求线段和最小值试题(周长)解法探析

合集下载

2020年中考数学(线段路径)最值问题解法分类(10种)及试题精练(PDF版带答案)

2020年中考数学(线段路径)最值问题解法分类(10种)及试题精练(PDF版带答案)

中考数学专题:线段/路径最值问题线段最值问题解法分类一、定点到定点⇒连线段点P在直线l上,AP+BP何时最小?二、定点到定线⇒作垂线点P在直线l上,AP何时最小?三、定点到定圆⇒连心线点P在圆O上,AP何时最小?线段最值问题一般转化为上述三个问题.例题赏析:1.如图,∠AOB=30°,点M、N分别是射线OA、OB上的动点,OP平分∠AOB,且OP=6,当△PMN 的周长最小值为.思路:把点P分别沿OA、OB翻折得P1、P2,周长即为P1M+MN+P2N,转化为求P1、P2两点之间最小值,得△PMN最小值为P1P2=OP=6.2.如图,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是.思路:点N沿AD翻折至AC上,BM+MN=BM+MN',转化为求点B到直线AC的连线最小值,即BN'⊥AC时,最小值为2√2.3.如图,矩形ABCD中,AB=2,BC=3,以A为圆心、1为半径画圆,E是⊙A上一动点,F是BC 上的一动点,则FE+FD的最小值是.思路:点D沿BC翻折至D',DF+EF=D'F+EF,转化为求点D'到圆A上各点的最小距离,易求D'E=4.4.抛物线y=3/5x2-18/5x+3与直线y=3/5x+3相交于A、B两点,点M是线段AB上的动点,直线PM∥y轴,交抛物线于点N.在点M运动过程中,求出MN的最大值.思路:设M(m,3/5m2-18/5m+3),N(m,3/5m+3),用函数关系式表示MN=(3/5m+3)-(3/5m2-18/5m+3)=21/5m-3/5m2,求得最大值即可.5.在菱形ABCD中,对角线AC=8,BD=6,点E、F分别是边 AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF 的最小值,则这个最小值是思路:点E沿AC翻折,转化为点到点的距离.(将军饮马问题实质就是通过翻折转化为定点到定点的问题)6.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O 的最大距离为 .思路:取AB中点E,连接DE、OE,由两点间线段最短,得OD≤OE+DE,最大为1+√2.7.如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP 沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是简解:B'点运动路径为以C为圆心,BC为半径的圆弧,转化为点到圆的最短距离AC-B'C=1.8.如图,正方形ABCD的边长为1,中心为点O,有一边长大小不定的正六边形EFGHIJ绕点O可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD内(包括正方形的边),当这个六边形的边长最大时,AE的最小值为 .思路:正六边形最大半径为1/2,与正方形中心重合,E点运动路径为圆,转化为求点到圆的最短距离,如下图.9.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是 .思路:D是定点,C是直线AC上的动点,转化为求点到线的最短距离.10.在△ABC中,AB=AC=5,cos∠ABC=3/5,将△ABC绕点C顺时针旋转,得到△A'B'C,点E是BC上的中点,点F为线段AB上的动点,在△A'B'C绕点C顺时针旋转过程中,点F的对应点是F',求线段EF'长度的最大值与最小值的差.思路:先确定线段A'B'的运动轨迹是圆环,外圆半径为BC,内圆半径为AB边上的高,F'是A'B'上任意一点,因此F'的运动轨迹是圆环内的任意一点,由此转化为点E到圆环的最短和最长距离.E到圆环的最短距离为EF2=CF2-CE=4.8-3=1.8,E到圆环的最长距离为EF1=EC+CF1=3+6=9,其差为7.2.问:何时需要作辅助线翻折其中的定点(定线或定圆)?答:当动点所在直线不在定点(定线或定圆)之间时,需把定点(定线或定圆)沿动点所在直线翻折以使定点(定线或定圆)处于动点所在直线的两侧,从而便于连接相关线段或作垂线与动点所在直线找到交点.如上述例3,动点F所在直线不在定圆A和定点D之间,因而需把D点沿BC翻折至D',即可转化为定点D'到定圆A的最短距离,另外亦可把圆A沿BC翻折至另一侧,同样可以转化为定点D到定圆A'的最短距离,如下图.关键方法:动中求定,动点化定线;以定制动,定点翻两边.(1)动中求定,动点化定线:如例7、例8、例10,动点所在路径未画出时需先画出动点所在轨迹,一般动点所在轨迹为线或圆.(2)以定制动,定点翻两边:如例1、例2、例3、例5,定点(线或圆)在动点所在直线同侧时需翻折至两侧,转化为上述三种关系.练1、如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

线段和的最小值 万能方法

线段和的最小值   万能方法

M1 A1
A2
N1
提高
例2:如图,已知AB是⊙OB中AC的 30直0 径,
,点D是线段AC上的任意一点1 C(DO不D 含端点),
连接OD,当
的最小2值为6时,求AB的
长。
在RtOO1F中
O1 D1 C
O1OF 600
DE
OO1 4 3
A
FB
AB 8 3
O
线段和的最小值
方法策略
初中数学经常遇到求PA+PB最小值问题,或 者是求△ABC的周长最小值。 1.题型:①两定一动
②一定两动 2.万能方法: ①作一定点关于动点所在直线的对称点
定点作了对称点后不用,对称点即为定点
②如果是两个定点则利用“两点之间,线段最 短”
如果是一个定点则利用“垂线段最短”
常见的数学模
存在一点P,使得△ABP的周长最
小A.B请 求BP出点APP的坐标. y 分析:因为AB的
长是确定的,故 △ABP的周长最 小时AP与BP的和
AO
x
P
为最小,所以可作 出右图所示的图
B
B

例3、已知:如图,AB是⊙O的直 径,AB=4,点C是半圆的三等份点, 点D是弧BC的中点,AB上有一动点 P,连接PC,PD,则PC+PD的最小 值是多2 2少?并画出点P的位置C .
型1、(浙教版数学课本八上,P50 例2)l 如
图,直线 表示草原上的一条河流。一骑
马少年从A地出发,去河边让马饮水,然后
返回位于B地的家中。他沿怎样的路线行走, 能使路程最短?作出这条最B 短路P线'A P'B
直线l A为A'
线
的中垂

苏科版八年级上册第二章轴对称图形 线段和最值问题(有答案)

苏科版八年级上册第二章轴对称图形  线段和最值问题(有答案)

八上第二章线段和最值问题班级姓名得分一、选择题1.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM 周长的最小值为()A. 6B. 8C. 10D. 122.如图,等腰三角形ABC的底边BC长为4,腰AC的垂直平分线EF分别交AC,AB边于E,F点.点D为BC边的中点,点M为线段EF上一动点,若△CDM周长的最小值为8,则△ABC的面积为A. 12B. 16C. 24D. 323.如图,在△ABC中,AB=AC,BC=4,面积是14,AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A. 7B. 72C. 9 D. 1124.如图,∠MON=90°,OB=2,点A是直线OM上的一个动点,连结AB,作∠MAB与∠ABN的角平分线AF与BF,两角平分线所在的直线交于点F,求点A在运动过程中线段BF 的最小值为()A. 2B. 4C. √2D. √3二、填空题5.如图,等腰△ABC的底边BC长为4,面积是14,腰AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM 周长的最小值为____.6.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为______.7.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为______.8.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长的最小值为_________cm.9.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则的周长的最小值为______.10.如图,四边形ABCD为菱形,∠C=120°,AB=4,H为边BC上的动点,连接AH,作AH的垂直平分线GF交CD于F点,则线段GF的最小值为.11.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为______.12.如图,在锐角△ABC中,AB=4√3,∠BAC=60°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值为13.如图,在锐角△ABC中,AB=3√2,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是______.14.15.如图,在△ABC中,∠BAC=60°,AD是∠BAC的平分线,AC=√6,若点P是AD上一动点,且作PN⊥AC于点N,则PN+PC的最小值是__________.三、解答题16.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为______.17.如图,BD是ΔABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=30∘,∠C=45∘,ED=2√10,点H是BD上的一个动点,求HG+HC的最小值.18.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是______度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.19.如图已知EF∥GH,AC⊥EF于点C,BD⊥EF于点D交HG于点K.AC=3,DK=2,BK=4.(1)若CD=6,点M是CD上一点,当点M到点A和点B的距离相等时,求CM 的长;(2)若CD=13,点P是HG上一点,点Q是EF上一点,连接AP,PQ,QB,求2AP+PQ+QB的最小值.答案和解析1.【答案】C【解析】【分析】此题考查了线段垂直平分线的性质、等腰三角形的性质,以及考查了轴对称中最短路线问题.熟知等腰三角形三线合一的性质是解答此题的关键.连接AD ,由于△ABC 是等腰三角形,点D 是BC 边的中点,故AD ⊥BC ,根据三角形的面积公式求出AD 的长,再根据EF 是线段AC 的垂直平分线可知,点C 关于直线EF 的对称点为点A ,故AD 的长为CM +MD 的最小值,由此即可得出结论.【解答】解:如图,连接AD ,∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S △ABC =12BC ×AD =12×4×AD =16,解得AD =8, ∵EF 是线段AC 的垂直平分线,∴点C 关于直线EF 的对称点为点A ,∴AD 的长为CM +MD 的最小值,∴△CDM 的周长最短=(CM +MD )+CD =AD +12BC =8+12×4=8+2=10. 故选C .2.【答案】A【解析】【分析】此题考查了线段垂直平分线的性质、等腰三角形的性质,以及考查了轴对称中最短路线问题.熟知等腰三角形三线合一的性质是解答此题的关键.连接AD ,根据EF 是线段AC 的垂直平分线可知,点C 关于直线EF 的对称点为点A ,故AD 的长为CM +MD 的最小值,从而得到AD 长,由等腰三角形三线合一的性质可得AD 为BC 边上的高,最后由三角形面积公式求得答案.【解答】解:连接AD ,∵EF 是线段AC 的垂直平分线,∴点C 关于直线EF 的对称点为点A ,△CDM 的周长为CM +DM +CD ,∴AD 的长为CM +MD 的最小值,∵CD =2,∴AD =6,∵AB =AC ,D 为BC 中点,∴AD ⊥BC ,∴△ABC 的面积为4×6÷2=12. 故选A .3.【答案】C【解析】【分析】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.连接AD ,由于△ABC 是等腰三角形,点D 是BC 边的中点,故AD ⊥BC ,再根据三角形的面积公式求出AD 的长,再根据EF 是线段AB 的垂直平分线可知,点B 关于直线EF 的对称点为点A ,故AD 的长为BM +MD 的最小值,由此即可得出结论.【解答】解:连接AD ,∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S △ABC =12BC •AD =12×4×AD =14,解得AD =7, ∵EF 是线段AB 的垂直平分线,∴点B 关于直线EF 的对称点为点A ,∴AD 的长为CM +MD 的最小值,∴△CDM 的周长最短=(CM +MD )+CD =AD +12BC =7+12×4=7+2=9. 故选C .4.【答案】C【解析】【分析】作FC ⊥OB 于C ,FD ⊥OA 于D ,FE ⊥AB 于E ,由角平分线的性质得出FD =FC ,证出点F 在∠MON 的平分线上,∠BOF =45°,在点A 在运动过程中,当OF ⊥AB 时,BF 最小,△OBF 为等腰直角三角形,即可得出BF =√22OB =√2. 【解答】解:作FC ⊥OB 于C ,FD ⊥OA 于D ,FE ⊥AB 于E ,如图所示:∵∠MAB 与∠ABN 的角平分线AF 与BF 交于点F ,∴FD =FE ,FE =FC ,∴FD =FC ,∴点F 在∠MON 的平分线上,∠BOF =45°,在点A 在运动过程中,当OF ⊥AB 时,F 为垂足,BF 最小,此时,△OBF 为等腰直角三角形,BF =√22OB =√2; 故选C .5.【答案】9【解析】【分析】本题考查垂直平分线的性质,轴对称的性质和等腰三角形的性质,得出AD 的长为CM +MD 的最小值是解题的关键,先做C 点关于EF 的对称点A ,连接AD 交EF 于M ,此时CM +MD 的值最小,求出周长即可.【解答】解:连接AD ,∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S △ABC =12BC •AD =12×4×AD =14,解得AD =7, ∵EF 是线段AB 的垂直平分线,∴点B 关于直线EF 的对称点为点A ,∴AD 的长为CM +MD 的最小值,∴△CDM 的周长最短=(CM +MD )+CD =AD +12BC =7+12×4=8+2=9. 故答案为9.6.【答案】8【解析】【分析】连接AD 交EF 与点M ′,连结AM ,由线段垂直平分线的性质可知AM =MB ,则BM +DM =AM +DM ,故此当A 、M 、D 在一条直线上时,MB +DM 有最小值,然后依据要三角形三线合一的性质可证明AD 为△ABC 底边上的高线,依据三角形的面积为12可求得AD 的长.本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.【解答】解:连接AD 交EF 与点M ′,连结AM .∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S ∆ABC =12BC ·AD =12×4×AD =12,解得AD =6,∵EF 是线段AB 的垂直平分线,∴AM =BM .∴BM +MD =MD +AM .∴当点M 位于点M ′处时,MB +MD 有最小值,最小值6.∴△BDM 的周长的最小值为DB +AD =2+6=8.故答案为8.7.【答案】8【解析】【分析】连接AD 交EF 与点M ′,连结AM ,由线段垂直平分线的性质可知AM =MB ,则BM +DM =AM +DM ,故此当A 、M 、D 在一条直线上时,MB +DM 有最小值,然后依据要三角形三线合一的性质可证明AD 为△ABC 底边上的高线,依据三角形的面积为12可求得AD 的长.本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.【解答】解:连接AD 交EF 与点M ′,连结AM .∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S ∆ABC =12BC ·AD =12×4×AD =12,解得AD =6,∵EF 是线段AB 的垂直平分线,∴AM =BM .∴BM +MD =MD +AM .∴当点M 位于点M ′处时,MB +MD 有最小值,最小值6.∴△BDM 的周长的最小值为DB +AD =2+6=8.8.【答案】8【解析】【分析】本题考查的是轴对称 -最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.连接AD ,由于△ABC 是等腰三角形,点D 是BC 边的中点,故AD ⊥BC ,再根据三角形的面积公式求出AD 的长,再根据EF 是线段AB 的垂直平分线可知,点B 关于直线EF 的对称点为点A ,故AD 的长为BM +MD 的最小值,由此即可得出结论.【解答】解:如图,连接AD ,∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S △ABC =12BC •AD =12×4×AD =12,解得AD =6cm , ∵EF 是线段AB 的垂直平分线,∴点B 关于直线EF 的对称点为点A ,∴AD 的长为BM +MD 的最小值,∴△BDM 的周长最短=(BM +MD )+BD =AD +12BC =6+12×4=6+2=8cm . 故答案为8.9.【答案】8【解析】【分析】连接AD 交EF 与点M ′,连结AM ,由线段垂直平分线的性质可知AM =MB ,则BM +DM =AM +DM ,故此当A 、M 、D 在一条直线上时,MB +DM 有最小值,然后依据要三角形三线合一的性质可证明AD 为△ABC 底边上的高线,依据三角形的面积为12可求得AD 的长.【解答】解:连接AD 交EF 与点M ′,连结AM .∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S △ABC =12BC ⋅AD =12×4×AD =12,解得AD =6, ∵EF 是线段AB 的垂直平分线,∴AM =BM .∴BM +MD =MD +AM .∴当点M 位于点M ′处时,MB +MD 有最小值,最小值6.∴△BDM 的周长的最小值为DB +AD =2+6=8.故答案为8.10.【答案】3【解析】【分析】这是一道考查菱形的性质以及线段垂直平分线的性质的题目,解题关键在于知道当AH ⊥BC 时,GF 最短,即可求出答案.【解答】解:连接AF 、HF ,则当AH 最短时,GF 最小,此时AH ⊥BC ,AH ⊥AB ,∵GF 为AH 的垂直平分线,∴G 为AH 中点,F 为CD 中点,∴GF =12(AD +HC )=3.故答案为3.11.【答案】8【解析】解:连接AD 交EF 与点M ′,连结AM .∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S △ABC =12BC •AD =12×4×AD =12,解得AD =6, ∵EF 是线段AB 的垂直平分线,∴AM =BM .∴BM +MD =MD +AM .∴当点M 位于点M ′处时,MB +MD 有最小值,最小值6.∴△BDM 的周长的最小值为DB +AD =2+6=8.连接AD 交EF 与点M ′,连结AM ,由线段垂直平分线的性质可知AM =MB ,则BM +DM =AM +DM ,故此当A 、M 、D 在一条直线上时,MB +DM 有最小值,然后依据要三角形三线合一的性质可证明AD 为△ABC 底边上的高线,依据三角形的面积为12可求得AD 的长.本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.12.【答案】6【解析】【分析】本题考查了轴对称的应用.易错易混点:解此题是受角平分线启发,能够通过构造全等三角形,把BM +MN 进行转化,但是转化后没有办法把两个线段的和的最小值转化为点到直线的距离而导致错误.从已知条件结合图形认真思考,通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【解答】解:如图,在AC 上截取AE =AN ,连接BE ,∵∠BAC 的平分线交BC 于点D ,∴∠EAM =∠NAM ,在△AME 与△AMN 中,{AE =AN∠EAM =∠NAM AM =AM,∴△AME ≌△AMN (SAS ),∴ME =MN .∴BM +MN =BM +ME ≥BE .∵BM +MN 有最小值.当BE是点B到直线AC的距离时,BE⊥AC,又AB=4√3,∠BAC=60°,此时,在Rt△ABE中,得出BE=6,即BE取最小值为6,∴BM+MN的最小值是6.故答案为6.13.【答案】3【解析】解:如图,在AC上截取AE=AN,连接BE.∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM,在△AME与△AMN中,{AE=AN∠EAM=∠NAM AM=AM,∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME≥BE.∵BM+MN有最小值.当BE是点B到直线AC的距离时,BE⊥AC,又AB=3√2,∠BAC=45°,此时,△ABE为等腰直角三角形,∴BE=3,即BE取最小值为3,∴BM+MN的最小值是3.故答案为3.从已知条件结合图形认真思考,通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.本题考查了轴对称的应用.易错易混点:解此题是受角平分线启发,能够通过构造全等三角形,把BM+MN进行转化,但是转化后没有办法把两个线段的和的最小值转化为点到直线的距离而导致错误.规律与趋势:构造法是初中解题中常用的一种方法,对于最值的求解是初中考查的重点也是难点.14.【答案】3√22【解析】【分析】本题考查了垂线段最短的性质,角的平分线的性质,勾股定理以及直角三角形的性质.解题关键是根据角平分线的性质和垂线段最短得出CE的长是PN+PC的最小值.作CE⊥AB 于点E,则CE的长就是PN+PC的最小值,在Rt△ACE中利用勾股定理求解即可.【解答】解:作CE⊥AB于点E,交AD于P点,∵AD是∠BAC的平分线,PN⊥AC,CE⊥AB,∴PN =PE ,∴PN +PC =PE +PC =CE ,∴根据“垂线段最短”可知CE 的长就是PN +PC 的最小值.在Rt △ACE 中,∠BAC =60°,AC =√6, ∴AE =12AC =√62, 由勾股定理得:CE =3√22. 故答案是3√22.15.【答案】8【解析】【分析】本题主要考查三角形周长的知识,关键是知道线段垂直平分线的性质,知道等腰三角形的性质.【解答】解:连接AD 交EF 与点M ′,连结AM .∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S △ABC =12BC •AD =12×4×AD =12,解得AD =6, ∵EF 是线段AB 的垂直平分线,∴AM =BM .∴BM +MD =MD +AM .∴当点M 位于点M ′处时,MB +MD 有最小值,最小值6.∴△BDM的周长的最小值为DB+AD=2+6=8.故答案为8.16.【答案】解:(1)四边形EBGD是菱形.理由:∵EG垂直平分BD,∴EB=ED,GB=GD,∴∠EBD=∠EDB,∵∠EBD=∠DBC,∴∠EDF=∠GBF,在△EFD和△GFB中,{∠EDF=∠GBF ∠EFD=∠GFB DF=BF,∴△EFD≌△GFB,∴ED=BG,∴BE=ED=DG=GB,∴四边形EBGD是菱形.(2)作EM⊥BC于M,DN⊥BC于N,连接EC交BD于点H,此时HG+HC最小,在RT△EBM中,∵∠EMB=90°,∠EBM=30°,EB=ED=2√10,∴EM=12BE=√10,∵DE∥BC,EM⊥BC,DN⊥BC,∴EM∥DN,EM=DN=√10,MN=DE=2√10,在RT△DNC中,∵∠DNC=90°,∠DCN=45°,∴∠NDC=∠NCD=45°,∴DN=NC=√10,∴MC=3√10,在RT△EMC中,∵∠EMC=90°,EM=√10.MC=3√10,∴EC=√EM2+MC2=√(√10)2+(3√10)2=10.∵HG+HC=EH+HC=EC,∴HG+HC的最小值为10.【解析】本题考查平行四边形的判定和性质、菱形的判定和性质、角平分线的性质、垂直平分线的性质、勾股定理等知识,解题的关键是利用对称找到点H的位置,属于中考常考题型.(1)结论四边形EBGD是菱形.只要证明BE=ED=DG=GB即可;(2)作EM⊥BC于M,DN⊥BC于N,连接EC交BD于点H,此时HG+HC最小,在RT△EMC中,求出EM、MC即可解决问题.17.【答案】(1)50(2)①6②14【解析】解:(1)∵AB =AC ,∴∠C =∠ABC =70°,∴∠A =40°,∵AB 的垂直平分线交AB 于点N ,∴∠ANM =90°,∴∠NMA =50°,故答案为:50;(2)①∵MN 是AB 的垂直平分线,∴AM =BM ,∴△MBC 的周长=BM +CM +BC =AM +CM +BC =AC +BC ,∵AB =8,△MBC 的周长是14,∴BC =14-8=6;②当点P 与M 重合时,△PBC 周长的值最小,理由:∵PB +PB =PA +PC ,PA +PC ≥AC ,∴P 与M 重合时,PA +PC =AC ,此时PB +PC 最小,∴△PBC 周长的最小值=AC +BC =8+6=14.【分析】(1)根据等腰三角形的性质和线段垂直平分线的性质即可得到结论;(2)①根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AM =BM ,然后求出△MBC 的周长=AC +BC ,再代入数据进行计算即可得解,②当点P 与M 重合时,△PBC 周长的值最小,于是得到结论.本题主要考查了轴对称的性质,等腰三角形的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,熟记性质是解题的关键.18.【答案】解:(1)如图1中,连接AB ,作线段AB 的中垂线MN ,交AB 于N ,交EF 于M ,连接AM ,BM .设DM =x .在Rt △ACM 中,AM 2=AC 2+CM 2=32+(6-x )2,在Rt △BDM 中,BM 2=DM 2+BD 2=x 2+62,∵AM =MB ,∴32+(6-x )2=x 2+62,解得x =34,∴CM =CD -MD =6-34=214.(2)如图2中,如图,作点A 故直线GH 的对称点A ′,点B 关于直线EF 的对称点B ′,连接A ′B ′交GH 于点P ,交EF 于点Q ,作B ′H ⊥CA 交CA 的延长线于H .则此时AP +PQ +QB 的值最小.根据对称的性质可知:PA =PA ′,QB =QB ′,∴PA +PQ +QB =PA ′+PQ +QB ′=A ′B ′,∴PA +PQ +PB 的最小值为线段A ′B ′的长,在Rt △A ′B ′H 中,∵HB ′=CD =132,HA ′=DB ′+CA ′=7+6=13,∴A ′B ′=√HA′2+B′H 2=√132+(132)2=132√5, ∴AP +PQ +QB 的最小值为132√5.【解析】(1)如图1中,连接AB ,作线段AB 的中垂线MN ,交AB 于N ,交EF 于M ,连接AM ,BM .设DM =x .根据MA =MB 构建方程即可解决问题;(2)如图2中,如图,作点A 故直线GH 的对称点A ′,点B 关于直线EF 的对称点B ′,连接A ′B ′交GH 于点P ,交EF 于点Q ,作B ′H ⊥CA 交CA 的延长线于H .则此时AP +PQ +QB 的值最小.最小值为线段A ′B ′的长;本题考查轴对称-最短问题,平行线的性质,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会利用轴对称解决问题问题,学会利用参数构建方程解决问题,属于中考压轴题.。

求线段和最小值试题(周长)解法探析

求线段和最小值试题(周长)解法探析

求线段和(周长)最小值试题解法近年来很多省市的中考数学试卷中出现求几条线段之和最小值的试题.这类试题通过考查点在直线上运动时与它相关线段和的最值情况,不但能了解学生综合运用数学知识解题能力,而且还能通过让学生对 “动”与“定”之间的关系的思考,深入了解学生的探索能力与识别能力,这对指导初中数学教师的教学及引导学生的学习有着重要的意义.现撷取关于求线段和最小值的几个例题进行分析. 一、“定——动——定”型试题 例1.(09山东威海)如图1,在直角坐标系中,点A ,B ,C 和坐标分别为(-1,0),(3,0),(0,3),过A ,B ,C 三点的抛物线的对称轴为直线l ,D 为对称轴l 上一动点.求当A D+CD 最小时点D 的坐标.例2.(09福建彰州)如图2,O ⊙的半径为2,点A B C 、、在O ⊙上,O A O B ⊥,60A O C ∠=°,P 是O B 上一动点,求P A P C +的最小值;评析:例1与例2均涉及两个定点一个动点,属求“定——动——定”型折线最小值问题,源于课本 “在直线上找一点,使其到直线同侧两点距离之和最短”,只是将问题背景改为抛物线或圆.以此考查学生的识别能力.这类只改变题型背景等非关键因素以适当加深问题的难度,隐蔽的应用课本上知识的试题常会在中考试卷中出现,用其检查学生灵活运用知识的能力.三、“定——动——动——定”型试题 例4.(福建彰州)如图4,∠AOB=45°,P 是∠AOB 内一点,PO=10,Q 、R 分别是OA 、OB 上的动点,求△PQR 周长的最小值.分析:点P 是角内部的一个定点,要在角的两边各确定一点使这三点连成的三角形周长最小,只需将这三边的和转化为以两定点为端点的一条折线.解:分别作点P 关于OA 、OB 的对称点P 1、P 2,连结P 1P 2,根据轴对称性易知:OP 1=OP 2=OP=10,∠P 1OP 2=2∠AOB=90°,因而P 1P 2=102,故△PQR 周长的最小值为102.例5.(09湖北恩施)恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世.著名的恩施大峡谷(A )和世界级自然保护区星斗山(B )位于笔直的沪渝高速公路X 同侧,AB=50km,A 、B 到直线X 的距离分别为10km 和40km,拟建的恩施到张家界高速公路Y 与沪渝高速公路垂直,建立如图5所示的直角坐标系,B 到直线Y 的距离为30km,请你在X 旁和Y 旁各修建一服务区P 、Q,使P 、A 、B 、Q 组成的四边形的周长最小.并求出这个最小值.评析:例4与例5涉及两个动点一个(或两个)定点,由于它们均是以定点为起止,动点在定点之间,因而属求“定——动——动——定”型折线最小值问题,应选用“两点之间,线段最短”这一性质解题.另外在分析问题时既要考虑条件间的相同点,也要关注条件间的区别,以正确地找出解题方法. 从上面的几个例题可以看出,求几条线段和的最短(小)值问题P 2P 1ABPRQ O图4B C D NM N ′ 图3 B 1A 1 QY X P O B A C 图5图1A ′ABC P O 图2一般需要进行图形变换,将其转化为以两个定点为端点动点在中间的折线或以一个定点为端点其余动点在一侧的折线,然后再根据“两点之间,线段最短”或“垂线段最短”这两条性质求出最小值.四、应用:1 :在图(1)中,若A到直线L的距离AC是3千米,B到直线L的距离BD是1千米,并且CD的距离4千米,在直线L上找一点P,使PA+PB的值最小。

浅谈线段最小值问题

浅谈线段最小值问题

初中几何中的最值问题江西省南康市龙岭中学 梁晓君在解决平面几何问题时,经常会遇到求线段(或线段和)最值的问题。

遇到这类题目时学生常常没有思路,不知从何下手。

其实,解决这类问题最常的思路就是:其解题的理论依据主要是“两点之间线段最短”,“点到直线的距离垂线段最短”及“三角形两边之各大于第三边”。

(一)利用轴对称解决线段和最小值解决线段和最小的问题时又常与轴对称联系起来,通过作对称点把要相加的线段通过等量代换,放置在同一条直线上成为一条线段。

人教版教材八年级在学习作轴对称图形时有一个例题:A 、B 两镇在燃气管道L 的同旁,现在要修一个泵站,分别向A 、B 两镇供气,泵站应修在什么地方,才能使输气管线最短?这是学生最先接触用轴对称知识来解决线路最短问题。

在这个例题的解答中,是作其中一个点关于L 的对称点,此对称点与另一点的连线与直线L 的交点P ,即为到两镇之间距离和最短的地方。

同时教材上也作出证明,让同学生们理解为什么这点就是最短的点。

在掌握这个例题后我们就有很多的题目可以通过作轴对称来解决。

我们可以看下面两题:1.在菱形ABCD 中,AB=4a,E 在BC 上,EC=2a ,∠BAD=1200,点P 在BD 上,则△PEC 周长的最小值是2、正方形ABCD 的边长为3,E 在BC 上,且BE=2,P 在BD 上,求PE+PC 的最小值。

这两题是可以直接转化成例题来解答,这种题形可归纳为“两点一线型”。

我们再看下一个题目:如图∠AOB=450,角内有一点P ,PO=10,在角两边上有两动点Q 、R (均不同于点O ),则△PQR 的周长最小值是———————— 。

本题只有一个点P ,却有两条直线OA ,OB 。

本题思路是边点P 分别作OA ,OB 的对称点同,再连接两对称点与两直线的交点即为Q ,R ,此时△PQR 的周长最小。

这种题目可归纳为一点两线型。

像教材后面的习题,马从马厩出来到河边喝水,再到草地吃草所走的路线最短就属于这种题型。

求线段(或线段和)(周长)最值问题

求线段(或线段和)(周长)最值问题

求线段(或线段和)(周长)最值问题福建莆田月塘中学潘立城中考数学压轴题中常出现有关几何最值问题,很多同学不知如何想,无从下手,感到这类题目很难,应该是尖子生同学做的题目,与我们这些一般生无关,避而远之。

这类题目很多,内容丰富,涉及面广,解法灵活多样,就像孙悟空七十二变,变化多端。

孙悟空再怎么变化,也跑不出如来佛的“手掌心”。

解几何最值的“手掌心”是什么呢?:撑握了如来佛的这一法宝,有关几何最值的各种“妖魔鬼怪”题都能解答。

一、“手掌心”法宝:三角形中两边之和大于第三边特征:“一”条线段且“动”点“不”在定线上,无规律找关键点:定点,中点,圆心。

④线段的转移特征:“定”点在“定”直线上⑤二次函数最值特征:有“表达式”①垂线段最短②两点间线段最短“弯”线变“直”线特征“直”线的特征①“直”线:定点--动点(定点--动点--动点)(动点--动点--动点)②直:定点--动点--定点直:动点--定点--动点二、类型名词解释:定直线指动点运动所在的直线①垂线段最短特征:“弯”线变“直”线对称轴lACBM定点“弯”线“直”线例2.(2012湖北鄂州3分)在锐角三角形ABC中,BC=24,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,则CM+MN的最小值是4 。

①标:定点A,定点C,动点B定直线AC,定直线l②特征:“弯”线变“直”线对称轴:定直线l作点A关于定直线l的对称点M“弯”线AB+BC变“直”线MC“直”线:定点M--动点B--定点C垂线段最短①标:定点C,动点M,动点N定直线BD,定直线BC②特征:“弯”线变“直”线对称轴:定直线BD作点N关于定直线BD的对称点E“弯”线CM+MN变“直”线CME“直”线:定点C--动点M--动点E垂线段最短例4例3.(2012浙江台州4分)如图,菱形ABCD 中,AB =2,∠A =120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK +QK 的最小值为【 】 ①标:动点Q ,动点K ,动点P 定直线AC ,定直线l 特征:“弯”线QK+KP 变“直”线对称轴:定直线BD作点P 关于定直线BD 的对称点P 1“直”线:动点Q--动点K--动点P 1两平行线间垂线段最短xyOl P ’F P H①标:定点F ,动点P 定曲线:抛物线 ②特征:动点F 在定曲线:抛物线上抛物线是到定点F 距离与到定直线l 距离相等的点的集合。

2020初中数学中考专题复习——四边形中的线段最值问题专项训练5(附答案详解)

2020初中数学中考专题复习——四边形中的线段最值问题专项训练5(附答案详解)

1.C
参考答案
【解析】
【分析】
根据三个角都是直角的四边形是矩形,得四边形 AEPF 是矩形,根据矩形的对角线相等,得
EF=AP,则 EF 的最小值即为 AP 的最小值,根据垂线段最短,知:AP 的最小值即等于直角
三角形 ABC 斜边上的高.
【详解】
连接 AP,
∵在△ ABC 中,AB=3,AC=4,BC=5, ∴AB2+AC2=BC2, 即∠BAC=90°, 又∵PE⊥AB 于 E,PF⊥AC 于 F, ∴四边形 AEPF 是矩形, ∴EF=AP, ∵AP 的最小值即为直角三角形 ABC 斜边上的高,即 2.4, ∴EF 的最小值为 2.4, 故选:C. 【点睛】 本题考查了矩形的性质和判定,勾股定理的逆定理,直角三角形的性质的应用,要能够把要 求的线段的最小值转化为便于求的最小值得线段是解此题的关键. 2.C 【解析】 【分析】 根据轴对称确定最短路线问题,作点 P 关于 BD 的对称点 P',连接 与 BD 的交点即为所求的 点 K,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知 ⊥CD 时
的最小值,求解即可.
【详解】
解::如图,∵

,,
∴点 P'到 CD 的距离为 2× = ,
∴ 故选 C.
的最小值为 .
【点睛】 本题考查了菱形的性质,轴对称确定最短路线问题,熟记菱形的轴对称性和利用轴对称确定最 短路线的方法是解题的关键. 3.C 【解析】 【分析】 先作点 M 关于 AC 的对称点 M′,连接 M′N 交 AC 于 P,此时 MP+NP 有最小值.然后证明 四边形 ABNM′为平行四边形,即可求出 MP+NP=M′N=AB=2. 【详解】 解:如图,作点 M 关于 AC 的对称点 M′,连接 M′N 交 AC 于 P,此时 MP+NP 有最小值, 最小值为 M′N 的长. ∵菱形 ABCD 关于 AC 对称,M 是 AB 边上的中点, ∴M′是 AD 的中点, 又∵N 是 BC 边上的中点, ∴AM′∥BN,AM′=BN, ∴四边形 ABNM′是平行四边形, ∴M′N=AB=2, ∴MP+NP=M′N=2,即 MP+NP 的最小值为 2, 故选:C.

求线段(或线段和)(周长)最值问题

求线段(或线段和)(周长)最值问题

求线段(或线段和)(周长)最值问题福建莆田月塘中学潘立城中考数学压轴题中常出现有关几何最值问题,很多同学不知如何想,无从下手,感到这类题目很难,应该是尖子生同学做的题目,与我们这些一般生无关,避而远之。

这类题目很多,内容丰富,涉及面广,解法灵活多样,就像孙悟空七十二变,变化多端。

孙悟空再怎么变化,也跑不出如来佛的“手掌心”。

解几何最值的“手掌心”是什么呢?:撑握了如来佛的这一法宝,有关几何最值的各种“妖魔鬼怪”题都能解答。

一、“手掌心”法宝:三角形中两边之和大于第三边特征:“一”条线段且“动”点“不”在定线上,无规律找关键点:定点,中点,圆心。

④线段的转移特征:“定”点在“定”直线上⑤二次函数最值特征:有“表达式”①垂线段最短②两点间线段最短“弯”线变“直”线特征“直”线的特征①“直”线:定点--动点(定点--动点--动点)(动点--动点--动点)②直:定点--动点--定点直:动点--定点--动点二、类型 名词解释:定直线指动点运动所在的直线①垂线段最短 特征:“弯”线变“直”线 对称轴l①标:定点C ,动点M ,动点N 定直线BD ,定直线BC ②特征:“弯”线变“直”线对称轴:定直线BD 作点N 关于定直线BD 的对称点E “弯”线CM+MN 变“直”线CME“直”线:定点C--动点M--动点E垂线段最短①标:定点A ,定点C ,动点B 定直线AC ,定直线l ②特征:“弯”线变“直”线对称轴:定直线l 作点A 关于定直线l 的对称点M “弯”线AB+BC 变“直”线MC“直”线:定点M--动点B--定点C垂线段最短ACBM定点“弯”线 “直”线例2.(2012湖北鄂州3分)在锐角三角形ABC 中,BC =24,∠ABC =45°,BD 平分∠ABC ,M 、N 分别是BD 、BC 上的动点,则CM +MN 的最小值是 4 。

例4例3.(2012浙江台州4分)如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为【】①标:动点Q,动点K,动点P定直线AC,定直线l特征:“弯”线QK+KP变“直”线对称轴:定直线BD作点P关于定直线BD的对称点P1“直”线:动点Q--动点K--动点P1两平行线间垂线段最短xyOlP’FP H①标:定点F,动点P定曲线:抛物线②特征:动点F在定曲线:抛物线上抛物线是到定点F距离与到定直线l距离相等的点的集合。

三条线段之和最小值问题

三条线段之和最小值问题

三条线段之和最小值问题三条线段之和最小值问题.重庆南开中学初2013级l1班周华吴朱泓郦0重庆南开中学初20i3级I2班王丁刘珈言.指导教师:张克近几年,中考数学试卷中出现了求三条线段之和最小值的试题.题目多变,风格清新,但万变不离其宗.下面举三例:霸(2009福建彰州改编)如图1,厶40B--450r腥厶4OB内一点.E图13(1)--角板绕点0旋转.acoFfl邑否成为等腰直角三角形?若能,指出所有情况(即给出ACO腥等腰直角三角形时B珀勺长);若不能,请说明理由.(2)---角板绕点0旋转,线段OE和0间有什么数量关系?用图l2或图13加以证明.(3)若将三角板的直角顶点放在斜边上的点P处(如图14),当:AC4时.和贿怎样的数量关系?证明你发现的结论222012/02图14CQ-..?..图1APO=IO,Q,R分别是,OB上的动点,求PQ+PR+RQ的最小值点跟角内部的一个定点.要在角的两边各确定一点使这三点连成的三角形周长最小.只需将这三边的和转化为以两定点为端点的藤(1)△c匕成为等腰直角三角形.包括:当点雕曰C中点时, CF=OF,曰÷;当点B与点腹合时,Z OF=oC.Bl0.(2)如图12,连结DB,则对于△OEB和△OFC.有OB=OC;OBE=/0CF--45..因为E0露+/--BOF=/-COF+L_BOF=90..所以/_EOB=C0F所以△D朋△OFC.所以DEl_D(图13的证明方法与此类似) (3)如图14,过点尸作肼上AB,垂足为.AM.PN_LBC.垂足为点因为厶EPM+厶EPN=厶EPN+/_FPN=90~. 所以厶EPM=FpN.叉因为EMP= FNP=90~.所以AEPM'-"AFPN.所以—PM—:丝.因为AAMP~APNC:BJPP}为等腰直角三角形,所~'XRt△PMA RtAPNC.所以:.又因为一AP pNPCAC一1所以一PE::三4PPC以上试题建立在三角板旋转的基础上.同学们在解题过程中通过实验操作,观察,猜想,论证,可发现图形(三角板)旋转过程中几何基本元素之间的数量关系.涉及的主要知识有三角形旋转后构造的重叠部分的面积,有关线段和角的数量关系(相等)或位置关系(垂直或平行),三角形全等与相似的判定和性质,直角三角形的性质和圆的有关内容.以上试题.突出体现了以下特点:第一.试题结合三角板的具体情境,考查了同学们对基本几何图形的形状,大小,位置关系及变换的认识, 对重要几何基本事实(核心概念)的理解和应用.第二,试题注重让同学们在应试过程中经历操作,观察,推理,想象等探索过程.强调在图形运动(重叠,旋转,平移)变化过程中研究几何图形的基本要素及其关系的能力.第三.试题更加突出"合情推理"与"演绎推理"相辅相成的关系.考查了同学们优化解题途径及方法的能力.囝一条直线即可.鬟分别作点P关于∞,OA的对称点尸I,P2,连结PlP2,根据轴对称性易知DP=OP2=OP=IO,PlO=2AOB=90.,因而P,=l0'2,故PQ+PR+RQ的最小值为10,/2.(2010福建宁德)如图2,四边形ABCD是正方形.&ABE是等边三角形,为对角线BD(不含B点)上任意一点,将嗍点逆时针旋转60o得到BN,连结EN,AM,CM.E.图2(1)求证:AAMB~AENB.(2)①当点臃何处时,AM+CM的值最小?②当点在何处时,A肘+8肘r+c的值最小?说明理由.(3)当AM+BM+CM的最小值为,/了+1时,求正方形的边长嘲易证△AAENB,以及△删为等边三角形.所以A肌BM+CM就可以转块氓EN+NM+CM. 而E,C两点已定,则连结EC,利用两点之间线段最短便可求解.(1)因为△A舾是等边三角形,所以=胞,ABE=f0~.因为MBN:而.致以厶MBN一/_ABN= 厶ABE~LABN.即LMBA=厶NBE. 又因为枷=.所以AAMB~AENB (SAS).(2)①当点M落在BD的中点时,AM+CM的值最小.(墓>如图3,连结佃.当点位于BD 与CE的交点处时.A删+C的值最小.理由如下:连结MN,由(1)知,△A△ENB.所以AM;叭因为MBN:而.MB=NB.纸,扶BMN足等边三角形.所以BM=MN.所以A肌BM+CM:EN+MN+CM.根据"雨点之间线段最短"得,当删+删+CM=EC时最短,所以当点位于BD与CE的交点处时,AMf+BM+CM~值最小即等于点的长.,AD(3)过点E作EF上BC交CB的延长线于点F.则LEBF--90.—60.=30..设正方形的边长为.~1BF=.,2E.在Rt△E中.因为E2EC:,所以+(孚)=(,/了十1),解得l=,/,X2一,/(舍去),所以正方形的边长为,/.黼辫(20l1四川南充)如图4.在等腰梯形ABCD中,AD//BC,AD= AB=CD=-2,LC=60~,幌BC的中点.(1)求证:AMDC~等边三角形.(2)将△c绕点旋转,当MD(即)与AB交于一点E,MC(即MC)同时与AD交于一点邝寸,点层.F 和点A构成AAEE试探究AAEF的周长是否存在最小值.如果不存在.请说明理由;如果存在,请计算出△A肼周长的最小值.BQMPC图4鳓(1)过点D作DPJ-Bc于点P,过点A作AQ_I_BCff-AQ,得到CP=BQ=÷B,CP+BQ=AB--AD.由矩形AD尸Q,AD=PQ,推I~BC=2AD.由拓展延伸点是BC的中点,推出BM=CM=AD= AB=CD.根据等边三角形的判定即可得到答案.(2)连结AM,由ABMD是菱形可得出AMAB.AMAD和AMCD是等边三角形.进而有胀ME证出△BMEAAMF'(ASA)后可得出占F,ME=MF,从而△璇等边三角形.根据的最小值为点J】If到AD的距离,/了,即的最小值是,/了.即可求出△AE肭周长.翻(1)过点D作DP~BC于点尸,过点A作口上C于点Q,因为lLC=LB=60.,所以CP=BQ=÷AB, CP+BQ--AB--AD.又因为ADPQ是矩形,AD=PQ,~k.BC=2AD.由已知,点妯C的中点.所以删=CM=AD=AB= CD.即在△MDC中,C=CD,C= 60..所以△c是等边三角形.(2)AAEF的周长存在最小值,理由如下:连结AM,由(1)易知平行四边形ABMD是菱形,△MAB, AMAD和AMCD是等边三角形.所以有BMA=BME+/AME=60.. EMF:厶AMF+厶AME=60o.所以BME=AMF.在△BME与△AMF 中,,EBM=FAM=60.,BME=AMF.致以BMEi△AMF(ASA).所.以BEF.ME= MF.A+AF=AE+砸丑因为厶EMF=LDMC=60o.故△EMF是等边三角形.E肼F因为MF的最小值为点到AD的距离.即的最小值是,/了.所以△A的周长=AE+AF+EF=ABEF.纸以△AEF的周长的最小值为2+.此类题的最大特点是找"替身"以实现"等量转化",主要途径是利用轴对称的性质和两点之间线段最短来求解.全等,等边三角形的性质等知识都是解决此类问题的得力助手.圜韧巾教学辅导23。

求线段最小值常见解法探析

求线段最小值常见解法探析

数理化学习求战段最小值素见鮮法採析■马先龙摘要:求线段长的最小值一直是解题的难点.实 际解题时,若能灵活地运用化斜为垂法、特殊位置法、 函数最值法,则可化难为易,顺利解题.关键词:线段;最小值;解法解答几何题时,经常需求线段的最小值.此类问题 往往具有一定的难度,有时甚至让答题者望而生畏.实 际解题时,若能灵活地运用化斜为垂法、特殊位置法、 函数最值法等解法,则可化难为易,顺利解题.一、化斜为垂法 例1如图l ,RtA 4B C 中,AACB - 90°,AC = 4,BC = 2,P 是斜边上的动点(不与/l 、B 重 合),过点P 分别作丄<4C 于点丄S C 于点£,连接则£)£的最小值为分析:如图1,连接CP ,由条件,易知四边形P Z )C £ 是矩形,所以£»£ = C /3,易求C P 的最小值,从而得£»£ 的最小值.解:如图1,连接CP .因为乙= 90°,/lC = 4,BC = 2,^])1AB = 742 + 22 = 2/S "•因为丄/tC ,P £ 丄 fiC ,所以乙PDC == 90。

,又因为 Z 4CB =90°,所以四边形是矩形,所以= CP .过点C作CM 丄/1B 于点M ,根据“垂线段最短”,知CP _ =CM ,所以 = CM •因为 SA 4S C = 士/lC • BC = 士仙2/5 5 5的最小值是4/5".评注:本题先连接CP ,运用矩形的性质进行等线 段代换,得到£»£ = CP .接下来,自然会想到化斜为垂, 去求垂线段CM 的长,问题立刻变得简单了.例 2 如图 2,E 74B C Z > 中,= 2/3,AD =\,L A B C =60°,A E ,F 分别在边AB 、B C 上,A B E F 与BM F C关于直线对称,点B 的对称点落在边/I Z )上,则长的 图2最小值为_______•分析:如图2,由题意,易知= /TF ,易求S T 长的最小值,从而得S F 长的最小值.解:如图2,因为与关于直线£厂对 称,所以因为四边形/1BCD 是平行四边形, 所以/!£> // SC .由条件,点B '、F 分别在/!0、SC 上,过点 4作/1M 丄BC 于点M ,则ZTF m i … = <4紙所以=•在 RtA 4ftW 中,/Ifi = 2v ^",乙4BC = 60。

“求两线段长度之的最小值”问题全解析

“求两线段长度之的最小值”问题全解析

“求两线段长度值和最小”问题全解析在近几年的中考中.经常遇到求PA+PB最小型问题.为了让同学们对这类问题有一个比较全面的认识和了解.我们特此编写了“求两线段长度值和最小”问题全解析.希望对同学们有所帮助.一、在三角形背景下探求线段和的最小值1.1 在锐角三角形中探求线段和的最小值例1如图1.在锐角三角形ABC中.AB=4,∠BAC=45°.∠BAC的平分线交BC于点D.M,N分别是AD和AB上的动点.则BM+MN的最小值为.分析:在这里.有两个动点.所以在解答时.就不能用我们常用对称点法.我们要选用三角形两边之和大于第三边的原理加以解决.解:如图 1.在AC上截取AE=AN.连接BE.因为∠BAC的平分线交BC于点 D.所以∠EAM=∠NAM.又因为AM=AM. 所以△AME≌△AMN.所以ME=MN.所以BM+MN=BM+ME≥BE.因为BM+MN有最小值.当BE是点B到直线AC的距离时.BE取最小值为4.以BM+MN的最小值是4.故填4.1.2在等边三角形中探求线段和的最小值例2(2010 山东滨州)如图4所示.等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点.若AE=2,EM+CM的最小值为 .分析:要求线段和最小值.关键是利用轴对称思想.找出这条最短的线段.后应用所学的知识求出这条线段的长度即可.解:因为等边△ABC的边长为6,AD是BC边上的中线,所以点C与点B关于AD对称.连接BE交AD于点M.这就是EM+CM最小时的位置.如图5所示.因为CM=BM.所以EM+CM=BE.过点E作EF⊥BC.垂足为F.因为AE=2.AC=6.所以EC=4.在直角三角形EFC中.因为EC=4, ∠ECF=60°.∠FEC=30°.所以FC=2,EF==2.因为BC=6.FC=2.所以BF=4.在直角三角形BEF中.BE==.二、在四边形背景下探求线段和的最小值2.1在直角梯形中探求线段和的最小值例3(2010江苏扬州)如图3.在直角梯形ABCD中.∠ABC=90°.AD∥BC.AD=4.AB=5.BC =6.点P是AB上一个动点.当PC+PD的和最小时.PB的长为__________.分析:在这里有一个动点.两个定点符合对称点法求线段和最小的思路.所以解答时可以用对称法.解:如图3所示.作点D关于直线AB的对称点E.连接CE.交AB于点P.此时PC+PD和最小.为线段CE.因为AD=4.所以AE=4.因为∠ABC=90°.AD∥BC.所以∠EAP=90°.因为∠APE=∠BPC,所以△APE∽△BPC.所以.因为AE=4.BC=6.所以.所以.所以,因为AB=5.所以PB=3.2.2在等腰梯形中探求线段和的最小值例4如图4.等腰梯形ABCD中.AB=AD=CD=1.∠ABC=60°.P是上底.下底中点EF直线上的一点.则PA+PB的最小值为.分析:根据等腰梯形的性质知道.点A的对称点是点D.这是解题的一个关键点.其次运用好直角三角形的性质是解题的又一个关键.解:如图4所示.因为点D关于直线EF的对称点为A.连接BD.交EF于点P.此时PA+PB和最小.为线段BD.过点D作DG⊥BC.垂足为G.因为四边形ABCD是等腰梯形.且AB=AD=CD=1.∠ABC=60°.所以∠C=60°.∠GDC=30°.所以GC=,DG=.因为∠ABC=60°.AD∥BC.所以∠BAD=120°.因为AB=AD.所以∠ABD=∠ADB=30°.所以∠ADBC=30°.所以BD=2DG=2×=.所以PA+PB的最小值为.2.3在菱形中探求线段和的最小值例5如图5菱形ABCD中.AB=2.∠BAD=60°.E是AB的中点.P是对角线AC上的一个动点.则PE+PB的最小值为.分析:根据菱形的性质知道.点B的对称点是点D.这是解题的一个关键点.解:如图5所示.因为点B关于直线AC的对称点为D.连接DE.交AC于点P.此时PE+PB和最小.为线段ED.因为四边形ABCD是菱形.且∠BAD=60°.所以三角形ABD是等边三角形.因为E是AB的中点.AB=2.所以AE=1.DE⊥AB.所以ED==.所以PE+PB的最小值为.2.4在正方形中探求线段和的最小值例6如图6所示.已知正方形ABCD的边长为8.点M在DC上.且DM=2.N是AC上的一个动点.则DN+MN的最小值为.分析:根据正方形的性质知道.点B的对称点是点D.这是解题的一个关键点.解:如图6所示.因为点D关于直线AC的对称点为B.连接BM.交AC于点N.此时DN+MN和最小.为线段BM.因为四边形ABCD是正方形.所以BC=CD=8.因为DM=2.所以MC=6.所以BM==10.所以DN+MN的最小值为10.例7(2009?达州)如图7.在边长为2cm的正方形ABCD中.点Q为BC边的中点.点P为对角线AC上一动点.连接PB、PQ.则△PBQ周长的最小值为cm.(结果不取近似值).分析:在这里△PBQ周长等于PB+PQ+BQ.而BQ是正方形边长的一半.是一个定值1.所以要想使得三角形的周长最小.问题就转化成使得PB+PQ的和最小问题.因为题目中有一个动点P.两个定点B,Q符合对称点法求线段和最小的思路.所以解答时可以用对称法.解:如图7所示.根据正方形的性质知道点B与点D关于AC对称.连接DQ.交AC于点P.连接PB.所以BP=DP.所以BP+PQ=DP+PQ=DQ.在Rt△CDQ中.DQ== .所以△PBQ的周长的最小值为:BP+PQ+BQ=DQ+BQ= +1.故答案为+1.三、在圆背景下探求线段和的最小值例8(2010年荆门)如图8.MN是半径为1的⊙O的直径.点A在⊙O上.∠AMN=30°.B 为AN弧的中点.P是直径MN上一动点.则PA+PB的最小值为( )(A)2 (B) (C)1 (D)2分析:根据圆的对称性.作出点A的对称点D.连接DB.则线段和的最小值就是线段DB 的长度.解:如图8.作出点A的对称点D.连接DB.OB,OD.因为∠AMN=30°.B为AN弧的中点.所以弧AB的度数为30°.弧AB的度数为30°.弧AN的度数为60°.根据圆心角与圆周角的关系定理得到:∠BON=30°.由垂径定理得:弧DN的度数为60°.所以∠BOD=∠BON+∠DON= 30°+60°=90°.所以DB==.所以选择B.四、在反比例函数图象背景下探求线段和的最小值例9(2010山东济宁)如图9.正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点.过A点作x轴的垂线.垂足为M.已知三角形OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合).且B点的横坐标为1.在x轴上求一点P.使PA+PB最小.分析:利用三角形的面积和交点坐标的意义.确定出点A的坐标是解题的第一个关键.要想确定出PA+PB的最小值.关键是明白怎样才能保证PA+PB的和最小.同学们可以联想我们以前学过的对称作图问题.明白了最小的内涵.解题的过程就迎刃而解了.解:(1)设点A的坐标为(x.y).且点A在第一象限.所以OM=x,AM=y.因为三角形OAM的面积为1.所以所以xy=2.所以反比例函数的解析式为y=.(2)因为y=x与y=相交于点A.所以=x.解得x=2.或x=-2.因为x>0.所以x=2.所以y=1.即点A的坐标为(2.1).因为点B的横坐标为1.且点B在反比例函数的图像上.所以点B的纵坐标为2.所点B的坐标为(1.2).所以点B关于x轴的对称点D的坐标为(1.-2).设直线AD的解析式为y=kx+b.所以.解得k=3.b=-5.所以函数的解析式为y=3x-5.当y=0时.x=.所以当点P在(.0)时.PA+PB的值最小.五、在二次函数背景下探求线段和的最小值例10(2010年玉溪改编)如图10.在平面直角坐标系中.点A的坐标为(1.) .△AOB 的面积是.(1)求点B的坐标;(2)求过点A、O、B的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C.使△AOC的周长最小?若存在.求出点C的坐标;若不存在.请说明理由;分析:在这里△AOC周长等于AC+CO+AO.而A,O是定点.所以AO是一个定长.所以要想使得三角形的周长最小.问题就转化成使得AC+CO的和最小问题.因为题目中有一个动点C.两个定点A,O符合对称点法求线段和最小的思路.所以解答时可以用对称法.解:(1)由题意得:所以OB=2.因为点B在x轴的负半轴上.所以点B 的坐标为(-2.);(2)因为B(-2,0),O(0,0),所以设抛物线的解析式为:y=ax(x+2).将点A的坐标为(1.)代入解析式得:3a=.所以a=.所以函数的解析式为y=+x.(3)存在点C. 如图10.根据抛物线的性质知道点B与点O是对称点.所以连接AB与抛物线的对称轴x= - 1交AC于点C.此时△AOC的周长最小.设对称轴与x轴的交点为E.过点A作AF垂直于x轴于点F.则BE=EO=EF=1.因为△BCE∽△B AF,所以, 所以.所以CE=.因为点C在第二象限.所以点C的坐标为(-1.).六、在平面直角坐标系背景下探求线段和的最小值例11(2010年天津)如图11.在平面直角坐标系中.矩形的顶点O在坐标原点.顶点A、B分别在x轴、y轴的正半轴上.OA=3.OB=4.D为边OB的中点.(1)若E为边OA上的一个动点.当△CDE的周长最小时.求点E的坐标;(2)若E、F为边OA上的两个动点.且EF=2.当四边形CDEF的周长最小时.求点E、F 的坐标.分析:本题的最大亮点是将一个动点求最小值和两个动点求最小值问题糅合在一起.并很好的运用到平面直角坐标系中.解:(1)如图12.作点D关于x轴的对称点.连接C与x轴交于点E.连接DE.若在边OA上任取点(与点E不重合).连接C、D、.由D+ C=+ C>C= D+CE=DE+CE.所以△的周长最小.因为在矩形OACB中.OA=3,OB=4, D为OB的中点.所以 BC=3.DO=O=2.所以点C的坐标为(3.4).点的坐标为(0.-2).设直线C的解析式为y=kx+b.则.解得k=2.b=-2.所以函数的解析式为y=2x-2.令y=0.则x=1.所以点E的坐标为(1.0);(2)如图13.作点D关于x轴的对称点.在CB边上截取CG=2.连接G与x轴交于点E.在EA上截EF=2.因为GC∥EF.GC=EF.所以四边形GEFC为平行四边形.有GE=CF.又 DC、EF的长为定值.所以此时得到的点E、F使四边形CDEF的周长最小.因为在矩形OACB中.OA=3,OB=4, D为OB的中点.CG=2,所以 BC=3.DO=O=2,BG=1.所以点G的坐标为(1.4).点的坐标为(0.-2).设直线G的解析式为y=kx+b.则.解得k=6.b=-2.所以函数的解析式为y=6x-2.令y=0.则x=.所以点E的坐标为(.0),所以点F的坐标为(+2.0)即F的坐标为(.0)。

线段之和最短问题(基础教学)

线段之和最短问题(基础教学)

线段之和最短问题一. 常见数学模型:1.如图,直线l 和l 的异侧两点A 、B ,在直线l 上求作一点P ,使PA+PB 最小。

2.如图,直线l 和l 的同侧两点A 、B ,在直线l 上求作一点P ,使PA+PB 最小。

3. 如图,直线l 1和l 2的异侧两点A 、B ,分别在直线l 1、l 2上求作一点P 、Q 两点, 使AP+PQ+QB 最小。

4. 如图,直线l 1的同侧两点A 、B ,分别在直线l 1上求作一点P 、Q 两点,且PQ=a , 使AP+PQ+QB 最小。

lAl 2l 1lABal 1A5.如图,点P 是∠MON 内的一点,分别在OM ,ON 上作点A ,B 使△PAB 的周长最小。

6.如图,点P ,Q 为∠MON 内的两点,分别在OM ,ON 上作点A ,B 。

使四边形PAQB 的 周长最小。

为方便归类,将这种情况称为“两点之间线段最短型”5.如图,点A 是∠MON 外的一点,在射线ON 上作点P ,使PA 与点P 到射线OM 的距离之和最小6. .如图,点A 是∠MON 内的一点,在射线ON 上作点P ,使PA 与点P 到射线OM 的距离之和最小NNNN为方便归类,将以上两种情况,称为“垂线段最短型”练习题1.在平面直角坐标系中,有A(3,-2),B(4,2)两点,现另取一点C(1,n),当n =______时,AC + BC的值最小.B3.如图∠AOB = 45°,P是∠AOB内一点,PO = 10,Q、P分别是OA、OB上的动点,求△PQR周长的最小值.4.如图,在△ABC中,AC=BC=2,∠ACB=90°,D是BC边的中点,E是AB边上一动点,则EC+ED的最小值为_______。

AEC B 5.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC。

已知AB=5,DE=1,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE的值最小?(3)根据(2)中的规律和结论,请构图求出代数式x2+4 +(12-x)2+9 的最小值6.桌上有一个圆柱形玻璃杯(无盖),高为12厘米,底面周长18厘米,在杯口内壁离杯口3厘米的A处有一滴蜜糖,一只小虫从桌上爬至杯子外壁,当它正好爬至蜜糖相对方向离桌面3厘米的B处时,突然发现了蜜糖。

线段和的最小值问题

线段和的最小值问题
2、小聪根据实际情况,以街道旁为x轴,建立了如图1所示的平面直角坐标系,测得A点的坐标为(0,3),B点的坐标为(6,5),求从A、B两点到奶站P距离之和的最小值。
练习
A’
P
C
B
A
E
P
D
C
DE
5
出题背景变式有:
1
角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。
2
解题思路:
3
找点关于线的对称点,实现“折”转“直”。
----线段和的最小值问题
单击添加副标题
单击此处添加文本具体内容,简明扼要地阐述你的观点
如图,要在街道旁修建一个奶站P,向居民区A、B提供牛奶,奶站P应建在什么地方,才能使从A,B到它的距离之和最短?为什么?
A
B
街道
P
P’
A B A’ P 如图,要在街道旁修建一个奶站P,向居民区A、B提供牛奶,奶站P应建在什么地方,才能使从A,B到它的距离之和最短?为什么? 街道 P’
4
变式1(2008 年湖北荆门市中考题) 如图,菱形ABCD 的两条对角线分别长6 和8,点P是对角线AC 上的一个动点,点M、N 分别是边AB、BC 的中点,则PM+PN 的最小值是_____________.
A
D
C
B
M
N
P
M’
P’
5
练习 (2011广西试题改编) 如图所示,在边长为2的正三角形ABC中,E、F、G分别为AB、AC、BC的中点,点P线段EF上一个动点,连接BP、GP,则(1)PB+PG的最小值是 (2)△BPG周长的最小值是 。
线段和的最小值
本节课我们学习了 问题, 这类问题的解题方法是怎样的?

线段和最小值问题

线段和最小值问题

线段与最小值问题问题模型:如下图,、是直线同旁的两个定点.问题:在直线上确定一点,使的值最小.方法:作点关于直线的对称点,连结交于点,则的值最小(不必证明).题型一:两定一动一线例1:如图,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别是边AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是______.方法总结:当有两个定点时,做任一定点关于线的对称点,连接另一点与对称点,与线的交点即为所求。

跟踪练习:如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为______.题型二:一定两动一线例2:如图,在矩形ABCD中,AB=10 ,BC=5 .若点M、N分别是线段ACAB上的两个动点,则BM+MN的最小值为______.方法总结:点P在AD上运动,则作线段AD关于线AE的对称线段,结合垂线段最短求最小值。

跟踪练习如图,正方形ABCD的边长为4,∠DAC的平分线交DC于点E,若点P、Q分别是AD与AE上的动点,则DQ+PQ的最小值是______.拓展提升题型三:三动一线(做法参照题型二)例3:如图,菱形ABCD中,AB=2,∠BAD=60°,E、F、P分别是AB、BC、AC上的动点,PE+PF的最小值等于______.题型四:一定两动两线例4:如图,∠AOB=45°,角内有一动点P ,PO=10,在AO,BO上有两动点Q,R,求△PQR周长的最小值______.方法总结:分别作定点关于两线的对称点,连接两对称点所得线段即为线段与的最小值。

题型五:两定两动两线例5:如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是_______.方法总结:分别作两定点关于两线的对称点,连接两对称点所得线段即为线段与的最小值。

线段最值问题

线段最值问题

AB C D N M【通过做对称求出最小值】1.在边长为2cm 的正方形ABCD 中, 点Q 为BC 边的中点, 点P 为对角线AC 上一动点, 连接PB.PQ, 则△PBQ 周长的 最小值为 cm.2.如图所示, 正方形ABCD 的面积为12, △ABE 是等边三角形, 点E 在正方形ABCD 内, 在对角线AC 上有一点P, 使PD +PE 的和最小, 则这个最小值为________3.已知四边形ABCD 为菱形, ∠BAD =60°, E 为AD 中点, AB =6㎝, P 为AC 上任一点.求PE+PD 的最小值是 .【变式】在菱形ABCD 中, 对角线AC=6, BD=8, 点E 、F 分别是边 AB.BC 的中点, 点P 在AC 上运动, 在运动过程中, 存在PE+PF 的最小值, 则这个最小值是 .【模拟练习】1.如图, 在锐角△ABC 中, AB=4, ∠BAC=45°, ∠BAC 的平分线交BC 于点D, M 、N 分别是AD 和AB 上的动点, 则BM+MN 的最小值是 .第1题 DE BPA2.如图, 在五边形ABCDE 中, ∠BAE =120°, ∠B =∠E =90°, AB =BC =1, AE =DE =2, 在BC.DE 上分别找一点M 、N, 使△AMN 的周长最小, 则△AMN 的最小周长为__________3.如图6, AB 是⊙O 的直径, AB=8, 点M 在⊙O 上, ∠MAB=20°,N 是弧MB 的中点,P 是直径AB 上的一动点, 若MN=1, 则△PMN 周长的最小值为__________4.如图, 点P 是∠AOB 内任意一点, OP=5cm, 点M 和点N 分别是射线OA 和射线OB 上的动点, △PMN 周长的最小值是5cm, 则∠AOB 的度数是( )A. 25°B. 30°C. 35°D. 40°5.菱形ABCD 在平面直角坐标系中的位置如图所示, 顶点B (2, 0), ∠DOB=60°, 点P 是对角线OC 上一个动点, E (0, ﹣1), 当EP+BP 最短时, 点P 的坐标为 .6.如图, 在边长为2的等边△ABC 中, D 为BC 的中点, E 是AC 边上一点, 则BE+DE 的最小值为___________BADE MCN第2题7、如图, ∠AOB=30°, 点M、N分别是射线OA.OB上的动点, OP平分∠AOB, 且OP=6, 当△PMN 的周长取最小值时, 四边形PMON的面积为.8、如图, ∠AOB=30°, 点M、N分别在边OA.OB上, 且OM=1, ON=3, 点P、Q分别在边OB.OA 上, 则MP+PQ+QN的最小值是_________9、如图, 矩形ABCD中, AB=2, BC=3, 以A为圆心, 1为半径画圆, E是⊙A上一动点, P是BC上的一动点, 则PE+PD的最小值是.【通过三角形三边关系或圆求最值】如图, ∠MON=90°, 矩形ABCD的顶点A.B分别在边OM, ON上, 当B在边ON上运动时, A随之在边OM上运动, 矩形ABCD的形状保持不变, 其中AB=2, BC=1, 运动过程中, 点D到点O的最大距离为_________2.如图, ∠MON=90°, 边长为2的等边三角形ABC的顶点A.B分别在边OM, ON上当B在边ON上运动时, A随之在边OM上运动, 等边三角形的形状保持不变, 运动过程中, 点C到点O的最大距离为_______3.如图, 正方形ABCD中, AB=2, 动点E从点A出发向点D运动, 同时动点F从点D出发向点C运动, 点E、F运动的速度相同, 当它们到达各自终点时停止运动, 运动过程中线段AF、BE相交于点P, M 是线段BC上任意一点, 则MD+MP的最小值为.4.如图, 在平行四边形ABCD中, ∠BCD=30°, BC =4, CD= , M是AD边的中点, N是AB边上的一动点, 将△AMN沿MN所在直线翻折得到△A′MN, 连接A′C, 则A′C长度的最小值是__________.5.如图, 在矩形中, AB=4, AD=6, E是AB边的中点, F是线段BC边上的动点, 将△EBF沿EF所在直线折叠得到△EB’F, 连接B’D, 则B’D的最小值是____________6.如图, 在△ABC中, ∠ACB=90°, AB= 5, BC=3, P是AB边上的动点(不与点B重合), 将△BCP 沿CP所在的直线翻折, 得到△B′CP, 连接B′A, 则B′A长度的最小值是.1、【通过点到直线距离, 垂线段最短求最小值】已知点D与点A(8, 0), B(0, 6), C(a, ﹣a)是一平行四边形的四个顶点, 则CD长的最小值为___________2、如图, 已知直线与x轴、y轴分别交于A、B两点, P是以C(0, 1)为圆心, 1为半径的圆上一动点, 连结PA、PB.则△PAB面积的最大值是()A. 8B. 12C.D.3、如图, 在平面直角坐标系xOy中, 直线AB经过点A(-4, 0)、B(0, 4), ⊙O的半径为1(O为坐标原点), 点P在直线AB上, 过点P作⊙O的一条切线PQ, Q为切点, 则切线长PQ的最小值为()2A. 15B. 3C. 7D.24.如图, 在△ABC中, AB = 10, AC = 8, BC = 6, 经过点C且与AB相切的动圆与CB.CA分别相交于点E、F, 则线段EF长度的最小值是( )A. B. 4.75 C. 4.8 D. 5【将图形展开后求线段最短】1.如图, 圆柱形玻璃杯高为12cm、底面周长为18cm, 在杯内离杯底4cm的点C处有一滴蜂蜜, 此时一只蚂蚁正好在杯外壁, 离杯上沿4cm与蜂蜜相对的点A处, 则蚂蚁到达蜂蜜的最短距离为___________cm【高中基本不等式】1.张华在一次数学活动中, 利用“在面积一定的矩形中, 正方形的周长最短”的结论, 推导出“式子(x>0)的最小值是2”. 其推导方法如下: 在面积是1的矩形中设矩形的一边长为x, 则另一边长是, 矩形的周长是2();当矩形成为正方形时, 就有x= (x>0), 解得x=1, 这时矩形的周长2()=4最小, 因此(x>0)的最小值是2. 模仿张华的推导, 你求得式子(x>0)的最小值是___________【其它】1.如图, 已知直线l与⊙O相离, OA⊥l于点A, OA=5, OA与⊙O相交于点P, AB与⊙O相切于点B, BP 的延长线交直线l于点C, 若在⊙O上存在点Q, 使△QAC是以AC为底边的等腰三角形, 则⊙O的半径的最小值是()A....B.....C...D.2、如图, 正方形ABCD的边长为1, 中心为点O, 有一边长大小不定的正六边形EFGHIJ绕点O可任意旋转, 在旋转过程中, 这个正六边形始终在正方形ABCD内(包括正方形的边), 当这个六边形的边长最大时, AE的最小值为____________3.如图, AB=10, C是线段AB上一点, 分别以AC.CB为边在AB的同侧作等边△ACP和等边△CBQ, 连结PQ, 则PQ的最小值是()A. 5B. 6C. 3D. 44、如图, 点A, B的坐标分别为(1, 4)和(4, 4), 抛物线y=a (x﹣m)2+n的顶点在线段AB上运动, 与x轴交于C、D两点(C在D的左侧), 点C的横坐标最小值为﹣3, 则点D的横坐标最大值为.5.如图, △ABC.△EFG均是边长为2的等边三角形, 点D是边BC.EF的中点, 直线AG、FC相交于点M. 当△EFG绕点D旋转时, 线段BM长的最小值是()A.B.C.D.136.在平面直角坐标系xOy中, 以原点O为圆心的圆过点A(13, 0), 若直线y=kx-3k+4与⊙O交于B, C两点, 则弦BC的长的最小值为_______.7、在⊙O中, 圆的半径为6, ∠B=30°, AC是⊙O的切线, 则CD的最小值是()A. 1B. 3C.D. 28、如图, 已知A.B两点的坐标分别为(2, 0)、(0, 2), ⊙C的圆心坐标为(﹣1, 0), 半径为1. 若D是⊙C上的一个动点, 线段DA与y轴交于点E, 则△ABE面积的最小值是()A. 2B. 1C.D.9、如图, AB是⊙O的一条弦, 点C是⊙O上一动点, 且∠ACB=30°, 点E、F分别是AC、BC的中点, 直线EF与⊙O交于G、H两点.若⊙O的半径为7, 则GE+FH的最大值为.第7题第8题第9题【构造三角形】1.如图, 一条笔直的公路l 穿过草原, 公路边有一消防站A, 距离公路5千米的地方有一居民点B, A.B 的直线距离是13千米.一天, 居民点B 着火, 消防员受命欲前往救火, 若消防车在公路上的最快速度是80千米/小时, 而在草地上的最快速度是40千米/小时, 则消防车在出发后最快经 小时可到达居民点B.(友情提醒: 消防车可从公路的任意位置进入草地行驶.)2.如图, 菱形ABCD 的对角线AC 上有一动点P, BC =6, ∠ABC =150°, 则线段AP +BP +PD 的最小值为3.问题情境:如图1, P 是⊙O 外的一点, 直线PO 分别交⊙O 于点A.B, 则PA 是点P 到⊙O 上的点的最短距离. 探究:请您结合图2给予证明; 归纳:圆外一点到圆上各点的最短距离是: 这点到连接这点与圆心连线与圆交点之间的距离. 图中有圆, 直接运用:如图3, 在Rt △ABC 中, ∠ACB=90°, AC=BC=2, 以BC 为直径的半圆交AB 于D, P 是弧CD 上的一个动点, 连接AP, 则AP 的最小值是 . 图中无圆, 构造运用:如图4, 在边长为2的菱形ABCD 中, ∠A=60°, M 是AD 边的中点, N 是AB 边上一动点, 将△AMN 沿MN 所在的直线翻折得到△A ′MN, 连接A ′C, 请求出A ′C 长度的最小值.解: 由折叠知A ′M=AM, 又M 是AD 的中点, 可得MA=MA'=MD, 故点A'在以AD 为直径的圆上. 如图8, 以点M 为圆心, MA 为半径画⊙M, 过M 作MH ⊥CD, 垂足为H, (请继续完成下列解题过程) 迁移拓展, 深化运用:如图6, E, F 是正方形ABCD 的边AD 上两个动点, 满足AE=DF. 连接CF 交BD 于点G, 连接BE 交AG 于点H. 若正方形的边长为2, 则线段DH 长度的最小值是 .2.如图, 在△ABC 中, AB =13, BC =14, AC =15.(1)探究: 如图1, 作AH ⊥BC 于点H, 则AH = , △ABC 的面积 = .(2)拓展:如图2, 点D 在边AC 上(可与点A, C 重合), 分别过点A 、C 作直线BD 的垂线, 垂足为E, F, 设BD =x, AE +CF =y.①求 y 与x 的函数关系式, 并求y 的最大值和最小值;②对给定的一个x 值, 有时只能确定唯一的点D, 请求出这样的x 的取值范围.AAD F EABCD P(第2题)3.如图, 等腰梯形ABCD中, AD∥BC, ∠B=45°, P是BC边上一点, △PAD的面积为, 设AB=x, AD =y(1)求y与x的函数关系式;(2)若∠APD=45°, 当y=1时, 求PB•PC的值;(3)若∠APD=90°, 求y的最小值.4.图1, 图2为同一长方体房间的示意图, 图2为该长方体的表面展开图.(1)蜘蛛在顶点处①苍蝇在顶点B处时, 试在图1中画出蜘蛛为捉住苍蝇, 沿墙面爬行的最近路线;②苍蝇在顶点C处时, 图2中画出了蜘蛛捉住苍蝇的两条路线, 往天花板ABCD爬行的最近路线和往墙面爬行的最近路线, 试通过计算判断哪条路线更近?(2)在图3中, 半径为10dm的⊙M与相切, 圆心M到边的距离为15dm, 蜘蛛P在线段AB上, 苍蝇Q在⊙M的圆周上, 线段PQ为蜘蛛爬行路线。

三条线段之和最小值问题

三条线段之和最小值问题

三条线段之和最小值问题三条线段之和最小值问题.重庆南开中学初2013级l1班周华吴朱泓郦0重庆南开中学初20i3级I2班王丁刘珈言.指导教师:张克近几年,中考数学试卷中出现了求三条线段之和最小值的试题.题目多变,风格清新,但万变不离其宗.下面举三例:霸(2009福建彰州改编)如图1,厶40B--450r腥厶4OB内一点.E图13(1)--角板绕点0旋转.acoFfl邑否成为等腰直角三角形?若能,指出所有情况(即给出ACO腥等腰直角三角形时B珀勺长);若不能,请说明理由.(2)---角板绕点0旋转,线段OE和0间有什么数量关系?用图l2或图13加以证明.(3)若将三角板的直角顶点放在斜边上的点P处(如图14),当:AC4时.和贿怎样的数量关系?证明你发现的结论222012/02图14CQ-..?..图1APO=IO,Q,R分别是,OB上的动点,求PQ+PR+RQ的最小值点跟角内部的一个定点.要在角的两边各确定一点使这三点连成的三角形周长最小.只需将这三边的和转化为以两定点为端点的藤(1)△c匕成为等腰直角三角形.包括:当点雕曰C中点时, CF=OF,曰÷;当点B与点腹合时,Z OF=oC.Bl0.(2)如图12,连结DB,则对于△OEB和△OFC.有OB=OC;OBE=/0CF--45..因为E0露+/--BOF=/-COF+L_BOF=90..所以/_EOB=C0F所以△D朋△OFC.所以DEl_D(图13的证明方法与此类似) (3)如图14,过点尸作肼上AB,垂足为.AM.PN_LBC.垂足为点因为厶EPM+厶EPN=厶EPN+/_FPN=90~. 所以厶EPM=FpN.叉因为EMP= FNP=90~.所以AEPM'-"AFPN.所以—PM—:丝.因为AAMP~APNC:BJPP}为等腰直角三角形,所~'XRt△PMA RtAPNC.所以:.又因为一AP pNPCAC一1所以一PE::三4PPC以上试题建立在三角板旋转的基础上.同学们在解题过程中通过实验操作,观察,猜想,论证,可发现图形(三角板)旋转过程中几何基本元素之间的数量关系.涉及的主要知识有三角形旋转后构造的重叠部分的面积,有关线段和角的数量关系(相等)或位置关系(垂直或平行),三角形全等与相似的判定和性质,直角三角形的性质和圆的有关内容.以上试题.突出体现了以下特点:第一.试题结合三角板的具体情境,考查了同学们对基本几何图形的形状,大小,位置关系及变换的认识, 对重要几何基本事实(核心概念)的理解和应用.第二,试题注重让同学们在应试过程中经历操作,观察,推理,想象等探索过程.强调在图形运动(重叠,旋转,平移)变化过程中研究几何图形的基本要素及其关系的能力.第三.试题更加突出"合情推理"与"演绎推理"相辅相成的关系.考查了同学们优化解题途径及方法的能力.囝一条直线即可.鬟分别作点P关于∞,OA的对称点尸I,P2,连结PlP2,根据轴对称性易知DP=OP2=OP=IO,PlO=2AOB=90.,因而P,=l0'2,故PQ+PR+RQ的最小值为10,/2.(2010福建宁德)如图2,四边形ABCD是正方形.&amp;ABE是等边三角形,为对角线BD(不含B点)上任意一点,将嗍点逆时针旋转60o得到BN,连结EN,AM,CM.E.图2(1)求证:AAMB~AENB.(2)①当点臃何处时,AM+CM的值最小?②当点在何处时,A肘+8肘r+c的值最小?说明理由.(3)当AM+BM+CM的最小值为,/了+1时,求正方形的边长嘲易证△AAENB,以及△删为等边三角形.所以A肌BM+CM就可以转块氓EN+NM+CM. 而E,C两点已定,则连结EC,利用两点之间线段最短便可求解.(1)因为△A舾是等边三角形,所以=胞,ABE=f0~.因为MBN:而.致以厶MBN一/_ABN= 厶ABE~LABN.即LMBA=厶NBE. 又因为枷=.所以AAMB~AENB (SAS).(2)①当点M落在BD的中点时,AM+CM的值最小.(墓&gt;如图3,连结佃.当点位于BD 与CE的交点处时.A删+C的值最小.理由如下:连结MN,由(1)知,△A△ENB.所以AM;叭因为MBN:而.MB=NB.纸,扶BMN足等边三角形.所以BM=MN.所以A肌BM+CM:EN+MN+CM.根据"雨点之间线段最短"得,当删+删+CM=EC时最短,所以当点位于BD与CE的交点处时,AMf+BM+CM~值最小即等于点的长.,AD(3)过点E作EF上BC交CB的延长线于点F.则LEBF--90.—60.=30..设正方形的边长为.~1BF=.,2E.在Rt△E中.因为E2EC:,所以+(孚)=(,/了十1),解得l=,/,X2一,/(舍去),所以正方形的边长为,/.黼辫(20l1四川南充)如图4.在等腰梯形ABCD中,AD//BC,AD= AB=CD=-2,LC=60~,幌BC的中点.(1)求证:AMDC~等边三角形.(2)将△c绕点旋转,当MD(即)与AB交于一点E,MC(即MC)同时与AD交于一点邝寸,点层.F 和点A构成AAEE试探究AAEF的周长是否存在最小值.如果不存在.请说明理由;如果存在,请计算出△A肼周长的最小值.BQMPC图4鳓(1)过点D作DPJ-Bc于点P,过点A作AQ_I_BCff-AQ,得到CP=BQ=÷B,CP+BQ=AB--AD.由矩形AD尸Q,AD=PQ,推I~BC=2AD.由拓展延伸点是BC的中点,推出BM=CM=AD= AB=CD.根据等边三角形的判定即可得到答案.(2)连结AM,由ABMD是菱形可得出AMAB.AMAD和AMCD是等边三角形.进而有胀ME证出△BMEAAMF'(ASA)后可得出占F,ME=MF,从而△璇等边三角形.根据的最小值为点J】If到AD的距离,/了,即的最小值是,/了.即可求出△AE肭周长.翻(1)过点D作DP~BC于点尸,过点A作口上C于点Q,因为lLC=LB=60.,所以CP=BQ=÷AB, CP+BQ--AB--AD.又因为ADPQ是矩形,AD=PQ,~k.BC=2AD.由已知,点妯C的中点.所以删=CM=AD=AB= CD.即在△MDC中,C=CD,C= 60..所以△c是等边三角形.(2)AAEF的周长存在最小值,理由如下:连结AM,由(1)易知平行四边形ABMD是菱形,△MAB, AMAD和AMCD是等边三角形.所以有BMA=BME+/AME=60.. EMF:厶AMF+厶AME=60o.所以BME=AMF.在△BME与△AMF 中,,EBM=FAM=60.,BME=AMF.致以BMEi△AMF(ASA).所.以BEF.ME= MF.A+AF=AE+砸丑因为厶EMF=LDMC=60o.故△EMF是等边三角形.E肼F因为MF的最小值为点到AD的距离.即的最小值是,/了.所以△A的周长=AE+AF+EF=ABEF.纸以△AEF的周长的最小值为2+.此类题的最大特点是找"替身"以实现"等量转化",主要途径是利用轴对称的性质和两点之间线段最短来求解.全等,等边三角形的性质等知识都是解决此类问题的得力助手.圜韧巾教学辅导23。

中考数学-----求线段和(周长)最小值3

中考数学-----求线段和(周长)最小值3

中考数学-----求线段和(周长)最小值3一、“定——动——定”型试题例1、如图1,在直角坐标系中,点A ,B ,C 和坐标分别为(-1,0),(3,0),(0,3),过A ,B ,C 三点的抛物线的对称轴为直线l ,D 为对称轴l 上一动点.求当A D+CD 最小时点D 的坐标为 .例2、如上图2,O ⊙的半径为2,点A B C 、、在O ⊙上,OA OB ⊥,60AOC ∠=°,P 是OB 上一动点,则PA PC +的最小值为 ; 二、“定——动——动”型试题例3、如上图3,在锐角△ABC 中,AB=24,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则MN BM +的最小值是_________ . 三、“定——动——动——定”型试题例4、如下图4,∠AOB=45°,P 是∠AOB 内一点,PO=10,Q 、R 分别是OA 、OB 上的动点,则 △PQR 周长的最小值为 .例5、著名的恩施大峡谷(A )和世界级自然保护区星斗山(B )位于笔直的沪渝高速公路X 同侧,AB=50km,A 、B 到直线X 的距离分别为10km 和40km,拟建的恩施到张家界高速公路Y 与沪渝高速公路垂直,建立如上图5所示的直角坐标系,B 到直线Y 的距离为30km,请你在X 旁和Y 旁各修建一服务区P 、Q,使P 、A 、B 、Q 组成的四边形的周长最小.并求出这个最小值为 . 四、应用:1、在下图(1)中,若A 到直线L 的距离AC 是3千米,B 到直线L 的距离BD 是1千米,并且CDP 2P 1 OABPRQO 图4A BCD N MN ′ 图3B 1A 1QYXPOBAC图5图1A ′ABC P O图2的距离4千米,在直线L 上找一点P ,使PA+PB 的值最小。

这个最小值为 。

2、 如下图(2),在直角坐标系XOY 中,X 轴上的动点M (x ,0)到定点P (5,5)和到Q (2,1)的距离分别为MP 和MQ ,那么当MP+MQ 取最小值时,点M 的横坐标x=_________。

中考数学-----求线段和(周长)最小值2

中考数学-----求线段和(周长)最小值2

中考数学-----周长最小值专题一、线段和最小值如图,要在街道旁修建一个奶站P,向居民区A、B提供牛奶,奶站P应建在什么地方,才能使从A,B到它的距离之和最短?为什么?基础训练:1、如下图1,梯形ABCD中,AD//BC,AB=CD=AD=1,∠B=60°,直线MN为梯形ABCD 的对称轴,P为MN上一点,那么PC+PD的最小值为()A.1 B. C. D.22. 如上图2,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是________。

3、如上图3,已知点A是半圆上一个三等分点,点B是弧AN的中点,点P是半径ON上的动点,若⊙O的半径长为1,则AP+BP的最小值为___ 。

二、三角形周长最小值1、如图,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.2.如图,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点,(1)求该抛物线的解析式。

(2)设(1)中的抛物线交y轴于点C,在该抛物线的对称轴上是否存在点Q,使得QAC的周长最小?如果存在,求出点Q的坐标;若不存在,请说明理由。

(3)在第二象限的抛物线上是否存在一点P,是△PBC的面积最大?若存在,求出点P坐标及△PBC 面积的最大值;若不存在,请说明理由3. 如图,已知抛物线y=ax2+bx+c过A(3,3.5)、B(4,2)、C(0,2)三点,点P是x轴上的动点.(1)求抛物线的解析式;(2)如图甲所示,连接AC、CP、PB、BA,是否存在点P,使四边形ABPC为等腰梯形?若存在,求出点P的坐标;若不存在,说明理由;(3)点H是题中抛物线对称轴l上的动点,如图乙所示,求四边形AHPB周长的最小值.三、四边形周长最小值(一)定长不动:做双对称1.在下图1中,设A(4,-5);B(8,-3);C(m,0);D(0,n),当四边形ABCD的周长最短时,m/n 的值为_________.2.在上图2中有四个点A(-6,3),B(-2,5),C(0,m),D (n,0),当四边形ABCD周长最短时,则m+n=_________(二)定长移动:做单对称1.如图,A、B是直线a同侧的两定点,定长线段PQ在a上平行移动,问PQ移动到什么位置时,AP+PQ+QB的长最短?2.如图,在直线l上有动线段CD,在直线l的同侧有两定点A,B在CD运动过程中请画出使四边形ABCD周长最短的CD的位置专题训练1.在平面直角坐标系中,A、B两点的坐标分别为A(3,2),B(1,5).(1)若点P的坐标为(0,m),当m= 时,△PAB的周长是;(2)若点C、D的坐标分别为(0,a)(0,a+4),则当a= 时,ABDC的周长最短.2.如图,已知平面直角坐标系,A、B两点的坐标分别为A(2,-3)、B(4,-1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求线段和(周长)最小值试题解法
近年来很多省市的中考数学试卷中出现求几条线段之和最小值的试题.这类试题通过考查点在直线上运动时与它相关线段和的最值情况,不但能了解学生综合运用数学知识解题能力,而且还能通过让学生对 “动”与“定”之间的关系的思考,深入了解学生的探索能力与识别能力,这对指导初中数学教师的教学及引导学生的学习有着重要的意义.现撷取关于求线段和最小值的几个例题进行分析. 一、“定——动——定”型试题 例1.(09山东威海)如图1,在直角坐标系中,点A ,B ,C 和坐标分别为(-1,0),(3,0),(0,3),过A ,B ,C 三点的抛物线的对称轴为直线l ,D 为对称轴l 上一动点.求当A D+CD 最小时点D 的坐标.
例2.(09福建彰州)如图2,O ⊙的半径为2,点A B C 、、在O ⊙上,O A O B ⊥,
60A O C ∠=°,P 是O B 上一动点,求P A P C +的最小值;
评析:例1与例2均涉及两个定点一个动点,属求“定——动——定”型折线最
小值问题,源于课本 “在直线上找一点,使其到直线同侧两点距离之和最短”,只是将问题背景改为抛物线或圆.以此考查学生的识别能力.这类只改变题型背景等非关键因素以适当加深问题的难度,隐蔽的应用课本上知识的试题常会在中考试卷中出现,用其检查
学生灵活运用知识的能力.
三、“定——动——动——定”型试题 例4.(福建彰州)如图4,∠AOB=45°,P 是∠AOB 内一点,PO=10,Q 、R 分别是OA 、OB 上的动点,求△PQR 周长的最小值.
分析:点P 是角内部的一个定点,要在角的两边各确定一点使这三点连成的三角形周长最小,只需将这三边的和转化为以两定点为端点的一条折线.
解:分别作点P 关于OA 、OB 的对称点P 1、P 2,连结P 1P 2,
根据轴对称性易知:OP 1=OP 2=OP=10,∠P 1OP 2=2∠AOB=90°,因而P 1P 2=102,
故△PQR 周长的最小值为102.
例5.(09湖北恩施)恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于
世.著名的恩施大峡谷(A )和世界级自然保护区星斗山(B )位于笔直的沪渝高速公路X 同侧,AB=50km,A 、B 到直线X 的距离分别为10km 和40km,拟建的恩施到张家界高速公路Y 与沪渝高速公路垂直,建立如图5所示的直角坐标系,B 到直线Y 的距离为30km,请你在X 旁和Y 旁各修建一服务区P 、Q,使P 、A 、B 、Q 组成的四边形的周长最小.并求出这个最小值.
评析:例4与例5涉及两个动点一个(或两个)定点,由于它们均是以定点为起止,动点在定点之间,因而属求“定——动——动——定”型折线最小值问题,应选用“两点之间,线段最短”这一性质
解题.另外在分析问题时既要考虑条件间的相同点,也要关注条件间
的区别,以正确地找出解题方法. 从上面的几个例题可以看出,求几条线段和的最短(小)值问题
P 2
P 1
A
B
P
R
Q O
图4
B C D N
M N ′ 图3 B 1
A 1 Q
Y X P O B A C 图5
图1
A ′
A
B
C P O 图2
一般需要进行图形变换,将其转化为以两个定点为端点动点在中间的折线或以一个定点为端点其余动点在一侧的折线,然后再根据“两点之间,线段最短”或“垂线段最短”这两条性质求出最小值.
四、应用:
1 :在图(1)中,若A到直线L的距离AC是3千米,B到直线L的距离BD是1千米,并且CD的距离4千米,在直线L上找一点P,使PA+PB的值最小。

求这个最小值。

2、如图(1),在直角坐标系XOY中,X轴上的动点M(x,0)到定点P(5,5)和到Q(2,1)的距离分别为MP和MQ,那么当MP+MQ取最小值时,点M的横坐标x=__________________。

3、求函数的最小值。

五、拓展
(一)三条线段的和最小的问题:
如图3,已知甲、乙、丙三人做接力游戏,开始时,甲站在∠AOB内的P点,乙站在OA边上,丙站在OB边上,游戏规则:甲将接力棒传给乙,乙将接力棒传给丙,最后丙跑至终点P处。

如果三人速度相同,试作图求出乙丙站在何处,他们比赛所用时间最短。

图(5)
C
B
C
A
(二)利用菱形的对称性,求线段和的最小值
1、如图(5),在菱形ABCD中,AB=4a,E在BC上,EC=2a,∠BAD=1200,点P在BD上,则PE+PC的最小值是()
(A)6a , (B) 5a, (C) 4a , (D) 23a 。

2、已知在菱形ABCD中,∠A=600,AD=8,M、N分别是AB,BC边上的中点,P是对角线AC上一动点,求PM+PN的最小值。

(三)利用正方形的对称性,求线段和的最小值
已知如图:正方形ABCD 的边长是3,E 点分边BC 为2:1,P 为对角线BD 上一点,求PE+PC 的最小值. (四)利用等腰梯形的对称性,求线段和的最小值 如图,在梯形ABCD 中,AD ∥BC ,AB =CD =AD =1,∠B =60°,直线MN 为梯形ABCD 的对称轴,P 为MN 上一点,那么PC +PD 的最小值为_____________。

(五)利用圆的对称性,求线段和的最小值 已知如图,AB 是⊙○的直径,AB=2cm,OC ⊥AB,点D 是弧AC 的三等分点,P 是OC 上一动点,求PA+PD 的最小值
B C
D
E
C
B
图(
16)
B
C
(六)利用坐标系的对称性,求线段和的最小值
如图,在直角坐标系中, 有四个点A (-8,3)、B (-4,5)、C (0,n )、D (m ,0),求四边形ABCD 周长最短时的值。

A
B
七、链接
看这样一题:要在一条河上架一座桥(桥须与河岸垂直,两河岸平行),请提供一种设计方案,使从A 地到B 地的路径最短,请说明理由。

请思考:
1、这题为什么不能用轴对称知识解决?(认真理解我推导出的性质就可明白)
2、如何用平移知识解决此题?
3、类似我推导出的轴对称性质,平移的知识能否推导出类似的性质?
B
图(10)
O
R 图(11)
(12)
B
C
八、练习
1、如图(10),∠AOB=450
,角内有一点P ,PO=10,在角两边上有两点Q 、R (均不同于点O ),则△PQR 的周长最小值是___________________ 。

当ΔPQR 周长最小时,∠QPR 的度数=____________。

2、已知点A (-2,1),点B (3,4)。

在X 轴上求一点P ,使得PA+PB 的值最小。

这个最小值是__________________
3、如图(11),在矩形ABCD 中,AB=20㎝,BC=10㎝,若在AC 、AB 上各取一点M 、N ,使BM+MN 的值最小,求这个最小值。

4、如图(12)在菱形ABCD 中,∠DAB=1200,点E 平分BC ,点P 在BD 上,且PE+PC=1,那么边长AB 的最大值是________________。

5、如图(15)(见下页),在河湾处
M 点有一个观察站,观察员要从M 点出发,先到AB 岸,再到CD 岸然后返回M 点,则该船应该走的最短路线是————————(先画图,再用字母表示)。

6
的最小值。

第7题图。

相关文档
最新文档