4第四章材料的韧性和断裂力学
第4章 金属的断裂韧度
2 (
x y
2
) 2 2 xy ) 2 2 xy
19/49
x y
2
(
x y
2
3 ( 1 2 )
19
第四章 金属的断裂韧性
裂纹尖端附近任一点P(r,θ)的主应力:
KI 1 cos (1 sin ) 2 2 2 r KI 2 cos (1 sin ) 2 2 2 r 3 0(平面应力) 2 K I 3 cos (平面应变) 2 2 r
3/49
3
第四章 金属的断裂韧性
第一节 线弹性条件下金属断裂韧度
大量断口分析表明,金属机件的低应力脆断 断口没有宏观塑性变形痕迹,所以可以认为 裂纹在断裂扩展时,尖端总处于弹性状态, 应力-应变应呈线性关系。 因此,研究低应力脆断的裂纹扩展问题时, 可以用弹性力学理论,从而构成了线弹性断 裂力学。
12/49
12
第四章 金属的断裂韧性
13/49
13
第四章 金属的断裂韧性
14/49
14
第四章 金属的断裂韧性
(三)断裂韧度KIc和断裂K判据
KI是决定应力场强弱的一个复合力学参量,就可将它 看作是推动裂纹扩展的动力,以建立裂纹失稳扩展的 力学判据与断裂韧度。 当σ和a单独或共同增大时,KI和裂纹尖端的各应力分 量随之增大。 当KI增大到临界值时,也就是说裂纹尖端足够大的范 围内应力达到了材料的断裂强度,裂纹便失稳扩展而 导致断裂。 这个临界或失稳状态的KI值就记作KIC或KC,称为断 裂韧度。
8/49
8
第四章 金属的断裂韧性
应力分量:
材料性能与测试课件-第四章材料的断裂韧性
等效裂纹塑性区修正: 等效裂纹塑性区修正:
K =Yσ a + r
Ⅰ
y
K =
Ⅰ
Yσ πa 1 − 0.16Y (σ / σ )
2 s 2
2
K =
Ⅰ
Yσ a 1 − 0.056Y (σ / σ )
等效裂纹修正K 图4-4 等效裂纹修正 Ⅰ
2
16
裂纹扩展能量释放率G 五、裂纹扩展能量释放率 Ⅰ及判据 1、GⅠ:
定义:驱使裂纹扩展的动力假设为弹性能的释放, 定义:驱使裂纹扩展的动力假设为弹性能的释放,令
∂U σ πa = G =− ∂a E ∂U (1 −ν )σ πa G =− = ∂a E
2 Ⅰ 2 2 Ⅰ
平面应力
平面应变
判据: 2、判据:
相似,是应力和裂纹尺寸相关的力学参量。 和KI相似,是应力和裂纹尺寸相关的力学参量。当GⅠ增大到临界值GⅠ C, 失稳断裂, 失稳断裂, GⅠC也称为断裂韧度。表示材料阻止裂纹失稳扩展时单位面 也称为断裂韧度。 积所消耗的能量。 积所消耗的能量。 裂纹失稳扩展断裂G 裂纹失稳扩展断裂G判据
8
图4-2 裂纹尖端的应力分析
应力分量
Ⅰ x
应变分量
Ⅰ x
θ θ (1 + ν ) K 3θ K θ θ 3θ ε = cos (1 − 2ν − sin sin ) σ = cos (1 − sin sin ) E 2πr 2 2 2 2πr 2 2 2 θ θ (1 + ν ) K 3θ K θ θ 3θ ε = cos (1 − 2ν + sin sin ) σ = cos (1 + sin sin ) E 2πr 2 2 2 2πr 2 2 2 2(1 + ν ) K θ θ 3θ K θ θ 3θ sin cos cos ) γ = τ = sin cos cos E 2πr 2 2 2 2πr 2 2 2
第4章 断裂力学与断裂韧性
4.3.1 线弹性条件下的断裂韧性
2、断裂K判据 KI < KIC 有裂纹,但不会扩展 KI = KIC 临界状态 KI > KIC 发生裂纹扩展,直至断裂
K c Y c a c
断裂K判据将材料断裂韧性同机件工作应 力和裂纹尺寸联系起来了,可以做定量计算。
4.3.1 线弹性条件下的断裂韧性
4.3.2 弹塑性条件下的断裂韧性
注意事项: 测JI时,只能单调加载。 其临界值对应点只是开裂点,而不一定是最后失 稳断裂点。
4.3.2 弹塑性条件下的断裂韧性
3、JIC和KIC、GIC的关系
JⅠC GⅠC
K C
(1 ) 2 KⅠC E
2
E J C 2 1
内部因素 化学成分 基体相结构 晶粒大小 杂质及第二相 显微组织
外部因素 尺寸 温度 应变速率
4.4 影响断裂韧度KIc的因素
1. 化学成分 • 细化晶粒的成分,增大塑性,提高KIc;固溶强化 的成分,降低塑性,降低KIc;形成金属化合物并 呈第二相析出,降低塑性,降低KIc。 2. 基体相结构 • 面心立方结构塑性高,所以KIc较高,比如奥氏体 钢;体心立方结构塑性差,所以KIc较低,比如铁 素体刚和马氏体钢。
3、线弹性条件下的COD表达式
• 基本思路:将塑性区看成等效裂纹。
8 s a ln sec E 2 s
K I a 4 2 a E s 4 c2 a c c E s
对于小范围屈服
4.3.2 弹塑性条件下的断裂韧性
4、δc与其他断裂韧度间的关系 c2 ac K IC 2 GIC J IC • 平面应力 c
2 s A — — 形 成 裂 纹 后 的 表 面 。 能 (U e W ) ( p 2 s )A
第四章材料的断裂韧性..
材料性能学 四、裂纹尖端塑性区及KⅠ的修正
1、裂纹尖端塑性区: 裂纹尖端附近的σ≥σs→塑性变形→存在裂纹尖端塑性区。
2、塑性区的边界方程
3、在x轴上,θ=0,塑性区的宽度r0为:
4、修正后塑性区的宽度R0为:
18
材料性能学 四、裂纹尖端塑性区及KⅠ的修正
5、等效裂纹的塑性区修正值ry:
6、KⅠ的修正 (σ/σs≥0.6~0.7): 线弹性断裂力学计算得到σy的分布曲线为ADB; 屈服并应力松弛后σy的分布曲线为CDEF; 若将裂纹顶点由O虚移至O´点, 则在虚拟的裂纹顶点O´以外的弹性应力分布曲线为GEH。 采用等效裂纹长度(a+ry)代替实际裂纹长度a,即
14
材料性能学 三、断裂韧度KⅠc和断裂K判据
已知
K Y
1、平面应变断裂韧度KⅠc (MPa·m1/2)
σ↑(或,和) ↑→KⅠ↑ σ↑→σc (或) ↑→c 裂纹失稳扩展→断裂 →KⅠ=KⅠc 2、平面应力断裂韧度Kc σ↑(或,和) ↑→KⅠ↑ σ↑→σc (或) ↑→ c 裂纹失稳扩展→断裂 →KⅠ=Kc ***Kc>KⅠc
无限远处有均匀应力σ的线弹性问题。
AB两点的张开位移为
36
材料性能学
各种断裂韧度关系:
平面应力:
平面应变:
37
材料性能学
§4.3
一、化学成分、组织结构对断裂韧度的影响 1、化学成分的影响 2、基体相结构和晶粒尺寸的影响 3、夹杂和第二相的影响 4、显微组织的影响:影响材料的断裂韧度。 二、特殊改性处理对断裂韧度的影响 1、亚温淬火 2、超高温淬火 3、形变热处理 三、外界因素对断裂韧度的影响 1、温度 2、应变速率
8
材料性能学
材料力学性能_第四章
4.2 裂纹体的应力分析
线弹性断裂力学研究对象是带有裂纹的线弹性体。严格 讲,只有玻璃和陶瓷这样的脆性材料才算理想的弹性体。 为使线弹性断裂力学能够用于金属,必须符合金属材料 裂纹尖端的塑性区尺寸与裂纹长度相比是一很小的数值条 件。 在此条件下,裂纹尖端塑性区尺寸很小,可近似看成理 想弹性体。 在线弹性断裂力学中有以Griffith-Orowan为基础的能量 理论和Irwin为应力强度因子理论。
小,消耗的变形 功也最小,所以
平面应力
裂纹就容易沿x方
向扩展。
4.5 裂纹尖端的塑性区
为了说明塑性区对裂纹在x方向扩展的影响。
当 =0(在裂纹面上),其塑性区宽度为:
r0 (r ) 0
1 KI 2 ( ) 2 s
K1 y r ,0 2r
4.5 裂纹尖端的塑性区
由各应力分量公式也可直接求出在裂纹线上的
切应力平行于裂纹 面,而且与裂纹线 垂直,裂纹沿裂纹 面平行滑开扩展。
III型(撕开型)断裂
切应力平行作用于 裂纹面,而且与裂 纹线平行,裂纹沿 裂纹面撕开扩展。
4.2 裂纹体的应力分析
4.2.2 I型裂纹尖端的应力场
裂纹扩展是从其尖端开始向前进行的,所以应该分析裂纹 尖端的应力、应变状态,建立裂纹扩展的力学条件。
4.2 裂纹体的应力分析
4.2.1 裂纹体的基本断裂类型
在断裂力学分析中,为了研究上的方便,通常 把复杂的断裂形式看成是三种基本裂纹体断裂的组 合。 I 型(张开型)断裂 (最常见 )
拉应力垂直于裂纹面扩展面,裂纹沿作用力方向 张开,沿裂纹面扩展。
4.2 裂纹体的应力分析
II 型(滑开型)断裂
根据应力强度因子和断裂韧性的相对大小,可以建 立裂纹失稳扩展脆断的断裂K判据,平面应变断裂最 危险,通常以KIC为标准建立,即: 应用:用以估算裂纹体的最大承载能力、允许的裂 纹尺寸,以及材料的选择、工艺优化等。
材料性能学 4.断裂韧性
变。因此,工程 上 KⅠC 是指达到 一定厚度后(平
面应变)断裂韧
度。
过渡区
KC 平面应力
平面应变
KⅠC
B
B
2.5
K C
s
2
五、裂纹尖端塑性区及 KⅠ修正
按K1建立的脆性断裂判据,只适用于线弹性体。其实, 金属材料在裂纹扩展前,其尖端附近总要先出现或 大或小的塑性变形区,
如果塑性区尺寸裂纹尺寸及净截面尺寸小时,(小 一个数量级以上)即在小范围屈服下,对K进行修正 后,依然可用。
究点到裂纹尖端距离 r 有如下关系:
1
y r 2
或
1
r 2 y K
1
当 r →0 时, σy →∞,表明裂纹尖端前沿应力场具有 r 2阶奇异性。参
数 K 表征了应力场奇异性程度,其含义是,当 r →0 时, σy 以 K 的速度→∞, K 越大,则σy →∞的速度也越大,表明应力分布曲线越陡,即应力集中程度 越大,因此,参数 K 又称为“应力场强度因子”。
二、裂纹尖端应力状态
1、平面应力状态
x 0
y 0
xy 0
z 0
yz zx 0
z
E
x
y
对含穿透裂纹的薄板,可将裂纹顶端前沿视为平面应力 状态,此时材料受剪切力大,易于塑性变形,阻碍裂纹扩展。
2、平面应变状态
z 0
x 0 y 0 xy 0
x 0 y 0 z x y
2
R01
1
Hale Waihona Puke Ks平面应力
R02
2
1
2
K
s
2
平面应变
三维塑性区形状及塑性区内应力分布
材料力学中的断裂与韧性
材料力学中的断裂与韧性材料力学作为一门关于物质内部结构和力学行为的科学,对于材料的性能与可靠性有着重要的影响。
其中,断裂与韧性是材料力学中一个十分关键的概念。
断裂指的是材料在外界施加力的作用下出现破裂的现象,而韧性则是指材料的抵抗断裂破坏的能力。
本文将从材料的断裂机制、断裂韧性的影响因素以及提高材料韧性的方法等方面加以论述。
一、材料的断裂机制材料断裂机制是指材料在承受外力作用下,因内部结构破坏而发生断裂的过程。
一般来说,材料的断裂机制可以分为韧性断裂和脆性断裂两种情况。
韧性断裂多见于金属等延展性材料,其断裂过程具有典型的韧性特征。
在外力的作用下,材料会先发生塑性变形,从而使得应力集中区域得到缓和。
随着外力的不断增加,应力集中区域逐渐扩大,并伴随着微裂纹的形成和扩展。
当微裂纹沿着材料内部继续扩展,最终导致材料的完全破裂。
需要注意的是,韧性断裂一般伴随着较大的能量吸收过程,因此对于抗震等要求韧性的工程结构,选择具有良好韧性的材料是十分重要的。
脆性断裂则多见于陶瓷、混凝土等脆性材料。
该类材料的断裂过程没有明显的塑性变形区域,而是在外力作用下直接发生破裂。
通常来说,脆性断裂的特点是断裂韧性较低,能量吸收较小。
二、影响材料韧性的因素材料的韧性不仅与材料本身的性质有关,同时也受到外界条件和应力状态的影响。
以下是一些影响材料韧性的常见因素:1.结构层次:材料的内部结构和组织对其韧性有着很大的影响。
晶粒的尺寸、形状以及晶界的性质等都会对材料的韧性产生影响。
一般来说,晶粒尺寸越小、晶界越多越强,材料的韧性也会相对提高。
2.材料纯度:杂质和夹杂物是影响材料韧性的重要因素。
杂质和夹杂物会引起应力集中,从而导致微裂纹的形成和扩展。
因此,材料的纯度对韧性有着直接的影响。
3.应力状态:不同的应力状态对材料的韧性有着直接影响。
例如,拉伸和压缩状态下的材料韧性表现可能不同。
此外,不同应力速率下材料的断裂行为也可能有所不同。
三、提高材料韧性的方法提高材料的韧性是工程实践中的一项重要任务。
材料力学性能第四章1a
17
第一节 线弹性条件下的断裂韧性 3 撕开型(III型),切应力平行作用于裂纹 面,并且与裂纹前沿线平行,裂纹沿裂纹面 撕开扩展,例如,圆轴上有一环形切槽受扭 矩作用引起断裂。
ΙΙΙ型(撕开型)断裂
18
第一节 线弹性条件下的断裂韧性
实际工程构件中,裂纹的扩展除了上述 三种情况外,往往是它们的组合。在这些 开裂形式中,Ι型裂纹的扩展是最危险的, 最容易引起脆性断裂,所以研究断裂力学 时,常常以这种裂纹为研究对象。
从哪里入手讨论塑性区的大小ry?
40
第一节 线弹性条件下的断裂韧性
讨论裂纹尖端应力场中达到屈服应力的区域即为 塑性区,用此条件来确定塑性区的边界方程。 (用到强度理论的屈服准则和力学的应力计算)
σ
=
ij
KI
2π r
fij (θ )
24
第一节 线弹性条件下的断裂韧性
上式中,
1
2πr
fij (θ ) -是与P点位置
(r,θ)有关的函数,σ π a 与试样的
形状尺寸、裂纹的形状尺寸及位置、外
力的加载方式及大小等有关,用K表示。
由于是I型加载方式,所以又表示为KI。
25
第一节 线弹性条件下的断裂韧性
4
第四章 材 料 的 断 裂 韧 性
例如:美国在二战期间有2500艘全焊接的自由轮, 其中有近千艘发生严重的脆性破坏;20世纪50年代, 美国发射北极星导弹,其固体燃料发动机壳体,采用 了超高强度钢制造,屈服强度为1400MPa,按照传统强 度设计与验收时,其各项性能指标都符合要求,设计 时的工作应力远低于材料的屈服强度,但点火不久, 就发生了爆炸。这是传统强度设计理论无法解释的, 为什么材料会发生低应力脆断?
第四章金属的断裂韧性
第四章金属的断裂韧性绪言-、按照许用应力设计的机件不一定安全按照强度储备方法确定机件的工作应力,即丁卜I-厂咚。
按照上述设计的零件应该n不会产生塑性变形更不会发生断裂。
但是,高强度钢制成的机件以及中、低强度钢制成的大型机件有时会在远低于屈服强度的状态下发生脆性断裂一一低应力脆性断裂。
二、传统塑性指标数值的大小只能凭经验。
像3(A)、书(Z)、A k、T k值,只能定性地应用,无法进行计算,只能凭经验确定。
往往出现取值过高,而造成强度水平下降,造成浪费。
中、低强度钢材料中小截面机件即属于此类情况。
而高强度钢材料机件及中、低强度钢的大型件和大型结构,这种办法并不能确保安全。
三、如何定量地把韧性应用于设计,确保机件运转的可靠性,从而出现了断裂力学。
断裂韧性一一能反映材料抵抗裂纹失稳扩展能力的性能指标。
大量事例和试验分析证明,低应力脆性断裂总是由材料中宏观裂纹的扩展引起的。
这种裂纹可能是冶金缺陷、加工过程中产生或使用中产生。
断裂力学运用连续介质力学的弹性理论,考虑了材料的不连续性,来研究材料和机件中裂纹扩展的规律,确定能反映材料抵抗裂纹扩展的性能指标及其测试方法,以控制和防止机件的断裂,定量地与传统设计理论并入计算。
本章主要介绍断裂韧性的基本概念、测试方法及影响因素,解决断裂韧性与外加应力和裂纹之间的定量关系。
第一节线弹性条件下的金属断裂韧性大量断口分析表明,金属机件或构件的低应力脆性断口没有宏观塑性变形痕迹。
由此可以认为,裂纹在断裂扩展时,其尖端总是处于弹性状态,应力和应变呈线性关系。
因此,在研究低应力脆断的裂纹扩展问题时,可以应用弹性力学理论,从而构成了线弹性断裂力学。
线弹性断裂力学分析裂纹体断裂问题有两种方法:一种是应力应变分析法(应力场分析法),考虑裂纹尖端附近的应力场强度,得到相应的断裂K判据;另一种是能量分析法,考虑裂纹扩展时系统能量的变化,建立能量转化平衡方程,得到相应的断裂G判据。
从这两种分析方法中得到断裂韧度Ki c和Gc,其中K i c是常用的断裂韧性指标,是本章的重点。
材料力学性能 (4)
3、KI 裂纹扩展的动力,、a都是加剧应力场的因素
4、 K Y a
2 E a 2 E a
材料本质属性
?
裂纹扩展的抗力 ?
4.4.4 断裂判据
随着应力
或裂纹尺寸a的增大,KI因子不断增大。当KI因子增大到临界
KI = KIC
值KIC时,裂纹开始失稳扩展,用KIC表示材料对裂纹扩展的阻力,称为平 面应变断裂韧度(性)。因此,裂纹体断裂判据可表示为:
/2
0
m sin
dx
m
= 2
m 2 /
a0为平衡状态时原子间距
√
材料在低应力作用下应该是弹性的,在这一条件下sinx≈x ;同时,曲线开始部分近似 为直线,服从虎克定律,有 Ex / a
m sin
2x
=
2x m
Ex a0
2 m
ij
当 r<<a, θ →0 时,
KI f ij ( ) 1/ 2 (2r )
f ij ( ) 1
ij 0
根据弹性力学,裂纹尖端O点的应力
0
= 2
a/
裂纹尖端的曲率
K I 0 2r 2 a
2r Y
a
裂纹形状系数,与裂纹形式、试件几何形状有关
K I a K IC
可用测定的断裂韧性求断裂应力和临界裂纹尺寸:
c
K IC
a
ac
K 2 IC
2
、G、 K
容易理解 容易测量
G1 G1C
K1 K1C
(能量平衡观点讨论断裂) (裂纹尖端应力场讨论断裂) (应力-屈服强度比较讨论断裂)
4第四章 材料的韧性和断裂力学
• (一)裂纹尺寸与断裂强度的关系
• 在研究断裂行为时,一个重要的经验结果 就是:构件断裂时名义应力的大小与结构 内部的裂纹尺寸和形状有关。
(4-1)
或
(4-2)
式中σc 为断裂应力,称为剩余强度; 为裂纹深度;
• • • •
Y 形状系数 ; KIC 材料的断裂韧性。 由式(4-2)可知: 1.对应于一定的裂纹尺寸 个临界的应力值σc 。
K
I
(4-21)
平面应力状态
(4-22)
• 平面应变状态
(4-23)
上式试近似的,因设 而且未考虑等 效裂纹长度对形状因之 Y 的影响。对于复杂 的问题,ry是 函数,而 又是ry的函数,要 用逐次逼近法求解。
• 4.弹塑性断裂力学与COD准则 • 在工程实际中,用中低强度材料制成的 构件或结构中的裂纹尖端将发生大范围 的屈服或全屈服,塑性区尺寸可达到与 裂纹长度相同的数量级,断裂发生在接 近屈服应力的时候。弹塑性断裂与脆性 断裂的过程是不同的。裂纹开裂后,将 有一段明显的亚临界扩展阶段,只有达 到一定长度后,才发生失稳扩展和断裂。
• I型是裂纹张开型,这时裂纹的两个表面 直接分离。常见于疲劳及脆性断裂,其 断口平齐,是工程上最常见、最危险的 断裂类型。 • Ⅱ型是边缘滑开型或正向滑开型。它表 现为裂纹的两个表面沿垂直于裂纹前缘 方向相互滑移。 • Ⅲ型是侧向滑开型或撕开型,亦称平行 剪切型。它们的特征是两个裂纹表面在 平行于裂纹前缘的方向上相互滑移。裂
• 以上结论说明,带裂纹的构件只要裂纹 达不到临界尺寸,或裂纹尺寸一定时, 只要应力不大于临界应力,都是安全的。 这样,考虑了裂纹的存在,根据裂纹失 稳条件所得的断裂应力,与传统强度条 件得出的结果就不一定相同了。 • (二)应力场强度分析与断裂韧性 • 为了对裂纹尖端应力进行分析,定义了 三种基本应力场,每一种应力场都与裂 纹变形的特殊方式有关。如(图4-5)所 示。
第四章 材料的断裂韧性
3. KI的修正 裂纹尖端的弹性应力超过 材料屈服强度之后, 便产生应 力松驰,使塑性区增长 ,改变 了裂纹前的应力分布,不适用 于线弹性条件。 裂纹虚拟向前扩展ry,此时 虚拟裂纹尖端0’前端弹性区的 应力分布GEF,基本上与线弹性 条件下的σ y相重合,对应的裂纹长度为a+ry,称为等效裂 纹 长度.根据线弹性理论: KⅠ=Yσ √(a+ry) KⅠ’= Yζ √a/[1-0.16(KⅠ/ζ s)2]1/2(平面应力)
ac= 40-1000mm
五、材料开发
KIC=(2Eγf)1/2 γf: 断裂能,可见,增大断裂能,即增大裂 纹扩展的阻力,手提高KIC。常在基体中 添加韧性相,如碳纤维增韧非晶玻璃材 料等。
第四章 材料的断裂韧性
传统机件强度设计: 塑性材料 σ ≤[σ ]= σ s/n 脆性材料: σ ≤[σ ]= σ b/n 实际上有时σ <<[σ ]时,机件仍断裂—低应力脆断,其原 因是传统设计把机件看成均匀、无缺陷、没有裂纹的理 想体.但实际工程材料在制造加工中会产生宏观缺陷乃 至裂纹,成为材料脆断的裂纹源, 从而引起低应力断裂. §4.1线弹性条件下的断裂韧性 线弹性体:裂纹体各部分的应力和应变符合虎克定律。 但裂纹尖端极小区存在塑性变形,也适用于线弹性条件。
将裂纹前端P (r,θ )的点应力表达式σ x、σ y、τ xy代 入上式,得P点的主应力表达式: σ 1= KⅠ/(2π r)1/2×cosθ /2(1+sinθ /2) σ 2= KⅠ/(2π r)1/2×cosθ /2(1-sinθ /2) σ 3=0 (平面应力,薄板) σ 3=2γ ×KⅠ/(2π r)1/2 cosθ /2 (厚板:平面应变) 由第四强度理论(Mises)屈服临界条件: 将上式代入 (σ 1-σ 2)2+(σ 2-σ 3)2+(σ 3-σ 1)2=2σ s2 ( σ 1>σ 2>σ 3 主应力)得屈服区大小: r=1/2π ×(KⅠ/ζ s)2[cos2θ /2(1+3sin2θ /2)] (平面应力) r=1/2π ×(KⅠ/ζ s)2[cos2θ /2(1-2γ )2+3sin2θ /2] (平面应变)
金属材料的断裂和断裂韧性课件
4.4.3 裂纹扩展的能量释放率GI和断裂韧性GIc
➢分析原理:能量法
应变能释放率
扩展 临界
裂纹扩展需要吸 收的能量率
稳定
dU GI dA
裂纹临界条件:G准则
G Ic
dS dA
40
金属材料的断裂和断裂韧性课件
K与G的关系
G
Gc Ic
1K E
1 2
E
2 c
K
2 Ic
41
金属材料的断裂和断裂韧性课件
断裂力学和断裂韧性
➢ 为防止裂纹体的低应力脆断,不得不对其强度——断裂抗
力进行研究,从而形成了断裂力学这样一个新学科。
➢ 断裂力学的研究内容包括裂纹尖端的应力和应变分析;建
立新的断裂判据;断裂力学参量的计算与实验测定,其中 包括材料的力学性能新指标——断裂韧性及其测定,断裂 机制和提高材料断裂韧性的途径等。
随第二相体积分数的增加,钢的韧性都下降,硫化物比碳化物 的影响要明显得多。
➢ 2 基体的形变强化
基体的形变强化指数越大,则塑性变形后的强化越强烈,其结
* Kepn
果是各处均匀的变形。微孔长大后的聚合,将按正常模式进行, 韧性好;相反地,如果基体的形变强化指数小,则变形容易局
部化,较易出现快速剪切裂开。这种聚合模式韧性低。
断裂前无明显的塑性变形,吸收的能量很少,而裂纹的 扩展速度往往很快,几近音速,故脆性断裂前无明显的 征兆可寻,且断裂是突然发生的,因而往往引起严重的 后果 。
➢ 在工程应用中,一般把Ψk <5%定为脆性断裂, Ψk =5%定
为准脆性断裂, Ψ k >5%定为韧性断裂。
➢ 材料处于脆性状态还是韧状态并不是固定不变的,往往因
工程材料力学性能 第四章 金属的断裂
金属的断裂知识
断裂是机械和工程构件失效的主要形式之一。 • 失效形断式:磨损、腐蚀和断裂 。断裂的危害最大 。 断裂是工程构件最危险的一种失效方式,尤其是脆性 断裂,它是突然发生的破坏,断裂前没有明显的征兆, 这就常常引起灾难性的破坏事故 • 断裂是材料的一种十分复杂的行为,在不同的力学、 物理和化学环境下,会有不同的断裂形式。 研究断裂的主要目的是防止断裂,以保证构件在服役 过程中的安全。
二、金属断裂强度
理论断裂强度就是把金属原子分离开所需的最大应 力 金属的理论断裂强度可由原子间结合力的图形算出, 如图。图中纵坐标表示原子间结合力,纵轴上方为 吸引力下方为斥力,当两原子间距为a即点阵常数 时,原子处于平衡位置,原子间的作用力为零。如 金属受拉伸离开平衡位置,位移越大需克服的引力 越大,引力和位移的关系如以正弦函数关系表示,
金属中含有裂纹来自两方面:一是在制造 工艺过程中产生,如锻压和焊接等;一是 在受力时由于塑性变形不均匀,当变形受 到阻碍(如晶界、第二相等)产生了很大的 应力集中,当应力集中达到理论断裂强度, 而材料又不能通过塑性变形使应力松弛, 这样便开始萌生裂纹。
ຫໍສະໝຸດ (二)裂纹形成的位错理论
裂纹形成可能与位错运动有关。 1.甄纳—斯特罗位错塞积理论 甄纳(G.zener)1948年提出. 如果塞积头处的应力集中不能为塑性变形所松弛,则塞积头处 的最大拉应力能够等于理论断裂强度而形成裂纹。
解理断裂过程包括如下三个阶段: 塑性变形形成裂纹;裂纹在同一晶粒内初期长大; 裂纹越过晶界向相邻晶粒扩展。
甄纳—斯特罗理论存在的问题: 在那样大的位错塞积下,将同时产生很大切应力 的集中,完全可以使相邻晶粒内的位错源开动,产 生塑性变形而将应力松弛,使裂纹难以形成。
第四章 断裂韧性
塑性变形 产生,韧 窝;解理 裂纹-微观
连 续 体
成 机 理
切
口
bN
k 、Tk
按GB
切口-宏观 裂纹体
缺口敏感度NSR
测试
韧窝;解 (切口)
性
理裂纹-微观
能
落锤实验:零塑性
温度:NDT
假如构件内部有宏观裂纹,上述测试的性能如果 满足要求,能否保证构件运行安全?
构件内部宏观裂纹危害较大。
板越宽(b越大),
KI越大。裂纹长度为
2a时,板的宽度长度 也用2b表示。
(3)有限宽板单边直裂纹:
(4)对无限大物体表面有半椭圆裂纹 , 远处受均匀拉伸:
Plane strain fracture toughness
KI综合反映了外加应力、裂纹长度对裂纹尖端应力场强
度的影响。 一般表达式为:
KIC和KI如何区别?
第四章 材料的断裂韧性
Fracture toughness of materials
为何测试材料的断裂韧性?
性能指标
标准测试? 裂纹从何 材料是连 裂
b、 k、 、ψ
而来?大 续体?裂 纹
小?
纹体?
形
抗扭强度b、 k
抗弯强度bb HB、HRC、HV、HK 表面HR、显微硬度
按GB 测试
G.R. Irwin(欧文)主要借鉴Griffth理论模型:
The Griffith(1893-1963) approach was global and could not easily be extended to accommodate structures with finite geometries subjected to various types of loadings. The theory was considered to apply only to brittle materials, such as glasses or ceramics.
第四章 材料力学性能(材料科学基础)
对于某一确定的点,其应力由K1决定,K1越 大,则应力场各点的应力也越大。
按线弹性断裂力学的分析,裂纹尖端应力场强度因子K1的一般表达式为: K1 = Yσa1/2(MN/m3/2)
• δ=ΔL/L0=[(L-L0)/L0]×100% (是塑性“伸长”的度量) • 式中L0为试样原始标距长度;L为试样断裂后标距的长度。 •
ψ=ΔAf/A0=[(A0-Af)/A0] ×100% (是塑性“收缩”的度量) • 式中A0为试样原始截面积;Af为试样断裂处的截面积。
• 材料的延伸率和断面收缩率数值越大,表示材料的塑性越好。 塑性好的材料可以发生大量塑性变形而不被破坏,这样当受力 过大时,由于首先产生塑性变形而不致发生突然断裂,比较安 全。
材料的刚度和零件的刚度不是一回事,零件刚度的大小取决于零件的 几何形状和材料的弹性模量。
(2)弹性行为 • 弹性变形的特点是当载荷卸除后,试样的尺寸形状完全回复到原始状态。 • 根据材料的不同,其变形行为可分为三类:线弹性、非线弹性以及滞弹性。
理想的线弹性行为,应力 非线性弹性行为,如橡胶
和应变之间满足虎克定律。 之类的变形能力极好的弹
反映,用焦耳(J)来表示 • 在强度相等的情况下,延性材料断裂时所需要的能量比脆
性材料多,因此它的韧性也比脆性材料高。 • 评定材料韧性高低的方法,最常用的有两种: ➢ 一是用冲击试验所得的冲击韧性; ➢ 二是用断裂力学方法与试验测得的断裂韧性。
冲击韧性
一只重摆锤从高度h开始,沿着弧形轨迹向下摆动,冲击到试样上并把试 样打断,最后达到一个比较低的高度h` 。知道摆锤的初始高度h和最终高 度h`,就能算出势能差别。这一差别就是试样在断裂过程中所吸收的冲击 能Ak(冲击总功),如果除以缺口处试样的截面积,即得材料的冲击韧 性,用αk表示,单位为J/cm2。
第四章 材料的断裂性能
第四章 材料的断裂韧性
✓KⅠ和KⅠc是两个不同的概念,KⅠ是一个力学参量, 表示裂纹体中裂纹尖端的应力应变场强度的大小, 它决定于外加应力、试样尺寸和裂纹类型,而和材 料无关。 ✓但KⅠc是材料的力学性能指标,它决定于材料的成 分、组织结构等内在因素,而与外加应力及试样尺 寸等外在因素无关。
15
§ 4-1线弹性条件下的断裂韧性
二、裂纹尖端的应力场及应力场强度因子KI
其尖端附近(r,θ)处应力、应变和位移分量可以近似地表
达如下。
应力分量为:
11
第四章 材料的断裂韧性
§ 4-1线弹性条件下的断裂韧性
二、裂纹尖端的应力场及应力场强度因子K1
裂纹尖端任意一点的应力、应变和位移分量取决于该点 的坐标(r,θ)、材料的弹性模数以及参量KI 。KI可用下式 表示。
金属材料通过一些特殊的热处理工艺,可以改变其组 织,从而提高断裂韧度: ➢ 亚温淬火 ➢ 超高温淬火 ➢ 形变热处理
32
第四章 材料的断裂韧性
1. 亚温淬火 亚温淬火是指亚共析钢在双相区不完全奥氏体化后
淬火的热处理工艺,通过控制预处理工艺和亚温淬火 的奥氏体化温度可以获得不同形态和数量的未溶铁素 体加马氏体的复相组织,由于晶粒的细化、相界面积 的增加、单位面积杂质浓度的降低、铁素体对裂纹尖 端应力集中的松弛作用、裂纹沿相界面扩展途径的延 长等,使得强度和韧性得到提高。
28
第四章 材料的断裂韧性
➢对于陶瓷材料和复合材料,目前常利用适当的 第二相提高其断裂韧度,第二相可以是添加的, 也可以是在成型时自蔓延生成的。 ➢如在SiC、SiN陶瓷中添加碳纤维,或加入非晶 碳,烧结时自蔓延生成碳晶须,可以使断裂韧度 提高。
29
材料性能学课件第四章 材料的断裂韧性
JI
dy
u x
ds
JⅠ为Ⅰ型裂纹的能 量线积分
第二节 弹塑性条件下的断裂韧性
2r 2
2
3
2K I 2r
cos
2
(平面应变)
3 0 (平面应力)
第一节 线弹性条件下的断裂韧性
四、裂纹尖端塑性区及KⅠ的修正
将各主应力代入Von Mises 判据式(4-8),化简后得 到塑性区的边界方程:
图4-3 裂纹尖端塑性区的形状
(平面应力)
2
r
1
2
KI
s
c os2
2
1
3sin
在这些裂纹的不同扩展形式中,以Ⅰ型裂纹
扩展最危险,最容易引起脆性断裂。所以,在 研究裂纹体的脆性断裂问题时,总是以这种裂 纹为对象。
二、裂纹尖端的应力场及应力场强度因子KⅠ
设有一承受均匀拉应力σ的无限大板,中心含有长 为2a的I型穿透裂纹。
12
第一节 线弹性条件下的断裂韧性
应力分量为
x
K I cos 1 sin sin 3
应力状态软性系数小,因而是危险的应力状态。
平面应变状态分量为
x
1 K I
E 2r
cos 1 2
2
sin sin
2
3
2
y
1 K I
E 2r
cos 1 2
2
sin sin 3
22
图4-2 裂纹尖端的应力分析
xy
1 K I
E 2r
sin
2
cos
2
cos 3
2
第一节 线弹性条件下的断裂韧性
第一节 线弹性条件下的断裂韧性
4.第四章材料的断裂韧性
2012-4-10
(2)第三强度理论
(4-12)
即: (4-13) 于是有裂纹尖端的塑性区为: (4-14)
2012-4-10
平面应力下:(θ=0)
于是有:
(4-15)
2012-4-10
平面应变下:(θ=0) 因σ3 =2υσ1 ,按σ1 -σ3 =σs ,可计算出:
进而求得: (4-16)
2012-4-10
2012-4-10
第四章材料的断裂韧性
主讲 朱协彬
2012-4-10
目录
4.1 概述 4.2 裂纹尖端的应力场 4.3 断裂韧性和断裂判据 4.4 几种常见裂纹的应力强度因子 4.5 裂纹尖端的塑性区 4.6 塑性区及应力强度因子的修正 裂纹扩展的能量判据G 4.7 裂纹扩展的能量判据GI 4.8 GI和KI的关系 影响断裂韧性K 4.9 影响断裂韧性KIC的因素 金属材料断裂韧性K 4.10 金属材料断裂韧性KIC的测定 4.11 弹塑性条件下的断裂韧性
有效屈服应力: 通常将引起塑性变形的最大主应力,称为有效 屈服应力,以σys 记之。 有效屈服强度与单向拉伸屈服强度之比, 称 为塑性约束系数。 根据最大切应力理论:
2012-4-10
1)按第四强度理论计算
(4-7) 其中σ1 、σ2 、σ3 为主应力。 对裂纹尖端的主应力,可由下式求解: (4-8)
2012-4-10
将Irwin应力场代入上式得:
(4-9)
2012-4-10
代入到第四强度理论中,可计算得到裂纹尖端 塑性区的边界方程为: (4-10)
将上式用图形表示,塑性区的形状如下图:
2012-4-10
4.1 概述
随着高强度材料的使用,尤其在经车、轮船、桥梁和飞机等的意外事故。 传统设计思想: σ <σ许,使用应力小于许用应力。对于塑性材料σ许 =σs /n;对于脆性材料σ许=σb /n; n为安全系数。 从大量灾难性事故分析中发现,这种低应力脆性 破坏主要是由宏观尺寸的裂纹扩展而引起的,这 些裂纹源可能是因焊接质量不高、内部有夹杂或 存在应力集中等原因而引起的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
r 1 (KI )2
2 s
(4-13)
• 在平面应变情况下,塑性区的周界方程为:
r21 ( KsI)2co 2[s1(2)3si2n 2] (4-14)
其图像如图4-9中虚线所示。同理,在裂 纹面方向上周边到裂纹尖端的距离为:
r0
1 (Ki
2 s
)2(12)
(4-15)
• 若取υ =0.3,则
平面应力状态下
ry
1
2
( KI
s
)2
(4-19)
平面应变状态下
ry
1 (KI
2 s
)2(12)2
(4-20)
• K I 为考虑了应力松弛后的应力强度因 子。
• 求得ry后,即可得等效裂纹长度a+ry,然 后再按等效裂纹长度计算等效应力强度 因子。
• 一般工程应用中取 KI KI Ya,
• 以a+ry代入前式有
• 假若是厚板,则裂纹前端区域除了靠近板表 面的部位之外,在板的内部,由于z方向受 到严重的形变约束, σz≠0,而w=0。所以, 应力是三维的,处于三向拉伸状态,但应变 是二维的,u≠0,v≠0,即是平面型的。这种 状态称为平面应变状态。
• 裂纹前端处的应力状态不同,将显著影响裂 纹的扩展过程和构件的抗断裂能力。如若为 平面应力状态,则裂纹扩展的抗力较高;若 为平面应变状态,则裂纹抗力较低,易脆断。
• I型是裂纹张开型,这时裂纹的两个表面 直接分离。常见于疲劳及脆性断裂,其 断口平齐,是工程上最常见、最危险的 断裂类型。
• Ⅱ型是边缘滑开型或正向滑开型。它表 现为裂纹的两个表面沿垂直于裂纹前缘 方向相互滑移。
• Ⅲ型是侧向滑开型或撕开型,亦称平行 剪切型。它们的特征是两个裂纹表面在 平行于裂纹前缘的方向上相互滑移。裂
• 在系列不同温度条件下进行试验,即可 测得材料的脆性转化温度TT。
• 以冲击韧性αk或脆性转变温度TT作韧性 指标,在研究钢材的热加工工艺对材料 韧性的影响上是很方便的,但是在设计 中这些指标不能用于计算发生脆断时的 载荷,而只能作为一种定性的参考依据。
• 二、断裂力学简介
• 断裂力学是一个以带裂纹体为研究对象 的新的力学分支。
• (1)裂纹尖端的应力和位移分析及应力强 度因子的概念:
• 设一无限大板,具有长度为2α的中心穿透裂 纹,受双轴拉应力作用,如图1-7示。按弹 性力学的平面问题求解,得出裂纹尖端附近 的应力场为
xz yz 0
z (xy)
平面应力
z 0
平面应变
位移场为:
u4 K G I 2r[2 (k1)co2 sco3 2 s]
• 测KIC时,试件必须满足平面应变条件。 具体条件可参阅标准GB4161-84。
• Ⅱ型和Ⅲ型裂纹的应力强度因子与I型不 同。它们分别为 :
KII a
(4-8)
KIII a
(4-9)
同样,Ⅱ型和Ⅲ型裂纹的失稳扩展条件为:
KⅡ=KIIC KIII=KIIIC
(4-10) (4-11)
• 各种情况下KⅡ,KⅢ的计算公式也可从有 关 定的手材册料中常查数到。,KⅡC。和KⅢC亦为实验测
• I.塑性区形状及尺寸
• 在平面应力情况下,按弹性理论计算所 得的裂纹前端屈服区的周界方程为:
r2KI2s2co2 s2(13si2 n22 ) (4-12)
根据上式画出的(r,θ)曲线如(图4-9)中实线 所示,曲线上各点的相当应力均等于屈服极限, 曲线内部则超过了屈服极限,在裂纹面方向 (θ=0)上塑性区周边到裂纹尖端的距离为:
• 2.应力松弛的修正
• 若考虑到因塑性区内塑性变形引起的应 力松弛,则将使得到的塑性区有所扩大。 分析结果,考虑了应力松弛后得到的塑 性区尺寸为:
平面应变
R1(KI )2(12)2 s
2r0
(4-17)
平面应力
R 1(KI
s
)2
2r0
(4-18)
• 应力松驰使塑性区尺寸增加了一倍。
• 以上考虑的是无强化材料,对于实际的 强化材 料,裂纹尖端塑性区的形状和尺 寸与上述结果有些出入,但这一结果是 偏于安全的
• 4.弹塑性断裂力学与COD准则
• 在工程实际中,用中低强度材料制成的 构件或结构中的裂纹尖端将发生大范围 的屈服或全屈服,塑性区尺寸可达到与 裂纹长度相同的数量级,断裂发生在接 近屈服应力的时候。弹塑性断裂与脆性 断裂的过程是不同的。裂纹开裂后,将 有一段明显的亚临界扩展阶段,只有达 到一定长度后,才发生失稳扩展和断裂。
34
{ k = 3
1
平面应变 平面应力
(4-5)
(图4-7)
• 由(4-3),(4-4)式可见,裂纹前端应力和 位移的分布只由KI和座标(r,θ)决定,在 确定KI时,不管σ和α如何变化,裂纹尖 端 的应力场和位移场都完全相同,因此 KI是一个表征裂纹尖端应力场的强度程 度的重要力学参数,称为应力强度因子, 脚标I ,表示I型裂纹的情况。其量纲为 KN·mm-3/2
• 以上结论说明,带裂纹的构件只要裂纹 达不到临界尺寸,或裂纹尺寸一定时, 只要应力不大于临界应力,都是安全的。 这样,考虑了裂纹的存在,根据裂纹失 稳条件所得的断裂应力,与传统强度条 件得出的结果就不一定相同了。
• (二)应力场强度分析与断裂韧性
• 为了对裂纹尖端应力进行分析,定义了 三种基本应力场,每一种应力场都与裂 纹变形的特殊方式有关。如(图4-5)所 示。
式中σc 为断裂应力,称为剩余强度;
a为裂纹深度;
• Y 形状系数 ; • KIC 材料的断裂韧性。 • 由式(4-2)可知:
• 1.对应于一定的裂纹尺寸 a c , 存在一
个临界的应力值σc 。
•当 σ>σc 时,裂纹才能扩展,造成断裂; •当 σ<σc 时,裂纹不能扩展,裂纹是稳 定的。(图4-4)
• 接近表面时,约束极小。已趋近于平面 应力状态。
• 所以,在厚板的裂纹前沿处板中心塑性 区较小,越接近表面越大。变化情况如 图4-10示。所得的断口在邻近表面处为 斜断口,心部为平断口。在用试验方法 测定材料的KIC时,试验厚度必须达到一 定的尺寸,以保证整个试验都在平面应 变条件下进行,并得到正断型断口。 (图4-10)
KIY (ary) (4-21)
平面应力状态
KI
Y a 1 Y 2 ( )2 (4-22)
2 s
• 平面应变状态
KI
Y a
1
Y2
(
)2
4 2 s
(4-23)
上式试近似的,因设 KI KI 而且未考虑等 效裂纹长度对形状因之Y的影响。对于复杂 的问题,ry是 K I 函数,而 K I 又是ry的函数,要 用逐次逼近法求解。
r0
0.161
2
(KI
s
)2
(4-16)
由图4-9看出,平面应变情况下的塑性区远 较平面应力的小。这是因为,在平面应变状 态下,沿厚度方向约束所产生的σz是拉应力, 在三向拉应力状态下,材料不易屈服而变脆。 对于较厚的板,厚度中心部分受z方向约束大, 处于平面应变状态。由中心向外,约束逐渐 减小.因此向平面应力状态过渡。
• 3.等效裂纹长度与应力强度因子的修正
• 塑性区的存在和应力松弛的结果,使裂 纹尖端应力场发生了变化,应力强度因 子也因此有所改变,它致使裂纹前端的 实际位移比按弹性理论计算的位移要大, 这相当于一个比实际裂纹长的裂纹的情 况。
• 按等效裂纹的办法对线弹性分析的结果 加以修正,得到修正后的应力强度因子, 再用线弹性力学理论进行计算。理论分 析的结果,裂纹长度应作如下的修正:
• 愈低,由此推断,随着裂纹扩展,所需 的断裂应力就越来越小。所以,对于具 有一定尺寸的裂纹,KI值将随应力的升 高而提高,一旦应力达到临界值,裂纹 将迅速扩展,直到最终断裂或因某种原 因(如应力松弛)而停止扩展为止。
(2)K准则
裂纹由缓慢扩展过渡到迅速扩展的瞬间, 应力强度因子达到了一个临界值,用KIC表 示, 即
• 纹表面几乎在同一个平面内扩展。
• 若将这三种基本型式叠加,就可以完整 地描述局部裂纹尖端的变形和应力场的 最一般的三维情况。
• 假若板试样很薄,则裂纹前端A附近区域, 沿z方向的变形基本不受约束,可以自由 变 w 形≠0,。在此该时方,向裂上纹的前应端力区σ域z=仅0在,板但宽应和变 板长度方向上受σx 和 σy作用,应力状 态是二维平面型的。此种应力状态,称 为平面应力状态(图4-6)。
• 大多数金属材料都会由于应力集中而在裂 纹尖端形成一定的塑性变形区。若这个塑 性区的尺寸比裂纹长差一个数量级称为小 范围屈服问题,工程中一般仍用线弹性理 论计算应力强度因子,但应考虑塑性区的 影响,对应力强度因子进行必要的修正, 修正后仍可用线弹性断裂力学理论进行计 算,修正方法有多种,最常用
• 的是等效模型法,下面仅以I型裂纹为例 介绍该方法的主要结论。
• COD准则的基本概念
• 裂纹尖端的断裂行为可以用裂纹表面的 张开位移(Crack Openin g Displacement)来间 接描述。用裂纹开裂时的临界COD (或δc)作为材料的断裂韧性参量。按 这种想法建立的COD准则为:当裂纹 张开位移δ达到临界值δc时,裂纹即将开 裂,即
v4 K G I 2r[2 (k1)si2 nsi3 n 2 ]
w =0
平面应变 (4-4)
w E(x y)dZ平面应力
• 式中r、θ为裂纹尖端附近点的极座标; • σx,σy,σz,τxy,τxz,τyz为应力分量; • u,v, w为位移分量; • G为剪切弹性模量;E为扬氏模; • υ为波松比。
• 可以用拉伸曲线下的面积来表示材料的 韧性,
UT d
(图4-1)
材料的韧性可用实验的方法测试和判定。应 用较早和较广泛的是缺口冲击试验,这种 方法已经规范化(图4-2)。