = Q + W
适用:封闭系统
例题: 某过程中, 体系吸热 100J, 对环境做功 20J, 求体系的内能改变量和环境的内能改变 量.
状态函数的特征
1、体系状态一定,状态函数有确定值,
状态函数间有相互联系。eg:
PV = nRT
2、状态函数的变化值只取决于系统的始
态 和终态,与变化的具体途径无关。只 要 概括:状态函数有特征,状态一定值一 体系恢复原状,状态函数恢复原值。 定,殊途同归变化等,周而复始变化零。
☆状态函数分类: * 量度性质(广度性质):
定义:表示化学反应进行的程度。(mol) 公式: νA A + ν H H
ν C + D ν D C
n( H ) n0 ( H )
ξ= =
n( A) n0 ( A)
A
=
H
n(C ) n0 (C )
ξ=
n B
C
=
n( D) n0 ( D)
D
B
t=0
ξ=0
用任一种反应物或产物表示反应进行的程度, 所得值都是相同的。 应用反应进度时,必须指明化学反应方程式幻
某理想气体 n 1= 1mol P1=101325 Pa V1=22.4 dm3 T1=273K 状态1(始态) n 2= 1mol P2=1013250 Pa V2=4.48 dm3 T2 = 546 K 状态2(终态)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. 盖斯定律(Hess定律) 一个反应若能分解为几步来完成,则总反应的热 效应等于各分步反应的热效应之和。 应用时注意:
① 某化学反应是在等压(或等容)下一步完成的,在 分步完成时,各分步也要在等压(或等容)下进行; ② 要消去某同一物质时,不仅要求物质的种类相同, 其物质的聚集状态也相同。
例3-3:已知反应(1) C(石墨) + O2(g) = CO2(g)和反 应(2) CO(g) + 1/2O2(g) = CO2(g)的摩尔反应焓,求
4. Qp 和QV 的关系 同一反应的等压热效应和等容热效应不同 Qp = H Qv = U
H = U + pV = U + n气RT
Qp = Qv + n气RT
化学反应的热力学能变和焓变可分别用rU和 rH表示, rUm即摩尔反应热力学能变, rHm即摩
尔反应焓变。
rHm = rH / ξ rHm = rUm + 气RT
例3-1 某过程中,体系从环境吸收热量 1000 J,环境
对体系做体积功 -300 J。求过程中体系热力学能的改
变量和环境热力学能的改变量。 解:体系的热力学能的变化 ΔU = Q + W
=1000 J - 300 J = 700 J 把环境作为研究对象
Q’ = -1000 J, W’ = 300 J
即在恒容反应过程中,体系吸收的热量全部用来 改变体系的热焓。 焓是系统的状态函数,其数值的大小只与始态
和终态有关,与途径无关;只能得到ΔH,无法得到 其绝对值;焓是广量性质的函数,具有加和性;焓 是温度的函数,温度不变, H = 0。
1 温度计 2 绝热盖 3 绝热杯 4 搅拌棒 5电加热器 6 反应物
环境热力学能改变量为ΔU’ = Q’ + W’ = - 700 J
3-2 热化学
把热力学理论和方法应用于化学反应中,讨论和
计算化学反应的热量变化的学科称为热化学。 3-2-1 化学反应的热效应 在无非体积功的体系或反应中,当生成物的温度
与反应物的温度相同时,化学反应中所吸收或放出的
热量,称为化学反应热效应,简称反应热。 ΔU = Q + W = U生 - U反
1、恒容反应热 若体系在变化过程中保持体积恒定,此时的热效
应称为恒容反应热。 ΔV = 0 W = - p·ΔV = 0
QV = ΔU - W = ΔU 在恒容反应过程中,体系吸收的
热量全部用来改变体系的热力学能。
弹式量热计装置,被用来测量一
些有机物燃烧反应的恒容反应热。
2、恒压反应热
在恒压过程中完成的化学反应称为恒压反应,其
3、化学计量数与反应进度 νA A +νB B = νG G +νH H 方程式中的系数称为化学计量数或计量系数,符 号为ν,是纯数。 对于一个特定的化学方程式,反应物按照方程式 的化学计量数完全转化为生成物,就发生了1mol反应。 H2 + 1/2 O2 = H2O 2 H2 + O2 = 2 H2O
热效应称为恒压反应热,用Qp表示。
ΔU=Qp+W W = - pΔV Qp=U2-U1+p(V2-V1) 由于恒压过程 Δp=0 即 p2=p1=p Qp=U2-U1+p2V2-p1V1 =(U2+p2V2)-(U1+p1V1) Qp =ΔU - W Qp=ΔU+pΔV
U,p,V 都是状态函数,所以 U + pV 也是一个 状态函数。令 H = U + pV , H 称为热焓,简称焓, H 即为焓变。 Qp= H
T 都是体系的状态函数。
状态一定,则体系的状态函数一定。如果体系的
一个或几个状态函数发生了变化,则体系的状态也发
生变化。
始态 → 终态
状态变化的始态和终态一经确定,则状态函数的
Байду номын сангаас
改变量是一定的。用 X 表示各种状态函数的改变量。
如温度的改变量用 T 表示,则 T = T终 -T始。
某些状态函数,如 V,n 等所表示的体系的性质
功可分为:①体积功,是体系体积变化时所作的功。
②其他各种形式的功统称为非体积功,如电功等。
环境对体系做功 W = - p V
我们研究的体系与过程,若不加以特别说明,可 以认为只做体积功。
注意: ① 热和功均不是状态函数,而是与过程相联系
的物理量。系统不发生变化,就没有热或功,不能谈 体系在某种状态下具有多少热或功。 ② 在处理热和功的问题时,不仅要考虑过程,
还必须考虑途径。
p-V图法表示各种途径的体积功
等压膨胀
在p-V图上将下列过程表示出来: P外=1 p=16,V=1 p=1,V=16
p-V曲线上覆盖的面积为体积功。 W1= 1500 J 纵坐标:p/1 105 Pa; 横坐标:V/ 10-3 m3
分次等压膨胀
仍完成上述过程,p=16,V=1 → p=1,V=16。 但途径发生了变化: p外=8 p外=4 p外=1 如膨胀3次:p=16 p= 8 p= 4 p= 1 W2
绝热过程: 体系和环境之间没有热量交换。
可逆过程:理想化过程,体系从始态到终态,再从 终态到始态,对环境和系统不留下任何 痕迹。可逆过程是无限接近热力学平衡 态的过程。 自发过程与非自发过程。
完成某个过程的具体方式称为途径。
4、热和功 体系与环境以热和功两种形式交换能量。 热用符号Q 表示, SI单位为J。 若体系吸热,Q > 0;体系放热,Q < 0 功用符号W 表示,SI单位为J。 热力学中的功是指环境对体系所做的功。 理解:若体系对环境做功10 J,表示成W = - 10J
自由能,判断化学反应方向,利用吉布斯-亥姆霍 兹方程计算热力学分解温度等。
引言:
化学热力学:用热力学的定律、原理和方法研究化 学过程的能量变化、过程的方向与限度等问题。
主要解决化学反应中的三个问题:
① 化学反应中能量的转化 - 热力学第一定律
② 化学反应的方向性
- 热力学第二定律
③ 反应进行的限度
物质
×
×

热力学中,我们主要研究封闭体系。
2、状态与状态函数
状态:热力学平衡态,当体系的温度、压力、体
积、物质的量、各种能量等物理量一定时,体系就处
于一个状态。 状态函数:用来说明、确定系统所处状态的宏观 物理量。如 n 、 T、 V、 p……。
例如某理想气体体系:n = 1 mol,p = 1.013 105 Pa, V = 22.4 dm3,T = 273 K,这就是一种状态,是由 n、p、 V、T 所确定下来的系统的一种存在形式,因而 n、p、V、
第3章 化学热力学基础
本章教学目标:
1. 理解和掌握热力学的基本概念,热力学第一定律。
2. 理解和掌握热力学的四个状态函数:热力学能 U、
焓H、熵S、吉布斯自由能G。状态函数的改变量只
与体系的始、终态有关,而与变化的途径无关。
3. 重点掌握化学热力学的主要应用:计算化学反应的
热效应,利用盖斯定律计算反应焓、反应熵和反应
例如: 永动机为什么不可能存在? 石墨能否转化为金刚石?
反应条件是约1500 oC和6×106 kPa,用镍等作
为催化剂。
高炉炼铁:Fe2O3 + 3CO = 2Fe + 3CO2
尾气中CO浓度不可能为零?
优点:
化学热力学研究问题时只需知道研究对象的始态和终态,而
无需知道变化过程的机理。
局限性:

W1
可逆膨胀
仍完成上述过程,由p=16,V=1开始,p连续减小(p每 次只比上一次小一个无限小量)至 p=1,V=16。 功的最大值
5、热力学能 (内能) 体系内部所有能量之和,包括分子原子的动能, 势能,核能,电子的动能 ……, 热力学上用符号 U表 示。
虽然体系的热力学能的绝对值尚不能求得,但 是体系的状态一定时,热力学能是一个固定值,因 此,U 是体系的状态函数。
热力学第一定律实质是能量守恒定律-能量不可能无中生 有,也不可能凭空消失,只能从一种形式转化为另一种形式,
如热转化为功等。
热力学第二定律:“不可能将热从低温物体传至高温物 体而不引起其它变化”。 “不引起其它任何变化的条件下,热不能全部转化为功”。 “一定条件下,任何体系都自发地趋向平衡”。 “孤立体系中自发过程趋向于熵增大” 。 “一切自发过程是不可逆的”。 “恒温恒压不做非体积功的自发过程自由能减小”。
热效应数值要与方程式一一对应。
例如:
H2 (g) + 1/2O2 (g) = H2O (g) H2 (g) + 1/2O2 (g) = H2O (l) 2H2 (g) + O2 (g) = 2H2O (l) H2O (l) =H2 (g) + 1/2O2 (g) C(石墨) + O2(g) = CO2(g) C(金刚石) + O2(g) = CO2(g) ΔrHm =-241.8 kJ· mol -1 ΔrHm =-285.8 kJ· mol -1 ΔrHm =-571.6 kJ· mol -1 ΔrHm = 285.8 kJ· mol -1 ΔrHm = -393.5 kJ· mol -1 ΔrHm = -395.4 kJ· mol -1
3-1-1 热力学的基本概念和常用术语 1、体系(系统)与环境
体系:人为划定的研究对象。
环境:体系以外的其它部分。 体系 + 环境 = 宇宙
环境

研究对象 体系


孤立体系 敞开体系
Matter (H2O)
封闭体系
Heat flow
Heat flow
按照体系和环境之间的物质及能量的交换关系, 可以将体系分为三类: 孤立体系 能量 × 封闭体系 √ 敞开体系 √
例 3- 2 Qp 值。 用弹式量热计测得 298 K 时,燃烧 1
相关文档
最新文档