第2章一阶动态电路的暂态分析

合集下载

一阶动态电路分析

一阶动态电路分析

一阶动态电路分析在一阶动态电路分析中,通常需要考虑以下几个步骤:1.确定电路拓扑结构:首先需要确定电路中的元件和它们的连接方式,以建立电路的拓扑结构。

2.建立电路微分方程:根据电路中的元件和连接方式,可以通过基尔霍夫定律、欧姆定律等来建立电路的微分方程。

对于电容和电感元件,可以利用其电压和电流的关系(即电压-电流特性)得到微分方程。

- 对于电容元件,根据电容的定义(Q=C*dV/dt),可以得到微分方程:C*dV/dt = I,其中C为电容值,V为电容的电压,t为时间,I为电流。

- 对于电感元件,根据电感的定义(V=L*di/dt),可以得到微分方程:L*di/dt = V,其中L为电感值,i为电感的电流,t为时间,V为电压。

3.求解微分方程:根据所建立的微分方程,可以通过分离变量、积分等方法对方程进行求解。

求解过程中需要考虑初始条件,即在其中一时刻电容的电压或电感的电流的初始值。

4.分析电路响应:根据微分方程的解,可以得到电路中电容的电压或电感的电流随时间的变化曲线。

根据这些曲线可以分析电路的稳定状态、暂态响应和频率响应。

在分析电路响应时,可以根据不同的输入信号类型进行分类,常见的输入信号包括:-直流输入:当输入信号为直流信号时,可以将微分方程简化为代数方程进行求解。

此时电路响应主要包括稳态响应和过渡过程。

-正弦输入:当输入信号为正弦信号时,可以利用拉普拉斯变换将微分方程转换为代数方程。

通过求解代数方程和对频率的分析,可以得到电路的频率响应。

-脉冲输入:当输入信号为脉冲信号时,可以将微分方程进行离散化,转化为差分方程进行求解。

此时电路响应主要包括脉冲响应和响应序列的叠加。

总结来说,一阶动态电路分析是通过建立微分方程,求解微分方程,分析电路响应的一种方法。

通过这种方法,可以了解电路的稳定状态、暂态响应和频率响应等特性。

同时,对于不同类型的输入信号,还可以通过不同的数学工具和方法进行求解和分析。

这种分析方法可以广泛应用于电子电路、控制系统等领域的研究和应用中。

查丽斌电路与模拟电子技术基础习题及实验指导第四版选择题填空题答案

查丽斌电路与模拟电子技术基础习题及实验指导第四版选择题填空题答案

第1章 直流电路一、填 空 题1.4.1 与之联接的外电路;1.4.2 1-n ,)1(--n b ;1.4.3 不变;1.4.4 21W ,负载;1.4.5 Ω1.65A , ;1.4.6 1A 3A , ; 1.4.7 3213212)(3)23(R R R R R R R +++=; 1.4.8 1A ;1.4.9 Ω4.0,A 5.12;1.4.10 电压控制电压源、电压控制电流源、电流控制电压源、电流控制电流源;1.4.11 3A ;1.4.12 3A ;1.4.13 Ω2;1.4.14 15V ,Ω5.4;1.4.15 V 6S =U 。

二、单 项 选 择 题1.4.16 C ; 1.4.17 B ; 1.4.18 D ; 1.4.19 A ;1.4.20 A ; 1.4.21 C ; 1.4.22 B ; 1.4.23 D 。

第2章一阶动态电路的暂态分析一、填 空 题2.4.1 短路,开路;2.4.2 零输入响应;2.4.3 短路,开路;2.4.4 电容电压,电感电流;2.4.5 越慢;2.4.6 换路瞬间;2.4.7 三角波;2.4.8 s 05.0,k Ω25; 2.4.9 C R R R R 3232+; 2.4.10 mA 1,V 2。

二、单 项 选 择 题2.4.11 B ; 2.4.12 D ; 2.4.13 B ;2.4.14 D ; 2.4.15 B ; 2.4.16 C 。

第3章 正弦稳态电路的分析一、填 空 题3.4.1 ︒300.02s A 10, , ; 3.4.2 V )13.532sin(25)(︒+=t t u ;3.4.3 容性, A 44;3.4.4 10V ,2V3.4.5 相同;3.4.6 V 30,20V ;3.4.7 A 44,W 7744;3.4.8 A 5;3.4.9 减小、不变、提高;3.4.10 F 7.87μ;3.4.11 20kVA ,12kvar -;3.4.12 带通,带阻3.4.13不变、增加、减少;3.4.14电阻性,电容性; 3.4.15 LC π21,阻抗,电流;3.4.16 1rad/s ,4;3.4.17 Ω10;3.4.18 P L U U =,P L 3I I =,︒-30; 3.4.19 P L 3U U =,P L I I =,超前。

电路的暂态分析

电路的暂态分析

电路的暂态分析(总18页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第8章电路的暂态分析含有动态元件L和C的线性电路,当电路发生换路时,由于动态元件上的能量不能发生跃变,电路从原来的一种相对稳态过渡到另一种相对稳态需要一定的时间,在这段时间内电路中所发生的物理过程称为暂态,揭示暂态过程中响应的规律称为暂态分析。

本章的学习重点:暂态、稳态、换路等基本概念;换路定律及其一阶电路响应初始值的求解;零输入响应、零状态响应及全响应的分析过程;一阶电路的三要素法;阶跃响应。

换路定律1、学习指导(1)基本概念从一种稳定状态过渡到另一种稳定状态需要一定的时间,在这一定的时间内所发生的物理过程称为暂态;在含有动态元件的电路中,当电路参数发生变化或开关动作等能引起的电路响应发生变化的现象称为换路;代表物体所处状态的可变化量称为状态变量,如i L和u C就是状态变量,状态变量的大小显示了储能元件上能量储存的状态。

(2)基本定律换路定律是暂态分析中的一条重要基本规律,其内容为:在电路发生换路后的一瞬间,电感元件上通过的电流i L和电容元件的极间电压u C,都应保持换路前一瞬间的原有值不变。

此规律揭示了能量不能跃变的事实。

(3)换路定律及其响应初始值的求解一阶电路响应初始值的求解步骤一般如下。

①根据换路前一瞬间的电路及换路定律求出动态元件上响应的初始值。

②根据动态元件初始值的情况画出t=0+时刻的等效电路图:当i L(0+)=0时,电感元件在图中相当于开路;若i L(0+)≠0时,电感元件在图中相当于数值等于i L(0+)的恒流源;当u C(0+)=0时,电容元件在图中相当于短路;若u C(0+)≠0,则电容元件在图中相当于数值等于105106u C (0+)的恒压源。

根据t = 0+时的等效电路图,求出各待求响应的初始值。

2、学习检验结果解析(1)何谓暂态何谓稳态您能说出多少实际生活中存在的过渡过程现象解析:在含有动态元件电容的电路中,电容未充电,原始储能为零时是一种稳态,电容充电完毕,储能等于某一数值时也是一种稳态。

一阶动态电路暂态过程的研究

一阶动态电路暂态过程的研究

实验四 一阶动态电路暂态过程的研究一. 实验目的1.研究一阶RC 电路的零输入响应、零状态响应和全响应的变化规律和特点。

2、研究一阶电路在阶跃激励和方波激励情况下, 响应的基本规律和特点。

测定一阶电路的时间常数 ,了解电路参数对时间常数的影响。

3.掌握积分电路和微分电路的基本概念。

4.研究一阶动态电路阶跃响应和冲激响应的关系。

5.学习用示波器观察和分析电路的响应。

二. 实验原理1.含有动态元件的电路, 其电路方程为微分方程。

用一阶微分方程描述的电路, 为一阶电路。

图6-1所示为一阶RC 电路。

首先将开关S 置于1使电路处于稳定状态。

在t=0时刻由1扳向2, 电路对激励Us 的响应为零状态响应, 有RCt S S C eU U t u --=)(这一暂态过程为电容充电的过程, 充电曲线如图6-2a 所示。

电路的零状态响应与激励成正比。

U U u c (t) 图6-1 图6-2(a )充电曲线 图6-2(b )放电曲线若开关S 首先置于2使电路处于稳定状态, 在t=0时刻由2扳向1, 电路为零输入响应, 有RCt S C eU t u -=)(这一暂态过程为电容放电过程, 放电曲线如图6-2b 所示。

电路的零输入响应与初始状态成正比。

动态电路的零状态响应与零输入响应之和称之为全响应,全响应与激励不存在简单的线性关系。

2.一阶RC 动态电路在一定的条件下, 可以近似构成微分电路或积分电路。

当时间常数 (=RC)远远小于方波周期T 时, 图6-3(a)所示为微分电路。

输出电压u0(t)与方波激励uS(t)的微分近似成比例, 输入输出波形如6-3(b)所示。

从中可见, 利用微分电路可以实现从方波到尖脉冲波形的转变。

+ u O_uC图6-3(a ) 图6-3(b )当时间常数 (=RC)远远大于方波周期T 时, 图6-4(a)所示为积分电路, 输出电压uO(t)与方波激励uS 的积分近似成比例。

输入、输出波形如图6-4(b)所示。

杭州电子科技大学电路与模拟电子技术基础(第4版)习题解答完整版

杭州电子科技大学电路与模拟电子技术基础(第4版)习题解答完整版

第1章直流电路习题解答1.1 求图1.1中各元件的功率,并指出每个元件起电源作用还是负载作用。

图1.1 习题1.1电路图解 W 5.45.131=×=P (吸收);W 5.15.032=×=P (吸收) W 15353−=×−=P (产生);W 5154=×=P (吸收); W 4225=×=P (吸收);元件1、2、4和5起负载作用,元件3起电源作用。

1.2 求图1.2中的电流I 、电压U 及电压源和电流源的功率。

图1.2 习题1.2电路图解 A 2=I ;V 13335=+−=I I U电流源功率:W 2621−=⋅−=U P (产生),即电流源产生功率6W 2。

电压源功率:W 632−=⋅−=I P (产生),即电压源产生功率W 6。

1.3 求图1.3电路中的电流1I 、2I 及3I 。

图1.3 习题1.3电路图解 A 1231=−=I ;A 1322−=−=I由1R 、2R 和3R 构成的闭合面求得:A 1223=+=I I 1.4 试求图1.4所示电路的ab U 。

图1.4 习题1.4电路图解 V 8.13966518ab −=×+++×−=U 1.5 求图1.5中的I 及S U 。

图1.5 习题1.5电路图解 A 7152)32(232=×+−×+−=IV 221021425)32(22S =+−=×+−×+=I U1.6 试求图1.6中的I 、X I 、U 及X U 。

图1.6 习题1.6电路图解 A 213=−=I ;A 31X −=−−=I I ; V 155X −=⋅=I UV 253245X X −=×−−⋅=I U1.7 电路如图1.7所示:(1)求图(a)中的ab 端等效电阻;(2)求图(b)中电阻R 。

图1.7 习题1.7电路图解 (1) Ω=+=+++×+×+×+=1046418666661866666ab R (2) Ω=−−=712432383R1.8 电路如图1.8所示:(1)求图(a)中的电压S U 和U ;(2)求图(b)中V 2=U 时的电压S U 。

一阶线性电路暂态分析的三要素法

一阶线性电路暂态分析的三要素法

t
当t= 时,iL=36.8%I0 。
U i (1 e ) R

t
零状态响应曲线
i U R 0.632U/R
时间常数 =L/R 0
i I 0e 零输入响应曲线 i
I0 0.368I0 i
t
i
t
0
时间常数 =L/R

t
当t=时,uC=63.2%U。
当t= 时,uC=36.8%U0 。
全响应 = 零输入响应 + 零状态响应
uC U 0
t e RC
U
t (1 e RC
)
(t 0)
【结论1】 全响应 = 零输入响应 + 零状态响应
零输入响应 零状态响应
全响应
uC U 0
t e RC
t U ( 1 e RC
t U )e RC
) (t 0)
y(t ) y(0 )e

t

二、零输入响应
放电过程 2 t 0 R S + uR– 换路前电路已处于稳态 1 + + uC U iC – uC (0 ) U
1. RC 电路零输入响应
c
uC , 电容C 经电阻R 放电 (0 ) U t =0时开关S 1
列 KVL方程:

C
uL

uC(0+)=0 iL (0+) =0
电容元件短路。 电感元件开路
t=0-
则:画出t=0+时的等效电路
第一章 电路及其分析方法 由t=0+的等效电阻电路 求出各独立初始值 +

R1

第2章一阶动态电路的过渡过程分析

第2章一阶动态电路的过渡过程分析


iS
iR
iC
iL
1k
2k
uR 2k
10mA t 0 S
uC
uL
C
L
则t
iS
=01+ 5时m刻i LA,
iuRC
0i,CiCi R10im S A i,Lu
uL
R 5mA
t
uR005Vm,A
10V 0 10umLA0101V 0V uC 10V,
0 10V
t 0 5mA10V 10mA 0 15mA 0
研究暂态过程,是要认识和掌握这种现象的规 律。
一般可以说,数学分析和实验分析是分析暂 态电路的两种方法。本章内容介绍最基本的数学 分析方法,其理论依据是欧姆定律及克希荷夫定 律。
实验分析方法,将在实验课程中应用示波器 等仪器观测暂态过程中各量随时间变化的规律。
重点讨论的问题是:(1)暂态过程随时间变 化的规律;(2)影响暂态过程快慢程度的时间常 数。
C 和L 称为对偶元件。
对偶元素: u i 、 q 、C L等 若把 u i 、 q 、C L等对偶元素 互换,可由电容元
件的关系式得到电感元件的相应关系式
第三节 换路定律
• 换路——指电路因接通、断开、短路以及电压或 电路参数的改变。
不论电路的状态如何发生改变,电路中所具有的 能量是不能突变的。如电感的磁能及电容的电能 分别为 WLL2L i /2和 WC CuC2 /2 都不能突变。 换路定则 设t=0为换路瞬间,则 t=0– 和t=0+ 分别是换路前后的极限时刻。从 t=0– 到 t=0+ 瞬间,电感元件中的电流和电容元件两端的电压 不能突变。可表示为
2.5.1、电感元件(简称电感)的定义:

第2章__一阶动态电路的暂态分析[1]

第2章__一阶动态电路的暂态分析[1]
第2章 一阶动态电路的暂态分析
第2章 一阶动态电路的暂态分析
2.1 2.2 2.3 2.4 2.5 2.6 电容元件与电感元件 换路定则及其初始条件 一阶电路的零输入响应 一阶电路的零状态响应 一阶电路的全响应 三要素法求一阶电路响应
第2章 电路的暂态分析
本章要求
1. 了解电感元件与电容元件的特征; 2. 理解电路的暂态和稳态、零输入响应、零状 态响应、全响应的概念,以及时间常数的物 理意义; 3. 掌握换路定则及初始值的求法; 4. 掌握一阶线性电路分析的三要素法。
i
+
u _ 电容元件 C
u
电容元件储能
dq ( t ) d [Cu( t )] i( t ) dt dt
du iC dt
将上式两边同乘上 u,并积分,则得: t u 1 2 0 ui dt 0 Cudu 2 Cu
1 t u (t ) u (to ) i ( )d C t0
U
uC
+ uC C –
U
暂态

iC (b)
o 稳态
t
图(b) 合S前: iC 0 , uC 0
合S后: uC 由零逐渐增加到U
所以电容电路存在暂态过程(C储能元件)
产生暂态过程的必要条件: (1) 电路中含有储能元件 (内因) (2) 电路发生换路 (外因) 换路: 电路状态的改变。如: 若 uc 发生突变, duC 电路接通、切断、 短路、电压改变或参数改变 则 iC dt 产生暂态过程的原因: 一般电路不可能! 由于物体所具有的能量不能跃变而造成 在换路瞬间储能元件的能量也不能跃变
4 4
i1
R1 + uC 4 _
+ uL _

4.5 一阶RC电路的暂态过程分析

4.5 一阶RC电路的暂态过程分析

4.5 一阶RC 电路的暂态过程分析一、实验目的1.学习用示波器观察和分析RC 电路的响应。

2.了解一阶RC 电路时间常数对过渡过程的影响,掌握用示波器测量时间常数。

3.进一步了解一阶微分电路、积分电路和耦合电路的特性。

二、实验原理1.一阶RC 电路的全响应=零状态响应+零输入响应。

当一阶RC 电路的输入为方波信号时,一阶RC 电路的响应可视为零状态响应和零输入响应的多次重复过程。

在方波作用期间,电路的响应为零输入响应,即为电容的充电过程;在方波不作用期间,电路的响应为零输入响应,即为电容的放电过程。

方波如图4.5.1所示。

图4.5.1 方波电压波形 图4.5.4 测常数和积分电路接线2.微分电路如图4.5.2所示电路,将RC 串联电路的电阻电压作为输出U 0,且满足τ ‹‹ t w 的条件,则该电路就构成了微分电路。

此时,输出电压U 0近似地与输入电压U i 呈微分关系。

dt du RC U i O 图4.5.2 微分电路和耦合电路接线 图4.5.3 微分电路波形微分电路的输出波形为正负相同的尖脉冲。

其输入、输出电压波形的对应关系如图4.5.3所示。

在数字电路中,经常用微分来将矩形脉冲波形变换成尖脉冲作为触发信号。

3.积分电路积分电路与微分电路的区别是:积分电路取RC 串联电路的电容电压作为输出U 0,如图4.5.4所不电路,且时间常数满τ ››t w 。

此时只要取τ=RC ››t w ,则输出电压U 0近似地与输入电压U i 成积分关系,即⎰≈t i O d u RC U 1积分电路的输出波形为锯齿波。

当电路处于稳态时,其波形对应关系如图3.5.5所示。

注意:U i 的幅度值很小,实验中观察该波形时要调小示波器Y 轴档位。

图4.5.5 积分电路波形 图4.5.6 耦合电路波形4.耦合电路RC 微分电路只有在满足时间常数τ=RC ‹‹ t w 的条件下,才能在输出端获得尖脉冲。

如果时间常数τ=RC ››t w ,则输出波形已不再是尖脉冲,而是非常接近输出电压U i 的波形,这就是RC 耦合电路,而不再是微分电路。

一阶动态电路暂态分析的三要素法_电工电子技术_[共4页]

一阶动态电路暂态分析的三要素法_电工电子技术_[共4页]


4章
一阶线性电路的暂态分析 67
图4.2.5 RC 电路的零状态响应
4.2.2 一阶动态电路暂态分析的三要素法
通过前面的分析可知,零输入响应和零状态响应可看成是全响应的特例。

直流电源激励下的一阶动态电路中的电压或电流,其全响应总是由初始值开始,按指数规律变化而接近于稳态值。

则全响应f (t )可表示为
()()[(0)()]e t
f t f f f τ−+=+−∞∞ (4.2.12)
只要知道了初始值f (0+)、稳态值f (∞)和时间常数τ 这三个要素,就可以通过式(4.2.12)直接写出直流电源激励下的一阶动态电路的全响应,这种方法称为三要素法。

时间常数 L RC R ττ⎛⎞==⎜⎟⎝
⎠或,其中R 为等效电阻,是换路后从储能元件C (或L )两端看进去的除源网络外的入端电阻,即戴维宁或诺顿等效电路的等效电阻。

三要素法具有方便、实用和物理概念清楚等特点,是求解一阶电路常用的方法。

例4.2.1 在图4.2.6(a )所示的电路中,U S =180 V ,R 1=30Ω,R 2=60Ω,C =100μF ,电容初始电压为0,t =0时开关S 合上。

试求换路后的u C (t )
、i
1(t
)。

图4.2.6 例4.2.1题图
解:利用三要素法求解。

(1)求初始值u C (0+)、i 1(0+)
由换路定律知
u C (0+) = u C (0-) = 0
由于u C (0+ ) = 0,此时电容可视为短路,因此有换路后t = 0+时的等效电路,如图4.2.6(b )所示。

则有。

第二章电路的暂态分析

第二章电路的暂态分析

e=
d
dt
=L i
u + e=0
di = L dt
di u =L dt
在直流稳态时,电 感相当于短路。
di p=ui =Li 瞬时功率 dt P>0,L把电能转换为磁场能,吸收功率。 P<0,L把磁场能转换为电能,放出功率。 1 WL= Li 2 储存的磁场能 L为储能元件 2
章目录 返回 上一页 下一页
1
+
E
R2
20V
C2 R3
章目录 返回 上一页 下一页
-
C1
S t=0
解: (1)求初始值,画出 t=0–的电路 R1 R3 • E uC1(0-) = ———— R1+R2+R3 R2 C2 + 3×20 E 20V = ——— = 5V 3+6+3 - C S t=0 R3 R2 • E 1 uC2 (0-) = R +R +R ———— 1 2 3 6×20 = ——— = 10V uR1(0+) 3+6+3 + -
3A
a S R1
20
30
uL(0-) iL(0-)
t=0–的电路
解: (1) 画出t=0–的电路, L视为短路
R1 iL(0-) = ISR +R =1.2A —— 1 3
uL(0-)= 0
章目录 返回
上一页 下一页
(2) 画出 t=0+的电路
R3
30
iL(0+)= iL(0-)= 1.2 A
i (0-) + E
20V
R1
+ uC1(0-)
R2

一阶动态电路分析

一阶动态电路分析

一阶动态电路分析
实验电路如图4- 3所示。
R1
1 t= 02

U0 -
S +
uC -
20μ F - 10 0k Ω C uR R

图4-3 RC放电电路
一阶动态电路分析
实验按如下步骤进行。
(1) 将电路连接好。示波器的输入探头接在电容器两端。 打开稳压电源,调节输出电压至1V。t=0 时将开关S由位置1打 到位置2,仔细观测电容器两端电压的变化情况。(如果没有 慢扫描示波器,可以用机械万用表代替示波器观测电容两端的 电压, 以下同)。在这一过程中,我们可以从示波器中看到 如图4 - 4(a)的波形。一般将之称为电容器的放电曲线。其 形状与实训4中我们看到的在t1~t2时间电容器两端的波形类似。
一阶动态电路分析
2. 实训设备、
(1) 实训设备与器件:直流稳压电源一台,双通道示 波器一台,万能板一块,8Ω扬声器一个,按键一个,电 阻、电容、 导线若干。
(2) 实训电路与说明: 实训电路如图4 - 1所示。 图 中555为集成定时器电路。555定时器具有如下特点: 当 它按图4 - 1的方式将2、6脚连到一起时,如果连接点的电 位高于电源电压的2/3,则3脚的输出电压等于0V,7脚对 地短路,如果连接点的电位低于电源电压的1/3时, 则3脚 的输出电压等于电源电压,7脚对地开路。
在荧光屏上比较通道1与通道2的波形我们可以发现, 锯齿波的最小值与输出波形从低电平向高电平过渡对应, 锯齿波的最大值与输出波形从高电平向低电平过渡对应。
一阶动态电路分析
T
uo
T1
E
t (a)
uC1 2E /3
E /3
t
0
t1 t2

一阶动态电路分析

一阶动态电路分析

第3章电路的暂态分析【教学提示】暂态过程是电路的一种特殊过程,持续时间一般极为短暂,但在实际工作中却极为重要。

本章介绍了电路暂态过程分析的有关概念和定律,重点分析了RC和RL一阶线性电路的暂态过程,由RC电路的暂态过程归纳出了一阶电路暂态分析的三要素法。

最后讨论了RC的实际应用电路一-积分和微分电路。

【教学要求】了解一阶电路的暂态、稳态、激励、响应等的基本概念理解电路的换路定律和时间常数的物理意义了解用经典法分析RC电路、RL电路的方法掌握一阶电路暂态分析的三要素法了解微分电路和积分电路的构成及其必须具备的条件3.1暂态分析的基本概念暂态分析的有关概念是分析暂态过程的基础,理解这些概念能更好地理解电路的暂态过程。

1•稳态在前面几章的讨论中,电路中的电压或电流,都是某一稳定值或某一稳定的时间函数,这种状态称为电路的稳定状态,简称稳态( steady state)。

2•换路当电路中的工作条件发生变化时,如电路在接通、断开、改接、元件参数等发生突变时,都会引起电路工作状态的改变,就有可能过渡到另一种稳定状态。

把上述引起电路工作状态发生变化的情况称为电路的换路(switching circuit )。

3•暂态换路后,电路由原来的稳定状态转变到另一个稳定状态。

这种转换不是瞬间完成的,而是有一个过渡过程,电路在过渡过程中所处的状态称为暂态( transient state)。

4•激励激励(excitation )又称输入,是指从电源输入的信号。

激励按类型不同可以分为直流激励、阶跃信号激励、冲击信号激励以及正弦激励。

5•响应电路在在内部储能或者外部激励的作用下,产生的电压和电流统称为响应。

按照产生响应原因的不同,响应又可以分为:(1)零输入响应(zero input response):零输入响应就是电路在无外部激励时,只是由内部储能元件中初始储能而引起的响应。

(2)零状态响应(zero state respo ns©:零状态响应就是电路换路时储能元件在初始储能为零的情况下,由外部激励所引起的响应。

《电工电子技术》全套课件第2章电路的暂态分析

《电工电子技术》全套课件第2章电路的暂态分析

04
电路暂态的实验研究
实验目的和实验原理
实验目的
通过实验研究电路暂态过程,加深对电路暂态分析的理解,掌握暂态分析的基本 方法。
实验原理
电路暂态分析是研究电路中非线性元件的动态特性和电路暂态过程的学科。通过 实验,可以观察电路中电压、电流的变化过程,了解暂态分析的基本原理和方法 。
实验步骤和实验结果分析
电机控制
在电机控制中,暂态分析可以帮助理 解电机的启动、停止和调速过程,从 而优化电机的控制策略。
在电机控制中的应用
伺服控制
伺服控制系统需要对电机的位置和速度进行精确控制,通过暂态分析可以更好 地理解和优化控制算法。
变频器
在变频器中,暂态分析可以帮助理解电机的频率变化过程,从而优化变频器的 控制效果。
《电工电子技术》全套课件第 2章电路的暂态分析

CONTENCT

• 电路暂态的基本概念 • 电路暂态的分析方法 • 电路暂态的应用 • 电路暂态的实验研究 • 电路暂态的工程实例
01
电路暂态的基本概念
电路暂态的定义
电路暂态
在电路中,当开关动作或输入信号发生变化时,电路从一个稳定 状态过渡到另一个稳定状态的过程,这个过程称为电路的暂态。
80%
5. 数据分析
对采集到的数据进行处理和分析 ,绘制图表,得出结论。
实验步骤和实验结果分析
1. 电压、电流波形分析
01
根据采集到的电压、电流波形,分析暂态过程中电压、电流的
变化规律。
2. 参数影响分析
02
改变元件参数,观察暂态过程的变化,分析元件参数对暂态过
程的影响。
3. 近似计算分析
03
利用近似计算方法,如三要素法等,对实验数据进行处理和分

电路分析基础 课题四 一阶动态电路的分析

电路分析基础 课题四 一阶动态电路的分析

输入响应。
2.



一阶动态电路的零输入响应的一般表达式为:() = (0+) ,其中,为时间常数(单位:s),
(0+)为初始值。
3.
“零输出响应”特点:
➢ 换路后电源信号为0(零输入/激励)
➢ 储能元件的初始值≠0
➢ 储能元件的稳态值=0
问题四:
闪光灯在实际使用中,会频繁充电;同时实
iL I 0 e
R
t
L
I0e

t

稳态值= iL (∞) = 0
1
最大储能:wL = 2 LI02
(5)其它响应:
(c)响应曲线

uL uR RI 0 e
t


t


L
...RL电路时间常数
R
知识链接3.一阶零输入响应的表达式
1.
定义:在没有输入激励的情况下,仅由电路的初始状态(初始时刻的储能)所引起的响应,称为零
闪光灯的功能就是通过瞬间放电补光的过程。
知识链接 1.RC零输入响应电路分析
(a)换路前
(b)换路后
(1)换路前(0-时刻如图a)
(5)其它响应
Uc(0-)=U0≠0
uR uC U 0 e
(2)换路瞬间(0+时刻)
由换路定理:初始值Uc(0+)=Uc(0-)=U0≠0
1
最大储能:(0+) = 2 02
3.初始值的计算
【初始值求解步骤】
① 换路前的电路(t =0-)直流稳态下,电容相当于开路、电感相当于短路。
② 换路前的电路(t =0-)只求电感中电流iL(0-)或者电容中电压uC(0-)。

2.1--2.3三要素法

2.1--2.3三要素法
f(∞): — 稳态值 f(0+): — 初始值 τ : — 时间常数

t
三要素
用三要素公式求解一阶电路的方法, 即为一阶电路暂态分析的三要素法。
2.3.2 三要素的求解方法
一、 初始值f(0+) 的计算
1、画t =0-时的等效电路,求uC(0-)和iL(0-)
t =0-时,电容等效为开路,电感等效为短路。 2、 根据换路定则,求uC(0+)和iL(0+) 3、 画t=0+时的等效电路,求其它初始值 t =0+时, 电容用恒压源uC(0+)代替; 电感用恒流源iL(0+)代替。 【例】 图示电路,换路前电路处于稳态,
1A iL (0 )
+
8V _ uC (0 ) _ 5V
+
= - 2V
结论
1.换路瞬间,uC、 iL 不能跃变, 但其它电量均可以跃 变。 2.换路前, 若储能元件没有储能, 换路瞬间(t=0+的等 效电路中),可视电容元件短路,电感元件开路。 3.换路前, 若uC(0-)0, 换路瞬间 (t=0+等效电路中), 电容元件可用一理想电压源替代, 其电压为uc(0+); 换路前, 若iL(0-)0 , 在t=0+等效电路中, 电感元件 可用一理想电流源替代,其电流为iL(0+)。
产生暂态过程的必要条件: (1) 电路中含有储能元件 (内因) (2) 电路发生换路 (外因)
换路: 电路状态的改变。如: duC 则 iC 电路接通、切断、 短路、电压改变或参数改变 dt 一般电路不可能! 产生暂态过程的原因: 由于物体所具有的能量不能跃变而造成 在换路瞬间储能元件的能量也不能跃变

一阶动态电路分析

一阶动态电路分析
相频特性描述了一阶动态电路对不同频率信号的 相位响应。
在低通滤波器中,随着频率的增加,输出信号的 幅度逐渐减小;而在高通滤波器中,随着频率的 增加,输出信号的幅度逐渐增加。
在一阶电路中,由于存在电容或电感元件,输出 信号与输入信号之间会存在一定的相位差。这种 相位差随着频率的变化而变化,形成了一阶电路 的相频特性。
一阶低通滤波器的截止频率决 定了信号通过的频率范围。
一阶高通滤波器
一阶高通滤波器允许高频信号通过, 而阻止低频信号。
一阶高通滤波器的截止频率同样决定 了信号通过的频率范围,但与低通滤 波器相反。
其电路结构也由一个电阻和一个电容 组成,但连接方式与低通滤波器相反。
幅频特性和相频特性
幅频特性描述了一阶动态电路对不同频率信号的 幅度响应。
电阻的作用
电阻在电路中起到分压、 分流、限流等作用,是电 路中的重要元件。
电阻的种类
电阻按照材料、结构、功 率等可分为多种类型,如 碳膜电阻、金属膜电阻、 线绕电阻等。
电容
电容的定义
电容是电路中存储电荷的 元件,用符号"C"表示,单 位为法拉(F)。
电容的作用
电容在电路中起到滤波、 隔直、耦合等作用,常用 于电源电路、信号电路等。
复数域分析法
将电路中的元件参数和变量表示为复数形式,通过复数运算来分 析电路稳定性。
06 一阶动态电路的应用举例
RC电路的应用
延时电路
利用RC电路的充放电特性,可以实现延时功能, 如电子门铃、延时开关等。
滤波电路
RC电路可以构成低通、高通或带通滤波器,用于 滤除信号中的特定频率成分。
振荡电路
在某些条件下,RC电路可以产生振荡,用于产生 特定频率的信号。

动态电路的暂态分析

动态电路的暂态分析

暂态的分类
自由暂态
无输入信号作用时的电路过渡过程。
强迫暂态
有输入信号作用时的电路过渡过程。
暂态分析的重要性
01
确定电路的性能指 标
通过分析暂态过程,可以了解电 路在不同时刻的响应,从而评估 其性能。
02
优化电路设计
03
预测电路故障
了解电路的暂态行为有助于优化 电路设计,提高其稳定性和可靠 性。
通过对暂态过程的监测和分析, 可以及时发现电路中潜在的故障 并进行预防和维护。
暂态分析用于研究控制系统的稳定性,以确定 系统在不同条件下的行为。
控制策略优化
通过暂态分析,可以优化控制策略,提高系统 的动态响应性能和稳定性。
故障诊断与预测
暂态分析用于故障诊断和预测中,通过分析系统的暂态行为来识别潜在的故障 和问题。
06 暂态分析的挑战与展望
暂态分析的局限性
计算量大
暂态分析需要大量计算,特别是对于复杂电 路,计算量会呈指数级增长,导致计算效率 低下。
多阶电路的暂态分析
高阶电路分析
多阶电路的暂态分析需要使用更复杂的数学 方法,如拉普拉斯变换或傅里叶变换。这些 方法可以将时域中的复杂问题转换为频域中 的简单问题,从而方便求解。
复杂行为
多阶电路在暂态过程中可能表现出复杂的振 荡和过渡行为,需要仔细分析以理解其工作 原理和特性。
05 暂态分析的工程应用
动态电路的行为。
状态空间分析法的优点是能 够描述系统的动态过程,适 用于多输入多输出系统的分
析。
状态空间分析法的缺点是建 立状态方程和输出方程的过 程可能比较复杂,需要一定 的数学基础。
04 暂态分析的实例
一阶RC电路的暂态分析

第二章 一阶动态电路的暂态分析

第二章 一阶动态电路的暂态分析
Department of Computer Science & Technology
第二章 一阶动态电路的暂态分析
Department of Computer Science & Technology
本章的目的
R0
1 2
K U0 C
uC
R
UC什么时候能达到1/2U0 ?
1
Department of Computer Science & Technology
第二章 一阶动态电路的暂态分析
稳态
过渡过程
稳态
例如:电机的起、停,温度的升、降等不能跃变,需要 经过一定的时间后才能稳定,这个过程称为过渡过程 。
K US
K US R
R
iR
R
uR us
uR
uC us
0
?
t
iC
C
u
C
0
t
3
Department of Computer Science & Technology
2.2 换路定则及其初始条件
t=0时闭合开关, 0+时刻 等效电路如下图(b)所示
L 2A K
iL
R2=1Ω
i1
R1=1Ω
iL (0 ) iL (0 ) 1A
(a)
iL(0+) uL(0+) R2
uL (0 ) R2 iL (0 ) (1 1) 1(V)
2A
i1
uC(0+)或iL(0+)怎么确定?
1) 先由t =0-等效电路求出 uC(0–) 、iL(0–): 在直流激励下,换 路前,电路已处于稳定状态时,将电容→开路,电感→短路, 得到 t = 0-时的等效电路。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

uC )
(2 C
duC dt
uC )
2
2
9
e
t 0.8
3(1
e
t
0.8 )
4
3
3
e
t 0.8
(A),
t0
4
uC (
) 1 2 3 2 6 6(V) 1 2 12
0.3 (2 1 2) 0.8(s)
1 2
t
uC (t) uC ( )(1 e )
1t
6(1 e 0.8 )(V),
• 图中,开关闭合前电容C无储能,所以电 容初始状态,时开关闭合,故其响应为 零状态响应。
RC电路的零状态响应曲线
2.4.2RL电路零状态响应
RL电路零状态响应曲线
【例】 如图所示为零状态电路,t=0时开 关闭合,求开关闭合后的uc及i。

uC (0 ) uC (0 ) 0
i
(2 iC
及u的初始值。
由于换路前动态元件均未储能,所以 t 0 时 uC (0 ) 0 ,

iL (0 ) 0 。 由 换 路 定 则 可 知 uC (0 ) uC (0 ) 0 , iL (0 ) iL (0 ) 0 ,相当于电容短路、电感开路,则换路后t 0
iC (0 ) 1(A)
时的等效电路如图(b)所示。求得
电容元件符号
2.1.2 电感元件及其性质
一根导线当通有电流时,周围会产生磁 场,若将导线绕成线圈,可增加线圈内 部的磁场,由此形成的元件称为电感线 圈或电感器。
N L
i
如果忽略电感器内阻及匝与 匝之间的分布电容,则为理 想电感器,又称电感元件, 简称电感。
【例】如图所示电路,已知 i1 (2 et ) (A), t 0
RC电路的零输入响应曲线
2.3.2RL电路的零输入响应
RL电路零输入响应曲线
【例】 如图所示电路原已稳定, t 0 时,开关 S 打开,
试求零输入响应 uC t 及 iC t 。

uC
(0
)
3
6
6
18
9
9 18
18
6(V)
uC (0 ) uC (0 ) 6(V)
RO
(3 18)(6 9) 3 18 6 9
35 4
()
t
t
uC (t) uC (0 )e 6e 3.5 (V)
ROC 3.5(s)
iC
C duC dt
24
e零状态响应
• 零状态响应是指动态元件初始储能为零, 仅由外施激励所引起的响应。
• 1.RC电路零状态响应 • 2.RL电路零状态响应
2.4.1RC电路零状态响应
解 初始值 uC (0 ) uC (0 ) 10(V)
利用三要素法公式得
稳态值
uc(∞)=5×1+10=15(V) 时间常数 0.2 5 1(s)
uC (t) uC (
) [uC (0 ) uC (
t
)]e
15 5et (V)
i(t) uC 10 1 et (A) 5
它只适用于换路瞬间,且电容电流、电感电压均为有限值。
2.2.2 初始条件确定
• 电路中电压、电流初始值计算过程如下: • (1)首先求出换路前一瞬间的
uC (0 ) 和 iL (0 ) 。 • (2)由换路定则可以得出电压的初始值 uC(0 ) 和电流的初始值 iL (0 )。
【例】 如图所示(a)电路,开关S在t=0时打开, 开关打开前电感电容均未储能。求uc、ic、ul、il
uL (0 ) u(0 ) 5iC (0 ) 5(V)
2.3 一阶电路零输入响应
• 零输入响应是指动态电路在没有外施激 励时,仅由动态元件的初始储能所引起 的响应。
• 1.RC电路的零输入响应
• 2.RL电路的零输入响应
2.3.1RC电路的零输入响应
如图 (a)所示电路,换路前开关 S 合在位置“1”上,电源对 电容充电,t=0 时将开关从位置“1”合到位置“2”,如图 (b)所 示,此时无激励源作用,输入信号为零,由于 t>0 时,无信号源 作用,因而称为零输入响应。
第2章 一阶动态电路的暂态分析
2.1 电容元件与电感元件
• 2.1.1 电容元件及其性质 • 2.1.2 电感元件及其性质
由于电容元件和电感元件能够储存 能量,所以称为储能元件
2.1.1 电容元件及其性质
• 电容元件是由具有一定间隙,中间充有绝缘 介质的两块金属板构成。
它的图形符号如图所示:
Cq u
。求 t 0 时的电流。
解 电感的VAR
uL
L di1 dt
et
(V)
KVL u 2i1 uL 4 et (V)
电容的VAR
i2
C du dt
0.2et
(A)
KCL i i1 i2 2 0.8et (A)
2.2 换路定则及其初始条件
2.2.1 换路定则
• 换路定则
uC (0 ) uC (0 ) iL (0 ) iL (0 )
t 0
2.5 一阶电路完全响应
• 完全响应是指由非零初始状态和外施激 励共同作用所产生的响应
RC电路完全响应
2.6 三要素法求一阶电路响应
三要素
初始值 稳态值
求初始值 求稳态值
时间常数
求时间常数
利用三要素法求解电路响应的步骤: 求一阶电路响应
【例】 如图所示电路在t=0时闭合, 求t>0时的uc及i。
相关文档
最新文档