山东省泰安市肥城市2016-2017学年七年级(上)期中数学试卷(解析版)
人教版七年级上册试卷2016---2017学年度上学期期中检测七年数学试题.docx
2016---2017学年度上学期期中检测七年数学试题一、选择题(每题3分,共30分)1.9的相反数是( ) A. 89 B. 98 C. -98 D.- 892.节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为 ( ) A.3.5×107B.3.5×108C.3.5×109D.3.5×10103.在代数式:n2,33-m ,22-,32m -,22b π中,单项式的个数有( )A. 1个B.2个C.3个D.4个4.下列方程中,是一元一次方程的是 ( ) A.x 2-4x=3 ,B.3x-1=2x, C. x+2y=1 D.xy-3=5 5.若两个有理数的和是正数,那么一定有结论 ( )A.两个加数都是正数;B.两个加数一定有一个是正数;C.一个加数正数,另一个加数为零;D.两个加数不能同为负数6.如图,根据有理数a 、b 、c 在数轴上的位置,下列关系正确的是( )A. b >c >0>aB. a >b >c >0C. a >c >b >0D. b >0>a >c7.单项式-3224c ab 的系数与次数分别是( )A. -2, 6B.2, 7C.-32, 6D.-32, 78.下列计算中去括号正确的是( )A.52)25(-=--x xB.37)3(7+=+a aC.b a b a --=--)(D.52)52(-=--x x 9.在数轴上,表示-17的点与表示-10的点之间的距离是( )A .27个单位长度B .-27个单位长度C .7个单位长度D .-7个单位长度10.李华同学到文具店为学校美术组的40名学生购买铅笔和橡皮,已知铅笔每支m 元,橡皮每个n 元,若给每名同学买3支铅笔和5块橡皮,则一共需付款( )元。
A.120m+5n B.120m+200n C.3m+5n D.200m+120n 二、填空题(每题3分,共24分) 11.已知关于x 的方程33ax -=4的解是x =4,则a = 。
2016--2017学年度上期中七年级数学试卷
第1个图案 第2个图案 第3个图案2016~2017学年度第一学期期中考试七年级数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答案卡上将正确答案的代号涂黑.1.-4的相反数是 A .-4 B .41 C .41- D .4 2.气温由-1℃上升2℃后是A .-1℃B .1℃C .2℃D .3℃ 3.与a -(a -b +c )相等的式子是( ) A .a -b +c B .a +b -c C .b -c D .c -b 4.据科学家推测,地球的年龄大约是4 600 000 000年,这个数用科学记数法表示为 A .8106.4⨯ B .81046⨯ C .9106.4⨯ D .101046.0⨯ 5.下列计算正确的是A .mn n m 523=+B .134=-mn mnC .2222222n m n m =+D .n m n m n m 222235=- 6.下列说法正确的是A .单项式xy 4-的系数是4,次数是2B .单项式y x 221的系数是21,次数是2C .单项式y x 251-的系数是51-,次数是3 D .单项式32y x -的系数是5,次数是17.飞机的无风航速为a km/h ,风速为20 km/h .飞机顺风飞行4h 的行程比逆风飞行3h 的行程多A . )140(+a kmB .)40(+a kmC .)207(+a kmD .a 7km 8.一列关于x 的有规律的单项式:x ,23x ,35x ,47x ,59x ,611x ,…,按照上述规律,第2016个单项式是A .20162016xB .20154031xC .20164031xD .20164033x9.某校七年级1班有学生a 人,其中女生人数比男生人数的54少3人,则男生的人数为A .9124+aB .9155-aC .9155+aD .9124-a10.已知b a b a -=-且ab ≠0,下列结论正确的是A .b a +<0B .b a ->0C .2a ≥3b D .ba≥1二、填空题(共6小题,每小题3分,共18分) 11.如果水位升高2m 时水位变化记作+2m ,那么水位下降3m 时水位变化记作__________m . 12.按要求用四舍五入法取近似数1.8945≈__________.(精确到0. 01)13.数轴上表示与-2的点距离3个单位长度的点所表示的数是_________.14. 如图,用灰、白两色正方形瓷砖铺设地面,第n 个图案中白色瓷砖块数为_________.15.若2x+5y=3,则10y-(1-4x )的值是_________.16.把四个有理数1,2,3,-5平均分成两组,假设1,3分为一组,2,-5分为另一组,规定:.已知正有理数m ,n (m <n ),以及它们的相反数,则所有A 的和为__________(用含m ,n 的整式表示).三、解答题(共8小题,共72分) 17.(本题12分)计算: (1)()()()()75320+---++- (2)()⎪⎭⎫ ⎝⎛-+⨯-21413112(3)()()4285243÷--⨯-+ (4)()⎥⎥⎦⎤⎢⎢⎣⎡-⨯⎪⎭⎫ ⎝⎛-+-÷-32222332518.(本题6分)如图,请在数轴上表示出3-的相反数,21-的倒数,绝对值等于5的数,平方等于16的数.19.(本题6分)先化简,再求值:⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛--22523451331y x y x x ,其中273-=x ,53=y .20.(本题8分)仓库现有100袋小麦出售,从中随机抽取10袋小麦,以90kg 为标准,超过的质量记为正数,不足的质量记为负数,称得的结果记录如下:+1,+1,+1.5,-1,+1.2,+1.3,-1.3,-1.2,+1.8,+1.1(1)这10袋小麦总计超过或不足多少千克?(2)若每千克的小麦的售价为2.5元,估计这批小麦....总销售额是多少元?)5(231-+++=A21.(1(2)做大纸盒比做小纸盒多用料多少平方厘米? 22.(本题10分)一种笔记本售价是2.3元/本,如果一次买100本以上(不含100本),售价是2.2元/本,如果一次买200本以上(不含200本),售价是2元/本.(1)如果购买50本,需要__________元,购买140本,需要__________元,购买230本,需要__________元.(2)如果需要200本笔记本,怎么购买最省钱? (3)当小明花500元购买笔记本时,销售员找回小明82元,请问小明购买了多少本笔记本? 23.(本题10分)(1)2016年11月的日历如图1所示,用1×3的长方形框出3个数.如果任意圈出一横行左右..相邻的三个数,设最小的数为x ,用含x 的式子表示这三个数的和为__________;如果任意圈出一竖列上下..相邻的三个数,设最小的数为y ,用含y 的式子表示这三个数的和为__________.(2)如图2,是2016年某月的月历,用一个2×2的正方形框出4个数,是否存在被框住的4个数的和为76,如果存在,请求出这四个数中的最小的数字,如果不存在,请说明理由.(3)如图2,用一个3×3的正方形框出9个数,在框出的9个数中,记前两行共6个数的和为a 1,最后一行3个数的和为a 2,若︱a 1-a 2︱=3.请求出正方形框中位于最中心..的数字m 的值.图1 图224.(本题12分)任意一个正整数n 都可以分解为两个正整数的乘积:q p n ⨯=(p ,q 是正整数,且p ≤q ),在n 的所有这种分解中,当p q -最小时,称q p ⨯是n 的最佳分解,并规定:()q pn F =.例如:3的最佳分解是3=1×3,()313=F ;20的最佳分解是20=4×5,()5420=F . (1)直接写出:()2F =__________; )9(F =__________;()12F =__________;(2)如果一个两位正整数t ,交换其个位上的数与十位上的数得到新的两位数记为t ',且18=-'t t .①求出正整数t 的值;②我们称数t 与t '互为一对“吉祥数”,直接写出所有“吉祥数t ”中()t F 的最大值; (3)在(2)条件下,在“吉祥数t ”的中间再插入另一个“吉祥数p ”组成一个四位数W ,再在“吉祥数t '”中间插入“吉祥数p '”(p 与p '互为一对“吉祥数”),又得到一个新的四位数N ,请用字母表示四位数W 、N,并求W -N的值.。
2016-2017学年新人教版七年级上册期中数学试卷含答案
2016-2017学年七年级(上)期中数学试卷一、选择题(每题3分,共30分)1.在2.5,﹣2.5,0,3这四个数中,最小的数是()A.2.5 B.﹣2.5 C.0 D.32.用一个平面去截一个正方体,截出截面不可能是()A.三角形B.五边形C.六边形D.七边形3.扬州市旅游经济发展迅速,据扬州市统计局统计,2005年全年接待境内外游客约11 370 000人次,11 370 000用科学记数法表示为()A.1.137×107B.1.137×108C.0.1137×108D.1137×1044.下列说法中正确的是()A.任何有理数的绝对值都是正数B.最大的负有理数是﹣1C.0是最小的数D.如果两个数互为相反数,那么它们的绝对值相等5.一个数的倒数是它本身,则这个数是()A.1 B.﹣1 C.O D.±16.下列各组数中,互为相反数的是()A.﹣2和|﹣2|B.﹣2和C.2和D.﹣(﹣2)和|﹣2|7.一个两位数,十位数字是a,个位数字是b,则这个两位数是()A.ab B.a+b C.10a+b D.10b+a8.下列图形不能围成正方体的是()A. B.C. D.9.一个数是10,另一个数比10的相反数大2,则这两个数的和是()A.18 B.﹣2 C.﹣18 D.210.某种细菌在营养过程中,细菌每半小时分裂一次(由一个分裂为两个),经过两小时,这种细菌由1个可分裂繁殖成()A.8个B.16个C.4个D.32个二、填空题(每小题3分,共30分)11.的相反数是,绝对值是,倒数是.12.单项式﹣的系数为,次数是.13.某商店上月收入为a元,本月的收入比上月的2倍还多10元,本月的收入是元.14.某日中午,北方某地气温由早晨的零下2℃上升了9℃,傍晚又下降了3℃,这天傍晚北方某地的气温是℃.15.绝对值不大于4的所有整数的积是,和是.16.有理数2,+7.5,﹣0.03,﹣0.4,0 中,非负数是.17.x=﹣时,代数式x2﹣x+6的值为.18.如图是一个数值转换机,若输入的x为﹣5,则输出的结果是.19.若(a+2)2+|b﹣3|=0,则a+b=.20.对有理数a与b,定义运算a*b=,则3*4=.三、解答题21.分别画如图几何体的主视图、左视图、俯视图.22.计算:(1)﹣12+11﹣8+39(2)23÷[(﹣2)3﹣(﹣4)](3)(﹣)×(﹣﹣)×0(4)﹣10+8÷(﹣2)2﹣(﹣4)×(﹣3)(5)(﹣﹣)×(﹣60).23.在数轴上把下列各数表示出来,并将它们从小到大排列起来.7,﹣,﹣3.5,0,.24.已知x,y互为相反数,a,b互为倒数,|n|=4,求x+y+的值.25.如图,用代数式表示图中阴影部分的面积,并求当a=4时阴影部分的面积(π取3).26.某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向北方向为正,当天行驶情况记录如下(单位:千米):+10,﹣8,+7,﹣15,+6,﹣16,+4,﹣2(1)A处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油0.5升,这一天共耗油多少升?27.观察下列计算:=1﹣,=,,…(1)第n个式子是;(2)从计算结果中找规律,利用规律计算: ++++…+.2016-2017学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.在2.5,﹣2.5,0,3这四个数中,最小的数是()A.2.5 B.﹣2.5 C.0 D.3【考点】有理数大小比较.【分析】根据有理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【解答】解:∵﹣2.5<0<2.5<3,∴最小的数是﹣2.5,故选B.2.用一个平面去截一个正方体,截出截面不可能是()A.三角形B.五边形C.六边形D.七边形【考点】截一个几何体.【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.【解答】解:正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此不可能是七边形.故选:D.3.扬州市旅游经济发展迅速,据扬州市统计局统计,2005年全年接待境内外游客约11 370 000人次,11 370 000用科学记数法表示为()A.1.137×107B.1.137×108C.0.1137×108D.1137×104【考点】科学记数法—表示较大的数.【分析】科学记数法就是将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【解答】解:11 370 000=1.137×107.故选A.4.下列说法中正确的是()A.任何有理数的绝对值都是正数B.最大的负有理数是﹣1C.0是最小的数D.如果两个数互为相反数,那么它们的绝对值相等【考点】有理数;相反数;绝对值.【分析】根据有理数的定义和特点,绝对值、互为相反数的定义及性质,对选项进行一一分析,排除错误答案.【解答】解:A、0的绝对值是0,故选项A错误;B、没有最大的负有理数也没有最小的负有理数,故选项B错误;C、没有最大的有理数,也没有最小的有理数,故选项C错误;D、根据绝对值的几何意义:互为相反数的两个数绝对值相等,故选项D正确.故选D.5.一个数的倒数是它本身,则这个数是()A.1 B.﹣1 C.O D.±1【考点】倒数.【分析】根据倒数的定义分别进行解答即可.【解答】解:一个数的倒数是它本身,则这个数是±1;故选D.6.下列各组数中,互为相反数的是()A.﹣2和|﹣2|B.﹣2和C.2和D.﹣(﹣2)和|﹣2|【考点】绝对值;相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:A、|﹣2|=2,﹣2的相反数是2,故本选项正确;B、﹣2的相反数是2,故本选项错误;C、2的相反数是﹣2,故本选项错误;D、﹣(﹣2)=2,|﹣2|=2,相等,故本选项错误.故选A.7.一个两位数,十位数字是a,个位数字是b,则这个两位数是()A.ab B.a+b C.10a+b D.10b+a【考点】列代数式.【分析】根据数的表示,用数位上的数字乘以数位即可.【解答】解:这个两位数是:10a+b.故选C.8.下列图形不能围成正方体的是()A. B.C. D.【考点】展开图折叠成几何体.【分析】根据正方体展开图的常见形式作答即可.【解答】解:由展开图可知:A、C、D能围成正方体;B围成几何体时,有两个面重合,故不能围成正方体.故选B.9.一个数是10,另一个数比10的相反数大2,则这两个数的和是()A.18 B.﹣2 C.﹣18 D.2【考点】有理数的加法;相反数.【分析】根据题意表示出另一个数,相加即可得到结果.【解答】解:根据题意得:10+(﹣10+2)=10﹣10+2=2.故选D10.某种细菌在营养过程中,细菌每半小时分裂一次(由一个分裂为两个),经过两小时,这种细菌由1个可分裂繁殖成( )A .8个B .16个C .4个D .32个【考点】有理数的乘方.【分析】本题考查有理数的乘方运算,细菌每半小时分裂一次(由一个分裂为两个),经过两小时,进行4次分裂,即24,计算出结果即可.【解答】解:2×2×2×2=24=16.故选B .二、填空题(每小题3分,共30分)11.的相反数是 ,绝对值是 ,倒数是 ﹣6 .【考点】倒数;相反数;绝对值.【分析】根据只有符号不同的两个数互为相反数,负数的绝对值是它的相反数,乘积为1的两个数互为倒数,可得答案.【解答】解:的相反数是,绝对值是,倒数是﹣6,故答案为:,,﹣6.12.单项式﹣的系数为 ﹣ ,次数是 3 .【考点】单项式.【分析】根据单项式系数和次数的概念求解即可.【解答】解:单项式﹣的系数为﹣,次数是3,故答案为:﹣,3.13.某商店上月收入为a 元,本月的收入比上月的2倍还多10元,本月的收入是 2a +10 元.【考点】列代数式.【分析】由已知,本月的收入比上月的2倍即2a ,还多10元即再加上10元,就是本月的收入.【解答】解:根据题意得:本月的收入为:2a +10(元).故答案为:2a +10.14.某日中午,北方某地气温由早晨的零下2℃上升了9℃,傍晚又下降了3℃,这天傍晚北方某地的气温是 4 ℃.【考点】有理数的加减混合运算.【分析】气温上升用加,下降用减,列出算式后进行有理数的加减混合运算.【解答】解:根据题意列算式得,﹣2+9﹣3=﹣5+9=4.即这天傍晚北方某地的气温是4℃.故答案为:4.15.绝对值不大于4的所有整数的积是0,和是0.【考点】有理数的乘法;有理数的加法.【分析】根据绝对值的性质列出算式,再根据有理数的乘法和加法运算进行计算即可得解.【解答】解:(﹣4)×(﹣3)×(﹣2)×(﹣1)×0×1×2×3×4=0;(﹣4)+(﹣3)+(﹣2)+(﹣1)+0+1+2+3+4=0.故答案为:0;0.16.有理数2,+7.5,﹣0.03,﹣0.4,0 中,非负数是2,+7.5,0.【考点】有理数.【分析】非负数是指正数和0.【解答】解:故答案为:非负数是2,+7.5,0.17.x=﹣时,代数式x2﹣x+6的值为6.【考点】代数式求值.【分析】把x的值代入原式计算即可得到结果.【解答】解:当x=﹣时,原式=++6=6,故答案为:618.如图是一个数值转换机,若输入的x为﹣5,则输出的结果是21.【考点】有理数的乘法.【分析】根据转换机的设置,结合有理数的混合运算法则求出即可.【解答】解:如图所示:若输入的x为﹣5,则输出的结果是:(﹣5﹣2)×(﹣3)=﹣7×(﹣3)=21.故答案为:21.19.若(a+2)2+|b﹣3|=0,则a+b=1.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列出算式,求出a、b的值,计算即可.【解答】解:由题意得,a+2=0,b﹣3=0,解得,a=﹣2,b=3,则a+b=1,故答案为:1.20.对有理数a与b,定义运算a*b=,则3*4=﹣12.【考点】有理数的混合运算.【分析】根据所给的运算,把a、b换成3、4即可.【解答】解:3*4==﹣12.故答案是﹣12.三、解答题21.分别画如图几何体的主视图、左视图、俯视图.【考点】作图-三视图.【分析】从正面看从左往右3列正方形的个数依次为1,3,2;从左面看从左往右2列正方形的个数依次为2,1;从上面看从左往右3列正方形的个数依次为1,2,1.【解答】解:如图所示:22.计算:(1)﹣12+11﹣8+39(2)23÷[(﹣2)3﹣(﹣4)](3)(﹣)×(﹣﹣)×0(4)﹣10+8÷(﹣2)2﹣(﹣4)×(﹣3)(5)(﹣﹣)×(﹣60).【考点】有理数的混合运算.【分析】(1)原式结合后,相加即可得到结果;(2)原式先计算括号中的运算,再计算除法运算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(4)原式利用乘法分配律计算即可得到结果.【解答】解:(1)原式=﹣20+40=20;(2)原式=23÷(﹣4)=﹣;(3)原式=﹣10+2﹣12=﹣20;(4)原式=﹣40+5+16=﹣19.23.在数轴上把下列各数表示出来,并将它们从小到大排列起来.7,﹣,﹣3.5,0,.【考点】有理数大小比较;数轴.【分析】根据数轴可知:负数都在原点的左边,它们比0小,而正数都在原点的右边,它们比0大,正数也比负数大;在数轴上,越向右,数越大,越向左,数越小;据此解答即可.【解答】解:如图所示:从小到大排列:﹣3.5<﹣<0<<7.24.已知x,y互为相反数,a,b互为倒数,|n|=4,求x+y+的值.【考点】代数式求值.【分析】先根据题意得出x+y=0,ab=1,n2=16,再代入代数式进行计算即可.【解答】解:∵x,y互为相反数,a,b互为倒数,|n|=4,∴x+y=0,ab=1,n2=16,∴x+y+=0+=16.25.如图,用代数式表示图中阴影部分的面积,并求当a=4时阴影部分的面积(π取3).【考点】代数式求值;列代数式.【分析】根据阴影部分面积=正方形的面积﹣扇形的面积列式,把a=4代入代数式进行计算即可得解.【解答】解:阴影部分面积=a2﹣πa2;当a=4,π=3时,阴影部分的面积=42﹣×3×42,=16﹣12,=4.26.某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向北方向为正,当天行驶情况记录如下(单位:千米):+10,﹣8,+7,﹣15,+6,﹣16,+4,﹣2(1)A处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油0.5升,这一天共耗油多少升?【考点】正数和负数.【分析】(1)由已知,把所有数据相加,如果得数是正数,则A处在岗亭北方,否则在北方.所得数的绝对值就是离岗亭的距离.(2)把所有数据的绝对值相加就是行驶的路程,已知摩托车每行驶1千米耗油0.5升,那么乘以0.5就是一天共耗油的量.【解答】解:(1)根据题意:10+(﹣8)+(+7)+(﹣15)+(+6)+(﹣16)+(+4)+(﹣2)=﹣14,答:A处在岗亭南方,距离岗亭14千米;(2)由已知,把记录的数据的绝对值相加,即10+8+7+15+16+4+2=68,已知摩托车每行驶1千米耗油0.2升,所以这一天共耗油,68×0.2升.答:这一天共耗油13.6升.27.观察下列计算:=1﹣,=,,…(1)第n个式子是=﹣;(2)从计算结果中找规律,利用规律计算: ++++…+.【考点】有理数的混合运算.【分析】(1)根据题中给出的例子找出规律即可;(2)根据(1)中的规律即可进行计算.【解答】解:(1)∵第一个式子为:=1﹣,第二个式子为:=,第三个式子为:,第11页(共12页)第四个式子为:…, ∴第n 个式子为:=﹣.故答案为:=﹣; (2)原式=1﹣+﹣+﹣+…+﹣ =1﹣=.2016年10月25日第12页(共12页)。
2016-2017学年人教版初一数学七年级上册期中测试卷及答案
2016-2017学年人教版初一数学七年级上册期中测试卷及答案2016-2017学年七年级(上)期中数学试卷一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合要求的选项前面的字母代号填写在答题卡上的指定位置.每小题3分,共30分)1.相反数是2的数是()A.﹣2B.C.2D.2.下列计算正确的是()A.23=6B.﹣42=﹣16C.﹣8﹣8=0 D.﹣5﹣2=﹣33.在有理数,(﹣1)2。
A.4B.3C.2D.1,﹣|﹣2|,(﹣2)3中正数有()个.4.下列说法中正确的是()A.没有最小的有理数B.既是正数也是负数C.整数只包括正整数和负整数D.﹣1是最大的负有理数5.2011年,XXX公布了第六次全国人口普查结果,总人口约为人,将用科学记数法表示正确的是()A.0.×1010B.1.3397×109C.13.397×108D.×1056.下列说法错误的是()A.2x2﹣3xy﹣1是二次三项式B.﹣x+1不是单项式C.的系数是D.﹣22xab2的次数是67.下列各式中与多项式2x﹣3y+4z相等的是()A.2x+(3y﹣4z)B.2x﹣(3y﹣4z)C.2x+(3y+4z)D.2x﹣(3y+4z)8.若﹣3x2my3与2x4yn是同类项,那么m﹣n=()A.B.1C.﹣1D.﹣29.已知a,b两数在数轴上对应的点如下图所示,下列结论正确的是()A.a+b>B.ab<C.b﹣a>D.a>b10.解为x=﹣3的方程是()A.3x﹣2=﹣7B.3x+2=﹣11C.2x+6=0D.x﹣3=0第1页(共17页)二.填空题(请将答案填写在答题卡指定的位置.每小题3分,共15分)11.如果水位升高3m时,水位变化记作+3m,那么水位下降5m时,水位变化记作:m.12.5与x的差的比x的2倍大1的方程是:.13.一个单项式加上﹣y2+x2后等于x2+y2,则这个单项式为.14.如果m、n互为相反数,a,b互为倒数,则|m+n﹣ab|等于.15.观察一列数。
泰安市2016-2017学年鲁教版七年级上期中数学试卷含答案解析
2016-2017学年山东省泰安市七年级(上)期中数学试卷一、选择题(本大题共20个小题,每小题3分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列长度的三条线段中,能组成三角形的是()A.3cm,5cm,8cm B.8cm,8cm,18cmC.0.1cm,0.1cm,0.1cm D.3cm,40cm,8cm2.已知∠A:∠B:∠C=1:2:2,则△ABC三个角度数分别是()A.40°、80°、80° B.35°、70° 70°C.30°、60°、60° D.36°、72°、72°3.下列条件中,能判定△ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠D B.∠A=∠D,∠C=∠F,∠B=∠EC.∠B=∠E,∠A=∠D,AC=EF D.∠B=∠E,∠A=∠D,AB=DE4.如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为()A.50° B.30° C.80° D.100°5.如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC的度数为()A.40° B.80° C.120°D.不能确定6.如图,AE=AF,AB=AC,EC与BF交于点O,∠A=60°,∠B=25°,则∠EOB的度数为()A.60° B.70° C.75° D.85°7.如图所示的图案中,是轴对称图形且有2条对称轴的是()A.B.C.D.8.等腰三角形的周长为18cm,其中一边长为5cm,等腰三角形的底边长为()A.5cm B.6cm C.5cm或8cm D.8cm9.到△ABC三个顶点距离相等的点是△ABC的()A.三条角平分线的交点B.三条中线的交点C.三条高的交点 D.三条垂直平分线的交点10.如图在△ABC中∠C=90°,AD平分∠BAC交BC于D,若BC=64,且BD:CD=9:7,则点D到AB 边的距离为()A.18 B.32 C.28 D.2411.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是()A.18° B.24° C.30° D.36°12.一直角三角形的三边分别为2、3、x,那么以x为边长的正方形的面积为()A.13 B.5 C.13或5 D.413.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60 C.76 D.8014.若a,b,c为三角形的三边,则下列各组数据中,不能组成直角三角形的是()A.a=8,b=15,c=17 B.a=3,b=5,c=4C.a=14,b=48,c=49 D.a=9,b=40,c=4115.已知一直角三角形的木板,三边的平方和为1800cm2,则斜边长为()A.30cm B.80cm C.90cm D.120cm16.如图所示,一棵大树高8米,一场大风过后,大树在离地面3米处折断倒下,树的顶端落在地上,则此时树的顶端离树的底部有()米.A.4 B.3.5 C.5 D.13.617.下列说法错误的是()A.1的平方根是﹣1 B.﹣1的立方根是﹣1C.是2的平方根D.±3是的平方根18.实数(相邻两个1之间依次多一个0),其中无理数有()A.1个B.2个C.3个D.4个19.一个正整数的算术平方根为a,则比这个正整数大3的数的算术平方根是()A.a+3 B.a+C.D.20.﹣27的立方根与的平方根之和为()A.0 B.6 C.0或﹣6 D.﹣12或6二、填空题(本大题共4个小题,每小题3分,共12分.把答案填在题中的横线上.)21.甲、乙两人同时从同一地点出发,甲往东走了8km,乙往南走了6km,这时两人相距km.22.的立方根是;的算术平方根是.23.如图,直线L过正方形ABCD的顶点B,点A、C到直线L的距离分别是1和2,则正方形的边长是.24.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E= 度.三、解答题(本大题共5个小题,共48分,解答应写出文字说明、推理过程或演算步骤.)25.已知:如图,点A,B,C,D同一条直线上,EA⊥AD,FD⊥AD,AE=DF,AB=DC.问:∠ACE=∠DBF 吗?说明理由.26.如图,已知AB=AC,DE垂直平分AB交AC、AB于E、D两点,若AB=12cm,BC=10cm,∠A=50°,求△BCE的周长和∠EBC的度数.27.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.28.一个正数x的平方根是3a﹣4与8﹣a,则a和这个正数是多少?29.两个大小不同的等腰直角三角形三角板如图1所示位置,图2是由它抽象出的几何图形,B、C、E在同一条直线上,连结DC.(1)请找出图2中的全等三角形,并说明理由(说明:结论中不得有未标识的字母);(2)判断DC⊥BE是否成立?说明理由.2016-2017学年山东省泰安市七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共20个小题,每小题3分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列长度的三条线段中,能组成三角形的是()A.3cm,5cm,8cm B.8cm,8cm,18cmC.0.1cm,0.1cm,0.1cm D.3cm,40cm,8cm【考点】三角形三边关系.【分析】在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【解答】解:A.3cm,5cm,8cm中,3+5=8,故不能组成三角形;B.8cm,8cm,18cm中,8+8<18,故不能组成三角形;C.0.1cm,0.1cm,0.1cm中,任意两边之和大于第三边,故能组成三角形;D.3cm,40cm,8cm中,3+8<40,故不能组成三角形;故选(C)【点评】本题主要考查了三角形的三边关系,解题时注意:判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.2.已知∠A:∠B:∠C=1:2:2,则△ABC三个角度数分别是()A.40°、80°、80° B.35°、70° 70°C.30°、60°、60° D.36°、72°、72°【考点】三角形内角和定理.【分析】设∠A=x,则∠B=2x,∠C=2x,再根据三角形内角和定理求出x的值即可.【解答】解:∵∠A:∠B:∠C=1:2:2,∴设∠A=x,则∠B=2x,∠C=2x,∵∠A+∠B+∠C=180°,∴x+2x+2x=180°,解得x=36°,∴∠A=36°,∠B=∠C=72°.故选D.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.3.下列条件中,能判定△ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠D B.∠A=∠D,∠C=∠F,∠B=∠EC.∠B=∠E,∠A=∠D,AC=EF D.∠B=∠E,∠A=∠D,AB=DE【考点】全等三角形的判定.【分析】若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.【解答】解:A、条件AB=DE,BC=EF,∠A=∠D不符合SAS,故A错误;B、条件∠A=∠D,∠C=∠F,∠B=∠E不符合AAS或ASA,故B错误;C、条件∠B=∠E,∠A=∠D,AC=EF不符合AAS或ASA,故C错误;D、条件∠B=∠E,∠A=∠D,AB=DE符合ASA的判定方法,故D正确.故选:D【点评】本题主要考查了全等三角形的判定方法的运用,解决问题的关键是掌握全等三角形的5种判定方法.解题时注意:选用哪一种方法,取决于题目中的已知条件.4.如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为()A.50° B.30° C.80° D.100°【考点】全等三角形的判定与性质.【专题】计算题.【分析】利用SAS可证明△AOD≌△COB,则∠D=∠B=30°.【解答】解:∵OA=OC,OD=OB,∠AOD=∠COB,∴△AOD≌△COB(SAS),∴∠D=∠B=30°.故选B.【点评】此题考查三角形全等的判定和性质,注意利用已知隐含的条件:对顶角相等.5.如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC的度数为()A.40° B.80° C.120°D.不能确定【考点】全等三角形的性质.【专题】计算题.【分析】由△ABC≌△ADE,得∠BAC=∠DAE,则∠BAD=∠CAE,再由∠BAC=∠BAE﹣∠CAE,即可得出答案.【解答】解:∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠BAD=∠CAE,∵∠BAE=120°,∠BAD=40°,∴∠BAC=∠BAE﹣∠CAE=120°﹣40°=80°.故选B.【点评】本题考查了全等三角形的性质,解题的关键是找到两全等三角形的对应角.6.如图,AE=AF,AB=AC,EC与BF交于点O,∠A=60°,∠B=25°,则∠EOB的度数为()A.60° B.70° C.75° D.85°【考点】全等三角形的判定与性质;三角形内角和定理.【分析】已知可得△ABF≌△ACE,结合三角形内角和可得∠AFB=∠AEC=95°,在由外角性质可得,∠EOB=95°﹣25°=70°【解答】解:∵AE=AF,AB=AC,∠A=60°∴△ABF≌△ACE∴∠C=∠B=25°∴∠AEC=180°﹣60°﹣25°=95°,∴∠EOB=95°﹣25°=70°故选B.【点评】主要考查了三角形中内角与外角之间的关系和全等三角形的判断和性质.此题主要运用了外角等于两个不相邻的内角和、全等三角形对应角相等以及三角形内角和定理.7.如图所示的图案中,是轴对称图形且有2条对称轴的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、B都只有一条对称轴;C、不是轴对称图形;D、有2条对称轴.故选D.【点评】如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴.8.等腰三角形的周长为18cm,其中一边长为5cm,等腰三角形的底边长为()A.5cm B.6cm C.5cm或8cm D.8cm【考点】等腰三角形的性质;三角形三边关系.【分析】由于长为5cm的边可能为腰,也可能为底边,故应分两种情况讨论.【解答】解:由题意知,应分两种情况:(1)当腰长为5cm时,则另一腰也为5cm,底边为18﹣2×5=8cm,∵0<8<5+5=10,∴边长分别为5cm,5cm,8cm,能构成三角形;(2)当底边长为5cm时,腰的长=(18﹣5)÷2=6.5cm,∵0<5<6.5+6.5=13,∴边长为5cm,6.5cm,6.5cm,能构成三角形.故选C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.9.到△ABC三个顶点距离相等的点是△ABC的()A.三条角平分线的交点B.三条中线的交点C.三条高的交点 D.三条垂直平分线的交点【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线的性质(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等)可得到△ABC的三个顶点距离相等的点是三边垂直平分线的交点.【解答】解:△ABC的三个顶点距离相等的点是三边垂直平分线的交点.故选:D.【点评】本题考查的是线段垂直平分线的性质(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等).10.如图在△ABC中∠C=90°,AD平分∠BAC交BC于D,若BC=64,且BD:CD=9:7,则点D到AB 边的距离为()A.18 B.32 C.28 D.24【考点】角平分线的性质;勾股定理.【分析】过D作DE⊥AB于E,根据角平分线的性质可以得到DE=CD,而根据已知条件可以求出CD的长,也就求出了DE的长.【解答】解:如图,过D作DE⊥AB于E,∵AD平分∠BAC交BC于D,而∠C=90°,∴CD=DE,∵BC=64,且BD:CD=9:7,∴CD=64×=28,∴DE=28,则点D到AB边的距离为28.故选C.【点评】此题主要利用角平分线的性质解题,把求则点D到AB的距离转化成求CD的长.11.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是()A.18° B.24° C.30° D.36°【考点】等腰三角形的性质.【分析】根据已知可求得两底角的度数,再根据三角形内角和定理不难求得∠DBC的度数.【解答】解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°∵BD是AC边上的高,∴BD⊥AC,∴∠DBC=90°﹣72°=18°.故选A .【点评】本题主要考查等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题,此题难度一般.12.一直角三角形的三边分别为2、3、x ,那么以x 为边长的正方形的面积为( )A .13B .5C .13或5D .4【考点】勾股定理.【分析】以x 为边长的正方形的面积即为x 2.此题应考虑两种情况:2和3都是直角边或3是斜边,熟练运用勾股定理进行计算.【解答】解:当2和3都是直角边时,则x 2=4+9=13;当3是斜边时,则x 2=9﹣4=5.故选C .【点评】此类题在没有明确直角边或斜边的时候,一定要注意分情况考虑,熟练运用勾股定理进行计算.13.如图,点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .80【考点】勾股定理;正方形的性质.【分析】由已知得△ABE 为直角三角形,用勾股定理求正方形的边长AB ,用S 阴影部分=S 正方形ABCD ﹣S △ABE 求面积.【解答】解:∵∠AEB=90°,AE=6,BE=8,∴在Rt △ABE 中,AB 2=AE 2+BE 2=100,∴S 阴影部分=S 正方形ABCD ﹣S △ABE ,=AB 2﹣×AE ×BE=100﹣×6×8=76.故选:C.【点评】本题考查了勾股定理的运用,正方形的性质.关键是判断△ABE为直角三角形,运用勾股定理及面积公式求解.14.若a,b,c为三角形的三边,则下列各组数据中,不能组成直角三角形的是()A.a=8,b=15,c=17 B.a=3,b=5,c=4C.a=14,b=48,c=49 D.a=9,b=40,c=41【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形,分析得出即可.【解答】解:A、∵82+152=172,∴此三角形是直角三角形,不符合题意;B、∵32+42=52,∴此三角形是直角三角形,不符合题意;C、∵142+482≠492,∴此三角形不是直角三角形,符合题意;D、∵92+402=412,∴此三角形是直角三角形,不符合题意.故选:C.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.15.已知一直角三角形的木板,三边的平方和为1800cm2,则斜边长为()A.30cm B.80cm C.90cm D.120cm【考点】勾股定理.【分析】先求出斜边的平方,进而可得出结论.【解答】解:设直角三角形的斜边长为x,∵三边的平方和为1800cm2,∴x2=900cm2,解得x=30cm.故选A.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.16.如图所示,一棵大树高8米,一场大风过后,大树在离地面3米处折断倒下,树的顶端落在地上,则此时树的顶端离树的底部有()米.A.4 B.3.5 C.5 D.13.6【考点】勾股定理的应用.【分析】根据题意得出AB及AC的长,再由勾股定理即可得出结论.【解答】解:∵大树高8米,在离地面3米处折断,∴AB=3米,AC=8﹣3=5(米),∴BC===4(米).故选B.【点评】此题是勾股定理的应用,解本题的关键是把实际问题转化为数学问题来解决.此题也可以直接用算术的算法求解.17.下列说法错误的是()A.1的平方根是﹣1 B.﹣1的立方根是﹣1C.是2的平方根D.±3是的平方根【考点】立方根;平方根.【分析】根据平方根和立方根的概念判断即可.【解答】解:A、1的平方根是±1,错误;B、﹣1的立方根是﹣1,正确;C、是2的平方根,正确;D、±3是的平方根,错误;故选AD【点评】本题主要考查了平方根和立方根的概念,要掌握其中的几个特殊数字(0,±1)的特殊性质.18.实数(相邻两个1之间依次多一个0),其中无理数有()A.1个B.2个C.3个D.4个【考点】无理数.【分析】根据无理数的定义(无理数就是无限不循环小数)判断即可.【解答】解:无理数有﹣π,0.1010010001…,共2个,故选B.【点评】本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.19.一个正整数的算术平方根为a,则比这个正整数大3的数的算术平方根是()A.a+3 B.a+C.D.【考点】实数.【分析】利用算术平方根的定义表示出这个正数,进而确定出比这个数大3的数的算术平方根即可.【解答】解:根据题意得:这个正数为a2,则比这个数大3的数的算术平方根是,故选C.【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.20.﹣27的立方根与的平方根之和为()A.0 B.6 C.0或﹣6 D.﹣12或6【考点】实数的运算.【专题】计算题.【分析】求出﹣27的立方根与的平方根,相加即可得到结果.【解答】解:∵﹣27的立方根为﹣3,的平方根±3,∴﹣27的立方根与的平方根之和为0或﹣6.故选C【点评】此题考查了实数的运算,涉及的知识有:平方根、立方根的定义,熟练掌握定义是解本题的关键.二、填空题(本大题共4个小题,每小题3分,共12分.把答案填在题中的横线上.)21.甲、乙两人同时从同一地点出发,甲往东走了8km,乙往南走了6km,这时两人相距10 km.【考点】勾股定理的应用.【分析】因为甲向东走,乙向南走,刚好构成一个直角.两人走的距离分别是两直角边,则根据勾股定理可求得斜边即两人的距离.【解答】解:如图,∵∠AOB=90°,OA=6km,OB=8km,∴AB==10(km).故答案为:10.【点评】本题考查了勾股定理的基本运用,把方向运动构建成一个沿三角形两边的运动,再由勾股定理进行计算求解.22.的立方根是;的算术平方根是 3 .【考点】立方根;算术平方根.【分析】分别利用算术平方根、立方根的定义求解即可.【解答】解:∵,∴的立方根是;又∵,∴的算术平方根是3.故答案:,3.【点评】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.23.如图,直线L过正方形ABCD的顶点B,点A、C到直线L的距离分别是1和2,则正方形的边长是.【考点】勾股定理;直角三角形全等的判定.【专题】压轴题.【分析】两直角三角形的斜边是正方形的两边,相等;有一直角对应相等;再根据正方形的角为直角,可得到有一锐角对应相等,易得两直角三角形全等,由三角形全等的性质可把2,1,正方形的边长组合到直角三角形内得正方形边长为.【解答】解:如图,∵四边形ABCD是正方形,∴AB=CD,∠ABM+∠CBN=90°,而AM⊥MN,CN⊥BN,∴∠BAM=∠CBN,∠AMB=∠CNB=90°,∴△AMB≌△BCN(AAS),∴BM=CN,∴AB为.故答案为:.【点评】本题考查了正方形各边相等的性质,考查了直角三角形中勾股定理的运用,本题中求证△AMB≌△BCN是解题的关键.24.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E= 15 度.【考点】等边三角形的性质;三角形的外角性质;等腰三角形的性质.【专题】几何图形问题.【分析】根据等边三角形三个角相等,可知∠ACB=60°,根据等腰三角形底角相等即可得出∠E的度数.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.【点评】本题考查了等边三角形的性质,互补两角和为180°以及等腰三角形的性质,难度适中.三、解答题(本大题共5个小题,共48分,解答应写出文字说明、推理过程或演算步骤.)25.已知:如图,点A,B,C,D同一条直线上,EA⊥AD,FD⊥AD,AE=DF,AB=DC.问:∠ACE=∠DBF 吗?说明理由.【考点】全等三角形的判定与性质.【分析】根据EA⊥AD,FD⊥AD,得出∠EAD=∠FDB,再根据AB=DC得出AC=BD,最后根据SAS证出△EAC≌△FDB,即可得出∠ACE=∠DBF.【解答】解:∵EA⊥AD,FD⊥AD,∴∠EAD=∠FDB=90°,又∵AB=DC,∴AB+BC=DC+BC,即AC=BD,又∵AE=DF,在△EAC和△FDB中,,∴△EAC≌△FDB,∴∠ACE=∠DBF.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.证明角、边相等常常运三角形全等来证明.26.(10分)(2011秋•海陵区期末)如图,已知AB=AC,DE垂直平分AB交AC、AB于E、D两点,若AB=12cm,BC=10cm,∠A=50°,求△BCE的周长和∠EBC的度数.【考点】线段垂直平分线的性质.【专题】探究型.【分析】根据DE是AB的垂直平分线可知AE=BE,∠DBE=∠A=50°,故△BCE的周长=BE+CE+BC=AC+BC,再由AB=AC,∠A=50°可求出∠ABC的度数,再由∠DBE=50°即可求出∠EBC的度数.【解答】解:∵DE是AB的垂直平分线,∴AE=BE,∠DBE=∠A=50°,∵AB=12cm,BC=10cm,∴△BCE的周长=BE+CE+BC=AE+CE+BC=AC+BC=12+10=22cm;∵AB=AC,∠A=50°,∴∠ABC===65°,∴∠EBC=65°﹣50°=15°.故答案为:22cm,15°.【点评】本题考查的是线段垂直平分线的性质及等腰三角形的性质,三角形内角和定理,比较简单.27.(10分)(2013•湘西州)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.【考点】角平分线的性质;勾股定理.【分析】(1)根据角平分线性质得出CD=DE,代入求出即可;(2)利用勾股定理求出AB的长,然后计算△ADB的面积.【解答】解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3;(2)在Rt△ABC中,由勾股定理得:AB===10,∴△ADB的面积为S△ADB=AB•DE=×10×3=15.【点评】本题考查了角平分线性质和勾股定理的运用,注意:角平分线上的点到角两边的距离相等.28.一个正数x的平方根是3a﹣4与8﹣a,则a和这个正数是多少?【考点】平方根.【分析】根据一个正数有两个平方根,它们互为相反数得出3a﹣4+8﹣a=0,求出a,即可求出答案.【解答】解:根据一个正数有两个平方根,它们互为相反数得:3a﹣4+8﹣a=0,即得:a=﹣2,即3a﹣4=﹣10,则这个正数=(﹣10)2=100.【点评】本题考查了平方根的应用,关键是得出关于x的方程,注意:一个正数有两个平方根,它们互为相反数.29.(12分)(2016春•山亭区期末)两个大小不同的等腰直角三角形三角板如图1所示位置,图2是由它抽象出的几何图形,B、C、E在同一条直线上,连结DC.(1)请找出图2中的全等三角形,并说明理由(说明:结论中不得有未标识的字母);(2)判断DC⊥BE是否成立?说明理由.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)根据等腰直角三角形的性质可以得出△ABE≌△ACD;(2)由△ABE≌△ACD可以得出∠AEB=∠ADC,进而得出∠AEC=90°,就可以得出结论.【解答】解:(1)结论:△ABE≌△ACD.理由:∵△ABC和△ADE是等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°,∴∠BAC+∠EAC=∠DAE+∠EAC,∴∠BAE=∠CAD,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS).(2)∵△ABE≌△ACD,∴∠AEB=∠ADC.∵∠ADC+∠AFD=90°,∴∠AEB+∠AFD=90°.∵∠AFD=∠CFE,∴∠AEB+∠CFE=90°,∴∠FCE=90°,∴DC⊥BE.【点评】本题考查了等腰直角三角形的性质的运用,全等三角形的判定及性质的运用,垂直的判定的运用,解答时证明三角形全等是关键.。
最新-学年中学七年级(上)期中数学试卷两套汇编二附答案解析.docx
2016-2017学年中学七年级(上)期中数学试卷两套汇编二附答案解析2016-2017学年七年级(上)期中数学试卷一、精心选一选(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内1.4的相反数是()A.4 B.﹣4 C.D.2.|﹣|等于()A.﹣7 B.7 C.﹣ D.3.据新华社报道:在我国南海某海域探明可燃冰储量约有194亿立方米,194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×1094.化简﹣5ab+4ab的结果是()A.1 B.a C.b D.﹣ab5.一个多项式减去x2﹣3y2等于x2+2y2,则这个多项式是()A.﹣2x2+y2B.2x2﹣y2C.x2﹣2y2D.﹣2x2﹣y26.若|a+3|+|b﹣2|=0,则a b的值为()A.6 B.﹣6 C.9 D.﹣97.单项式﹣x n+1y3与y b x2是同类项,则a,b的值分别为()A.a=1,b=2 B.a=1,b=3 C.a=2,b=2 D.a=2,b=38.按下列图示的程序计算,若开始输入的值为x=3,则最后输出的结果是()A.6 B.21 C.156 D.231二.用心填一填(每小题3分,共21分)9.在(﹣4)2,﹣42,(﹣3)2,﹣(﹣3)中,负数有个,互为相反数的是.10.用四舍五入的方法将3.495精确到十分位是,精确到0.01是.11.规定二阶行列式=ad﹣bc,依据此法则计算=.12.单项式﹣的系数是,次数是.13.在数轴上与﹣3的距离等于5的点表示的数是.14.若x2+x﹣1=0,则4x2+4x﹣6的值为.15.已知+=0,则的值为.三、解答题16.计算(1)(﹣+﹣)×(﹣12);(2)﹣22+3×(﹣1)2016﹣|﹣4|×5.17.先化简,再求值.(1)3(x2﹣2x﹣1)﹣4(3x﹣2)+2(x﹣1),其中x=﹣3(2)2(2a2b+3ab2)﹣3(a2b﹣1)﹣2ab2﹣2,其中a=﹣1,b=.18.某学校开展了“植树造林,从我做起”活动,共分成了三个植树组,第一组植树x棵,第二组植的树比第一组的2倍还多8棵,第三组植的树比第二组的一半少6棵,请求出三个组共植树多少棵(用字母表示).若x=130,请计算三个组共植树多少棵.19.有这样一道计算题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y ﹣y3)的值,其中x=,y=﹣1”,甲同学把x=错看成x=﹣,但计算结果仍正确,你说是怎么一回事?20.(1)已知:a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a=;b=;c=.(2)若|x|=3,|y|=4,且ay<0,求a+b+x+y的值.21.某公路养护小组乘车沿东西向公路巡视维护.某天早晨从A地出发,最后收工时到达B地.约定向东为正方向,当天的行驶记录如下(单位:千米):+13,﹣14,+11,﹣10,﹣8,+9,﹣12,+8.(1)问B地在A地的哪个方向?它们相距多少千米?(2)若汽车行驶每千米耗油x升,求该天共耗油多少升?22.有理数a、b、c在数轴上的位置如图,(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,﹣a+c0(2)化简:|b﹣c|+|﹣a|.23.用火柴棒按下列方式搭建三角形:(1)填表:(2)当有n个三角形时,应用多少根火柴棒?(用含n的代数式表示);(3)当有2015根火柴棒时,照这样可以摆多少个三角形?参考答案与试题解析一、精心选一选(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内1.4的相反数是()A.4 B.﹣4 C.D.【考点】相反数.【分析】根据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.【解答】解:根据概念,(4的相反数)+(4)=0,则4的相反数是﹣4.故选:B.2.|﹣|等于()A.﹣7 B.7 C.﹣ D.【考点】绝对值.【分析】根据绝对值的意义进行化简.【解答】解:因为|﹣|=故选D.3.据新华社报道:在我国南海某海域探明可燃冰储量约有194亿立方米,194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将194亿用科学记数法表示为:1.94×1010.故选:A.4.化简﹣5ab+4ab的结果是()A.1 B.a C.b D.﹣ab【考点】合并同类项.【分析】根据合并同类项的法则把系数相加即可.【解答】解:原式=(﹣5+4)ab=﹣ab,故选:D.5.一个多项式减去x2﹣3y2等于x2+2y2,则这个多项式是()A.﹣2x2+y2B.2x2﹣y2C.x2﹣2y2D.﹣2x2﹣y2【考点】整式的加减.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:根据题意得:(x2﹣3y2)+(x2+2y2)=x2﹣3y2+x2+2y2=2x2﹣y2.故选B6.若|a+3|+|b﹣2|=0,则a b的值为()A.6 B.﹣6 C.9 D.﹣9【考点】非负数的性质:绝对值.【分析】根据非负数的性质,几个非负数的和等于0,则每个数等于0,据此即可求得a和b的值,从而求解.【解答】解:根据题意得:a+3=0,b﹣2=0,解得:a=﹣3,b=2.则ab=(﹣3)2=9.故选C.7.单项式﹣x n+1y3与y b x2是同类项,则a,b的值分别为()A.a=1,b=2 B.a=1,b=3 C.a=2,b=2 D.a=2,b=3【考点】同类项.【分析】根据同类项的概念可得方程:a+1=2,b=3,解方程求得a,b的值.【解答】解:∵单项式﹣x n+1y3与y b x2是同类项,∴a+1=2,解得a=1,b=3.故选:B.8.按下列图示的程序计算,若开始输入的值为x=3,则最后输出的结果是()A.6 B.21 C.156 D.231【考点】代数式求值.【分析】观察图示我们可以得出关系式为:,因此将x的值代入就可以计算出结果.如果计算的结果<等于100则需要把结果再次代入关系式求值,直到算出的值>100为止,即可得出y的值.【解答】解:依据题中的计算程序列出算式:由于,∵6<100∴应该按照计算程序继续计算,∵21<100∴应该按照计算程序继续计算,∴输出结果为231.故选D.二.用心填一填(每小题3分,共21分)9.在(﹣4)2,﹣42,(﹣3)2,﹣(﹣3)中,负数有1个,互为相反数的是(﹣4)2与﹣42.【考点】正数和负数.【分析】先化简题目中的数据即可解答本题.【解答】解:∵(﹣4)2=16,﹣42=﹣16,(﹣3)2=9,﹣(﹣3)=3,故答案为:1,(﹣4)2与﹣42.10.用四舍五入的方法将3.495精确到十分位是 3.5,精确到0.01是 3.50.【考点】近似数和有效数字.【分析】根据“求一个小数的近似数,要看精确到哪一位,就从它的下一位运用“四舍五入”取得近似值”进行解答即可.【解答】解:用四舍五入的方法将3.495精确到十分位是3.5,精确到0.01是3.50;故答案为:3.5,3.50.11.规定二阶行列式=ad﹣bc,依据此法则计算=11.【考点】有理数的混合运算.【分析】原式利用已知的新定义化简即可得到结果.【解答】解:根据题意得:2×4﹣1×(﹣3)=8+3=11,故答案为:1112.单项式﹣的系数是﹣,次数是3.【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:﹣的系数是﹣,次数是3.故答案是:﹣;3.13.在数轴上与﹣3的距离等于5的点表示的数是﹣8或2.【考点】数轴.【分析】设该点表示的数为x,根据绝对值的意义可列出方程|x+3|=5,求出x 即可.【解答】解:设该点表示的数为x,∴|x+3|=5,∴x+3=±5,x=﹣8或2;故答案为:﹣8或214.若x2+x﹣1=0,则4x2+4x﹣6的值为﹣2.【考点】代数式求值.【分析】将所求代数式进行适当的变形后,将x2+x﹣1=0整体代入即可求出答案.【解答】解:∵x2+x=1,∴原式=4(x2+x)﹣6=4﹣6=﹣2故答案为:﹣215.已知+=0,则的值为﹣1.【考点】绝对值.【分析】先判断出a、b异号,再根据绝对值的性质解答即可.【解答】解:∵ +=0,∴a、b异号,∴ab<0,∴==﹣1.故答案为:﹣1.三、解答题16.计算(1)(﹣+﹣)×(﹣12);(2)﹣22+3×(﹣1)2016﹣|﹣4|×5.【考点】有理数的混合运算.【分析】(1)根据乘法分配律简便计算;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)(﹣+﹣)×(﹣12)=×12﹣×12+×12=2﹣9+5=﹣2;(2)﹣22+3×(﹣1)2016﹣|﹣4|×5=﹣4+3×1﹣4×5=﹣4+3﹣20=﹣21.17.先化简,再求值.(1)3(x2﹣2x﹣1)﹣4(3x﹣2)+2(x﹣1),其中x=﹣3(2)2(2a2b+3ab2)﹣3(a2b﹣1)﹣2ab2﹣2,其中a=﹣1,b=.【考点】整式的加减—化简求值.【分析】(1)首先去括号,合并同类项,进行化简后,再代入x的值即可求值;(2)首先去括号,合并同类项,进行化简后,再代入a、b的值即可求值.【解答】解:(1)原式=3x2﹣6x﹣3﹣12x+8+2x﹣2,=3x2﹣16x+3,当x=﹣3时,原式=3×(﹣3)2﹣16×(﹣3)+3=27+48+3=78;(2)原式=4a2b+6ab2﹣3a2b+3﹣2ab2﹣2,=a2b+4ab2+1,当a=﹣1,b=时,原式=1×+4×(﹣1)×+1=.18.某学校开展了“植树造林,从我做起”活动,共分成了三个植树组,第一组植树x棵,第二组植的树比第一组的2倍还多8棵,第三组植的树比第二组的一半少6棵,请求出三个组共植树多少棵(用字母表示).若x=130,请计算三个组共植树多少棵.【考点】代数式求值;列代数式.【分析】先用含x的式子表示出第二组,第三组的植树棵树,然后求得各组的和,最后将x=130代入求解即可.【解答】解:第一组植树x棵,第二组植的树(2x+8)棵,第三组植的树(x﹣2)棵.三个组共植树的棵树=x+2x+8+x﹣2=4x+6.当x=130时,4x+6=4×130+6=526.所以三个小组共植树526棵.19.有这样一道计算题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y ﹣y3)的值,其中x=,y=﹣1”,甲同学把x=错看成x=﹣,但计算结果仍正确,你说是怎么一回事?【考点】整式的加减—化简求值.【分析】先对原代数式化简,结果中不含x项,故计算结果与x的取值无关,故甲同学把x=错看成x=﹣,但计算结果仍正确.【解答】解:原式=2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y3﹣x3+3x2y﹣y3=﹣2y3,∵结果中不含x项,∴与x的取值无关.∴甲同学把x=错看成x=﹣,但计算结果仍正确.20.(1)已知:a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a=1;b=﹣1;c=0.(2)若|x|=3,|y|=4,且ay<0,求a+b+x+y的值.【考点】有理数的加法;绝对值.【分析】(1)根据最小的正整数是1,最大的负整数是﹣1,0的绝对值最小确定a、b、c的值;(2)由绝对值的意义,求出x、y,再由ay<0,确定y的值.代入代数式求出a+b+x+y的值.【解答】解:∵a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,∴a=1,b=﹣1,c=0;故答案为1,﹣1,0.(2)因为a=1,由于ay<0,所以y<0.因为|x|=3,|y|=4,所以x=±3,y=﹣4.当a=1,b=﹣1,x=3,y=﹣4时a+b+x+y=1+(﹣1)+3+(﹣4)=﹣1;当a=1,b=﹣1,x=﹣3,y=﹣4时a+b+x+y=1+(﹣1)+(﹣3)+(﹣4)=﹣7.21.某公路养护小组乘车沿东西向公路巡视维护.某天早晨从A地出发,最后收工时到达B地.约定向东为正方向,当天的行驶记录如下(单位:千米):+13,﹣14,+11,﹣10,﹣8,+9,﹣12,+8.(1)问B地在A地的哪个方向?它们相距多少千米?(2)若汽车行驶每千米耗油x升,求该天共耗油多少升?【考点】有理数的加法;正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【解答】解:(1)将行驶记录所有的数据相加,得结果为﹣3,∵约定向东为正方向,∴B地在A地的西边,它们相距3千米.(2)汽车行驶每千米耗油x升,设该天共耗油y升,则y=(13+14+11+10+8+9+12+8)x=85x升.∴该天共耗油85x升.22.有理数a、b、c在数轴上的位置如图,(1)判断正负,用“>”或“<”填空:b﹣c<0,a+b<0,﹣a+c>0(2)化简:|b﹣c|+|﹣a|.【考点】数轴;绝对值.【分析】根据数轴确定出a、b、c的正负情况以及绝对值的大小,然后解答即可.【解答】解:由图可知,a<0,b>0,c>0,且|b|<|a|<|c|,(1)b﹣c<0,a+b<0,﹣a+c>0;(2)|b﹣c|+|﹣a|=c﹣b﹣a.故答案为:<,<,>.23.用火柴棒按下列方式搭建三角形:(1)填表:(2)当有n个三角形时,应用多少根火柴棒?(用含n的代数式表示);(3)当有2015根火柴棒时,照这样可以摆多少个三角形?【考点】规律型:图形的变化类.【分析】(1)观察图形得到第①号图中的火柴棒根数为3根;第②号图中的火柴棒根数为(3+2)根;第③号图中的火柴棒根数为(3+2×2)根;…;(2)由此可推出第n号图中的火柴棒根数=3+2×(n﹣1)=(2n+1)根;(3)由(2)得到2n+1=2011,然后解方程即可.【解答】解:(1)结合图形,发现:后边每多一个三角形,则需要多2根火柴.搭1个这样的三角形要用3+2×0=3根火柴棒;搭2个这样的三角形要用3+213=5根火柴棒;搭3个这样的三角形要用3+2×2=7根火柴棒;则搭4个这样的三角形要用3+2×3=9根火柴棒;(2)根据(1)中的规律,得搭n个这样的三角形要用3+2(n﹣1)=2n+1根火柴棒.(3)2n+1=2015,n=1007,照这样2015根火柴棒可以摆1007个三角形.故答案为5,7,9;2016-2017学年七年级(上)期中数学试卷一、选择题(每小题3分,共36分)1.下列说法正确的是()A.前面带有“+”号的数一定是正数B.前面带“﹣”号的数一定是负数C.上升5米,再下降3米,实际上升2米D.一个数不是正数就是负数2.数轴上点A表示﹣4,点B表示2,则A,B两点之间的距离是()A.﹣2 B.﹣6 C.6 D.83.下列各对数中,互为相反数的是()A.﹣(﹣2)和2 B.+(﹣3)和﹣(+3)C. D.﹣(﹣5)和﹣|﹣5|4.下列各式中,等号不成立的是()A.|﹣4|=4 B.﹣|4|=﹣|﹣4|C.|﹣4|=|4|D.﹣|﹣4|=45.大于﹣小于的所有整数有()A.8个 B.7个 C.6个 D.5个6.下列说法中不正确的是()A.近似数1.8与1.80表示的意义不一样B.5.0万精确到万位C.0.200精确到千分位D.0.345×105用科学记数法表示为3.45×1047.下列计算正确的是()A.﹣12﹣8=﹣4 B.﹣5+4=﹣9 C.﹣1﹣9=﹣10 D.﹣32=98.若(2a﹣1)2+2|b﹣3|=0,则a b=()A.B.C.6 D.9.一个数的平方和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1 D.±1和010.下列式子:x2+2, +4,,,﹣5x,0中,整式的个数是()A.6 B.5 C.4 D.311.下列说法中正确的是()A.﹣x的次数为0 B.﹣πx的系数为﹣1C.﹣5是一次单项式D.﹣5a2b的次数是3次12.一个三位数,若个位数是a,十位数是b,百位数是c,则这个三位数是()A.a+b B.abc C.1000a+10b+c D.100c+10b+a二、填空题(每小题3分,共18分)13.在知识抢答中,如果用+10表示得10分,那么扣20分表示为.14.按所列数的规律填上适当的数:3,5,7,9,,.15.比较大小:﹣(﹣)﹣|﹣3|;﹣0.1﹣0.001.(用“>”或“<”号)16.如果x、y互为相反数,且m、n互为倒数,则(mn﹣3)+(x+y)2008=.17.光的速度大约是300000000米每秒,用科学记数法可记作米每秒.18.单项式﹣的系数是,次数是.三、计算(每小题6分,共12分)19.20.﹣22+|5﹣8|+24÷(﹣3)×.四、(共16分)21.用简便方法运算12.5×3.7﹣2.3×12.5﹣12.5×(﹣6.6)22.已知,x=3,y=﹣2,试求代数式4x2﹣4xy+y2的值.五、解答题(共2小题,满分18分)23.将下列各数在数轴上表示出来,并把这些数按从小到大顺序进行排列,用“<”连接.4,﹣1.5,0,3,﹣2,1.24.某人到泉州市移动通讯营业厅办理手机通话业务,营业员给他提供了两种办理方式,甲方案:月租9元,每分钟通话费0.2元;乙方案:月租0元,每分钟通话费0.3元.(1)若此人每月平均通话x分钟,则两种方式的收费各是多少元?(用含x的代数式表示)(2)此人每月平均通话10小时,选择哪种方式比较合算?试说明理由.六、解答题(共2小题,满分20分)25.为了促进居民节约用电,某市电力公司规定如下的电费计算方法:每月用电不超过100度,按每度0.5元计算;如每月用电超过100度,则超出部分每度加收0.1元.(1)若某用户2008年8月份用电a度(a<100);9月份用电b度(b>100),请用代数式分别表示出该用户这两个月应交的电费.(2)若该用户2008年10月份用电113度,则他应交电费多少元?26.日照高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为0.5升/千米,则这次养护共耗油多少升?参考答案与试题解析一、选择题(每小题3分,共36分)1.下列说法正确的是()A.前面带有“+”号的数一定是正数B.前面带“﹣”号的数一定是负数C.上升5米,再下降3米,实际上升2米D.一个数不是正数就是负数【考点】正数和负数.【分析】根据各个选项中的说法可以判断其是否正确,从而可以解答本题.【解答】解:+(﹣2)=﹣2,故选项A错误;﹣(﹣2)=2,故选项B错误;上升5米,再下降3米,实际上升2米,故选项C正确;一个数不是正数,就是负数或零,故选项D错误;故选C.2.数轴上点A表示﹣4,点B表示2,则A,B两点之间的距离是()A.﹣2 B.﹣6 C.6 D.8【考点】数轴.【分析】直接根据数轴上两点间的距离公式解答即可.【解答】解:∵数轴上点A表示﹣4,点B表示2,∴AB=|﹣4﹣2|=6.故选C.3.下列各对数中,互为相反数的是()A.﹣(﹣2)和2 B.+(﹣3)和﹣(+3)C. D.﹣(﹣5)和﹣|﹣5|【考点】相反数.【分析】根据互为相反数的两数之和为0可得出答案.【解答】解:A、﹣(﹣2)+2=4,故本选项错误;B、+(﹣3)﹣(+3)=﹣6,故本选项错误;C、﹣2=﹣,故本选项错误;D、﹣(﹣5)﹣|﹣5|=0,故本选项正确.故选D.4.下列各式中,等号不成立的是()A.|﹣4|=4 B.﹣|4|=﹣|﹣4|C.|﹣4|=|4|D.﹣|﹣4|=4【考点】绝对值.【分析】利用绝对值的性质解答即可.【解答】解:A.|﹣4|=4,所以此选项等号成立;B.﹣|4|=﹣4,﹣|﹣4|=﹣4,所以此选项等号成立;C.|﹣4|=4,|4|=4,所以此选项等号成立;D.﹣|﹣4|=﹣4≠4,所以此选项等号不成立,故选D.5.大于﹣小于的所有整数有()A.8个 B.7个 C.6个 D.5个【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断出大于﹣小于的所有整数有多少个即可.【解答】解:大于﹣小于的所有整数有:﹣3,﹣2,﹣1,0,1,2,3,共7个,故选:B.6.下列说法中不正确的是()A.近似数1.8与1.80表示的意义不一样B.5.0万精确到万位C.0.200精确到千分位D.0.345×105用科学记数法表示为3.45×104【考点】科学记数法与有效数字.【分析】根据科学计数法和有效数字以及精确度进行选择即可.【解答】解:A、近似数1.8与1.80表示的意义不一样,故原来的说法正确;B、5.0万精确到千位,故原来的说法不正确;C、0.200精确到0.001,故原来的说法正确;D、0.345×105用科学记数法表示为3.45×104,故原来的说法正确;故选B.7.下列计算正确的是()A.﹣12﹣8=﹣4 B.﹣5+4=﹣9 C.﹣1﹣9=﹣10 D.﹣32=9【考点】有理数的乘方;有理数的加法;有理数的减法.【分析】分别根据有理数的加法、减法及乘方的运算法则计算出各选项的值.【解答】解:A、﹣12﹣8=﹣20,故本选项错误;B、﹣5+4=﹣1,故本选项错误;C、符合有理数的减法法则,故本选项正确;D、﹣32=﹣9,故本选项错误.故选B.8.若(2a﹣1)2+2|b﹣3|=0,则a b=()A.B.C.6 D.【考点】非负数的性质:偶次方;非负数的性质:绝对值;代数式求值;解二元一次方程组.【分析】由于平方与绝对值都具有非负性,根据两个非负数的和为零,其中每一个加数都必为零,可列出二元一次方程组,解出a、b的值,再将它们代入a b中求解即可.【解答】解:由题意,得,解得.∴a b=()3=.故选D.9.一个数的平方和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1 D.±1和0【考点】有理数的乘方;倒数.【分析】分别计算出四个选项中有理数的平方及其倒数,找出相同的数即可.【解答】解:A、∵12=1,1的倒数是1,故本选项符合题意;B、∵(﹣1)2=1,1的倒数是﹣1,故本选项不符合题意;C、∵(±1)2=1,±1的倒数是±1,故本选项不符合题意;D、∵(±1)2=1,02=0;±1的倒数是±1,0没有倒数,故本选项不符合题意.故选A.10.下列式子:x2+2, +4,,,﹣5x,0中,整式的个数是()A.6 B.5 C.4 D.3【考点】整式.【分析】根据整式的定义分析判断各个式子,从而得到正确选项.【解答】解:式子x2+2,,﹣5x,0,符合整式的定义,都是整式;+4,这两个式子的分母中都含有字母,不是整式.故整式共有4个.故选:C.11.下列说法中正确的是()A.﹣x的次数为0 B.﹣πx的系数为﹣1C.﹣5是一次单项式D.﹣5a2b的次数是3次【考点】单项式.【分析】单项式的系数是指单项式中的数字因数,单项式的次数是指单项式所含字母的指数的和,根据定义即可判断各项.【解答】解:A、﹣x的次数是1,故本选项错误;B、﹣πx的系数是﹣π,故本选项错误;C、﹣5是0次单项式,故本选项错误;D、﹣5a2b的次数是2+1=3,故本选项正确;故选D.12.一个三位数,若个位数是a,十位数是b,百位数是c,则这个三位数是()A.a+b B.abc C.1000a+10b+c D.100c+10b+a【考点】列代数式.【分析】根据一个三位数=百位上的数×100+十位上的数×10+个位上的数求解即可.【解答】解:∵一个三位数,个位数是a,十位数是b,百位数是c,∴这个三位数是100c+10b+a.故选D二、填空题(每小题3分,共18分)13.在知识抢答中,如果用+10表示得10分,那么扣20分表示为﹣20.【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,“正”和“负”相对.【解答】解:用+10表示得10分,那么扣20分用负数表示,那么扣20分表示为﹣20.故答案为:﹣20.14.按所列数的规律填上适当的数:3,5,7,9,11,13.【考点】有理数.【分析】先观察总结规律,再利用规律代入求解.【解答】解:本题所给的数都从小到大排列的奇数(2n+1),故应填11,13.15.比较大小:﹣(﹣)>﹣|﹣3|;﹣0.1<﹣0.001.(用“>”或“<”号)【考点】有理数大小比较.【分析】先去括号及绝对值符号,再比较大小即可.【解答】解:∵﹣(﹣)=>0,﹣|﹣3|=﹣3<0,∴﹣(﹣)>﹣|﹣3|;∵|﹣0.1|=0.1,|﹣0.001|=0.001,0.1>0.001,∴﹣0.1<﹣0.001.故答案为:>,<.16.如果x、y互为相反数,且m、n互为倒数,则(mn﹣3)+(x+y)2008=﹣2.【考点】代数式求值.【分析】由题意可知:x+y=0,mn=1,然后代入代数式即可求出答案.【解答】解:由题意可知:x+y=0,mn=1,∴原式=(1﹣3)+0=﹣2,故答案为:﹣217.光的速度大约是300000000米每秒,用科学记数法可记作3×108米每秒.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:300000000=3×108.故答案为:3.×108.18.单项式﹣的系数是﹣,次数是3.【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式﹣的系数是﹣,次数是2+1=3.故答案为:﹣;3.三、计算(每小题6分,共12分)19.【考点】有理数的混合运算.【分析】对有理数式将转化为,将去括号,约分化简.【解答】解:,=,=﹣6﹣20,=﹣26.20.﹣22+|5﹣8|+24÷(﹣3)×.【考点】有理数的混合运算.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣4+3﹣=﹣.四、(共16分)21.用简便方法运算12.5×3.7﹣2.3×12.5﹣12.5×(﹣6.6)【考点】有理数的混合运算.【分析】原式逆用乘法分配律计算即可得到结果.【解答】解:原式=12.5×(3.7﹣2.3+6.6)=12.5×8=100.22.已知,x=3,y=﹣2,试求代数式4x2﹣4xy+y2的值.【考点】代数式求值.【分析】首先将原式分解因式得出原式=(2x﹣y)2,再将已知代入求出即可.【解答】解:原式=(2x﹣y)2,∵x=3,y=﹣2,∴2x﹣y=8.∴原式=(2x﹣y)2=64.五、解答题(共2小题,满分18分)23.将下列各数在数轴上表示出来,并把这些数按从小到大顺序进行排列,用“<”连接.4,﹣1.5,0,3,﹣2,1.【考点】有理数大小比较;数轴.【分析】先在数轴上表示各个数,再比较即可.【解答】解:﹣2<﹣1.5<0<1<3<4.24.某人到泉州市移动通讯营业厅办理手机通话业务,营业员给他提供了两种办理方式,甲方案:月租9元,每分钟通话费0.2元;乙方案:月租0元,每分钟通话费0.3元.(1)若此人每月平均通话x分钟,则两种方式的收费各是多少元?(用含x的代数式表示)(2)此人每月平均通话10小时,选择哪种方式比较合算?试说明理由.【考点】列代数式;代数式求值.【分析】(1)甲方案的收费:月租+0.2×时间;乙方案收费:0.3×通话时间;(2)把10小时=600分钟代入(1)中的代数式计算即可.【解答】解:(1)甲方案:9+0.2x,乙方案:0.3x;(2)10小时=600分钟,甲方案收费:9+0.2×600=129(元),乙方案收费:0.3×600=180(元),∵129<180,∴甲方案合算.六、解答题(共2小题,满分20分)25.为了促进居民节约用电,某市电力公司规定如下的电费计算方法:每月用电不超过100度,按每度0.5元计算;如每月用电超过100度,则超出部分每度加收0.1元.(1)若某用户2008年8月份用电a度(a<100);9月份用电b度(b>100),请用代数式分别表示出该用户这两个月应交的电费.(2)若该用户2008年10月份用电113度,则他应交电费多少元?【考点】列代数式.【分析】(1)根据题意可以列出用电小于100度和大于100度时的代数式;(2)根据第一问中列出的代数式可以求得问题的答案【解答】解:(1)∵某市电力公司规定如下的电费计算方法:每月用电不超过100度,按每度0.5元计算;如每月用电超过100度,则超出部分每度加收0.1元,∴当a<100时,8月份应交的电费为:0.5a元;当b>100时,9月份应交的电费为:100×0.5+(b﹣100)×(0.5+0.1)=50+0.6b﹣60=(0.6b﹣10)元.(2)∵用户2008年10月份用电113度,113>100,∴0.6b﹣10=0.6×113﹣10=67.8﹣10=57.8(元).即该用户2008年10月份用电113度,则他应交电费57.8元.26.日照高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为0.5升/千米,则这次养护共耗油多少升?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据有理数的加法,可得每次行程,根据绝对值的意义,可得答案;(3)根据单位耗油量乘以路程,可得答案.【解答】解:(1)17+(﹣9)+7+(﹣15)+(﹣3)+11+(﹣6)+(﹣8)+5+16=15(千米),答:养护小组最后到达的地方在出发点的北方距出发点15千米;(2)第一次17千米,第二次15+(﹣9)=6,第三次6+7=13,第四次13+(﹣15)=﹣2,第五次﹣2+(﹣3)=﹣5,第六次﹣5+11=6,第七次6+(﹣6)=0,第八次0+(﹣8)=﹣8,第九次﹣8+5=﹣3,第十次﹣3+16=13,答:最远距出发点17千米;(3)(17+|﹣9|+7+|﹣15|+|﹣3|+11+|﹣6|+|﹣8|+5+16)×0.5=97×0.5=48.5(升),答:这次养护共耗油48.5升.。
【数学】2016-2017年山东省泰安市七年级上学期数学期中试卷和解析答案PDF
2016-2017学年山东省泰安市七年级(上)期中数学试卷一、选择题(本大题共20个小题,每小题3分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)下列长度的三条线段中,能组成三角形的是()A.3cm,5cm,8cm B.8cm,8cm,18cmC.0.1cm,0.1cm,0.1cm D.3cm,40cm,8cm2.(3分)已知∠A:∠B:∠C=1:2:2,则△ABC三个角度数分别是()A.40°、80°、80°B.35°、70° 70° C.30°、60°、60°D.36°、72°、72°3.(3分)下列条件中,能判定△ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠D B.∠A=∠D,∠C=∠F,∠B=∠EC.∠B=∠E,∠A=∠D,AC=EF D.∠B=∠E,∠A=∠D,AB=DE4.(3分)如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为()A.50°B.30°C.80°D.100°5.(3分)如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC的度数为()A.40°B.80°C.120° D.不能确定6.(3分)如图,AE=AF,AB=AC,EC与BF交于点O,∠A=60°,∠B=25°,则∠EOB的度数为()A.60°B.70°C.75°D.85°7.(3分)如图所示的图案中,是轴对称图形且有2条对称轴的是()A.B.C.D.8.(3分)等腰三角形的周长为18cm,其中一边长为5cm,等腰三角形的底边长为()A.5cm B.6cm C.5cm或8cm D.8cm9.(3分)到△ABC三个顶点距离相等的点是△ABC的()A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三条垂直平分线的交点10.(3分)如图在△ABC中∠C=90°,AD平分∠BAC交BC于D,若BC=64,且BD:CD=9:7,则点D到AB边的距离为()A.18 B.32 C.28 D.2411.(3分)如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC 的度数是()A.18°B.24°C.30°D.36°12.(3分)一直角三角形的三边分别为2、3、x,那么以x为边长的正方形的面积为()A.13 B.5 C.13或5 D.413.(3分)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60 C.76 D.8014.(3分)若a,b,c为三角形的三边,则下列各组数据中,不能组成直角三角形的是()A.a=8,b=15,c=17 B.a=3,b=5,c=4C.a=14,b=48,c=49 D.a=9,b=40,c=4115.(3分)已知一直角三角形的木板,三边的平方和为1800cm2,则斜边长为()A.30cm B.80cm C.90cm D.120cm16.(3分)如图所示,一棵大树高8米,一场大风过后,大树在离地面3米处折断倒下,树的顶端落在地上,则此时树的顶端离树的底部有()米.A.4 B.3.5 C.5 D.13.617.(3分)下列说法错误的是()A.1的平方根是﹣1 B.﹣1的立方根是﹣1C.是2的平方根D.±3是的平方根18.(3分)实数(相邻两个1之间依次多一个0),其中无理数有()A.1个 B.2个 C.3个 D.4个19.(3分)一个正整数的算术平方根为a,则比这个正整数大3的数的算术平方根是()A.a+3 B.a+C.D.20.(3分)﹣27的立方根与的平方根之和为()A.0 B.6 C.0或﹣6 D.﹣12或6二、填空题(本大题共4个小题,每小题3分,共12分.把答案填在题中的横线上.)21.(3分)甲、乙两人同时从同一地点出发,甲往东走了8km,乙往南走了6km,这时两人相距km.22.(3分)的立方根是;的算术平方根是.23.(3分)如图,直线L过正方形ABCD的顶点B,点A、C到直线L的距离分别是1和2,则正方形的边长是.24.(3分)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.三、解答题(本大题共5个小题,共48分,解答应写出文字说明、推理过程或演算步骤.)25.(8分)已知:如图,点A,B,C,D同一条直线上,EA⊥AD,FD⊥AD,AE=DF,AB=DC.问:∠ACE=∠DBF吗?说明理由.26.(10分)如图,已知AB=AC,DE垂直平分AB交AC、AB于E、D两点,若AB=12cm,BC=10cm,∠A=50°,求△BCE的周长和∠EBC的度数.27.(10分)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.28.(8分)一个正数x的平方根是3a﹣4与8﹣a,则a和这个正数是多少?29.(12分)两个大小不同的等腰直角三角形三角板如图1所示位置,图2是由它抽象出的几何图形,B、C、E在同一条直线上,连结DC.(1)请找出图2中的全等三角形,并说明理由(说明:结论中不得有未标识的字母);(2)判断DC⊥BE是否成立?说明理由.2016-2017学年山东省泰安市七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共20个小题,每小题3分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)下列长度的三条线段中,能组成三角形的是()A.3cm,5cm,8cm B.8cm,8cm,18cmC.0.1cm,0.1cm,0.1cm D.3cm,40cm,8cm【解答】解:A.3cm,5cm,8cm中,3+5=8,故不能组成三角形;B.8cm,8cm,18cm中,8+8<18,故不能组成三角形;C.0.1cm,0.1cm,0.1cm中,任意两边之和大于第三边,故能组成三角形;D.3cm,40cm,8cm中,3+8<40,故不能组成三角形;故选:C.2.(3分)已知∠A:∠B:∠C=1:2:2,则△ABC三个角度数分别是()A.40°、80°、80°B.35°、70° 70° C.30°、60°、60°D.36°、72°、72°【解答】解:∵∠A:∠B:∠C=1:2:2,∴设∠A=x,则∠B=2x,∠C=2x,∵∠A+∠B+∠C=180°,∴x+2x+2x=180°,解得x=36°,∴∠A=36°,∠B=∠C=72°.故选:D.3.(3分)下列条件中,能判定△ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠D B.∠A=∠D,∠C=∠F,∠B=∠EC.∠B=∠E,∠A=∠D,AC=EF D.∠B=∠E,∠A=∠D,AB=DE【解答】解:A、条件AB=DE,BC=EF,∠A=∠D不符合SAS,故A错误;B、条件∠A=∠D,∠C=∠F,∠B=∠E不符合AAS或ASA,故B错误;C、条件∠B=∠E,∠A=∠D,AC=EF不符合AAS或ASA,故C错误;D、条件∠B=∠E,∠A=∠D,AB=DE符合ASA的判定方法,故D正确.故选:D.4.(3分)如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为()A.50°B.30°C.80°D.100°【解答】解:∵OA=OC,OD=OB,∠AOD=∠COB,∴△AOD≌△COB(SAS),∴∠D=∠B=30°.故选:B.5.(3分)如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC的度数为()A.40°B.80°C.120° D.不能确定【解答】解:∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠BAD=∠CAE,∵∠BAE=120°,∠BAD=40°,∴∠BAC=∠BAE﹣∠CAE=120°﹣40°=80°.故选:B.6.(3分)如图,AE=AF,AB=AC,EC与BF交于点O,∠A=60°,∠B=25°,则∠EOB的度数为()A.60°B.70°C.75°D.85°【解答】解:∵AE=AF,AB=AC,∠A=60°∴△ABF≌△ACE∴∠C=∠B=25°∴∠AEC=180°﹣60°﹣25°=95°,∴∠EOB=95°﹣25°=70°故选:B.7.(3分)如图所示的图案中,是轴对称图形且有2条对称轴的是()A.B.C.D.【解答】解:A、B都只有一条对称轴;C、不是轴对称图形;D、有2条对称轴.故选:D.8.(3分)等腰三角形的周长为18cm,其中一边长为5cm,等腰三角形的底边长为()A.5cm B.6cm C.5cm或8cm D.8cm【解答】解:由题意知,应分两种情况:(1)当腰长为5cm时,则另一腰也为5cm,底边为18﹣2×5=8cm,∵0<8<5+5=10,∴边长分别为5cm,5cm,8cm,能构成三角形;(2)当底边长为5cm时,腰的长=(18﹣5)÷2=6.5cm,∵0<5<6.5+6.5=13,∴边长为5cm,6.5cm,6.5cm,能构成三角形.故选:C.9.(3分)到△ABC三个顶点距离相等的点是△ABC的()A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三条垂直平分线的交点【解答】解:△ABC的三个顶点距离相等的点是三边垂直平分线的交点.故选:D.10.(3分)如图在△ABC中∠C=90°,AD平分∠BAC交BC于D,若BC=64,且BD:CD=9:7,则点D到AB边的距离为()A.18 B.32 C.28 D.24【解答】解:如图,过D作DE⊥AB于E,∵AD平分∠BAC交BC于D,而∠C=90°,∴CD=DE,∵BC=64,且BD:CD=9:7,∴CD=64×=28,∴DE=28,则点D到AB边的距离为28.故选:C.11.(3分)如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC 的度数是()A.18°B.24°C.30°D.36°【解答】解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°∵BD是AC边上的高,∴BD⊥AC,∴∠DBC=90°﹣72°=18°.故选:A.12.(3分)一直角三角形的三边分别为2、3、x,那么以x为边长的正方形的面积为()A.13 B.5 C.13或5 D.4【解答】解:当2和3都是直角边时,则x2=4+9=13;当3是斜边时,则x2=9﹣4=5.故选:C.13.(3分)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60 C.76 D.80【解答】解:∵∠AEB=90°,AE=6,BE=8,∴在Rt△ABE中,AB2=AE2+BE2=100,∴S阴影部分=S正方形ABCD﹣S△ABE,=AB2﹣×AE×BE=100﹣×6×8=76.故选:C.14.(3分)若a,b,c为三角形的三边,则下列各组数据中,不能组成直角三角形的是()A.a=8,b=15,c=17 B.a=3,b=5,c=4C.a=14,b=48,c=49 D.a=9,b=40,c=41【解答】解:A、∵82+152=172,∴此三角形是直角三角形,不符合题意;B、∵32+42=52,∴此三角形是直角三角形,不符合题意;C、∵142+482≠492,∴此三角形不是直角三角形,符合题意;D、∵92+402=412,∴此三角形是直角三角形,不符合题意.故选:C.15.(3分)已知一直角三角形的木板,三边的平方和为1800cm2,则斜边长为()A.30cm B.80cm C.90cm D.120cm【解答】解:设直角三角形的斜边长为x,∵三边的平方和为1800cm2,∴x2=900cm2,解得x=30cm.故选:A.16.(3分)如图所示,一棵大树高8米,一场大风过后,大树在离地面3米处折断倒下,树的顶端落在地上,则此时树的顶端离树的底部有()米.A.4 B.3.5 C.5 D.13.6【解答】解:∵大树高8米,在离地面3米处折断,∴AB=3米,AC=8﹣3=5(米),∴BC===4(米).故选:A.17.(3分)下列说法错误的是()A.1的平方根是﹣1 B.﹣1的立方根是﹣1C.是2的平方根D.±3是的平方根【解答】解:A、1的平方根是±1,错误;B、﹣1的立方根是﹣1,正确;C、是2的平方根,正确;D、±3是的平方根,错误;故选:AD.18.(3分)实数(相邻两个1之间依次多一个0),其中无理数有()A.1个 B.2个 C.3个 D.4个【解答】解:无理数有﹣π,0.1010010001…,共2个,故选:B.19.(3分)一个正整数的算术平方根为a,则比这个正整数大3的数的算术平方根是()A.a+3 B.a+C.D.【解答】解:根据题意得:这个正数为a2,故选:C.20.(3分)﹣27的立方根与的平方根之和为()A.0 B.6 C.0或﹣6 D.﹣12或6【解答】解:∵﹣27的立方根为﹣3,的平方根±3,∴﹣27的立方根与的平方根之和为0或﹣6.故选:C.二、填空题(本大题共4个小题,每小题3分,共12分.把答案填在题中的横线上.)21.(3分)甲、乙两人同时从同一地点出发,甲往东走了8km,乙往南走了6km,这时两人相距10km.【解答】解:如图,∵∠AOB=90°,OA=6km,OB=8km,∴AB==10(km).故答案为:10.22.(3分)的立方根是;的算术平方根是3.【解答】解:∵,∴的立方根是;又∵,∴的算术平方根是3.故答案:,3.23.(3分)如图,直线L过正方形ABCD的顶点B,点A、C到直线L的距离分别是1和2,则正方形的边长是.【解答】解:如图,∵四边形ABCD是正方形,∴AB=CD,∠ABM+∠CBN=90°,而AM⊥MN,CN⊥BN,∴∠BAM=∠CBN,∠AMB=∠CNB=90°,∴△AMB≌△BCN(AAS),∴BM=CN,∴AB为.故答案为:.24.(3分)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=15度.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,故答案为:15.三、解答题(本大题共5个小题,共48分,解答应写出文字说明、推理过程或演算步骤.)25.(8分)已知:如图,点A,B,C,D同一条直线上,EA⊥AD,FD⊥AD,AE=DF,AB=DC.问:∠ACE=∠DBF吗?说明理由.【解答】解:∵EA⊥AD,FD⊥AD,∴∠EAD=∠FDB=90°,又∵AB=DC,∴AB+BC=DC+BC,即AC=BD,又∵AE=DF,在△EAC和△FDB中,,∴△EAC≌△FDB,∴∠ACE=∠DBF.26.(10分)如图,已知AB=AC,DE垂直平分AB交AC、AB于E、D两点,若AB=12cm,BC=10cm,∠A=50°,求△BCE的周长和∠EBC的度数.【解答】解:∵DE是AB的垂直平分线,∴AE=BE,∠DBE=∠A=50°,∵AB=12cm,BC=10cm,∵AB=AC,∠A=50°,∴∠ABC===65°,∴∠EBC=65°﹣50°=15°.故答案为:22cm,15°.27.(10分)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.【解答】解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3;(2)在Rt△ABC中,由勾股定理得:AB===10,∴△ADB的面积为S△ADB=AB•DE=×10×3=15.28.(8分)一个正数x的平方根是3a﹣4与8﹣a,则a和这个正数是多少?【解答】解:根据一个正数有两个平方根,它们互为相反数得:3a﹣4+8﹣a=0,即得:a=﹣2,即3a﹣4=﹣10,则这个正数=(﹣10)2=100.29.(12分)两个大小不同的等腰直角三角形三角板如图1所示位置,图2是由它抽象出的几何图形,B、C、E在同一条直线上,连结DC.字母);(2)判断DC⊥BE是否成立?说明理由.【解答】解:(1)结论:△ABE≌△ACD.理由:∵△ABC和△ADE是等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°,∴∠BAC+∠EAC=∠DAE+∠EAC,∴∠BAE=∠CAD,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS).(2)∵△ABE≌△ACD,∴∠AEB=∠ADC.∵∠ADC+∠AFD=90°,∴∠AEB+∠AFD=90°.∵∠AFD=∠CFE,∴∠AEB+∠CFE=90°,∴∠FCE=90°,∴DC⊥BE.赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
人教版2016-2017学年七年级上册期中数学试卷及答案
2016-2017学年七年级(上)期中数学试卷一、精心选一选(本大题共10题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项的字母代号填在题后的括号内)1.﹣(﹣9)的相反数是( )A.9 B.﹣9 C.D.﹣2.绝对值小于5的非负数有( )A.9个B.4个C.5个D.2个3.一个数在数轴上的点与﹣2相距3个单位长度,则这个数是( )A.1 B.﹣1 C.﹣5 D.1或﹣54.2的相反数与0.5的绝对值的和是( )A.2.5 B.1.5 C.﹣1.5D.﹣2.55.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有( )A.4个B.3个C.2个D.1个6.百位数字是a,十位数字是b,个位数字是c,这个三位数是( )A.abc B.a+b+c C.100a+10b+c D.100c+10b+a7.小明买了2支钢笔,3支圆珠笔,知每支圆珠笔a元,每支钢笔b元,则小明一共用了多少元?( )A.3a+2b B.2a+3b C.3a+2a D.3b+2b8.将多项式﹣2x﹣x3+2x2+5按降幂排列,正确的是( )A.x3﹣2x+2x2+5 B.5﹣2x+2x2﹣x3C.﹣x3+2x2+2x+5 D.﹣x3+2x2﹣2x+59.若a<0,ab<0,则|b﹣a+3|﹣|a﹣b﹣9|的值为( )A.6 B.﹣6 C.12 D.﹣2a+2b+1210.已知大家以相同的效率做某件工作,a人做b天可以完工,若增加c人,则提前完工的天数为( )A.B.C.D.二、细心填一填(本大题共有6题,每题3分,共18分.请把结果直接填在题中的横线上,相信自己一定会填对的!)11.﹣(+3)的倒数是__________.12.下列整式3x2、﹣y、3x﹣4、、π、、0中,单项式有__________.13.若x为正,y为负,则+=__________.14.7000万用科学记数法表示为__________.15.已知m=﹣3,n=﹣2,则(m﹣n)5=__________.16.规定a⊗b=a+b﹣1,a⊙b=ab﹣a2,则(﹣2)⊙[7⊗(﹣3)]=__________.三、认真答一答(本大题共6题,满分72分.解答需写出必要的文字说明或演算步骤.只要你认真思考,仔细运算,积极探索,一定会解答正确的!Believeinyourself!)17.(30分)(1)﹣(﹣3)2×2(2)+(﹣)++(﹣)+(﹣)(3)﹣82+72÷(﹣36)(4)8+(﹣)﹣2.5﹣(+1)(5)2×÷(﹣2)(6)(﹣5)+(﹣6)﹣(+12)﹣(﹣7)(7)11.8×3﹣(﹣11.8)×1.7﹣11.8×﹣11.8×(﹣0.3)(8)(﹣5)×(﹣3)+(﹣7)×(﹣3)+12×(﹣3)(9)1﹣2﹣3+4+5﹣6﹣7+8+9﹣10﹣11+12+…+2005﹣2006﹣2007+2008.18.(1)已知代数式:4x﹣4xy+y2﹣x2y3①将代数式按照y的次数降幂排列.②当x=2,y=﹣1时,求该代数式的值(2)已知:关于xyz的代数式﹣(m+3)x2y|m+1|z+(2m﹣n)x2y+5为五次二项式,求|m﹣n|的值.19.小虫从某点O出发在一直线上来回爬行,假定向右爬行路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.问:(1)小虫是否回到原点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫共可得到多少粒芝麻?20.探索规律将连续的偶2,4,6,8,…,排成如表:(1)十字框中的五个数的和与中间的数和16有什么关系?(2)设中间的数为x,用代数式表示十字框中的五个数的和.(3)若将十字框上下左右移动,可框住另外的五位数,其它五位数的和能等于201吗?如能,写出这五位数;如不能,说明理由.21.为了促进居民节约用电,某市电力公司规定如下的电费计算方法:每月用电不超过100度,按每度0.5元计算;如每月用电超过100度,则超出部分每度加收0.1元.(1)若某用户2015年8月份用电a度(a<100);9月份用电b度(b>100),请用代数式分别表示出该用户这两个月应交的电费.(2)若该用户2015年10月份用电113度,则他应交电费多少元?22.阅读与应用计算:+++…+解:因为:=1﹣,=﹣,=﹣,…=﹣所以:+++…+=(1﹣)+(﹣)+(﹣)+…+(﹣)=1﹣+﹣+﹣…+﹣=1﹣=计算:①+++…+②.2016-2017学年七年级(上)期中数学试卷一、精心选一选(本大题共10题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项的字母代号填在题后的括号内)1.﹣(﹣9)的相反数是( )A.9 B.﹣9 C.D.﹣【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣(﹣9)的相反数是﹣9,故选B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.绝对值小于5的非负数有( )A.9个B.4个C.5个D.2个【考点】绝对值.【分析】利用绝对值的定义判定即可.【解答】解:绝对值小于5的非负数有0,1,2,3,4共5个,故选:C.【点评】本题主要考查了绝对值,解题的关键是熟记绝对值的定义.3.一个数在数轴上的点与﹣2相距3个单位长度,则这个数是( )A.1 B.﹣1 C.﹣5 D.1或﹣5【考点】数轴.【分析】考虑两种情况:可以向左移或向右移动3个单位得出答案即可.【解答】解:以表示﹣2的点为起点,向左移3个单位,即﹣2﹣3=﹣5;向右移3个单位,即﹣2+3=1.故选:D.【点评】此题考查数轴,掌握数的大小变化和平移之间的规律:左减右加解决问题.4.2的相反数与0.5的绝对值的和是( )A.2.5 B.1.5 C.﹣1.5 D.﹣2.5【考点】有理数的加法;相反数;绝对值.【分析】根据相反数的定义、绝对值的性质,利用有理数的加法,即可解答.【解答】解:2的相反数为﹣2,0.5的绝对值为0.5,﹣2+0.5=﹣1.5.故选:C.【点评】本题考查了相反数、绝对值、有理数的加法,解决本题的关键是熟记相反数、绝对值、有理数的加法法则.5.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有( )A.4个B.3个C.2个D.1个【考点】单项式.【分析】根据单项式的定义进行解答即可.【解答】解:a2b2,是数与字母的积,故是单项式;,,a2﹣2ab+b2中是单项式的和,故是多项式;﹣25是单独的一个数,故是单项式.故共有2个.故选C.【点评】本题考查的是单项式,熟知数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式是解答此题的关键.6.百位数字是a,十位数字是b,个位数字是c,这个三位数是( )A.abc B.a+b+c C.100a+10b+c D.100c+10b+a【考点】列代数式.【分析】三位数的表示方法为:百位数字×100+十位数字×10+个位数字.【解答】解:依题意得:这个三位数是100a+10b+c.故选C.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.7.小明买了2支钢笔,3支圆珠笔,知每支圆珠笔a元,每支钢笔b元,则小明一共用了多少元?( )A.3a+2b B.2a+3b C.3a+2a D.3b+2b【考点】列代数式.【分析】知道每支圆珠和每支钢笔的价格,故能计算出买2支钢笔,3支圆珠笔所需的钱,再相加即可解得.【解答】解:依题意得:2b+3a.故选:A.【点评】本题考查了根据数字列代数式,把问题中有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.解题的关键是读懂题意,正确表达.8.将多项式﹣2x﹣x3+2x2+5按降幂排列,正确的是( )A.x3﹣2x+2x2+5 B.5﹣2x+2x2﹣x3C.﹣x3+2x2+2x+5 D.﹣x3+2x2﹣2x+5【考点】多项式.【分析】先分清各项,然后按降幂排列的定义解答.【解答】解:将多项式﹣2x﹣x3+2x2+5按降幂排列为﹣x3+2x2﹣2x+5.故选:D.【点评】考查了多项式幂的排列.我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.9.若a<0,ab<0,则|b﹣a+3|﹣|a﹣b﹣9|的值为( )A.6 B.﹣6 C.12 D.﹣2a+2b+12【考点】绝对值;整式的加减.【专题】计算题.【分析】根据所给题意,可判断出a,b的正负性,然后再根据绝对值的定义,去掉绝对值,化简求解.【解答】解:∵a<0,ab<0,∴a<0,b>0,∴b﹣a>0,a﹣b<0∴b﹣a+3>0,a﹣b﹣9<0,∴|b﹣a+3|﹣|a﹣b﹣9|=b﹣a+3+(a﹣b﹣9)=﹣6.故本题的答案选B.【点评】主要考查绝对值性质的运用.解此类题的关键是:先利用条件判断出绝对值符号里代数式的正负性,再根据绝对值的性质把绝对值符号去掉,把式子化简,即可求解.10.已知大家以相同的效率做某件工作,a人做b天可以完工,若增加c人,则提前完工的天数为( )A.B.C.D.【考点】列代数式(分式).【专题】工程问题.【分析】设工作总量为1,一人一天的效率是,增加c人后的天数是1÷=,提前的天数可以求出.【解答】解:设工作总量为1,一人一天的效率是,增加c人后的天数是1÷=,故提前天数为b﹣1÷=b﹣.故选C.【点评】解决本题的难点在于得到一人一天的效率,关键是读懂题意,找到所求的量的等量关系.二、细心填一填(本大题共有6题,每题3分,共18分.请把结果直接填在题中的横线上,相信自己一定会填对的!)11.﹣(+3)的倒数是﹣.【考点】倒数.【分析】根据倒数的定义,即可解答.【解答】解:﹣(+3)=﹣3=﹣,﹣的倒数为﹣,故答案为:﹣.【点评】本题考查了倒数,解决本题的关键是熟记倒数的定义.12.下列整式3x2、﹣y、3x﹣4、、π、、0中,单项式有3x2、﹣y、π、0.【考点】单项式.【分析】根据单项式的定义对各式进行判断即可.【解答】解:下列整式3x2、﹣y、3x﹣4、、π、、0中,单项式有:3x2、﹣y、π、0,故答案为:3x2、﹣y、π、0.【点评】本题主要考查了单项式,解题的关键是熟记单项式的定义.13.若x为正,y为负,则+=0.【考点】有理数的除法;绝对值.【分析】根据绝对值的性质进行化简,然后依据除法法则计算即可.【解答】解:∵x为正,y为负,∴|x|=x,|y|=﹣y.∴原式=.故答案为:0.【点评】本题主要考查的是有理数的除法、绝对值,依据绝对值的性质得到|x|=x,|y|=﹣y是解题的关键.14.7000万用科学记数法表示为7×107.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:7000万=7000 0000=7×107,故答案为:7×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.已知m=﹣3,n=﹣2,则(m﹣n)5=﹣1.【考点】有理数的乘方.【分析】把m,n的值带入代数式,根据有理数的乘方,即可解答.【解答】解:(m﹣n)5=[﹣3﹣(﹣2)]5=(﹣1)5=﹣1,故答案为:﹣1.【点评】本题考查了有理数的乘方,解决本题的关键是熟记有理数的乘方.16.规定a⊗b=a+b﹣1,a⊙b=ab﹣a2,则(﹣2)⊙[7⊗(﹣3)]=﹣10.【考点】有理数的混合运算.【专题】新定义.【分析】按照运算顺序,根据规定的运算方法化为有理数的混合运算,计算得出结果即可.【解答】解:(﹣2)⊙[7⊗(﹣3)]=(﹣2)⊙[7+(﹣3)﹣1]=(﹣2)⊙3=(﹣2)×3﹣(﹣2)2=﹣6﹣4=﹣10.故答案为:﹣10.【点评】此题考查有理数的混合运算,掌握规定的运算方法是解决问题的关键.三、认真答一答(本大题共6题,满分72分.解答需写出必要的文字说明或演算步骤.只要你认真思考,仔细运算,积极探索,一定会解答正确的!Believeinyourself!)17.(30分)(1)﹣(﹣3)2×2(2)+(﹣)++(﹣)+(﹣)(3)﹣82+72÷(﹣36)(4)8+(﹣)﹣2.5﹣(+1)(5)2×÷(﹣2)(6)(﹣5)+(﹣6)﹣(+12)﹣(﹣7)(7)11.8×3﹣(﹣11.8)×1.7﹣11.8×﹣11.8×(﹣0.3)(8)(﹣5)×(﹣3)+(﹣7)×(﹣3)+12×(﹣3)(9)1﹣2﹣3+4+5﹣6﹣7+8+9﹣10﹣11+12+…+2005﹣2006﹣2007+2008.【考点】有理数的混合运算.【分析】(1)先算乘方,再算乘法;(2)利用加法交换律与结合律,将分母相同的分数结合在一起;(3)先算除法,再算加法;(4)先将减法转化为加法,再计算加法即可;(5)先算括号,再从左往右依次计算;(6)先将减法转化为加法,再计算加法即可;(7)利用乘法分配律计算;(8)利用乘法分配律计算;(9)先把四项一组进行计算,再相加即可求解.【解答】解:(1)﹣(﹣3)2×2=﹣9×2=﹣18;(2)+(﹣)++(﹣)+(﹣)=(﹣)+(﹣﹣)+=0﹣1+=﹣;(3)﹣82+72÷(﹣36)=﹣82﹣2=﹣84;(4)8+(﹣)﹣2.5﹣(+1)=(8﹣2.5)+(﹣﹣1)=5.5﹣2=3.5;(5)2×÷(﹣2)=××(﹣)=﹣;(6)(﹣5)+(﹣6)﹣(+12)﹣(﹣7)=﹣5﹣6﹣12+7=﹣23+7=﹣16;(7)11.8×3﹣(﹣11.8)×1.7﹣11.8×﹣11.8×(﹣0.3)=11.8×(3+1.7﹣+0.3)=11.8×5=59;(8)(﹣5)×(﹣3)+(﹣7)×(﹣3)+12×(﹣3)=(﹣5﹣7+12)×(﹣3)=0×(﹣3)=0;(9)1﹣2﹣3+4+5﹣6﹣7+8+9﹣10﹣11+12+…+2005﹣2006﹣2007+2008 =(1﹣2﹣3+4)+(5﹣6﹣7+8)+(9﹣10﹣11+12)+…+=0.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.18.(1)已知代数式:4x﹣4xy+y2﹣x2y3①将代数式按照y的次数降幂排列.②当x=2,y=﹣1时,求该代数式的值(2)已知:关于xyz的代数式﹣(m+3)x2y|m+1|z+(2m﹣n)x2y+5为五次二项式,求|m﹣n|的值.【考点】多项式;代数式求值.【分析】(1)①先分清多项式的各项,然后按多项式降幂排列的定义排列.②将x=2,y=﹣1代入计算即可求解.(2)根据多项式次数及项数的定义,可得m、n的值,再代入即可求解.【解答】解:(1)已知代数式:4x﹣4xy+y2﹣x2y3①将代数式按照y的次数降幂排列为﹣x2y3+y2﹣4xy+4x.②当x=2,y=﹣1时,4x﹣4xy+y2﹣x2y3=8+8+1+4=21;(2)∵关于xyz的代数式﹣(m+3)x2y|m+1|z+(2m﹣n)x2y+5为五次二项式,∴,解得,∴|m﹣n|=|1﹣2|=1.【点评】本题考查了多项式幂的排列.我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.19.小虫从某点O出发在一直线上来回爬行,假定向右爬行路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.问:(1)小虫是否回到原点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫共可得到多少粒芝麻?【考点】正数和负数.【分析】(1)把爬行记录相加,然后根据正负数的意义解答;(2)根据正负数的意义分别求出各记录时与出发点的距离,然后判断即可;(3)求出所有爬行记录的绝对值的和即可.【解答】解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=27+(﹣27)=0,所以,小虫最后能回到出发点O;(2)根据记录,小虫离开出发点O的距离分别为5、3、10、8、6、12、10,所以,小虫离开出发点的O最远为12cm;(3)根据记录,小虫共爬行的距离为:5+3+10+8+6+12+10=54(cm),所以,小虫共可得到54粒芝麻.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.20.探索规律将连续的偶2,4,6,8,…,排成如表:(1)十字框中的五个数的和与中间的数和16有什么关系?(2)设中间的数为x,用代数式表示十字框中的五个数的和.(3)若将十字框上下左右移动,可框住另外的五位数,其它五位数的和能等于201吗?如能,写出这五位数;如不能,说明理由.【考点】一元一次方程的应用.【分析】(1)让方框中的5个数相加,看结果与中间的数的关系即可;(2)根据上下相邻的数相隔10,左右相邻的数相隔2表示出其余数,相加即可;(3)让(2)得到的式子的结果等于201,看有没有整数解,然后看有没有存在的可能即可.【解答】解:(1)十字框中的五个数的和为6+14+16+18+26=80=16×5,即是16的5倍;(2)设中间的数为x,则十字框中的五个数的和为:(x﹣10)+(x+10)+(x﹣2)+(x+2)+x=5x,所以五个数的和为5x;(3)不能,理由如下:假设能够框出满足条件的五个数,设中间的数为x,由(2)得5x=201,所以x=40.2,40.2不是整数,所以不能框住五个数,使它们的和等于201.【点评】本题考查了一元一次方程的应用.解决本题的关键是得到连续偶数中左右相邻及上下相邻的数的关系;注意根据实际情况判断是否存在可以框住的数.21.为了促进居民节约用电,某市电力公司规定如下的电费计算方法:每月用电不超过100度,按每度0.5元计算;如每月用电超过100度,则超出部分每度加收0.1元.(1)若某用户2015年8月份用电a度(a<100);9月份用电b度(b>100),请用代数式分别表示出该用户这两个月应交的电费.(2)若该用户2015年10月份用电113度,则他应交电费多少元?【考点】列代数式;代数式求值.【专题】数与式.【分析】(1)根据题意可以列出用电小于100度和大于100度时的代数式;(2)根据第一问中列出的代数式可以求得问题的答案.【解答】解:(1)∵某市电力公司规定如下的电费计算方法:每月用电不超过100度,按每度0.5元计算;如每月用电超过100度,则超出部分每度加收0.1元,∴当a<100时,8月份应交的电费为:0.5a;当b>100时,9月份应交的电费为:100×0.5+(b﹣100)×(0.5+0.1)=50+0.6b﹣60=0.6b ﹣10.(2)∵用户2015年10月份用电113度,113>100,∴0.6b﹣10=0.6×113﹣10=67.8﹣10=57.8(元).即该用户2015年10月份用电113度,则他应交电费57.8元.【点评】本题考查列代数式和代数式求值的问题,关键是明确题意,列出正确的代数式.22.阅读与应用计算:+++…+解:因为:=1﹣,=﹣,=﹣,…=﹣所以:+++…+=(1﹣)+(﹣)+(﹣)+…+(﹣)=1﹣+﹣+﹣…+﹣=1﹣=计算:①+++…+②.【考点】有理数的混合运算.【专题】阅读型;规律型.【分析】根据题意得出拆项规律,两式利用拆项法则变形,抵消合并即可得到结果.【解答】解:①原式=1﹣+﹣+…+﹣=1﹣=;②原式=(1﹣+﹣+…+﹣)=(1﹣)=.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.。
2016-2017学年鲁教版七年级上期中质量数学试题含答案
七年级数学试题
注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中选择题 60 分,非选
择题 60 分,满分 120 分,考试时间 120 分钟;
2.选择题选出答案后,用 2B 铅笔把答题卡上对应题目的正确答案标号涂黑.如需改动,
……
XX201526102X17X52%12-3842X622X60X910X4.4.3.97X13X0.X..X.1X91.X.....…9.71....…1..X61.7X.0..X.X..6XX.8.1X..0X6.8X..2X16...…XX3…XX
C.0.1cm,0.1cm,0.1cm
D.3cm,40cm,8cm
2.已知∠A:∠B:∠C=1:2:2,则△ABC 三个角度数分别是( )
A.40º、 80º、 80º
B.35º 、70º 、70º
C.30º、 60º、 60º
D.36º、 72º、 72º
3.下列条件中,能判定△ABC≌△DEF 的是( )
A.AB=DE,BC=EF,∠A=∠D
B.∠A=∠D,∠C=∠F,∠B=∠E
10.如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交 BC 于 D,若 BC=64,且
BD:CD=9:7,则点 D 到 AB 边的距离为( )
A.18
B.28
C.32
D.24
11.如图,△ABC 中,AB=AC,∠A=36°,BD 是 AC 边上的高,则∠DBC 的度数是( )
A.18°
C.∠B=∠E,∠A=∠D,AC=EF D.∠B=∠E,∠A=∠D,AB=DE
4.如图 AB 与 CD 交于点 O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D 的度数为(
新人教版2016-2017学年七年级上册期中数学试卷含答案
2016-2017学年七年级(上)期中数学试卷一、选择题在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号的方格内.1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣2.在﹣1,0,﹣2,这四个数中,最小的数是()A.﹣1 B.0 C.﹣2 D.3.有理数a,b在数轴上的位置如图所示,下列关系正确的是()A.b>0>a>﹣2 B.a>b>0>﹣1 C.a>﹣2>b>0 D.b>0>a>﹣14.有理数中绝对值最小的数是()A.﹣1 B.0 C.1 D.不存在5.下列比较大小的式子中,正确的是()A.2<﹣(+5)B.﹣1>﹣0.01 C.|﹣3|<|+3| D.﹣(﹣5)>+(﹣7)6.数轴上A、B两点所对应的数分别是4和﹣6,则A、B两点间的距离为()A.﹣2 B.2 C.﹣10 D.107.4表示()A.(﹣2)×4 B.(﹣2)×(﹣2)×(﹣2)×(﹣2)C.﹣4×4 D.(﹣2)+(﹣2)+(﹣2)+(﹣2)8.数据6500 000用科学记数法表示为()A.65×105B.6.5×105C.6.5×106D.6.5×1079.把(﹣2)﹣(﹣10)+(﹣6)﹣(+5)写成省略加号和的形式为()A.﹣2+10﹣6﹣5 B.﹣2﹣10﹣6+5 C.﹣2+10﹣6+5 D.2+10﹣6﹣510.计算(﹣1)2012+(﹣1)2013等于()A.2 B.0 C.﹣1 D.﹣211.用代数式表示“a、b两数的平方和减去它们乘积的2倍”,正确的是()A.a2+b2﹣2ab B.(a+b)2﹣2ab C.a2b2﹣2ab D.2(a2+b2﹣ab)12.一个长方形的周长是30厘米,若长方形的一边用字母x(厘米)表示,则该长方形的面积是()A.x(30﹣2x)平方厘米B.x(30﹣x)平方厘米C.x(15﹣x)平方厘米D.x(15+x)平方厘米13.当x=﹣1时,代数式x2﹣2x+1的值是()A.0 B.﹣2 C.﹣1 D.414.某品牌的面粉袋上标有质量为(25±0.25)kg的字样,下列4袋面粉中质量合格的是()A.24.70kg B.24.80kg C.25.30kg D.25.51kg二、填空题15.(4分)若|a|=6,则a= .16.×()=1.17.(4分)按四舍五入法则取近似值:2.096≈(精确到百分位).﹣0.03445≈(精确到0.001).18.(4分)用火柴棒按如图所示的方式摆图形,按照这样的规律继续摆下去,第n个图形需要根火柴棒(用含n的代数式表示).三、解答题19.如图,两个圈分别表示负数集和分数集.请你把下列各数填入表示它所在的数集的圈里:﹣50%,2012,0.618,﹣3,,0,5.9,﹣3.14,﹣92.20.直接写出结果(1)﹣8﹣2=(2)2.5﹣(﹣7.5)=(3)﹣1=(4)12÷()=(5)(﹣0.8)×(﹣2)=(6)(﹣2)3=21.计算(1)0﹣16+(﹣29)﹣(﹣7)﹣(+11)(2)(3)()×(﹣30)(4)(5).22.当a=﹣2,b=3时,求下列代数式的值.(1)(a+b)2﹣(a﹣b)2;(2)a2﹣4ab+4b2.23.某公路养护小组乘车沿东西向公路巡视维护.某天早晨从A地出发,最后收工时到达B地.约定向东为正方向,当天的行驶记录如下(单位:千米):+13,﹣14,+11,﹣10,﹣8,+9,﹣12,+8.(1)问B地在A地的哪个方向?它们相距多少千米?(2)若汽车行驶每千米耗油x升,求该天共耗油多少升?24.小明去文具用品商店给同学买某品牌水性笔,已知甲、乙两商店都有该品牌的水性笔且标价都是1.50元/支,但甲、乙两商店的优惠条件却不同.甲商店:若购买不超过10支,则按标价付款;若一次购10支以上,则超过10支的部分按标价的60%付款.乙商店:按标价的80%付款.在水性笔的质量等因素相同的条件下.(1)设小明要购买的该品牌笔数是x(x>10)支,请用含x的式子分别表示在甲、乙两个商店购买该品牌笔买水性笔的费用.(2)若小明要购买该品牌笔30支,你认为在甲、乙两商店中,到哪个商店购买比较省钱?说明理由.2016-2017学年七年级(上)期中数学试卷参考答案与试题解析一、选择题在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号的方格内.1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣【考点】相反数.【专题】常规题型.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是3,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.在﹣1,0,﹣2,这四个数中,最小的数是()A.﹣1 B.0 C.﹣2 D.【考点】有理数大小比较.【专题】计算题.【分析】由于正数大于0,负数小于0,则这样比较﹣1与﹣2的大小即可,然后计算出它们的绝对值,根据负数的绝对值越大,这个数越小进行大小比较.【解答】解:∵|﹣1|=1,|﹣2|=2,∴﹣2<﹣1<0<.故选C.【点评】本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.3.有理数a,b在数轴上的位置如图所示,下列关系正确的是()A.b>0>a>﹣2 B.a>b>0>﹣1 C.a>﹣2>b>0 D.b>0>a>﹣1【考点】有理数大小比较;数轴.【分析】根据数轴上右边的数总比左边的数大来解答.【解答】解:根据数轴排列的特点可得b>0>a>﹣2.故选A.【点评】解答此题,要熟悉数轴的特点:数轴上右边的数总比左边的数大.4.有理数中绝对值最小的数是()A.﹣1 B.0 C.1 D.不存在【考点】绝对值.【分析】根据绝对值的定义求解.【解答】解:因为数轴上表示数a的点与原点的距离叫做数a的绝对值,0到原点的距离为0,所以有理数中绝对值最小的数是0.故选B.【点评】绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.5.下列比较大小的式子中,正确的是()A.2<﹣(+5)B.﹣1>﹣0.01 C.|﹣3|<|+3| D.﹣(﹣5)>+(﹣7)【考点】有理数大小比较.【专题】计算题.【分析】将各项两式化为最简,比较大小即可.【解答】解:A、﹣(+5)=﹣5,∴2>﹣5,本选项错误;B、∵|﹣1|=1,|﹣0.01|=0.01,∴|﹣1|>|﹣0.01|,∴﹣1<﹣0.01,本选项错误;C、∵|﹣3|=3,|+3|=3,∴|﹣3|=|+3|,本选项错误;D、﹣(﹣5)=5,+(﹣7)=﹣7,∴﹣(﹣5)>+(﹣7),本选项正确,故选D【点评】此题考查了有理数大小比较,注意两负数比较大小的方法.6.数轴上A、B两点所对应的数分别是4和﹣6,则A、B两点间的距离为()A.﹣2 B.2 C.﹣10 D.10【考点】数轴.【分析】求数轴上两点之间的距离:数轴上表示两个点所对应的两个数的差的绝对值,即用较大的数减去较小的数即可.【解答】解:∵数轴上A、B两点所对应的数分别是4和﹣6,∴A、B两点间的距离为4﹣(﹣6)=10.故选D.【点评】本题考查了求数轴上两点间的距离的方法:数轴上表示两个点所对应的两个数的差的绝对值.7.(﹣2)4表示()A.(﹣2)×4 B.(﹣2)×(﹣2)×(﹣2)×(﹣2)C.﹣4×4 D.(﹣2)+(﹣2)+(﹣2)+(﹣2)【考点】有理数的乘方.【专题】计算题.【分析】原式表示4个﹣2的乘积,即可得到正确的选项.【解答】解:(﹣2)4表示(﹣2)×(﹣2)×(﹣2)×(﹣2).故选B【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.8.数据6500 000用科学记数法表示为()A.65×105B.6.5×105C.6.5×106D.6.5×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6500 000=6.5×106,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.把(﹣2)﹣(﹣10)+(﹣6)﹣(+5)写成省略加号和的形式为()A.﹣2+10﹣6﹣5 B.﹣2﹣10﹣6+5 C.﹣2+10﹣6+5 D.2+10﹣6﹣5【考点】有理数的加减混合运算.【专题】计算题.【分析】利用去括号法则去括号后即可得到结果.【解答】解:(﹣2)﹣(﹣10)+(﹣6)﹣(+5)=﹣2+10﹣6﹣5.故选A【点评】此题考查了有理数的加减混合运算,熟练掌握去括号法则是解本题的关键.10.计算(﹣1)2012+(﹣1)2013等于()A.2 B.0 C.﹣1 D.﹣2【考点】有理数的乘方.【专题】计算题.【分析】原式利用﹣1的奇次幂为﹣1,偶次幂为1计算即可得到结果.【解答】解:原式=1﹣1=0.故选B【点评】此题考查了有理数的乘方,熟练掌握﹣1的奇偶次幂是解本题的关键.11.用代数式表示“a、b两数的平方和减去它们乘积的2倍”,正确的是()A.a2+b2﹣2ab B.(a+b)2﹣2ab C.a2b2﹣2ab D.2(a2+b2﹣ab)【考点】列代数式.【分析】根据平方和就是先平方再相加,乘积的2倍就是2ab,从而列出代数式即可.【解答】解:a、b两数的平方和是a2+b2,它们乘积的2倍是2ab,则a、b两数的平方和减去它们乘积的2倍是:a2+b2﹣2ab;故选A.【点评】此题考查了列代数式,关键是读懂题意,找到所求的量的等量关系,要理解“和”、“差”、“倍”、“商”等的意义.12.一个长方形的周长是30厘米,若长方形的一边用字母x(厘米)表示,则该长方形的面积是()A.x(30﹣2x)平方厘米B.x(30﹣x)平方厘米C.x(15﹣x)平方厘米D.x(15+x)平方厘米【考点】列代数式.【分析】先根据周长=(长+宽)×2,表示出另一边的长,再根据长方形的面积=长×宽求面积.【解答】解:由题意可知:长方形另一边用(15﹣x)厘米表示,则该长方形面积为x(15﹣x)平方厘米,故选C.【点评】本题考查了列代数式,列代数式要注意:①要注意书写的规范性,用字母表示数以后,在含有字母与数字的乘法中,通常将“×”简写作“•”或者省略不写.②在数和表示数的字母乘积中,一般把数写在字母的前面,这个数若是带分数要把它化成假分数.③含有字母的除法,一般不用“÷”(除号),而是写成分数的形式.13.当x=﹣1时,代数式x2﹣2x+1的值是()A.0 B.﹣2 C.﹣1 D.4【考点】代数式求值.【专题】计算题.【分析】直接把x=﹣1代入计算即可.【解答】解:当x=﹣1,原式=(﹣1)2﹣2×(﹣1)+1=1+2+1=4.故选D.【点评】本题考查了代数式求值:把满足条件的字母的值代入代数式中进行计算得到对应的代数式的值.14.某品牌的面粉袋上标有质量为(25±0.25)kg的字样,下列4袋面粉中质量合格的是()A.24.70kg B.24.80kg C.25.30kg D.25.51kg【考点】正数和负数.【专题】应用题.【分析】正确理解(25±0.25)的含义,25+0.25=25.25,25﹣0.25=24.75,说明面粉在此区间内合格.【解答】解:在24.75~25.25这个区间内的只有24.80.故选B.【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.二、填空题15.若|a|=6,则a= ±6 .【考点】绝对值.【专题】计算题.【分析】利用绝对值的代数意义计算即可确定出a的值.【解答】解:∵|a|=6,∴a=±6.故答案为:±6.【点评】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.16.(﹣5 )×()=1.【考点】有理数的乘法.【专题】计算题.【分析】利用有理数的乘法法则计算即可得到结果.【解答】解:(﹣5)×(﹣)=1.故答案为:﹣5【点评】此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.17.按四舍五入法则取近似值:2.096≈ 2.10 (精确到百分位).﹣0.03445≈﹣0.034 (精确到0.001).【考点】近似数和有效数字.【分析】一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.精确到哪位就是对这位后边的数进行四舍五入.【解答】解:用四舍五入法计算即可.2.096精确到百分位就是小数点后两位,就是2.10;﹣0.034 45精确到0.001就是小数点后三位就是﹣0.034.【点评】本题主要考查了近似数和有效数字的有关知识,做这类题要注意按要求做题.18.用火柴棒按如图所示的方式摆图形,按照这样的规律继续摆下去,第n个图形需要5n+1 根火柴棒(用含n的代数式表示).【考点】规律型:图形的变化类.【分析】仔细观察发现每增加一个正六边形其火柴根数增加5根,将此规律用代数式表示出来即可.【解答】解:由图可知:图形标号(1)的火柴棒根数为6;图形标号(2)的火柴棒根数为11;图形标号(3)的火柴棒根数为16;…由该搭建方式可得出规律:图形标号每增加1,火柴棒的个数增加5,所以可以得出规律:搭第n个图形需要火柴根数为:6+5(n﹣1)=5n+1,故答案为:5n+1.【点评】本题是一道关于图形变化规律型的,关键在于通过题中图形的变化情况,通过归纳与总结找出普遍规律求解即可.三、解答题19.如图,两个圈分别表示负数集和分数集.请你把下列各数填入表示它所在的数集的圈里:﹣50%,2012,0.618,﹣3,,0,5.9,﹣3.14,﹣92.【考点】有理数.【分析】根据负数及分数的定义,结合所给的数据进行解答即可.【解答】解:填写如下:【点评】此题考查有理数的知识,掌握负数及分数的定义是解答本题的关键.20.(12分)(2012秋•定安县期中)直接写出结果(1)﹣8﹣2=(2)2.5﹣(﹣7.5)=(3)﹣1=(4)12÷()=(5)(﹣0.8)×(﹣2)=(6)(﹣2)3=【考点】有理数的混合运算.【分析】(1)利用加法法则计算即可;(2)首先利用减法法则转化成加法,然后运算即可;(3)利用加法法则计算即可;(4)利用有理数的乘法法则即可求解;(5)利用立方的意义即可求解.【解答】解:(1)原式=﹣(8+2)=﹣10;(2)原式=2.5+7.5=10;(3)原式=;(4)原式=﹣12×4=﹣48;(5)原式=0.8×0.2=1.6;(6)原式=﹣8.【点评】本题考查了有理数的运算,理解运算法则是关键.21.(20分)(2012秋•定安县期中)计算(1)0﹣16+(﹣29)﹣(﹣7)﹣(+11)(2)(3)()×(﹣30)(4)(5).【考点】有理数的混合运算.【分析】(1)首先利用符号法则对式子进行化简,然后进行加减运算即可;(2)首先进行同分母的分式的加减,然后对所得结果进行运算即可;(3)首先利用分配律计算乘法,然后进行加减运算即可;(4)首先计算乘方,计算括号内的式子,然后进行加减运算;(5)逆用乘法的分配律,计算整数的加减,然后进行乘法运算.【解答】解:(1)原式=﹣16﹣29+7﹣11=﹣49;(2)原式=3﹣24=﹣21;(3)原式=﹣12+2﹣25=﹣35;(4)原式=﹣1﹣[﹣2+×(﹣3)]=﹣1﹣[﹣2﹣2]=﹣1+4=3;(5)原式=(23﹣57﹣26)×=﹣15.【点评】本题考查的是有理数的运算与整式的加减运算.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.22.(10分)(2012秋•定安县期中)当a=﹣2,b=3时,求下列代数式的值.(1)(a+b)2﹣(a﹣b)2;(2)a2﹣4ab+4b2.【考点】代数式求值.【专题】计算题.【分析】(1)先计算出a+b=﹣2+3=1,a﹣b=﹣2﹣3=﹣5,然后利用整体思想进行计算;(2)先变形原式得到(a﹣2b)2,然后把a=﹣2,b=3代入计算.【解答】解:(1)∵a=﹣2,b=3,∴a+b=﹣2+3=1,a﹣b=﹣2﹣3=﹣5,∴原式=12﹣(﹣5)2=﹣24;(2)原式=(a﹣2b)2,当a=﹣2,b=3,原式=(﹣2﹣2×3)2=64.【点评】本题考查了代数式求值:先把代数式根据已知条件进行变形,然后利用整体思想进行计算.23.某公路养护小组乘车沿东西向公路巡视维护.某天早晨从A地出发,最后收工时到达B地.约定向东为正方向,当天的行驶记录如下(单位:千米):+13,﹣14,+11,﹣10,﹣8,+9,﹣12,+8.(1)问B地在A地的哪个方向?它们相距多少千米?(2)若汽车行驶每千米耗油x升,求该天共耗油多少升?【考点】有理数的加法;正数和负数.【专题】应用题.【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【解答】解:(1)将行驶记录所有的数据相加,得结果为﹣3,∵约定向东为正方向,∴B地在A地的西边,它们相距3千米.(2)汽车行驶每千米耗油x升,设该天共耗油y升,则y=(13+14+11+10+8+9+12+8)x=85x升.∴该天共耗油85x升.【点评】解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.24.小明去文具用品商店给同学买某品牌水性笔,已知甲、乙两商店都有该品牌的水性笔且标价都是1.50元/支,但甲、乙两商店的优惠条件却不同.甲商店:若购买不超过10支,则按标价付款;若一次购10支以上,则超过10支的部分按标价的60%付款.乙商店:按标价的80%付款.在水性笔的质量等因素相同的条件下.(1)设小明要购买的该品牌笔数是x(x>10)支,请用含x的式子分别表示在甲、乙两个商店购买该品牌笔买水性笔的费用.(2)若小明要购买该品牌笔30支,你认为在甲、乙两商店中,到哪个商店购买比较省钱?说明理由.【考点】列代数式.【分析】(1)先求出甲商店10支水性笔的价钱,然后再求出超过10支的部分的价钱,然后列出代数式;乙商店每支水性笔的价钱是1.5×0.8元,那么x支的价钱是1.5×0.8×x元;(2)把x=30代入以上两式即可得到答案.【解答】解:(1)在甲商店需要:10×1.5+0.6×1.5×(x﹣10)=0.9x+6(元),在乙商店需要:1.5×0.8×x=1.2x(元),(2)当x=30时,0.9x+6=33,1.2x=36,因为33<36,所以小明要买30支笔应到甲商店买比较省钱.【点评】本题考查了列代数式,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.。
2017-2018学年山东省泰安市肥城市七年级(上)期中数学试卷(解析版)
2017-2018学年山东省泰安市肥城市七年级(上)期中数学试卷一、选择题(共14小题,每小题3分,满分42分)1.(3分)﹣3的倒数为()A.﹣ B.C.3 D.﹣32.(3分)期中考试结束后,学校为了了解七年级968名学生的数学成绩情况,随机抽取了50名学生的数学成绩进行分析,对这个问题的说法正确的是()A.采取了抽样调查的方式B.这次调查的样本容量时968C.抽取的这50名学生组成总体的一个样本D.每名学生的成绩都是这次调查的一个个体3.(3分)在数轴上,下列几个数中与﹣1最接近是()A.1 B.0 C.﹣0.9 D.﹣1.64.(3分)下列各图中,不是正方体的表面展开图的是()A.B.C.D.5.(3分)中国国家图书馆藏书约27 000 000册,居世界第五位,把这个数据用科学记数法表示正确的是()A.27×106 B.2.7×106C.2.7×107D.2.7×1086.(3分)若线段AB=3,AC=2,则线段BC的长不可能为()A.1 B.5 C.3 D.67.(3分)对于条形统计图、折线统计图和扇形统计图这三种常见的统计图,下列说法正确的是()A.通常不可互相转换B.条形统计图能清楚地反映事物的变化情况C.折线统计图能清楚地表示出每个项目的具体数目D.扇形统计图能清楚地表示出各部分在总体中所占的百分比8.(3分)黑板上有不同四个点A、B、C、D,过其中每两个点画直线,可以画出直线的条数为()A.一条或二条B.一条、四条或六条C.一条、三条、四条或六条D.一条、二条、四条或六条9.(3分)下列说法:①若ab=1,则a、b互为倒数;②若a+b=0,则a、b互为相反数;③若a>b,则a2>b2;④任何数的偶次幂一定为正数,其中正确的有()A.1个 B.2个 C.3个 D.4个10.(3分)在线段AB上取一点C,使AC=AB,再在AB的延长线上取一点D,使DB=AD,则BC是AD的()A.B.C.D.11.(3分)有理数a、b在数轴上的位置如图所示,则﹣|a+1|﹣|1﹣b|的值是()A.﹣a﹣b B.b﹣a﹣2 C.a+b D.a﹣b+212.(3分)计算(﹣2)3÷8×的结果为()A.﹣4 B.4 C.D.﹣13.(3分)比较﹣32,(﹣2)3,(﹣)2,(﹣)3的大小,正确的是()A.(﹣)2>(﹣)3>(﹣2)3>﹣32B.(﹣2)3>﹣32>(﹣)3>(﹣)2C.(﹣)3>(﹣)2>(﹣2)3>﹣32D.﹣32>(﹣2)3>(﹣)2>(﹣)314.(3分)某学校将为初一学生开设ABCDEF共6门选修课,现选取若干学生进行了“我最喜欢的一门选修课”调查,将调查结果绘制成如图统计图表(不完整)根据图表提供的信息,下列结论错误的是()A.这次被调查的学生人数为400人B.扇形统计图中E部分扇形的圆心角为72°C.被调查的学生中喜欢选修课E、F的人数分别为80,70D.喜欢选修课C的人数最少二、填空题(共4小题,每小题3分,满分12分)15.(3分)请任意写出一个介于﹣到﹣之间的数.16.(3分)如图,C是线段AB的中点,D在线段CB上,AD=6,DB=4,则CD 的长等于.17.(3分)若为|a+1|+|b﹣2017|=0,则a b的值为.18.(3分)如图,平面内有公共端点的六条射线OA、OB、OC、OD、OE、OF,按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,…,则“2017”在射线上.三、解答题(共7小题,满分66分)19.(10分)按要求解答下列问题已知有理数﹣3、2、+(﹣1)、|﹣3|、0、﹣(﹣)、﹣1.5(1)请将上面所有负有理数填在横线上.(2)画出数轴,并把上面各数表示在数轴上;(3)用“<”把以上各数连接起来.20.(12分)计算下列各题(1)(﹣5)+(﹣6)﹣(+12)﹣(﹣20)(2)×(﹣)×÷(3)32×(﹣)3﹣0.52×(﹣2)3(4)﹣14﹣(1﹣0.5)÷×[(﹣2)3+3﹣(﹣3)].21.(6分)如图,C是线段AB上一点,D是线段AC的中点,E为线段CB的中点,AB=9cm,AC=5cm,求(1)AD的长;(2)DE的长.22.(9分)按要求完成下列问题如图,平面上有四个点A、B、C、D,根据下列语句画图(1)画直线AB、CD交于E点,画线段AC、BD交于点F,并连接E、F交BC于点G;(2)连接AD,并在AD的反向延长线上截取一点M,使AM=AC;(3)画射线BC,并反射延长BC到N点,使BN=BC.23.(10分)某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入,如表是某周的生产情况(超产为正,减产为负,单位:辆)(1)根据记录可知星期四生产自行车辆;(2)该厂本周实际生产自行车辆;(3)产量最多的一天比产量最少的一天多生产辆;(4)该厂实行每周计件工资制,每生产一辆自行车得60元,若超额完成任务每辆车奖15元,少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?24.(9分)某九年级制学校围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:(1)该校对多少学生进行了抽样调查?(2)本次抽样调查中,最喜欢篮球活动的有多少?占被调查人数的百分比是多少?(3)若该校九年级共有200名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?25.(10分)阅读下列材料,回答提出的问题我们知道:一个数a的绝对值可以表示成|a|,它是一个非负数,|a|在数轴上含义是:表示a这个数的点到原点的距离(距离,当然不可能是负数),这样就把|a|与数轴上的点建立了一种联系(这正是绝对值的几何意义),比如说|2|的几何意义就是:数轴上表示2这个数的点到原点的距离,它是2,所以说|2|=2,|﹣2|表示﹣2这个数在数轴上所对应的点到原点的距离,它也是2,所以说|﹣2|=2,严格来说,在数轴上,一个数a在数轴上所对应的点到原点(原点对应的数为0)的距离应该表示为|a﹣0|,但平时我们都写成|a|,原因你明白.(1)若给定|x|=3,要找这样的x,请按照上面材料中的说法,解释它的几何意义并找出对应的x;(2)实际上,对于数轴上任意两个数x1,x2之间的距离我们也可以表示为|x1﹣x2|,反过来,|x1﹣x2|这个绝对值的几何意义就是:数轴上表示x1与x2这两个数的点之间的距离,你能结合上面的叙述,解释|5﹣2|=3的几何意义吗?请按你的理解说明:|5+2|=7呢?如果能解释这个,你了不起;(3)若|x﹣2017|=1,请直接写出x的值.2017-2018学年山东省泰安市肥城市七年级(上)期中数学试卷参考答案与试题解析一、选择题(共14小题,每小题3分,满分42分)1.(3分)﹣3的倒数为()A.﹣ B.C.3 D.﹣3【解答】解:∵(﹣3)×(﹣)=1,∴﹣3的倒数是﹣.故选:A.2.(3分)期中考试结束后,学校为了了解七年级968名学生的数学成绩情况,随机抽取了50名学生的数学成绩进行分析,对这个问题的说法正确的是()A.采取了抽样调查的方式B.这次调查的样本容量时968C.抽取的这50名学生组成总体的一个样本D.每名学生的成绩都是这次调查的一个个体【解答】解:A、采取了抽样调查的方式,故选项正确;B、这次调查的样本容量是50,故选项错误;C、抽取的这50名学生的数学成绩组成一个样本,故选项错误;D、每名学生的数学成绩都是这次调查的一个个体,故选项错误.故选:A.3.(3分)在数轴上,下列几个数中与﹣1最接近是()A.1 B.0 C.﹣0.9 D.﹣1.6【解答】解:1﹣(﹣1)=2,0﹣(﹣1)=1,﹣0.9﹣(﹣1)=0.1,﹣1﹣(﹣1.6)=0.6,∵0.1<0.6<1<2,∴与﹣1最接近是﹣0.9.故选:C.4.(3分)下列各图中,不是正方体的表面展开图的是()A.B.C.D.【解答】解:A图中每个面都有对面,故A正确;B A图中每个面都有对面,故B正确;CA图中每个面都有对面,故C正确;DA图中中间层的左边的面没有对面,故D错误;故选:D.5.(3分)中国国家图书馆藏书约27 000 000册,居世界第五位,把这个数据用科学记数法表示正确的是()A.27×106 B.2.7×106C.2.7×107D.2.7×108【解答】解:27 000 000=2.7×107,故选:C.6.(3分)若线段AB=3,AC=2,则线段BC的长不可能为()A.1 B.5 C.3 D.6【解答】解:∵线段AB=3,AC=2,∴3﹣2≤BC≤3+2,∴1≤BC≤5,∴线段BC的长不可能为6,故选:D.7.(3分)对于条形统计图、折线统计图和扇形统计图这三种常见的统计图,下列说法正确的是()A.通常不可互相转换B.条形统计图能清楚地反映事物的变化情况C.折线统计图能清楚地表示出每个项目的具体数目D.扇形统计图能清楚地表示出各部分在总体中所占的百分比【解答】解:因为这三种图是能互相转换,∴A错误.条形统计图能清楚地表示出每个项目的数据,∴B错误;折线统计图能清楚地反映事物的变化情况也能表示出每个项目的具体数目,∴C 正确;扇形统计图直接反映部分占总体的百分比大小,∴D正确;故选:CD.8.(3分)黑板上有不同四个点A、B、C、D,过其中每两个点画直线,可以画出直线的条数为()A.一条或二条B.一条、四条或六条C.一条、三条、四条或六条D.一条、二条、四条或六条【解答】解:(1)如果4个点,点A、B、C、D在同一直线上,那么只能确定一条直线,如图:(2)如果4个点中有3个点(不妨设点A、B、C)在同一直线上,而第4个点,点D不在此直线上,那么可以确定4条直线,如图:(3)如果4个点中,任何3个点都不在同一直线上,那么点A分别和点B、C、D确定3条直线,点B分别与点C、D确定2条直线,最后点C、D确定一条直线,这样共确定6条直线,如图:综上所述,过其中2个点可以画1条、4条或6条直线.故选:B.9.(3分)下列说法:①若ab=1,则a、b互为倒数;②若a+b=0,则a、b互为相反数;③若a>b,则a2>b2;④任何数的偶次幂一定为正数,其中正确的有()A.1个 B.2个 C.3个 D.4个【解答】解:若ab=1,则a、b互为倒数,故①正确,若a+b=0,则a、b互为相反数,故②正确,若a=1,b=﹣2,则12<(﹣2)2,故③错误,0的偶次幂为0,故④错误,故选:B.10.(3分)在线段AB上取一点C,使AC=AB,再在AB的延长线上取一点D,使DB=AD,则BC是AD的()A.B.C.D.【解答】解:∵在线段AB上取一点C,使AC=AB,∴设AC=x,则AB=3x,∵在AB的延长线上取一点D,使DB=AD,∴BD=x,故BC=2x,AD=4x,则BC是AD的.故选:C.11.(3分)有理数a、b在数轴上的位置如图所示,则﹣|a+1|﹣|1﹣b|的值是()A.﹣a﹣b B.b﹣a﹣2 C.a+b D.a﹣b+2【解答】解:由图可得,﹣1<a<0<1<b,则﹣|a+1|﹣|1﹣b|=﹣a﹣1+1﹣b=﹣a﹣b.故选:A.12.(3分)计算(﹣2)3÷8×的结果为()A.﹣4 B.4 C.D.﹣【解答】解:(﹣2)3÷8×=﹣8××=﹣,故选:D.13.(3分)比较﹣32,(﹣2)3,(﹣)2,(﹣)3的大小,正确的是()A.(﹣)2>(﹣)3>(﹣2)3>﹣32B.(﹣2)3>﹣32>(﹣)3>(﹣)2C.(﹣)3>(﹣)2>(﹣2)3>﹣32D.﹣32>(﹣2)3>(﹣)2>(﹣)3【解答】解:∵﹣32=﹣9,(﹣2)3=﹣8,(﹣)2=,(﹣)3=﹣,∴(﹣)2>(﹣)3>(﹣2)3>﹣32.故选:A.14.(3分)某学校将为初一学生开设ABCDEF共6门选修课,现选取若干学生进行了“我最喜欢的一门选修课”调查,将调查结果绘制成如图统计图表(不完整)根据图表提供的信息,下列结论错误的是()A.这次被调查的学生人数为400人B.扇形统计图中E部分扇形的圆心角为72°C.被调查的学生中喜欢选修课E、F的人数分别为80,70D.喜欢选修课C的人数最少【解答】解:被调查的学生人数为60÷15%=400(人),∴选项A正确;扇形统计图中D的圆心角为×360°=90°,∵×360°=36°,360°×(17.5%+15%+12.5%)=162°,∴扇形统计图中E的圆心角=360°﹣162°﹣90°﹣36°=72°,∴选项B正确;∵400×=80(人),400×17.5%=70(人),∴选项C正确;∵12.5%>10%,∴喜欢选修课A的人数最少,∴选项D错误;故选:D.二、填空题(共4小题,每小题3分,满分12分)15.(3分)请任意写出一个介于﹣到﹣之间的数﹣.【解答】解:例如﹣.故答案为:﹣.16.(3分)如图,C是线段AB的中点,D在线段CB上,AD=6,DB=4,则CD 的长等于1.【解答】解:∵C是线段AB的中点,AD=6,DB=4,∴BC=(AD+DB)=5,∴CD=BC﹣BD=5﹣4=1.故答案为:1.17.(3分)若为|a+1|+|b﹣2017|=0,则a b的值为﹣1.【解答】解:由题意得,a+1=0,b﹣2017=0,解得a=﹣1,b=2017,所以,a b=(﹣1)2017=﹣1.故答案为:﹣1.18.(3分)如图,平面内有公共端点的六条射线OA、OB、OC、OD、OE、OF,按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,…,则“2017”在射线OA上.【解答】解:由图可知射线OF上的数字为6n,射线OA上的数字为6n+1,射线OB上的数字为6n+2,射线OC上的数字为6n+3,射线OD上的数字为6n+4,射线OE上的数字为6n+5,(n为自然数).∵2017÷6=336…1,∴2017在射线OA上.故答案为:OA.三、解答题(共7小题,满分66分)19.(10分)按要求解答下列问题已知有理数﹣3、2、+(﹣1)、|﹣3|、0、﹣(﹣)、﹣1.5(1)请将上面所有负有理数填在横线上﹣3、+(﹣1)、﹣1.5.(2)画出数轴,并把上面各数表示在数轴上;(3)用“<”把以上各数连接起来.【解答】解:(1)负有理数为﹣3、+(﹣1)、﹣1.5.(2)如图所示:(3)用“<”把以上各数连接起来为:﹣3<﹣1.5<+(﹣1)<0<﹣(﹣)<2<|﹣3|.故答案为:﹣3、+(﹣1)、﹣1.5.20.(12分)计算下列各题(1)(﹣5)+(﹣6)﹣(+12)﹣(﹣20)(2)×(﹣)×÷(3)32×(﹣)3﹣0.52×(﹣2)3(4)﹣14﹣(1﹣0.5)÷×[(﹣2)3+3﹣(﹣3)].【解答】解:(1)原式=﹣5﹣6﹣12+20=﹣3;(2)原式=×(﹣)××=﹣;(3)原式=﹣4+2=﹣2;(4)原式=﹣1﹣×3×(﹣2)=﹣1+3=2.21.(6分)如图,C是线段AB上一点,D是线段AC的中点,E为线段CB的中点,AB=9cm,AC=5cm,求(1)AD的长;(2)DE的长.【解答】解:(1)∵AC=5cm,D是AC中点,∴AD=DC=AC=cm,(2)∵AB=9cm,AC=5cm,∴BC=AB﹣AC=9﹣5=4cm,∵E是BC中点,∴CE=BC=2cm,∴DE=CD+CE=+2=cm.22.(9分)按要求完成下列问题如图,平面上有四个点A、B、C、D,根据下列语句画图(1)画直线AB、CD交于E点,画线段AC、BD交于点F,并连接E、F交BC于点G;(2)连接AD,并在AD的反向延长线上截取一点M,使AM=AC;(3)画射线BC,并反射延长BC到N点,使BN=BC.【解答】解:(1)直线AB、CD等如图所示;(2)M如图所示;(3)射线BC,点N如图所示;23.(10分)某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入,如表是某周的生产情况(超产为正,减产为负,单位:辆)(1)根据记录可知星期四生产自行车213辆;(2)该厂本周实际生产自行车1409辆;(3)产量最多的一天比产量最少的一天多生产26辆;(4)该厂实行每周计件工资制,每生产一辆自行车得60元,若超额完成任务每辆车奖15元,少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?【解答】解:(1)200+13=213(辆).答:星期四生产自行车213辆;(2)1400+(5﹣2﹣4+13﹣10+16﹣9)=1409(辆).答:该厂本周实际生产自行车1409辆;(3)16﹣(﹣10)=16+10=26(辆),答:产量最多的一天比产量最少的一天.生产26辆;(4)这一周多生产的总辆数是5﹣2﹣4+13﹣10+16﹣9=9(辆).1400×60+9×(60+15)=84000+675=84675(元).答:该厂工人这一周的工资总额是84675元.故答案为:213;1409;2624.(9分)某九年级制学校围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:(1)该校对多少学生进行了抽样调查?(2)本次抽样调查中,最喜欢篮球活动的有多少?占被调查人数的百分比是多少?(3)若该校九年级共有200名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?【解答】解:(1)由图1知:4+8+10+18+10=50名,答:该校对50名学生进行了抽样调查.(2)本次调查中,最喜欢篮球活动的有18人×100%=36%∴最喜欢篮球活动的人数占被调查人数的36%.(3)1﹣(30%+26%+24%)=20%,200÷20%=1000人,×100%×1000=160人.答:估计全校学生中最喜欢跳绳活动的人数约为160人.25.(10分)阅读下列材料,回答提出的问题我们知道:一个数a的绝对值可以表示成|a|,它是一个非负数,|a|在数轴上含义是:表示a这个数的点到原点的距离(距离,当然不可能是负数),这样就把|a|与数轴上的点建立了一种联系(这正是绝对值的几何意义),比如说|2|的几何意义就是:数轴上表示2这个数的点到原点的距离,它是2,所以说|2|=2,|﹣2|表示﹣2这个数在数轴上所对应的点到原点的距离,它也是2,所以说|﹣2|=2,严格来说,在数轴上,一个数a在数轴上所对应的点到原点(原点对应的数为0)的距离应该表示为|a﹣0|,但平时我们都写成|a|,原因你明白.(1)若给定|x|=3,要找这样的x,请按照上面材料中的说法,解释它的几何意义并找出对应的x;(2)实际上,对于数轴上任意两个数x1,x2之间的距离我们也可以表示为|x1﹣x2|,反过来,|x1﹣x2|这个绝对值的几何意义就是:数轴上表示x1与x2这两个数的点之间的距离,你能结合上面的叙述,解释|5﹣2|=3的几何意义吗?请按你的理解说明:|5+2|=7呢?如果能解释这个,你了不起;(3)若|x﹣2017|=1,请直接写出x的值.【解答】解:(1)在数轴上,数x对应的数到原点的距离为3,这样的点有2个,为3或﹣3;(2)|5﹣2|=3表示数轴上表示5的那个点到表示2的点的距离为3,∴|5﹣2|=3;∵|5+2|=|5﹣(﹣2)|,∴|5+2|表示在数轴上表示5的点到表示﹣2的点的距离,这个距离为7,即|5+2|=7;(3)∵|x﹣2017|=1,∴数轴上表示数x的点到表示数2017的点的距离为1,∴x的值为2016或2018.。
2016-2017学年七年级数学上册期中试卷及答案
2016-2017学年七年级数学上册期中试卷及答案下面是小编整理的关于2016-2017学年七年级数学上册期中试卷及答案,希望帮助到同学们。
一、选择题(本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的代号填入题后的括号内)1.在-212 、+710 、-3、2、0、4、5、-1中,负数有 ( )A、 1个B、2个C、3个D、4个2.如下图所示,在数轴上表示到原点的距离为3个单位的点有( )A.D点B.A点C.A点和D点D.B点和C点3. 2008年5月26 日下午,奥运圣火扬州站的传递在一路“中国加油” 中进行着,全程11800米,用科学计数法,结果为 ( )米A. 11.8 103B.1.2 104C.1.18 104D.1.2 1034.下列各项中,是同类项的是( )A.x与yB.C.-3pq与2pqD.abc与ac5.已知两数在数轴上对应的点如下图所示,下列结论正确的是 ( )A. B. C. D.6.去括号后等于a-b+c的是( )A. a-(b+c)B.a-(b-c)C.a+(b-c)D.a+(b+c)7.一件商品的进价是a 元,提价20%后出售,则这件商品的售价是 ( )A.0.8a元B.a 元C.1.2a元D.2a元8.若,则x-y等于( )A.1B.-1C.3D.-39.下列说法错误的是( )A、是二次三项式B、不是单项式C、的系数是D、的次数是610.如果|a|=-a, 下列各式一定成立的是 ( )A. a>0B. a>0或a=0C. a<0或a=0D. 无法确定二、填空题:(本大题共8小题,每小题3分,共24分.把答案写在题中的横线上)11.水位上升30cm 记作+30cm,那么-16cm表示。
12.用“<” “=”或“>”填空:(1)-(- 1) - | - 1 |;(2)- 0.1 -0.01; (3) _____13.计算: =___________14.若a与b互为相反数,c与 d互为倒数,则 ___________15.单项式的系数是,次数是。
2016-2017学年人教版七年级上期中数学试卷含答案
22.(8 分)观察下列式子: -a+b=-(a-b), 2-3x=-(3x-2), 5x+30=5(x+6), -x-6=-(x+6). 由以上四个式子中括号的变化情况,说明它和去括号法则有什么不同?根据你的探索规律解 决下列问题:已知 a2+b2=5,1-b=-2,求-1+a2+b+b2 的值.
28
26
………………
根据上述规律,2 016 应为( )
A.第 251 行 第 1 列
B.第 251 行 第 5 列
C.第 252 行 第 1 列
D.第 252 行 第 4 列
二、填空题(每小题 4 分,共 20 分)
13.已知 a,b 互为相反数,则 a+2a+3a+…+49a+50a+50b+49b+…+3b+2b+b=
23.(8 分)我们把符号“n!”读作“n 的阶乘”,规定“其中 n 为自然数,当 n≠0 时,n!=n·(n-1)·(n2)·…·2·1,当 n=0 时,0!=1”.例如:6!=6×5×4×3×2×1=720. 又规定“在含有阶乘和加、减、乘、除运算时,应先计算阶乘,再乘除,后加减,有括号就先算括 号里面的”. 按照以上的定义和运算顺序,计算: (1)4!; (2); (3)(3+2)!-4!; (4)用具体数试验一下,看看等式(m+n)!=m!+n!是否恒成立.
km 后每千米 1.4 元(不足 1 km 按 1 km 算).小明坐车 x(x>3)km,应付车费( )
A.6 元
B.6x 元
C.(1.4x+2.8)元
新人教版2016-2017学年七年级(上)期中数学试卷(三)及答案
新人教版2016-2017学年七年级(上)期中数学试卷(三)2017.1.26一、选择题(本大题共10个小题,每小题只有一个正确选项,每小题4分,满分40分)1.下列计算正确的是()A.﹣5+4=﹣9 B.﹣8﹣8=0 C.23=6 D.﹣42=﹣162.下列计算正确的是()A.2x+3y=5xy B.2a2+2a3=2a5C.4a2﹣3a2=1 D.﹣2ba2+a2b=﹣a2b3.下列说法正确的是()A.近似数1.50和1.5是相同的B.3520精确到百位等于3500C.6.610精确到千分位D.2.70×104精确到百分位4.某种速冻水饺的储藏温度是﹣18±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺的是()A.﹣17℃B.﹣22℃C.﹣18℃D.﹣19℃5.下列说法错误的是()A.﹣xy的系数是﹣1B.﹣c是五次单项式C.2x2﹣3xy﹣1是二次三项式D.把多项式﹣2x2+3x3﹣1+x按x的降幂排列是3x3﹣2x2+x﹣16.已知a﹣b=﹣2,则代数式3(a﹣b)2﹣a+b的值为()A.10 B.12 C.﹣10 D.147.已知单项式2x a y2与﹣3xy b的和是一个单项式,则(a﹣b)3=()A.﹣8 B.8 C.﹣1 D.18.图中表示阴影部分面积的代数式是()A.ad+bc B.c(b﹣d)+d(a﹣c)C.ad+c(b﹣d)D.ab﹣cd9.小王利用计算机设计了一个程序,输入和输出的数据如下表:那么,当输入数据8时,输出的数据是()A.B.C.D.10.如果有4个不同的正整数m、n、p、q满足=4,那么m+n+p+q等于()A.8038 B.8049 C.8052 D.8056二、填空题(本大题共5个小题,每小题4分,满分20分)11.比较大小:﹣0.0260;|﹣5| ﹣(﹣5).12.“珍惜水资源,节约用水”是公民应具备的优秀品质.据测试,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升.如果某个同学在洗手后,没有把水龙头拧紧,当他离开5小时后水龙头滴了毫升水.(必须用科学记数法表示,否则0分)13.观察规定一种新运算:a⊕b=a b,如2⊕3=23=8,计算:(﹣)⊕2=.14.在数﹣5,1,﹣3,5,﹣2中任取三个数相乘,其中最大的积是,最小的积是.15.已知|x|=a,|y|=b,给出下列结论:①若x﹣y=0,则a﹣b=0;②若a﹣b=0,则x﹣y=0;③若a+b=0,则x+y=0;④若x2﹣y2=0,则a﹣b=0.其中正确的结论有(将所有正确结论的序号填写在横线上).三、解答题(本大题共有8个小题,满分90分)16.计算:(1)4﹣2×(﹣3)2+6÷(﹣)(2)(﹣﹣+)×36+|﹣24|17.化简与计算(1)已知:多项式A=2x2﹣xy,B=x2+xy﹣6,(2)3x2y﹣|2xy2﹣(2xy﹣3x2y|﹣2xy,求:①4A﹣B;其中x=3,y=﹣.②当x=1,y=﹣2时,4A﹣B的值.18.为了有效控制酒后驾车,某天无为县交警大队的一辆警车在东西方向的通江大道上巡视,警车从某地A处出发,规定向东方向为正,当天行驶纪录如下(单位:千米)+10,﹣9,+7,﹣15,+6,﹣5,+4,﹣2(1)此时,这辆巡逻的汽车司机如何向队长描述他的位置?(2)如果警车行驶1千米耗油0.2升,油箱有油10升,现在警车要回到出发点A处,那么油箱的油够不够?若不够,途中至少需补充多少升油?19..观察下列算式:①(1+)(1﹣)=×=1;②(1+)(1﹣)=×=1;③(1+)(1﹣)=×=1;根据以上算式的规律,解决下列问题:(1)第⑩个等式为:;(2)计算:(1+)×(1+)×(1+)×…×(1+)×(1﹣)×(1﹣)×(1﹣)×…×(1﹣).20.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产为正,减产为负,单位:辆):(1)根据记录可知前三天共生产辆.(2)产量最多的一天比产量最少的一天多生产辆.(3)该厂实行计件工资制,每生产一辆自行车50元,超额完成任务每辆车奖20元,少生产一辆扣10元,那么该厂工人这一周的工资总额是多少?21.已知一个三角形的第一条边长为2a+5b,第二条边比第一条边长3a﹣2b,第三条边比第二条边短3a(1)用含a,b的式子表示这个三角形的周长,并化简;(2)若a,b满足|a﹣5|+(b﹣3)2=0,求出这个三角形的周长.22.某大型超市上周日购进新鲜的黄瓜1000公斤,每公斤1.5元,受暴发的“毒黄瓜”的影响,销售价格出现较大的波动,表中为一周内黄瓜销售价格的涨跌情况(涨为正,跌为负,其中星期一的销售价格是与进价比较,单位:元):(1)到星期二时,每公斤的黄瓜售价是多少元?(2)本周最低售价是每公斤多少元?(3)已知截止到星期五,已卖出黄瓜700公斤,销售总额为935元.如果超市星期六能将剩下的黄瓜全部卖出.不考虑损耗等其他因素,请算算该超市本周销售黄瓜是盈还是亏?盈亏是多少?23.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示1和4的两点之间的距离是;表示﹣3和2的两点之间的距离是;表示数a和﹣2的两点之间的距离是3,那么a=;一般地,数轴上表示数m和数n的两点之间的距离等于.(2)若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值;(3)存在不存在数a,使代数式|a+3|+|a﹣2|+|a﹣4|的值最小?如果存在,请写出数a=,此时代数式|a+3|+|a﹣2|+|a﹣4|最小值是.(注:本小题是填空题,可不写解答过程.).2016-2017学年安徽省巢湖市和县七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题只有一个正确选项,每小题4分,满分40分)1.下列计算正确的是()A.﹣5+4=﹣9 B.﹣8﹣8=0 C.23=6 D.﹣42=﹣16【考点】有理数的乘方;有理数的加法;有理数的减法.【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式=﹣1,错误;B、原式=﹣16,错误;C、原式=8,错误;D、原式=﹣16,正确,故选D2.下列计算正确的是()A.2x+3y=5xy B.2a2+2a3=2a5C.4a2﹣3a2=1 D.﹣2ba2+a2b=﹣a2b【考点】合并同类项.【分析】根据合并同类项的法则,系数相加字母部分不变,可得答案.【解答】解:A、不是同类项不能合并,故A错误;B、不是同类项不能合并,故B错误;C、系数相加字母部分不变,故C错误;D、系数相加字母部分不变,故D正确;故选:D.3.下列说法正确的是()A.近似数1.50和1.5是相同的B.3520精确到百位等于3500C.6.610精确到千分位D.2.70×104精确到百分位【考点】近似数和有效数字.【分析】根据近似数的精确度对各选项进行判断.【解答】解:A、近似数1.50精确到百分位,1.5精确到十分位,所以A选项错误;B、3520精确到百位等于3.5千,所以B选项错误;C、6.610精确到千分位,所以C选项错误;D、2.70×104精确到百位,所以D选项错误.故选C.4.某种速冻水饺的储藏温度是﹣18±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺的是()A.﹣17℃B.﹣22℃C.﹣18℃D.﹣19℃【考点】正数和负数.【分析】根据有理数的加减运算,可得温度范围,根据温度范围,可得答案.【解答】解:﹣18﹣2=﹣20℃,﹣18+2=﹣16℃,温度范围:﹣20℃至﹣16℃,A、﹣20℃<﹣17℃<﹣16℃,故A不符合题意;B、﹣22℃<﹣20℃,故B不符合题意;C、﹣20℃<﹣18℃<﹣16℃,故C不符合题意;D、﹣20℃<﹣19℃<﹣16℃,故D不符合题意;故选:B.5.下列说法错误的是()A.﹣xy的系数是﹣1B.﹣c是五次单项式C.2x2﹣3xy﹣1是二次三项式D.把多项式﹣2x2+3x3﹣1+x按x的降幂排列是3x3﹣2x2+x﹣1【考点】多项式;单项式.【分析】根据单项式、多项式的概念及单项式的次数、系数的定义解答.【解答】解:A、﹣xy的系数是﹣1,正确,不合题意;B、﹣c是六次单项式,故选项错误,符合题意;C、2x2﹣3xy﹣1是二次三项式,正确,不合题意;D、把多项式﹣2x2+3x3﹣1+x按x的降幂排列是3x3﹣2x2+x﹣1,正确,不合题意;故选:B.6.已知a﹣b=﹣2,则代数式3(a﹣b)2﹣a+b的值为()A.10 B.12 C.﹣10 D.14【考点】代数式求值.【分析】将代数式中的﹣a+b变为﹣(a﹣b),将a﹣b=﹣2,整体代入即得代数式的值为14.【解答】解:3(a﹣b)2﹣a+b=3(a﹣b)2﹣(a﹣b),将a﹣b=﹣2代入,得原式=14.故选D.7.已知单项式2x a y2与﹣3xy b的和是一个单项式,则(a﹣b)3=()A.﹣8 B.8 C.﹣1 D.1【考点】合并同类项.【分析】由题意可知:这两个单项式是同类项,由此可求出a与b的值.【解答】解:由题意可知:a=1,2=b,∴a﹣b=﹣1,∴原式=(﹣1)3=﹣1,故选(C)8.图中表示阴影部分面积的代数式是()A.ad+bc B.c(b﹣d)+d(a﹣c)C.ad+c(b﹣d)D.ab﹣cd【考点】整式的加减.【分析】把图形补成一个大矩形,则很容易表达出阴影部分面积.【解答】解:把图形补成一个大矩形,则阴影部分面积=ab﹣(a﹣c)(b﹣d)=ab ﹣[ab﹣ad﹣c(b﹣d)]=ab﹣ab+ad+c(b﹣d)=ad+c(b﹣d).故选C.9.小王利用计算机设计了一个程序,输入和输出的数据如下表:那么,当输入数据8时,输出的数据是()A.B.C.D.【考点】规律型:数字的变化类.【分析】根据图表找出输出数字的规律:输出的数字中,分子就是输入的数,分母是输入的数字的平方加1,直接将输入数据代入即可求解.【解答】解:输出数据的规律为,当输入数据为8时,输出的数据为=.故选:C.10.如果有4个不同的正整数m、n、p、q满足=4,那么m+n+p+q等于()A.8038 B.8049 C.8052 D.8056【考点】有理数的乘法;有理数的加法.【分析】因为m,n,p,q都是四个不同正整数,所以、、、都是不同的整数,四个不同的整数的积等于4,这四个整数为(﹣1)、(﹣2)、1、2,由此求得m,n,p,q的值,问题得解.【解答】解:根据4个不同的正整数m、n、p、q满足=4,得到每一个因数都是整数且都不相同,只可能是﹣1,1,﹣2,2,可得2014﹣m=﹣1,2014﹣n=1,2014﹣p=﹣2,2014﹣q=2,解得:m=2015,n=2013,p=2016,q=2012,则m+n+p+q=8056,故选D二、填空题(本大题共5个小题,每小题4分,满分20分)11.比较大小:﹣0.026<0;|﹣5| =﹣(﹣5).【考点】有理数大小比较.【分析】根据负数的性质及有理数比较大小的法则进行解答即可.【解答】解:∵﹣0.026是负数,∴﹣0.026<0;∵|﹣5|=5,﹣(﹣5)=5,∴|﹣5|=﹣(﹣5).故答案为:<,=.12.“珍惜水资源,节约用水”是公民应具备的优秀品质.据测试,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升.如果某个同学在洗手后,没有把水龙头拧紧,当他离开5小时后水龙头滴了 1.8×103毫升水.(必须用科学记数法表示,否则0分)【考点】科学记数法—表示较大的数.【分析】求出5小时的秒数,再乘以2乘以0.05,然后根据科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数解答.【解答】解:5×60×60×2×0.05=1800=1.8×103毫升.故答案为:1.8×103.13.观察规定一种新运算:a⊕b=a b,如2⊕3=23=8,计算:(﹣)⊕2=.【考点】有理数的乘方.【分析】利用题中的新定义计算即可.【解答】解:根据题中新定义得:(﹣)⊕2=(﹣)2=,故答案为:14.在数﹣5,1,﹣3,5,﹣2中任取三个数相乘,其中最大的积是75,最小的积是﹣30.【考点】有理数的乘法.【分析】根据题意知,任取的三个数是﹣5,﹣3,5,它们最大的积是(﹣5)×(﹣3)×5=75.任取的三个数是﹣5,﹣3,﹣2,它们最小的积是(﹣5)×(﹣3)×(﹣2)=﹣30.【解答】解:在数﹣5,1,﹣3,5,﹣2中任取三个数相乘,其中最大的积必须为正数,即(﹣5)×(﹣3)×5=75,最小的积为负数,即(﹣5)×(﹣3)×(﹣2)=﹣30.故答案为:75;﹣30.15.已知|x|=a,|y|=b,给出下列结论:①若x﹣y=0,则a﹣b=0;②若a﹣b=0,则x﹣y=0;③若a+b=0,则x+y=0;④若x2﹣y2=0,则a﹣b=0.其中正确的结论有①③④(将所有正确结论的序号填写在横线上).【考点】有理数的混合运算.【分析】根据绝对值的性质对各小题进行逐一分析即可.【解答】解:①∵x﹣y=0,∴x与y相等或互为相反数,∴a=b,∴a﹣b=0,故本小题正确;②∵a﹣b=0,∴x与y相等或互为相反数,当x、y互为相反数时x﹣y≠0,故本小题错误;③∵a+b=0,∴x=y=0,∴x+y=0,故本小题正确;④∵x2﹣y2=0,∴x2=y2,∴a=b,∴a﹣b=0,故本小题正确.故答案为:①③④.三、解答题(本大题共有8个小题,满分90分)16.计算:(1)4﹣2×(﹣3)2+6÷(﹣)(2)(﹣﹣+)×36+|﹣24|【考点】有理数的混合运算.【分析】根据有理数的运算法则即可求出答案.【解答】解:(1)原式=4﹣2×9+(﹣12)=﹣26;(2)原式=﹣27﹣20+21+24=﹣47+45=﹣217.化简与计算(1)已知:多项式A=2x2﹣xy,B=x2+xy﹣6,(2)3x2y﹣|2xy2﹣(2xy﹣3x2y|﹣2xy,求:①4A﹣B;其中x=3,y=﹣.②当x=1,y=﹣2时,4A﹣B的值.【考点】整式的加减—化简求值;绝对值.【分析】①把A与B代入4A﹣B中,去括号合并得到最简结果,将x与y的值代入计算即可求出值;②把x=1,y=﹣2代入计算即可求出值.【解答】解:①∵A=2x2﹣xy,B=x2+xy﹣6,∴4A﹣B=8x2﹣4xy﹣x2﹣xy+6=7x2﹣5xy+6,当x=3,y=﹣时,原式=63+5+6=74;②当x=1,y=﹣2时,4A﹣B=7x2﹣5xy+6=7+10+6=23.18.为了有效控制酒后驾车,某天无为县交警大队的一辆警车在东西方向的通江大道上巡视,警车从某地A处出发,规定向东方向为正,当天行驶纪录如下(单位:千米)+10,﹣9,+7,﹣15,+6,﹣5,+4,﹣2(1)此时,这辆巡逻的汽车司机如何向队长描述他的位置?(2)如果警车行驶1千米耗油0.2升,油箱有油10升,现在警车要回到出发点A 处,那么油箱的油够不够?若不够,途中至少需补充多少升油? 【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据单位耗油量乘以路程,可得总耗油量,根据有理数的减法,可得答案. 【解答】解:(1)10+(﹣9)+7+(﹣15)+6+(﹣5)+4+(﹣2)=﹣4(千米).答:他在出发点的西方,距出发点4千米;(2)总耗油量(10+|﹣9|+7+|﹣15|+6+|﹣5|+4+|﹣2|)×0.2=58×0.2=11.6(升),11.6﹣10=1.6(升).答:不够,途中至少需补充1.6升油.19..观察下列算式:①(1+)(1﹣)=×=1;②(1+)(1﹣)=×=1;③(1+)(1﹣)=×=1;根据以上算式的规律,解决下列问题:(1)第⑩个等式为: (1+)(1﹣)=×=1 ;(2)计算:(1+)×(1+)×(1+)×…×(1+)×(1﹣)×(1﹣)×(1﹣)×…×(1﹣).【考点】规律型:数字的变化类.【分析】(1)根据式子的序号与分母之间的关系即可求解; (2)利用交换律,转化为已知中的式子进行求解即可.【解答】解:(1)第⑩个等式是(1+)(1﹣)=×=1.故答案是:(1+)(1﹣)=×=1;(2)原式=(1+)(1﹣)×(1+)(1﹣)×…×(1+)(1﹣)=1.20.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产为正,减产为负,单位:辆):(1)根据记录可知前三天共生产599辆.(2)产量最多的一天比产量最少的一天多生产26辆.(3)该厂实行计件工资制,每生产一辆自行车50元,超额完成任务每辆车奖20元,少生产一辆扣10元,那么该厂工人这一周的工资总额是多少?【考点】正数和负数;有理数的加法.【分析】(1)分别表示出前三天的自行车生产数量,再求其和即可;(2)根据出入情况:用产量最高的一天﹣产量最低的一天;(3)首先计算出生产的自行车的总量,再根据工资标准计算工资即可.【解答】解:(1)200+5++=599(辆),故答案为:599;(2)﹣=26(辆),故答案为:26;(3)5﹣2﹣4+13﹣10+16﹣9=9(辆)200×7×50+9×(50+20)=70630(元).21.已知一个三角形的第一条边长为2a+5b,第二条边比第一条边长3a﹣2b,第三条边比第二条边短3a(1)用含a,b的式子表示这个三角形的周长,并化简;(2)若a,b满足|a﹣5|+(b﹣3)2=0,求出这个三角形的周长.【考点】整式的加减;绝对值;非负数的性质:偶次方;代数式求值.【分析】(1)先用a,b表示出三角形其余两边的长,再求出其周长即可;(2)根据非负数的性质求出ab的值,代入(1)中三角形的周长式子即可.【解答】解:(1)∵三角形的第一条边长为2a+5b,第二条边比第一条边长3a ﹣2b,第三条边比第二条边短3a,∴第二条边长=2a+5b+3a﹣2b=5a+3b,第三条边长=5a+3b﹣3a=2a+3b,∴这个三角形的周长=2a+5b+5a+3b+2a+3b=9a+11b;(2)∵a,b满足|a﹣5|+(b﹣3)2=0,∴a﹣5=0,b﹣3=0,∴a=5,b=3,∴这个三角形的周长=9×5+11×3=45+33=78.答:这个三角形的周长是78.22.某大型超市上周日购进新鲜的黄瓜1000公斤,每公斤1.5元,受暴发的“毒黄瓜”的影响,销售价格出现较大的波动,表中为一周内黄瓜销售价格的涨跌情况(涨为正,跌为负,其中星期一的销售价格是与进价比较,单位:元):(1)到星期二时,每公斤的黄瓜售价是多少元?(2)本周最低售价是每公斤多少元?(3)已知截止到星期五,已卖出黄瓜700公斤,销售总额为935元.如果超市星期六能将剩下的黄瓜全部卖出.不考虑损耗等其他因素,请算算该超市本周销售黄瓜是盈还是亏?盈亏是多少?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据有理数的加法,可得答案;(3)根据单价乘以数量量,可得销售额,根据销售额减去成本,可得答案.【解答】解:(1)1.5+0.3+0.4=2.2元,到星期二时,每公斤的黄瓜售价是2.2元;(2)1.5+0.3+0.4﹣0.5﹣0.6﹣0.7=0.4元,本周最低售价是每公斤0.4元;(3)周六的价格是0.4+0.1=0.5元,300×0.5+935﹣1000×1.5=﹣415元.故该超市本周销售黄瓜亏了415元.23.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示1和4的两点之间的距离是3;表示﹣3和2的两点之间的距离是5;表示数a和﹣2的两点之间的距离是3,那么a=﹣5或1;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n| .(2)若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值;(3)存在不存在数a,使代数式|a+3|+|a﹣2|+|a﹣4|的值最小?如果存在,请写出数a=2或3,此时代数式|a+3|+|a﹣2|+|a﹣4|最小值是4.(注:本小题是填空题,可不写解答过程.).【考点】数轴;绝对值.【分析】(1)根据题意,结合数轴即可得到结果;(2)由a的范围,利用绝对值的代数意义化简即可;(3)分类讨论a的范围,利用绝对值的代数意义化简,确定出最小值,以及此时a的值即可.【解答】解:(1)数轴上表示1和4的两点之间的距离是3;表示﹣3和2的两点之间的距离是5;表示数a和﹣2的两点之间的距离是3,那么a=﹣5或1;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|;(2)根据题意得:﹣4<a<2,即a+4>0,a﹣2<0,则原式=a+4+2﹣a=6;(3)①a≤1时,原式=1﹣a+2﹣a+3﹣a+4﹣a=10﹣4a,则a=1时有最小值6;②1≤a≤2时,原式=a﹣1+2﹣a+3﹣a+4﹣a=8﹣2a,则a=2时有最小值4;③2≤a≤3时,原式=a﹣1+a﹣2+3﹣a+4﹣a=4;④3≤a≤4时,原式=a﹣1+a﹣2+a﹣3+4﹣a=2a﹣2;则a=3时有最小值4;⑤a≥4时,原式=a﹣1+a﹣2+a﹣3+a﹣4=4a﹣10;则a=4时有最小值6;综上所述,当a=2或3时,原式有最小值4.故答案为:(1)3;5;﹣5或1;|m﹣n|;(3)2或3;42017年1月22日。
【数学】2016-2017年山东省泰安市肥城市七年级上学期数学期中试卷和解析答案PDF
2016-2017学年山东省泰安市肥城市七年级(上)期中数学试卷一、选择题(请将正确答案的序号填写在下面的答题栏的相应位置)1.(3分)在﹣4,2,﹣1,3这四个数中,比﹣2小的数是()A.﹣4 B.2 C.﹣1 D.32.(3分)若a<0,则|a|的相反数是()A.B.﹣ C.a D.﹣a3.(3分)下列调查中,最适合采用全面调查(普查)的是()A.对肥城市居民日平均用水量的调查B.对一批LED节能灯使用寿命的调查C.对肥城新闻栏目收视率的调查D.对某校七年级(7)班同学身高情况的调查4.(3分)下列图形中,是正方体表面展开图的是()A.B.C.D.5.(3分)某市2013年底机动车的数量是2×106辆,2014年新增3×105辆,用科学记数法表示该市2014年底机动车的数量是()A.2.3×105B.3.2×105C.2.3×106D.5×1066.(3分)如图,C,D是线段AB上两点.若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cm B.6cm C.11cm D.14cm7.(3分)为了了解我市6000名学生参加的初中毕业会考数学考试的成绩情况,从中抽取了200名考生的成绩进行统计,在这个问题中,下列说法:(1)这6000名学生的数学会考成绩的全体是总体;(2)每个考生是个体;(3)200名考生是总体的一个样本;(4)样本容量是200,其中说法正确的有()8.(3分)已知线段AB=6,若点C到点A距离为2,到点B的距离为3,则对点C描述正确的是()A.在线段AB所在的平面内能找到无数多个这样的点CB.满足条件的点C都在线段AB上C.满足条件的点C都在两条射线上D.这样的点C不存在9.(3分)计算(﹣2)0+9÷(﹣3)的结果是()A.﹣1 B.﹣2 C.﹣3 D.﹣410.(3分)在线段AB上取一点C,使AC=AB,再在线段AB的延长线上取一点D,使DB=AD,则线段BC的长度是线段DC长度的()A.B.C.D.11.(3分)有理数a、b在数轴上的位置如图所示,则a+b的值是()A.正数B.负数C.零D.符号不确定12.(3分)某学校将为初一学生开设ABCDEF共6门选修课,现选取若干学生进行了“我最喜欢的一门选修课”调查,将调查结果绘制成如图统计图表(不完整)根据图表提供的信息,下列结论错误的是()A.这次被调查的学生人数为400人B.扇形统计图中E部分扇形的圆心角为72°C.被调查的学生中喜欢选修课E、F的人数分别为80,70D.喜欢选修课C的人数最少13.(3分)点P在线段EF上,现有四个等式①PE=PF;②PE=EF;③EF=2PE;④2PE=EF;其中能表示点P是EF中点的有()14.(3分)如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a﹣b|=3,|b﹣c|=5,且原点O与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A.在A的左边 B.介于A、B之间C.介于B、C之间D.在C的右边15.(3分)下列说法①若a+b=0,则a、b互为相反数;②若ab=1,则a、b互为倒数;③若ab>0,则a、b均大于0;④若|a|=a,则a一定为正数,其中正确的个数为()A.①④B.①②C.①②④D.①③④二、填空题(请将答案直接填写在相应横线上)16.(3分)计算+(﹣3)2的结果是.17.(3分)有理数a、b在数轴上的位置如图所示,则|a+1|﹣|b﹣2|的结果为.18.(3分)如图,点C、D是线段AB上的两点,若AC=4,CD=5,DB=3,则图中所有线段的和是.19.(3分)下列说法①两条不同的直线可能有无数个公共点;②两条不同的射线可能有无数个公共点;③两条不同的线段可能有无数个公共点;④一条直线和一条线段可能有无数个公共点,其中正确说法的序号为.20.(3分)如图是一家报纸“百姓热线”一周内接到热线电话的统计图,其中有关环境保护问题的电话最多,共30个.本周“百姓热线”共接到热线电话有个.三、解答题(本题共6个小题)21.(8分)将下列各数填在相应的集合里.﹣,π0,(﹣3)3,﹣|﹣|,(﹣2)2,0,﹣(﹣),﹣6.2%整数集合:{ …};分数集合:{ …};正数集合:{ …};负数集合:{ …}.22.(8分)将﹣3,(π﹣3.14)0,﹣|﹣3.14|,(﹣2)2,0,﹣(﹣)在数轴上表示出来,并将这几个数用“<”连接起来.23.(16分)计算下列各题:(1)(﹣27)+(+3)﹣(﹣25)﹣(+15)(2)(﹣+)÷(﹣)•(3)[(﹣6﹣)÷]÷[(2﹣)×]×(﹣)(4)﹣23﹣×[4﹣(﹣3)2]3.24.(6分)如图,点C分线段AB为2:1两部分,D点为线段CB的中点,AD=5,求线段AB的长.25.(10分)为扩大内需,国务院决定在全国实施“家电下乡”政策.第一批列入家电下乡的产品为彩电、冰箱、洗衣机和手机四种产品.我市一家家电商场,去销量的20%,手机销售的数量占总销量的40%,并绘制了如图的条形统计图,请你解答下列问题:(1)该商场一季度四种家电销售的数量总共是多少台?(2)洗衣机销售的数量占总销量的百分比?(3)请补全条形统计图,并将条形统计图转化为扇形统计图.26.(12分)按要求完成下列问题:(1)若A、B、C、D、E是平面内不同的5个点,则过这5个点的直线可能有多少条?要求确定出可能的条数,并画出每种情况的一种简图;(2)平面内有n(n为不小于2的整数)个点,过这n个点最多能作多少条直线?完成下列表格.2016-2017学年山东省泰安市肥城市七年级(上)期中数学试卷参考答案与试题解析一、选择题(请将正确答案的序号填写在下面的答题栏的相应位置)1.(3分)在﹣4,2,﹣1,3这四个数中,比﹣2小的数是()A.﹣4 B.2 C.﹣1 D.3【解答】解:∵正数和0大于负数,∴排除2和3.∵|﹣2|=2,|﹣1|=1,|﹣4|=4,∴4>2>1,即|﹣4|>|﹣2|>|﹣1|,∴﹣4<﹣2<﹣1.故选:A.2.(3分)若a<0,则|a|的相反数是()A.B.﹣ C.a D.﹣a【解答】解:∵a<0,则|a|=﹣a,∴﹣a的相反数是a,故选:C.3.(3分)下列调查中,最适合采用全面调查(普查)的是()A.对肥城市居民日平均用水量的调查B.对一批LED节能灯使用寿命的调查C.对肥城新闻栏目收视率的调查D.对某校七年级(7)班同学身高情况的调查【解答】解:A、对肥城市居民日平均用水量的调查,调查范围广,适合抽样调查,故A不符合题意;B、对一批LED节能灯使用寿命的调查,调查具有普坏性,适合抽样调查,故B 不符合题意;意;D、对某校七年级(7)班同学身高情况的调查,适合普查,故D符合题意;故选:D.4.(3分)下列图形中,是正方体表面展开图的是()A.B.C.D.【解答】解:A、B折叠后,缺少一个底面,故不是正方体的表面展开图;选项D折叠后第一行两个面无法折起来,而且下边没有面,不能折成正方体,故选C.5.(3分)某市2013年底机动车的数量是2×106辆,2014年新增3×105辆,用科学记数法表示该市2014年底机动车的数量是()A.2.3×105B.3.2×105C.2.3×106D.5×106【解答】解:2014年底机动车的数量为:3×105+2×106=2.3×106.故选:C.6.(3分)如图,C,D是线段AB上两点.若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cm B.6cm C.11cm D.14cm【解答】解:∵C,D是线段AB上两点,CB=4cm,DB=7cm,∴CD=DB﹣BC=7﹣4=3cm,∵D是AC的中点,∴AC=2CD=2×3=6cm.故选:B.7.(3分)为了了解我市6000名学生参加的初中毕业会考数学考试的成绩情况,从中抽取了200名考生的成绩进行统计,在这个问题中,下列说法:(1)这6000名学生的数学会考成绩的全体是总体;(2)每个考生是个体;(3)200名考生是总体的一个样本;(4)样本容量是200,其中说法正确的有()A.4个 B.3个 C.2个 D.l个【解答】解:本题中的个体是每个考生的数学会考成绩,样本是200名考生的数学会考成绩,故(2)和(3)错误;总体是我市6000名学生参加的初中毕业会考数学考试的成绩情况,样本容量是200.故(1)和(4)正确.故选:C.8.(3分)已知线段AB=6,若点C到点A距离为2,到点B的距离为3,则对点C描述正确的是()A.在线段AB所在的平面内能找到无数多个这样的点CB.满足条件的点C都在线段AB上C.满足条件的点C都在两条射线上D.这样的点C不存在【解答】解:若A、B、C三点一条直线上,如图1,∵AB=6,若点C到点A距离为2,∴BC=6﹣2=4,如图2,∵AB=6,若点C到点A距离为2,∴BC=6+2=8,如图3,若A、B、C不在一条直线上,则AC+BC>AB,AC+BC>6,∴线段AB=6,若点C到点A距离为2,到点B的距离为3时,这样的C点不存在,故选:D.A.﹣1 B.﹣2 C.﹣3 D.﹣4【解答】解:原式=1+(﹣3)=﹣2,故选:B.10.(3分)在线段AB上取一点C,使AC=AB,再在线段AB的延长线上取一点D,使DB=AD,则线段BC的长度是线段DC长度的()A.B.C.D.【解答】解:∵AC=AB,DB=AD,∴AB=3AC,AB=3BD,BC=2AC,∴AC=BD,∴DC=3BD=3AC,∴BC÷DC=2AC÷3AC=,故选:B.11.(3分)有理数a、b在数轴上的位置如图所示,则a+b的值是()A.正数B.负数C.零D.符号不确定【解答】解:根据图可得:a<0,b>0,|b|>|a|,则a+b>0.故选:A.12.(3分)某学校将为初一学生开设ABCDEF共6门选修课,现选取若干学生进行了“我最喜欢的一门选修课”调查,将调查结果绘制成如图统计图表(不完整)根据图表提供的信息,下列结论错误的是()A.这次被调查的学生人数为400人B.扇形统计图中E部分扇形的圆心角为72°C.被调查的学生中喜欢选修课E、F的人数分别为80,70D.喜欢选修课C的人数最少【解答】解:被调查的学生人数为60÷15%=400(人),∴选项A正确;扇形统计图中D的圆心角为×360°=90°,∵×360°=36°,360°×(17.5%+15%+12.5%)=162°,∴扇形统计图中E的圆心角=360°﹣162°﹣90°﹣36°=72°,∴选项B正确;∵400×=80(人),400×17.5%=70(人),∴选项C正确;∵12.5%>10%,∴喜欢选修课A的人数最少,∴选项D错误;故选:D.13.(3分)点P在线段EF上,现有四个等式①PE=PF;②PE=EF;③EF=2PE;④2PE=EF;其中能表示点P是EF中点的有()A.4个 B.3个 C.2个 D.1个【解答】解:①PE=PF,点P在线段EF上,可判断P是EF中点,故正确;②PE=EF,则PE=PF,点P在线段EF上,可判断P是EF中点,故正确;③EF=2PE,则EF=4PE,点P在线段EF上,可判断P不是EF中点,故错误;④2PE=EF,则PE=PF,点P在线段EF上,可判断P是EF中点,故正确;综上可得①②④正确.故选:B.14.(3分)如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a﹣b|=3,|b﹣c|=5,且原点O与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A.在A的左边 B.介于A、B之间C.介于B、C之间D.在C的右边【解答】解:∵|a﹣b|=3,|b﹣c|=5,∴b=a+3,c=b+5,∵原点O与A、B的距离分别为4、1,∴a=±4,b=±1,∵b=a+3,∴a=﹣4,b=﹣1,∵c=b+5,∴c=4.∴点O介于B、C点之间.故选:C.15.(3分)下列说法①若a+b=0,则a、b互为相反数;②若ab=1,则a、b互为倒数;③若ab>0,则a、b均大于0;④若|a|=a,则a一定为正数,其中正确的个数为()A.①④B.①②C.①②④D.①③④【解答】解:①若a+b=0,则a、b互为相反数是正确的;②若ab=1,则a、b互为倒数是正确的;③若ab>0,则a、b均大于0或均小于0,题干的说法是错误的;④若|a|=a,则a一定为负分数,题干的说法是错误的.故选:B.二、填空题(请将答案直接填写在相应横线上)16.(3分)计算+(﹣3)2的结果是10.【解答】解:+(﹣3)2=1+9=10.故答案为:10.17.(3分)有理数a、b在数轴上的位置如图所示,则|a+1|﹣|b﹣2|的结果为a+b﹣1.【解答】解:根据题意得:﹣1<a<0<1<b<2,则a+1>0,b﹣2<0,则|a+1|﹣|b﹣2|=a+1+b﹣2=a+b﹣1.故答案为:a+b﹣1.18.(3分)如图,点C、D是线段AB上的两点,若AC=4,CD=5,DB=3,则图中所有线段的和是41.【解答】解:AD=AC+CD=9,AB=AC+CD+DB=12,CB=CD+DB=8,故所有线段的和=AC+AD+AB+CD+CB+DB=41.19.(3分)下列说法①两条不同的直线可能有无数个公共点;②两条不同的射线可能有无数个公共点;③两条不同的线段可能有无数个公共点;④一条直线和一条线段可能有无数个公共点,其中正确说法的序号为②③④.【解答】解:①两条不同的直线可能有无数个公共点,错误,直线不能重合;②两条不同的射线可能有无数个公共点,正确;③两条不同的线段可能有无数个公共点,正确;④一条直线和一条线段可能有无数个公共点,正确.故答案为:②③④.20.(3分)如图是一家报纸“百姓热线”一周内接到热线电话的统计图,其中有关环境保护问题的电话最多,共30个.本周“百姓热线”共接到热线电话有100个.【解答】解:本周“百姓热线”共接到热线电话有:30÷30%=100(个);故答案为:100三、解答题(本题共6个小题)21.(8分)将下列各数填在相应的集合里.﹣,π0,(﹣3)3,﹣|﹣|,(﹣2)2,0,﹣(﹣),﹣6.2%整数集合:{ π0,(﹣3)3,(﹣2)2,0…};分数集合:{ ﹣,﹣|﹣|,﹣(﹣),﹣6.2%…};正数集合:{ π0,(﹣2)2,﹣(﹣)…};负数集合:{ ﹣,(﹣3)3,﹣|﹣|,﹣6.2%…}.【解答】解:整数集合:{π0,(﹣3)3,(﹣2)2,0…};分数集合:{﹣,﹣|﹣|,﹣(﹣),﹣6.2%…};正数集合:{π0,(﹣2)2,﹣(﹣)…};负数集合:{﹣,(﹣3)3,﹣|﹣|,﹣6.2%…}.故答案为:{π0,(﹣3)3,(﹣2)2,0…};{﹣,﹣|﹣|,﹣(﹣),﹣6.2%…};{π0,(﹣2)2,﹣(﹣)…};{﹣,(﹣3)3,﹣|﹣|,﹣6.2%…}.22.(8分)将﹣3,(π﹣3.14)0,﹣|﹣3.14|,(﹣2)2,0,﹣(﹣)在数轴上表示出来,并将这几个数用“<”连接起来.【解答】解:(π﹣3.14)0,=1,﹣|﹣3.14|=﹣3.14,(﹣2)2=4,﹣(﹣)=,如图所示:将这几个数用“<”连接起来为:(﹣2)2<﹣|﹣3.14|<﹣3<0<(π﹣3.14)0<﹣(﹣).23.(16分)计算下列各题:(1)(﹣27)+(+3)﹣(﹣25)﹣(+15)(2)(﹣+)÷(﹣)•(3)[(﹣6﹣)÷]÷[(2﹣)×]×(﹣)(4)﹣23﹣×[4﹣(﹣3)2]3.【解答】解:(1)原式=﹣27+3+25﹣15=﹣42+28=﹣14;(2)原式=(﹣+)×(﹣36)×=(﹣+)×(﹣16)=﹣12+﹣=﹣6;(3)原式=(﹣)×÷(﹣)×=××=;(4)原式=﹣8﹣×(﹣125)=﹣8+=﹣.24.(6分)如图,点C分线段AB为2:1两部分,D点为线段CB的中点,AD=5,求线段AB的长.【解答】解:设CD=x,∵点C分线段AB为2:1两部分,D点为线段CB的中点,∴BD=CD=x,BC=2x,AC=4x,∵AD=5,∴x=1,∴AB=4x+2x=6答:线段AB的长为6.25.(10分)为扩大内需,国务院决定在全国实施“家电下乡”政策.第一批列入家电下乡的产品为彩电、冰箱、洗衣机和手机四种产品.我市一家家电商场,去年一季度对以上四种产品的销售情况进行了统计.结果显示冰箱销售的数量占总销量的20%,手机销售的数量占总销量的40%,并绘制了如图的条形统计图,请你解答下列问题:(1)该商场一季度四种家电销售的数量总共是多少台?(2)洗衣机销售的数量占总销量的百分比?(3)请补全条形统计图,并将条形统计图转化为扇形统计图.【解答】解:(1)根据题意得:手机有200台,占40%,则销售总量为200÷40%=500台;(2)根据题意可得:洗衣机销售的数量占总销量的百分比=50÷500×100%=10%;(3)根据题意可得:冰箱有500×20%=100台.∴条形统计图如图所示:根据题意可得:彩电的销量为150台,故150÷500=30%,∴扇形统计图如图所示:26.(12分)按要求完成下列问题:(1)若A、B、C、D、E是平面内不同的5个点,则过这5个点的直线可能有多少条?要求确定出可能的条数,并画出每种情况的一种简图;(2)平面内有n(n为不小于2的整数)个点,过这n个点最多能作多少条直线?完成下列表格.【解答】解:(1)①若5个点在一条直线上,只能确定1条直线;②若只有4个点在一条直线上,则能确定5条直线;③若有两个3个点在一条直线上,则能确定6条直线;④若只有3点在一条直线上,则能确定8条直线;⑤若没有任何3点在一条直线上,则能确定10条直线.(2)设平面内有n(n为不小于2的整数)个点,过这n个点最多能作a n条直线,观察,发现规律:a2==1,a3==3,a4==6,a5==10,…,∴a n=.当n=2016时,a2016==2031120.故答案为:2031120;.赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:运用举例:1.如图,若点B在x轴正半轴上,点A(4,4)、C(1,-1),且AB=BC,AB⊥BC,求点B的坐标;xyBCAO2.如图,在直线l上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S、2S、3S、4S,则14S S+=.ls4s3s2s13213. 如图,Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC上运动(不与点B,C重合),过D作∠ADE=45°,DE交AC于E.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式,并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.B4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
2016-2017年山东省泰安市肥城市边院中学七年级(上)分班数学试卷与解析
2016-2017学年山东省泰安市肥城市边院中学七年级(上)分班数学试卷一、填空(每空1分,共28分)1.(4分):16==0.25=÷32=%.2.(2分)由三十个万、九十六个十组成的数写作,把它“四舍五入”到万位的约是.3.(2分)把3:0.6化成最简整数比是;比值是.4.(2分)1的分数单位是,再添上个这样的分数单位就是最小的合数.5.(2分)小明买了3本书,每本a元,一共花了元.他付了100元,应找回元.6.(1分)把一根长1m的圆柱体钢材截成3段后,表面积增加了6.28dm2,这根钢材的体积是.7.(3分)3.08立方米=立方米立方分米3小时45分=小时.8.(1分)一个圆柱体和一个圆锥体的底面积相等,高的比是3:2,体积比是.9.(1分)一本故事书有120页,第一天读了全书的,第二天应从第页读起.10.(2分)在π、3.14、3.5%、3.104四个数中,最大的数是,最小的数是.11.(1分)一个圆柱体的侧面展开后,正好得到一个边长6.28厘米的正方形,圆柱体的高是厘米,底面半径是厘米.侧面积是厘米.12.(2分)一条长3米的绳子,平均分成5段,每段长米,每段占全长的.13.(3分)如图表示棱长2分米的正方体,它的表面积是平方分米;3个这样的正方体拼成一个长方体,拼成的长方体的表面积是平方分米,体积是立方分米.14.(2分)一幅地图的比例尺如图所示,在这幅地图上,图上距离和实际距离的比是;实际300千米的距离,在地图上应画成厘米.二、判断(每空1分,共8分)15.(1分)单独完成一项工作,甲要3小时,乙要5小时,甲乙的工作效率比是5:3.(判断对错)16.(1分)分数单位大的分数一定大于分数单位小的分数..(判断对错)17.(1分)圆的半径扩大5倍,周长就扩大5倍,面积扩大10倍.(判断对错)18.(1分)棱长是6厘米的正方体的表面积和体积相等..(判断对错)19.(1分)男生比女生多20%,女生一定比男生少20%.(判断对错)20.(1分)三角形的面积一定,它的底和高成反比例.(判断对错)21.(1分)长方形、平行四边形、正方形、圆都是轴对称图形.(判断对错)22.(1分)一吨煤用去它的40%,还剩下60% 吨.(判断对错).三、选择(每小题1分,共10分)23.(1分)配制一种药水,100克的药水中有10克的药液,药液和水的比是()A.1:9 B.1:10 C.1:1124.(1分)下面只读一个0的数是()A.306000 B.30006000 C.3000006025.(1分)芳芳从起点向西走了25米,记作﹣25米,然后再掉头往东走了36米,与初始位置相比,应记作()米.A.+36米B.﹣61米C.+11米26.(1分)一种商品的价格,先提高了20%,然后再降低20%,结果与原价相比()A.降低了20% B.降低了4% C.提高了4%27.(1分)<()<,符合条件的分数有()个.A.0 B.1 C.无数28.(1分)小明在一次数学比赛中得了86分,这次比赛一共有20道题,正确一道得5分,错一道和不做扣2分,小明正确()道.A.19 B.18 C.1729.(1分)下面三组线段,不能围成三角形的一组是()A.0.5cm 1cm 1.8cm B.1cm 2.5cm 3cmC.2cm 3cm 4cm30.(1分)下列年份中,二月有29天的是()A.1788年B.2014年C.1800年31.(1分)一根铁丝长3米,把这根铁丝平均分成5段,其中2段长()A.米 B.米 C.米32.(1分)河岸边种了200棵树苗,经过园林工人的精心管理,成活率达到百分之几?()A.200% B.95% C.120%四、计算(共20分)33.(6分)直接写出得数2﹣=1﹣30%=1.57+3.3=0.25×16=8.4÷4.2=×12=÷=12×(+)=×=﹣=500﹣399=10﹣﹣=34.(8分)计算下面各题,能简便计算的要简便计算10.15﹣6.25﹣3.75+7.856.48÷[(3.3﹣2.7)×0.9×(+1÷)×+÷8.35.(6分)解方程或解比例4x﹣0.5×9=27.59:x=:x+x=20.五、求阴影部分面积(8分)36.(8分)求阴影部分面积(π取3.14)(单位:dm)六、解决问题(1-2题每题3分,3-7题,每题4分,共26分)37.(3分)一种电冰箱原价2500元,现在每台售价2450元.现价比原价降低了百分之几?38.(3分)王师傅要加工500个零件,第一天加工了总数的40%,第二天加工了总数的,还剩下多少个?39.(4分)修路队修一条公路,已修的和未修的比是1:3,又修了300米后,已修的占这条路的,这条公路长多少米?40.(4分)一个圆锥形的沙堆,底面周长是31.4m,高是1.5m.用这堆沙铺在一个长125m,厚10cm的路面上,可以铺几米长?41.(4分)希望小学装修多媒体教室.计划用边长30厘米的釉面方砖铺地,需要900块,实际用边长50厘米的方大理石铺地,需要多少块?(用比例知识解答)42.(4分)客车和货车同时从甲、乙两地相对开出,经过8小时相遇,相遇后两车继续行驶,再行驶小时后两车相距70千米,甲、乙两地相距多少千米?43.(4分)一个长方体的棱长总和是72分米,长、宽、高的比是5:2:2,这个长方体的表面积是多少平方分米?2016-2017学年山东省泰安市肥城市边院中学七年级(上)分班数学试卷参考答案与试题解析一、填空(每空1分,共28分)1.(4分)4:16==0.25=8÷32=25%.【解答】解:4:16==0.25=8÷32=25%;故答案为:4,40,8,25.2.(2分)由三十个万、九十六个十组成的数写作300960,把它“四舍五入”到万位的约是30万.【解答】解:由三十个万、九十六个十组成的数写作300960,把它“四舍五入”到万位的约是30万;故答案为:300960,30万.3.(2分)把3:0.6化成最简整数比是45:8;比值是.【解答】解:(1)3:0.6=(3×):(0.6×)=45:8;(2)3:0.6=3÷0.6=.故答案为:45:8,.4.(2分)1的分数单位是,再添上21个这样的分数单位就是最小的合数.【解答】解:4﹣1=,里面有21个.1的分数单位是,再添上21个这样的分数单位就是最小的合数.故答案为:,21.5.(2分)小明买了3本书,每本a元,一共花了3a元.他付了100元,应找回(100﹣3a)元.【解答】解:3×a=3a(元),100﹣3a(元),答:一共花了3a元.他付了100元,应找回(100﹣3a)元.故答案为:3a;(100﹣3a).6.(1分)把一根长1m的圆柱体钢材截成3段后,表面积增加了6.28dm2,这根钢材的体积是15.7立方分米.【解答】解:1米=10分米,6.28÷4×10,=1.57×10,=15.7(立方分米),答:这根钢材的体积是15.7立方分米.故答案为:15.7立方分米.7.(3分)3.08立方米=3立方米80立方分米3小时45分= 3.75小时.【解答】解:3.08立方米=3方米80分米3小时45分=3.75故答案为:3,80,3.75.8.(1分)一个圆柱体和一个圆锥体的底面积相等,高的比是3:2,体积比是9:2.【解答】解:可设圆柱体底面积是s,则圆锥体的底面积也是s,设圆柱的高为3,则圆锥体的高为2,(s×3):(×s×2),=3s:s=9:2答:它们体积比是9:2.故答案为:9:2.9.(1分)一本故事书有120页,第一天读了全书的,第二天应从第31页读起.【解答】解:120×+1=31(页);答:第二天应从第31页读起;故答案为:31.10.(2分)在π、3.14、3.5%、3.104四个数中,最大的数是π,最小的数是3.5%.【解答】解:因为3.5%=0.035,π≈3.142,且3.142>3.14>3.104>0.035,所以最大的数是π,最小的数是3.5%;故答案为:π,3.5%.11.(1分)一个圆柱体的侧面展开后,正好得到一个边长6.28厘米的正方形,圆柱体的高是 6.28厘米,底面半径是1厘米.侧面积是39.4384厘米.【解答】解:根据题干分析可得,这个圆柱的底面周长和高相等,都等于 6.28厘米,所以底面半径:6.28÷3.14÷2=1(厘米)侧面积:6.28×6.28=39.4384(平方厘米)答:这个圆柱的高是6.28厘米,底面半径是1厘米,侧面积是39.4384平方厘米.故答案为:6.28;1;39.4384.12.(2分)一条长3米的绳子,平均分成5段,每段长米,每段占全长的.【解答】解:每段长的米数:3÷5=(米),每段占全长的分率:1÷5=.答;每段长米,每段占全长的,故答案为:,.13.(3分)如图表示棱长2分米的正方体,它的表面积是24平方分米;3个这样的正方体拼成一个长方体,拼成的长方体的表面积是56平方分米,体积是24立方分米.【解答】解:2×2×6=24(平方分米),24×3﹣2×2×4=72﹣16=56(平方分米);2×2×2×3=8×3=24(立方分米);答:正方体的表面积是24平方分米、拼成长方体的表面积是56平方分米,体积是24立方分米.故答案为:24、56、24.14.(2分)一幅地图的比例尺如图所示,在这幅地图上,图上距离和实际距离的比是1:2500000;实际300千米的距离,在地图上应画成12厘米.【解答】解:(1)因为图上距离1厘米表示实际距离25千米,且25千米=2500000厘米,则1厘米:2500000厘米=1:2500000;答:在这幅地图上,图上距离和实际距离的比是1:2500000.(2)因为300千米=30000000厘米,则30000000×=12(厘米);答:实际300千米的距离,在地图上应画成12厘米.故答案为:1:2500000,12.二、判断(每空1分,共8分)15.(1分)单独完成一项工作,甲要3小时,乙要5小时,甲乙的工作效率比是5:3.√(判断对错)【解答】解:(1÷3):(1÷5)=:=5:3答:甲、乙的工作效率的比是5:3.所以单独完成一项工作,甲要3小时,乙要5小时,甲乙的工作效率比是5:3是正确的.故答案为:√.16.(1分)分数单位大的分数一定大于分数单位小的分数.×.(判断对错)【解答】解:分数单位大的分数不一定大于分数单位小的分数,例如的分数单位是,的分数单位是,因为,所以的分数单位大于的分数单位,但是,所以题中说法不正确.故答案为:×.17.(1分)圆的半径扩大5倍,周长就扩大5倍,面积扩大10倍.×(判断对错)【解答】解:一个圆的半径扩大5倍,周长就扩大5倍,面积就扩大52=25倍.如圆的半径是1,面积是:π×12=π,半径扩大5倍后,半径是5,则面积是:π×52=25π;所以原题说法错误.故答案为:×.18.(1分)棱长是6厘米的正方体的表面积和体积相等.×.(判断对错)【解答】解:因为正方体的表面积和体积单位不相同,没法比较它们的大小,所以原题说法是错误的.故答案为:×.19.(1分)男生比女生多20%,女生一定比男生少20%.×(判断对错)【解答】解:20%÷(1+20%)=20%÷120%≈16.7%即女生人数比男生人数少16.7%,所以原题说法错误;故答案为:×.20.(1分)三角形的面积一定,它的底和高成反比例.√(判断对错)【解答】解:因为三角形的面积=底×高÷2,所以:底×高=2×三角形的面积(一定),符合反比例的意义,所以三角形的面积一定,它的底和高成反比例,故答案为:√.21.(1分)长方形、平行四边形、正方形、圆都是轴对称图形.×(判断对错)【解答】解:根据轴对称图形的意义可知:长方形、正方形和圆都是轴对称图形,但平行四边形不是轴对称图形,所以本题说法错误;故答案为:×.22.(1分)一吨煤用去它的40%,还剩下60% 吨.×(判断对错).【解答】解:根据百分数的意义,“一吨煤用去它的40%,还剩下60% 吨”的说法是错误的;故答案为:×.三、选择(每小题1分,共10分)23.(1分)配制一种药水,100克的药水中有10克的药液,药液和水的比是()A.1:9 B.1:10 C.1:11【解答】解:药液和水的比是:10:(100﹣10)=10:90=1:9答:药液和水的比是1:9.故选:A.24.(1分)下面只读一个0的数是()A.306000 B.30006000 C.30000060【解答】解:A、306000读作:三十万六千,没有零;B、30006000读作:三千万六千,没有零;C、30000060读作:三千万零六十,读一个零;故选:C.25.(1分)芳芳从起点向西走了25米,记作﹣25米,然后再掉头往东走了36米,与初始位置相比,应记作()米.A.+36米B.﹣61米C.+11米【解答】解:向西走了25米,记作﹣25米,往东走了36米,记作+36米;﹣25+(+36)=+11,答:与原来位置相比,应记作+11米.故选:C.26.(1分)一种商品的价格,先提高了20%,然后再降低20%,结果与原价相比()A.降低了20% B.降低了4% C.提高了4%【解答】解:原价:1,现价:(1+20%)×(1﹣20%),=1.2×0.8,=0.96.1﹣0.96=0.04=4%.故选:B.27.(1分)<()<,符合条件的分数有()个.A.0 B.1 C.无数【解答】解:根据分数的基本性质,把分子分母同时扩大2倍、3倍、4倍…,如:把分子分母同时扩大2倍,符合条件的分数有,把分子分母同时扩大3倍,符合条件的分数有、,因为1的倍数的个数是无限的,所以<()<,符合条件的分数无数个.故选:C.28.(1分)小明在一次数学比赛中得了86分,这次比赛一共有20道题,正确一道得5分,错一道和不做扣2分,小明正确()道.A.19 B.18 C.17【解答】解:假设全部做对,则做错:(20×5﹣86)÷(5+2)=14÷7=2(道);做对:20﹣2=18(道).答:小明正确18道.故选:B.29.(1分)下面三组线段,不能围成三角形的一组是()A.0.5cm 1cm 1.8cm B.1cm 2.5cm 3cmC.2cm 3cm 4cm【解答】解:A、0.5+1=1.5<1.8,所以三条线段不能围成三角形;B、1+2.5=3.5<3,所以三条线段能围成三角形;C、2+3=5>4,所以三条线段能围成三角形;故选:A.30.(1分)下列年份中,二月有29天的是()A.1788年B.2014年C.1800年【解答】解:1788÷4=447,1788年是闰年;2014÷4=503…2,2014年是平年;1800÷400=4…200,1800年是平年;故选:A.31.(1分)一根铁丝长3米,把这根铁丝平均分成5段,其中2段长()A.米 B.米 C.米【解答】解:2段长:3÷5×2=×2=(米).故选:C.32.(1分)河岸边种了200棵树苗,经过园林工人的精心管理,成活率达到百分之几?()A.200% B.95% C.120%【解答】解:由分析知,河岸边种了200棵树苗,经过园林工人的精心管理,成活率达到95%,故选:B.四、计算(共20分)33.(6分)直接写出得数2﹣=1﹣30%=1.57+3.3=0.25×16=8.4÷4.2=×12=÷=12×(+)=×=﹣=500﹣399=10﹣﹣=【解答】解:2﹣=11﹣30%=0.71.57+3.3=4.870.25×16=48.4÷4.2=2×12=8÷=12×(+)=11×=﹣=500﹣399=10110﹣﹣=934.(8分)计算下面各题,能简便计算的要简便计算10.15﹣6.25﹣3.75+7.856.48÷[(3.3﹣2.7)×0.9×(+1÷)×+÷8.【解答】解:(1)10.15﹣6.25﹣3.75+7.85,=10.15+7.85﹣(6.25+3.75),=18﹣10,=8;(2)6.48÷[(3.3﹣2.7)×0.9],=6.48÷[0.6×0.9],=6.48÷0.54,=12;(3)×(+1÷),=(1×),=,=,=;(4)×+÷8,=,=()×,=1×,=.35.(6分)解方程或解比例4x﹣0.5×9=27.59:x=:x+x=20.【解答】解:①4x﹣0.5×9=27.54x﹣4.5+4.5=27.5+4.54x=324x÷4=32÷4x=8②9:x=:x=9×x×5=3×5x=15③x+x=20五、求阴影部分面积(8分)36.(8分)求阴影部分面积(π取3.14)(单位:dm)【解答】解:(4+10)×4÷2﹣3.14×42÷4=14×4÷2﹣3.14×16÷4=28﹣12.56=15.44(平方分米)答:阴影部分的面积是15.44平方分米.六、解决问题(1-2题每题3分,3-7题,每题4分,共26分)37.(3分)一种电冰箱原价2500元,现在每台售价2450元.现价比原价降低了百分之几?【解答】解:(2500﹣2450)÷2500,=50÷2500,=2%;答:现价比原价降低了2%.38.(3分)王师傅要加工500个零件,第一天加工了总数的40%,第二天加工了总数的,还剩下多少个?【解答】解:500×(1﹣40%﹣)=500×35%=175(个);答:还剩下175个.39.(4分)修路队修一条公路,已修的和未修的比是1:3,又修了300米后,已修的占这条路的,这条公路长多少米?【解答】解:已修的和未修的比是1:3,可知已修的占这条公路长的,300÷(﹣),=300÷,=1200(米);答:这条公路长1200米.40.(4分)一个圆锥形的沙堆,底面周长是31.4m,高是1.5m.用这堆沙铺在一个长125m,厚10cm的路面上,可以铺几米长?【解答】解:10厘米=0.1米;半径是:31.4÷3.14÷2=5(米),沙堆的体积是:×3.14×52×1.5,=×3.14×25×1.5,=3.14×25×0.5,=39.25(立方米);要铺的长度:39.25÷(125×0.1),=39.25÷12.5,=3.14(米);答:可以铺3.14米长.41.(4分)希望小学装修多媒体教室.计划用边长30厘米的釉面方砖铺地,需要900块,实际用边长50厘米的方大理石铺地,需要多少块?(用比例知识解答)【解答】解:设需要x块,50×50×x=30×30×900,x=,x=324,答:需要324块.42.(4分)客车和货车同时从甲、乙两地相对开出,经过8小时相遇,相遇后两车继续行驶,再行驶小时后两车相距70千米,甲、乙两地相距多少千米?【解答】解:70÷×8=140×8=1120(千米)答:甲、乙两地相距1120千米.43.(4分)一个长方体的棱长总和是72分米,长、宽、高的比是5:2:2,这个长方体的表面积是多少平方分米?【解答】解:长:72÷4×=18×=10(厘米),宽:72÷4×=18×=4(厘米),高:72÷4×=18×=4(厘米),(10×4+10×4+4×4)×2=(40+40+16)×2=96×2=192(平方厘米),答:这个长方体的表面积是192平方厘米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年山东省泰安市肥城市七年级(上)期中数学试卷
一、选择题(请将正确答案的序号填写在下面的答题栏的相应位置)
1.在﹣4,2,﹣1,3这四个数中,比﹣2小的数是()
A.﹣4 B.2 C.﹣1 D.3
2.若a<0,则|a|的相反数是()
A.B.﹣ C.a D.﹣a
3.下列调查中,最适合采用全面调查(普查)的是()
A.对肥城市居民日平均用水量的调查
B.对一批LED节能灯使用寿命的调查
C.对肥城新闻栏目收视率的调查
D.对某校七年级(7)班同学身高情况的调查
4.下列图形中,是正方体表面展开图的是()
A.B.C.
D.
5.某市2013年底机动车的数量是2×106辆,2014年新增3×105辆,用科学记数法表示该市2014年底机动车的数量是()
A.2.3×105B.3.2×105C.2.3×106D.5×106
6.如图,C,D是线段AB上两点.若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()
A.3cm B.6cm C.11cm D.14cm
7.为了了解我市6000名学生参加的初中毕业会考数学考试的成绩情况,从中抽取了200名考生的成绩进行统计,在这个问题中,下列说法:(1)这6000名学生的数学会考成绩的全体是总体;(2)每个考生是个体;(3)200名考生是总体的一个样本;(4)样本容量是200,其中说法正确的有()
A.4个 B.3个 C.2个 D.l个
8.已知线段AB=6,若点C到点A距离为2,到点B的距离为3,则对点C描述正确的是()
A.在线段AB所在的平面内能找到无数多个这样的点C
B.满足条件的点C都在线段AB上
C.满足条件的点C都在两条射线上
D.这样的点C不存在
9.计算(﹣2)0+9÷(﹣3)的结果是()
A.﹣1 B.﹣2 C.﹣3 D.﹣4
10.在线段AB上取一点C,使AC=AB,再在线段AB的延长线上取一点D,使DB=AD,则线段BC的长度是线段DC长度的()
A.B.C.D.
11.有理数a、b在数轴上的位置如图所示,则a+b的值是()
A.正数B.负数C.零D.符号不确定
12.某学校将为初一学生开设ABCDEF共6门选修课,现选取若干学生进行了“我最喜欢的一门选修课”调查,将调查结果绘制成如图统计图表(不完整)
选修课A B C D E F 人数4060100
根据图表提供的信息,下列结论错误的是()
A.这次被调查的学生人数为400人
B.扇形统计图中E部分扇形的圆心角为72°
C.被调查的学生中喜欢选修课E、F的人数分别为80,70
D.喜欢选修课C的人数最少
13.点P在线段EF上,现有四个等式①PE=PF;②PE=EF;③EF=2PE;④2PE=EF;其中能表示点P是EF中点的有()
A.4个 B.3个 C.2个 D.1个
14.如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a﹣b|=3,|b﹣c|=5,且原点O与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?()
A.在A的左边 B.介于A、B之间C.介于B、C之间D.在C的右边
15.下列说法①若a+b=0,则a、b互为相反数;②若ab=1,则a、b互为倒数;
③若ab>0,则a、b均大于0;④若|a|=a,则a一定为正数,其中正确的个数为()
A.①④B.①②C.①②④D.①③④
二、填空题(请将答案直接填写在相应横线上)
16.计算+(﹣3)2的结果是.
17.有理数a、b在数轴上的位置如图所示,则|a+1|﹣|b﹣2|的结果为.
18.如图,点C、D是线段AB上的两点,若AC=4,CD=5,DB=3,则图中所有线段的和是.
19.下列说法
①两条不同的直线可能有无数个公共点;
②两条不同的射线可能有无数个公共点;
③两条不同的线段可能有无数个公共点;
④一条直线和一条线段可能有无数个公共点,
其中正确说法的序号为.
20.如图是一家报纸“百姓热线”一周内接到热线电话的统计图,其中有关环境保
护问题的电话最多,共30个.本周“百姓热线”共接到热线电话有个.
三、解答题(本题共6个小题)
21.将下列各数填在相应的集合里.
﹣,π0,(﹣3)3,﹣|﹣|,(﹣2)2,0,﹣(﹣),﹣6.2%
整数集合:{ …};
分数集合:{ …};
正数集合:{ …};
负数集合:{ …}.
22.将﹣3,(π﹣3.14)0,﹣|﹣3.14|,(﹣2)2,0,﹣(﹣)在数轴上表示出来,并将这几个数用“<”连接起来.
23.计算下列各题:
(1)(﹣27)+(+3)﹣(﹣25)﹣(+15)
(2)(﹣+)÷(﹣)•
(3)[(﹣6﹣)÷]÷[(2﹣)×]×(﹣)
(4)﹣23﹣×[4﹣(﹣3)2]3.
24.如图,点C分线段AB为2:1两部分,D点为线段CB的中点,AD=5,求线段AB的长.
25.为扩大内需,国务院决定在全国实施“家电下乡”政策.第一批列入家电下乡的产品为彩电、冰箱、洗衣机和手机四种产品.我市一家家电商场,去年一季度对以上四种产品的销售情况进行了统计.结果显示冰箱销售的数量占总销量的20%,手机销售的数量占总销量的40%,并绘制了如图的条形统计图,请你解答下列问题:
(1)该商场一季度四种家电销售的数量总共是多少台?
(2)洗衣机销售的数量占总销量的百分比?
(3)请补全条形统计图,并将条形统计图转化为扇形统计图.
26.按要求完成下列问题:
(1)若A、B、C、D、E是平面内不同的5个点,则过这5个点的直线可能有多少条?要求确定出可能的条数,并画出每种情况的一种简图;
(2)平面内有n(n为不小于2的整数)个点,过这n个点最多能作多少条直线?完成下列表格.
点的个数2345…2016…n 能做直线最多
条数
136/……。