六年级奥数假设法解题
六年级奥数分册第10周 假设法解题-精华版
第十周 假设法解题(一)专题简析:假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
例题1 甲、乙两数之和是185,已知甲数的14 与乙数的15的和是42,求两数各是多少?【思路导航】假设将题中“甲数的14 ”、“乙数的15 ”与“和为42”同时扩大4倍,则变成了“甲数与乙数的45 的和为168”,再用185减去168就是乙数的15 。
解: 乙:(185-42×4)÷(1-15 ×4)=85答:甲数是100,乙数是85。
练习11. 甲、乙两人共有钱150元,甲的12 与乙的110的钱数和是35元,求甲、乙两人各有多少元钱? 2. 甲、乙两个消防队共有338人。
抽调甲队人数的17 ,乙队人数的13,共抽调78人,甲、乙两个消防队原来各有多少人? 3. 海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的13多50吨,五月份完成总数的25 少70吨,还有420吨没完成,第二季度原计划生产多少吨?例题2彩色电视机和黑白电视机共250台。
如果彩色电视机卖出19,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出19后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-19 )=89。
(250+5)÷(1+1-19 )=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习21. 姐妹俩养兔120只,如果姐姐卖掉17 ,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2. 学校有篮球和足球共21个,篮球借出13后,比足球少1个,原来篮球和足球各有多少个? 3. 小明甲养的鸡和鸭共有100只,如果将鸡卖掉120,还比鸭多17只,小明家原来养的鸡和鸭各有多少只 例题3。
六年级奥数 假设法解题(一)
第10讲 假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件, 然后再和已知条件配合推算. 有些题目用假设法思考, 能找到巧妙的解答思路.运用假设法时, 可以假设数量增加或减少, 从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样, 再根据乘法分配律求出这个分率对应的和, 最后依据它与实际条件的矛盾求解.二、精讲精练【例题1】甲、乙两数之和是185, 已知甲数的41与乙数的51的和是42, 求两数各是多少? 练习1:1、甲、乙两人共有钱150元, 甲的21与乙的101的钱数和是35元, 求甲、乙两人各有多少元钱?2、甲、乙两个消防队共有338人. 抽调甲队人数的71, 乙队人数的31, 共抽调78人, 甲、乙两个消防队原来各有多少人?【例题2】彩色电视机和黑白电视机共250台. 如果彩色电视机卖出91, 则比黑白电视机多5台. 问:两种电视机原来各有多少台?练习2:1、姐妹俩养兔120只, 如果姐姐卖掉71, 还比妹妹多10只, 姐姐和妹妹各养了多少只兔?2、学校有篮球和足球共21个, 篮球借出31后, 比足球少1个, 原来篮球和足球各有多少个?【例题3】师傅与徒弟两人共加工零件105个, 已知师傅加工零件个数的83与徒弟加工零件个数的74的和为49个, 师、徒各加工零件多少个?练习3:1、某商店有彩色电视机和黑白电视机共136台, 卖出彩色电视机的52和黑白电视机的73, 共卖出57台. 问:原来彩色电视机和黑白电视机各有多少台?2、甲、乙两个消防队共有336人, 抽调甲队人数的75、乙队人数的73, 共抽调188人参加灭火. 问:甲、乙两个消防队原来各有多少人?【例题4】甲、乙两数的和是300, 甲数的52比乙数的41多55, 甲、乙两数各是多少? 练习4:1、畜牧场有绵羊、山羊共800只, 山羊的2/5比绵羊的21多50只, 这个畜牧场有山羊、绵羊各多少只?2、师傅和徒弟共加工零件840个, 师傅加工零件的个数的85比徒弟加工零件个数的32多60个, 师傅和徒弟各加工零件多少个?【例题5】育红小学上学期共有学生750人, 本学期男学生增加61, 女学生减少51, 共有710人, 本学期男、女学生各有多少人?练习5:1、金放在水里称, 重量减轻191, 银放在水里称, 重量减少101, 一块重770克的金银合金, 放在水里称是720克, 这块合金含金、银各多少克?2、某中学去年共招新生475人, 今年共招新生640人, 其中初中招的新生比去年增加48%, 高中招的新生比去年增加20%, 今年初、高中各招收新生多少人?三、课后作业1、海洋化肥厂计划第二季度生产一批化肥, 已知四月份完成总数的31多50吨, 五月份完成总数的52少70吨, 还有420吨没完成, 第二季度原计划生产多少吨?2、小明甲养的鸡和鸭共有100只, 如果将鸡卖掉201, 还比鸭多17只, 小明家原来养的鸡和鸭各有多少只?3、学校买来足球和排球共64个, 从中借出排球个数的41和足球个数的31后, 还剩下46个, 买来排球和足球各是多少个?4、某校六年级甲、乙两个班共种100棵树, 乙班种的101比甲班种的31少16棵, 两个班各种多少棵?5、袋子里原有红球和黄球共119个. 将红球增加83, 黄球减少52后, 红球与黄球的总数变为121个. 原来袋子里有红球和黄球各多少个?面积计算一、知识要点计算平面图形的面积时, 有些问题乍一看, 在已知条件与所求问题之间找不到任何联系, 会使你感到无从下手. 这时, 如果我们能认真观察图形, 分析、研究已知条件, 并加以深化, 再运用我们已有的基本几何知识, 适当添加辅助线, 搭一座连通已知条件与所求问题的小“桥”, 就会使你顺利达到目的. 有些平面图形的面积计算必须借助于图形本身的特征, 添加一些辅助线, 运用平移旋转、剪拼组合等方法, 对图形进行恰当合理的变形, 再经过分析推导, 方能寻求出解题的途径.二、精讲精练【例题1】已知如图, 三角形ABC的面积为8平方厘米, AE=ED, BD=2/3BC, 求阴影部分的面积.练习1:1、如图, AE=ED, BC=3BD, S△ABC=30平方厘米. 求阴影部分的面积.2、如图所示, AE=ED, DC=1/3BD, S△ABC=21平方厘米. 求阴影部分的面积.3、如图所示, DE=1/2AE, BD=2DC, S△EBD=5平方厘米.求三角形ABC的面积.【例题2】两条对角线把梯形ABCD分割成四个三角形, 如图所示, 已知两个三角形的面积, 求另两个三角形的面积各是多少?练习2:1、两条对角线把梯形ABCD分割成四个三角形, (如图所示), 已知两个三角形的面积, 求另两个三角形的面积是多少?2、已知AO=1/3OC, 求梯形ABCD的面积(如图所示).【例题3】四边形ABCD的对角线BD被E、F两点三等分, 且四边形AECF的面积为15平方厘米. 求四边形ABCD的面积(如图所示).练习3:1、四边形ABCD的对角线BD被E、F、G三点四等分, 且四边形AECG的面积为15平方厘米. 求四边形ABCD的面积(如图).2、如图所示, 求阴影部分的面积(ABCD为正方形).【例题4】如图所示, BO=2DO, 阴影部分的面积是4平方厘米. 那么, 梯形ABCD的面积是多少平方厘米?练习4:1、如图所示, 阴影部分面积是4平方厘米, OC=2AO. 求梯形面积.2、已知OC=2AO, S△BOC=14平方厘米. 求梯形的面积(如图所示).3、已知S△AOB=6平方厘米. OC=3AO, 求梯形的面积(如图所示).【例题5】如图所示, 长方形ADEF的面积是16, 三角形ADB的面积是3, 三角形ACF的面积是4, 求三角形ABC的面积.练习5:1、如图所示, 长方形ABCD的面积是20平方厘米, 三角形ADF的面积为5平方厘米, 三角形ABE的面积为7平方厘米, 求三角形AEF的面积.文档仅供参考2、如图所示, 长方形ABCD的面积为20平方厘米, S△ABE=4平方厘米, S△AFD=6平方厘米, 求三角形AEF的面积.三、课后练习1、已知三角形AOB的面积为15平方厘米, 线段OB的长度为OD的3倍. 求梯形ABCD的面积. (如图所示).2、已知四边形ABCD的对角线被E、F、G三点四等分, 且阴影部分面积为15平方厘米. 求四边形ABCD的面积(如图所示).3、如图所示, 长方形ABCD的面积为24平方厘米, 三角形ABE、AFD的面积均为4平方厘米, 求三角形AEF的面积.文档仅供参考。
六年级奥数-假设法解题
2、食堂里面粉的质量是大米质量的
1 2
,每天吃去
30吨面粉,45吨大米,若干天后,面粉正好吃完
,大米还有150吨,食堂里原来有面粉多少吨?
例题5
育红小学上学期共有学生750人,本学期男同学
增加 1 ,女同学减少 1 ,现在一共有710人。
6
5
本学期男、女同学各有多少人?
解:假设本学期女同学不是减少 1 ,而是增加 1 本学期应该
举一反三5
1、袋子里原有红球和黄球共119个。将红球的个数增
加 3 ,黄球的个数减少 2 后,红球与黄球的总数
8
5
变为121个。原来袋子里有红球和黄球各多少个?
2、金放在水里称重,数值减少 1 ,银放在水里称
19
重,数值减少 1
10
,一块重770克的金银合金,放
入水里称重,数值是720克,这块合金含金、银各
例题2:
学校阅览室有文艺书和科技书一共125本,如果文艺 书借出 1 ,比科技书还多5本。原来文艺书和科技
7
书各有多少本?
解析:如果科技书增加5本后,科技书的本数是文艺书本 数的1- 1 = 6
77 两种书的总本数为125+5=130(本) 文艺书的本数为 130÷(1+ 6 )=70(本)
7 科技书的本数为125-70=55(本)
解析:假设甲没有请假,则甲、乙工作时间相同,共 能完成这批零件的(1+ 1 )倍。
8
(1+ 1 )÷(1 + 1 )=5(天)
8
8 10
举一反三1
1、一件工作,甲独做15天完成,乙独做10天完成 ,两人一起做若干天后甲休息了几天,结果共用 去8天才完成了任务。甲休息了几天?
小学六年级奥数:假设法解题
小学六年级奥数:假设法解题1.假设有x台彩色电视机,那么黑白电视机的数量就是250-x台。
根据题意,x+5=1.1(250-x),解得x=95,所以彩色电视机卖出95台,黑白电视机卖出155台。
2.设冰箱数量为x,则洗衣机数量为126-x。
根据题意,x-23=2(126-x),解得x=89,所以冰箱卖出89台,洗衣机卖出37台。
3.设上学期男同学数量为x,则女同学数量为750-x。
本学期男同学增加y人,女同学减少y人,则男女同学数量分别为x+y和(750-x)-y=750-x-y。
根据题意,x+y+(750-x-y)=710,解得y=65,所以男同学增加65人,女同学减少65人。
4.设___今年的年龄为x岁,则他爸爸今年的年龄为2x岁。
根据题意,x+12=2(x+12),解得x=24,所以___今年24岁。
5.设甲队挖了x米,则乙队挖了300-x米。
根据题意,x+55=1.1(300-x),解得x=105,所以甲队挖了105米,乙队挖了195米。
6.设第一包糖中奶糖、水果糖、巧克力糖的粒数分别为x、y、z,则第二包糖中糖的总粒数为9x,水果糖的粒数为0.5(9y),巧克力糖的粒数为2z。
根据题意,x+y+z=0.28(x+y+z+9x),解得8x=3(y+z),再代入第三个条件,解得z=0.16(9y),代入第二个条件,解得y=20x。
最后代入第一个条件,解得x=10,所以第一包糖中奶糖、水果糖、巧克力糖的粒数分别为10、200、80,第二包糖中奶糖、水果糖、巧克力糖的粒数分别为90、180、90.混合后水果糖的粒数为200+180=380,所以水果糖占的百分比为380/900=42.22%。
7.设去年初中招生人数为x,则高中招生人数为4752-x。
今年初中招生人数为1.48x,高中招生人数为1.2(4752-x)。
根据题意,1.48x+1.2(4752-x)=640,解得x=1680,所以去年初中招生人数为1680人,高中招生人数为3072人,今年初中招生人数为2486人,高中招生人数为154.8.设每个足球加价为x元,则每个篮球加价为(2800-100x)/80元。
六年级奥数 第10讲 假设法解题(一)
第10讲 假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的41与乙数的51的和是42,求两数各是多少? 练习1:1、甲、乙两人共有钱150元,甲的21与乙的101的钱数和是35元,求甲、乙两人各有多少元钱?2、甲、乙两个消防队共有338人。
抽调甲队人数的71,乙队人数的31,共抽调78人,甲、乙两个消防队原来各有多少人?1,则比黑白电视机多5【例题2】彩色电视机和黑白电视机共250台。
如果彩色电视机卖出9台。
问:两种电视机原来各有多少台?练习2:1,还比妹妹多10只,姐姐和妹妹各养了多少只1、姐妹俩养兔120只,如果姐姐卖掉7兔?1后,比足球少1个,原来篮球和足球各有多2、学校有篮球和足球共21个,篮球借出3少个?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的83与徒弟加工零件个数的74的和为49个,师、徒各加工零件多少个?练习3:1、某商店有彩色电视机和黑白电视机共136台,卖出彩色电视机的52和黑白电视机的73,共卖出57台。
问:原来彩色电视机和黑白电视机各有多少台?2、甲、乙两个消防队共有336人,抽调甲队人数的75、乙队人数的73,共抽调188人参加灭火。
问:甲、乙两个消防队原来各有多少人?【例题4】甲、乙两数的和是300,甲数的52比乙数的41多55,甲、乙两数各是多少? 练习4:1、畜牧场有绵羊、山羊共800只,山羊的2/5比绵羊的21多50只,这个畜牧场有山羊、绵羊各多少只?2、师傅和徒弟共加工零件840个,师傅加工零件的个数的85比徒弟加工零件个数的32多60个,师傅和徒弟各加工零件多少个?【例题5】育红小学上学期共有学生750人,本学期男学生增加61,女学生减少51,共有710人,本学期男、女学生各有多少人?练习5:1、金放在水里称,重量减轻191,银放在水里称,重量减少101,一块重770克的金银合金,放在水里称是720克,这块合金含金、银各多少克?2、某中学去年共招新生475人,今年共招新生640人,其中初中招的新生比去年增加48%,高中招的新生比去年增加20%,今年初、高中各招收新生多少人?三、课后作业1、海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的31多50吨,五月份完成总数的52少70吨,还有420吨没完成,第二季度原计划生产多少吨?2、小明甲养的鸡和鸭共有100只,如果将鸡卖掉201,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?3、学校买来足球和排球共64个,从中借出排球个数的41和足球个数的31后,还剩下46个,买来排球和足球各是多少个?4、某校六年级甲、乙两个班共种100棵树,乙班种的101比甲班种的31少16棵,两个班各种多少棵?5、袋子里原有红球和黄球共119个。
六年级奥数第6讲:假设法解应用题
六年级奥数第6讲:假设法解应用题[例1] 学校有排球和足球共58个,排球借出16后,还比足球多8个。
原来排球和足球各有多少个?点拨:先画出线段图,从图中可以看出,假设足球增加8个,就和排球借出16后剩下的同样多。
以排球原有的个数为单位“1”,足球增加8个后,相当于排球个数的(1- 16),排球原来有(58+8)÷(1+1-16),足球原来有(58-36)个。
解答:(58+8)÷(1+1- 16)=36(个)58-36=22(个)答:原来排球有36个,原来足球有22个。
[试一试1] 姐妹俩养兔120只,如果姐姐卖掉17,还比妹妹多10只,姐姐和妹妹各养了多少只兔?(答案:姐姐70只,妹妹50只)[例2] 六年级一班和二班共有学生96人,现在抽一班人数的34与二班人数的35,组成66人的鼓号队。
六年级一班和二班各有学生多少人?点拨:假设二班也抽出 34 ,就和条件“抽一班人数的 34 与二班人数的 35,组成66人的鼓号队”产生差异。
如果两个班都抽出34 ,就抽出了(96×34 )人,比实际多抽出(72-66)人,这6人就是二班人数的34 与二班人数的35相差的人数。
这样就可以求出原来二班有6÷(34 - 35 )=40(人),原来一班有96-40=56(人)。
解答:(96×34 -66)÷(34 - 35 )=40(人)96-40=56(人)答:六年级一班有学生56人,二班有学生40人 。
[试一试2] 实验小学五、六年级共有学生306人,现在从五年级抽出 16 ,六年级抽出 15 共57人组成植树小组。
五、六年级各有学生多少人?(答案:六年级180人,五年级126人)[例3] 水果店上午运来苹果和梨共100箱。
下午卖出苹果箱数的 13 ,卖出梨箱数的110,已知卖出的苹果比卖出的梨多16箱,求水果店运来梨多少箱?点拨:假设梨子也卖出13 ,那么苹果和梨子一共卖出100×13 = 1003(箱),因为苹果箱数的13 比梨子箱数的 110 多16箱,所以从 1003 箱中减去16箱所得的差就可以看成是梨子箱数的13 与梨子箱数的 110 的各,用(1003-16)÷(13 + 110 )可以求出梨子的箱数。
最新六年级奥数假设法解题
假设法解题专题简析:已知甲是乙的几分之几,又知甲与乙各改变一定的数量后两者之间新的倍数关系,要求甲、乙两个数是多少,这样的应用题称为变倍问题。
应用题中的变倍问题,有两数同增、两数同减、一增一减等各种情况。
虽然其中的数量关系比较复杂,但解答时的关键仍是确定哪个量为单位“1”,然后通过假设,找出变化前后的相差数相当于单位“1”的几分之几,从而求出单位“1”的量,其他要求的量就迎刃而解了。
例题1 两根铁丝,第一根长度是第二根的3倍,两根各用去6米,第一根剩下的长度是第二根剩下的长度的5倍,第二根原来有多少米?练习11.丁晓原有书的本数是王阳的5倍,若两人同时各借出5本给其他同学,则丁晓书的本数是王阳的10倍,两人原来各有书多少本?2.在植树劳动中,光明中学植树的棵数是光明小学的3倍,如果中学增加450棵,小学增加400棵,则中学是小学的2倍。
求中、小学原来各植树多少棵?例题2 王明平时积蓄下来的零花钱比陈刚的3倍多6.40元,若两个人各买了一本4.40元的故事书后,王明的钱就是陈刚的8倍,陈刚原来有零花钱多少元?练习21.甲书架上的书比乙书架上的3倍多50本,若甲、乙两个书架上各增加150本,则甲书架上的书是乙书架上的2倍,甲、乙两个书架原来各有多少本书?2.箱子里有红、白两种玻璃球,红球比白球的3倍多2粒,每次从箱子里取出7粒白球和15粒红球,若干次后,箱子里剩下3粒白球和53粒红球,那么,箱子里白球原有多少粒?例题3 小红的彩笔枝数是小刚的12 ,两人各买5枝后,小红的彩笔枝数是小刚的23 ,两人原来各有彩笔多少枝?练习31. 小华今年的年龄是爸爸年龄的16 ,四年后小华的年龄是爸爸的14 ,求小华和爸爸今年的年龄各是多少岁?2. 甲书架上的书是乙书架上的57 ,甲、乙两个书架上各增加90本后,甲书架上的书是乙书架上的45 ,甲、乙两各书架原来各有多少本书?例题4 王芳原有的图书本数是李卫的45 ,两人各捐给“希望工程”10本后,则王芳的图书的本数是李卫的710 ,两人原来各有图书多少本?练习41. 甲书架上的书是乙书架上的45 ,从这两个书架上各借出112本后,甲书架上的书是乙书架上的47 ,原来甲、乙两个书架上各有多少本书?2. 小明今年的年龄是爸爸的611 ,10年前小明的年龄是爸爸的49 ,小明和爸爸今年各多少岁?例题5 某校六年级男生人数是女生的23,后来转进2名男生,转走3名女生,这时男生人数是女生的34,现在男、女生各有多少人?练习51.有一堆棋子,黑子是白子的23,现在取走12粒黑子,添上18粒白子后,黑子是白子的512,现在白子、黑子各有多少粒?2.爱华小学和曙光小学的同学参加小学数学竞赛,去年的比赛中,爱华小学得一等奖的人数是曙光小学的2.5倍。
六年级奥数 第五讲 假设法解题1
第五讲 假设法解题在有些应用题中,看起来缺少条件,按照一般思路似乎无法解答。
但如果我们假设一个数或一个条件,可以把题目中原先的已知条件有序地组合起来,容易找到解题的方法。
在解题过程中会发现你假设的这个数的大小并不影响问题的答案,而你假设的条件与实际情况产生的矛盾,正好是你的突破口。
【精讲例题1】某游乐场门票50元一张,降价后有课增加了一倍,收入增加了51.,你能算出一张门票降价多少元吗?【巩固训练】某商场以60元每件的价格卖衣服,降价后购买者多了1倍,收入增加了31。
你能算出一件衣服降价了多少元吗?某商城以72元每个的价格卖书包,降价后购买者多了2倍,收入增加了34。
你能算出一个书包降价多少元吗?【精讲例题2】六年级(1),(2)两个班举行智力竞赛,两个班的平均竞赛成绩为83.4分。
已知六(1)班的平均分为82分,六(2)班的平均分85分,六(1)班和六(2)班的人数比是多少?【巩固训练】六年级(1),(2)两个班举行数学竞赛,两个班的平均竞赛成绩为78分。
已知六(1)班的平均分为73分,六(2)班的平均分80分,六(1)班和六(2)班的人数比是多少?六年级(1),(2)两个班月考的平均成绩为82分。
已知六(1)班的平均分为83.2分,六(2)班的平均分81分,六(1)班和六(2)班的人数比是多少?面包房里有甜面包和咸面包共88个,如果甜面包卖出81,则比咸面包还多2个。
原来这两种面包有多少个?【巩固训练】书店里有文艺书和科技书125本,如果文艺书卖出71,则比科技书还多5本.原来这两种书各有多少本?商场里共有上衣和裙子356件,如果上衣卖出91,则比裙子少16件。
原来这两种服装各有多少件?【精讲例题4】学校食堂买来两筐大白菜共120千克。
第一天用去甲筐的51和乙筐的101共17千克。
甲乙两筐原来各有大白菜多少千克?【巩固训练】商城里有苹果和梨共360千克,第一天卖出了苹果的91和梨的51共60千克。
小学六年级奥数 第10周 假设法解题(一)例2
就和彩色电视机卖出
1 9
后剩下的一样多。
经典例题
【例题2】
彩色电视机和黑白电视机共250台。如果彩色电视机
卖出
1 9
,则比黑白电视机多5台。问:两种电视机原来
各有多少台?
(250+5)÷【(1-
1 9
)+1】
=
255
÷
17 9
= 135 (台)
250-135 = 115 (台)
答:彩色电视机原有135台,黑白电视机原有115台。
=
117
÷
39 20
100-60 = 50 (只)
= 60 (只)
答:小明家原来养的鸡有60只,鸭有50只。
2020年3月1日星期日5时23分6秒
知识要点
假设法解体的思考方法是先通过假设来改变题目 的条件,然后再和已知条件配合推算。有些题目用假 设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而 与已知条件产生联系;也可以假设某个量的分率与另 一个量的分率一样,再根据乘法分配律求出这个分率 对应的和,最后依据它与实际条件的矛盾求解。
经典例题
【例题2】
彩色电视机和黑白电视机共250台。如果彩色电视机
卖出
1 9
,则比黑白电视机多5台。问:两种电视机原来
各有多少台?
经典例题
【例题2】
彩色电视机和黑白电视机共250台。如果彩黑白电视机多5台。问:两种电视机原来
各有多少台?
思路导航
从题中可以看出:假设黑白电视机增加5台,
后,比
足球少1个,原来篮球和足球各有多少个?
(21-1)÷【(1-
1 3
)+1】
(完整word版)六年级奥数假设法解题答案
第十周 假设法解题(一)例题1甲、乙两数之和是185,已知甲数的14 与乙数的15 的和是42,求两数各是多少?【思路导航】假设将题中“甲数的14 ”、“乙数的15”与“和为42”同时扩大4倍,则变成了“甲数与乙数的45 的和为168”,再用185减去168就是乙数的15。
解: 乙:(185-42×4)÷(1-15 ×4)=85答:甲数是100,乙数是85。
练习11. 甲、乙两人共有钱150元,甲的12 与乙的110的钱数和是35元,求甲、乙两人各有多少元钱?2. 甲、乙两个消防队共有338人。
抽调甲队人数的17 ,乙队人数的13,共抽调78人,甲、乙两个消防队原来各有多少人?3. 海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的13多50吨,五月份完成总数的25 少70吨,还有420吨没完成,第二季度原计划生产多少吨?彩色电视机和黑白电视机共250台。
如果彩色电视机卖出19 ,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出19后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-19 )=89。
(250+5)÷(1+1-19)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习21. 姐妹俩养兔120只,如果姐姐卖掉17 ,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2. 学校有篮球和足球共21个,篮球借出13后,比足球少1个,原来篮球和足球各有多少个?3. 小明甲养的鸡和鸭共有100只,如果将鸡卖掉120,还比鸭多17只,小明家原来养的鸡和鸭各有多少只师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的38 与徒弟加工零件个数的47的和为49个,师、徒各加工零件多少个? 【思路导航】假设师、徒两人都完成了47 ,一个能完成(105×47 )=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的38 与完成加工零件的47 相差的个数。
六年级奥数-假设法解题
假设法解题(一)专题简析:假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
例题11. 乙两数之和是185,已知甲数的14 与乙数的15 的和是42,求两数各是多少?【思路导航】假设将题中“甲数的14 ”、“乙数的15”与“和为42”同时扩大4倍,则变成了“甲数与乙数的45 的和为168”,再用185减去168就是乙数的15。
解: 乙:(185-42×4)÷(1-15 ×4)=85答:甲数是100,乙数是85。
练习11、 甲、乙两人共有钱150元,甲的12 与乙的110的钱数和是35元,求甲、乙两人各有多少元钱?2、 甲、乙两个消防队共有338人。
抽调甲队人数的17 ,乙队人数的13,共抽调78人,甲、乙两个消防队原来各有多少人?3、 海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的13多50吨,五月份完成总数的25 少70吨,还有420吨没完成,第二季度原计划生产多少吨?练1 1、 乙:(150-35×2)÷(1-110 ×2)=100(元)甲:150-100=50(元)2、 甲:(338-78×3)÷(1-17 ×3)=182(人)乙:338-182=156(人)3、 (420-70+50)÷(1―13 -25 )=1500(吨)例题2彩色电视机和黑白电视机共250台。
如果彩色电视机卖出19 ,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出19后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-19 )=89。
六年级奥数分册第10周 假设法解题【推荐】
第十周 假设法解题(一)专题简析:假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
例题1甲、乙两数之和是185,已知甲数的14 与乙数的15的和是42,求两数各是多少?【思路导航】假设将题中“甲数的14 ”、“乙数的15”与“和为42”同时扩大4倍,则变成了“甲数与乙数的45 的和为168”,再用185减去168就是乙数的15。
解: 乙:(185-42×4)÷(1-15×4)=85答:甲数是100,乙数是85。
练习11. 甲、乙两人共有钱150元,甲的12 与乙的110的钱数和是35元,求甲、乙两人各有多少元钱?2. 甲、乙两个消防队共有338人。
抽调甲队人数的17 ,乙队人数的13,共抽调78人,甲、乙两个消防队原来各有多少人?3. 海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的13多50吨,五月份完成总数的25 少70吨,还有420吨没完成,第二季度原计划生产多少吨?例题2彩色电视机和黑白电视机共250台。
如果彩色电视机卖出19,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出19后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-19 )=89。
(250+5)÷(1+1-19)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习21. 姐妹俩养兔120只,如果姐姐卖掉17 ,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2. 学校有篮球和足球共21个,篮球借出13后,比足球少1个,原来篮球和足球各有多少个?3. 小明甲养的鸡和鸭共有100只,如果将鸡卖掉120,还比鸭多17只,小明家原来养的鸡和鸭各有多少只例题3。
小学六年级奥数 第10周 假设法解题(一)例1
假设法解体的思考方法是先通过假设来改变题目 的条件,然后再和已知条件配合推算。有些题目用假 设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而 与已知条件产生联系;也可以假设某个量的分率与另 一个量的分率一样,再根据乘法分配律求出这个分率 对应的和,最后依据它与实际条件的矛盾求解。
1 3
-
2 5
)
=
400÷4 15源自= 1500 (吨)答:第二季度原计划生产1500吨。
2020年3月1日星期日5时23分0秒
经典例题
【例题1】
甲、乙两数之和是185,已知甲数的
的
1 5
的和是42,求两数各是多少?
1 4
与乙数
(185-42×4)÷(1-
1 5
×4)
=
17
÷
1 5
= 85
185-85 = 100
答:甲数是100,乙数是85。
举一反三练习
1、甲、乙两人共有钱150元,甲的
1 2
与乙的
1 10
的
钱数和是35元,求甲、乙两人各有多少元钱?
×3)
=
104
÷
4 7
338-182= 156 (人)
= 182 (人)
答:甲队原有182人,乙队原有156人。
举一反三练习
3、海洋化肥厂计划第二季度生产一批化肥,已知四月份完成
总数的
1 3
多50吨,五月份完成总数的
2 5
少70吨,还有420吨
没完成,第二季度原计划生产多少吨?
(420+50-70)÷(1-
经典例题
【例题1】
甲、乙两数之和是185,已知甲数的
六年级奥数-8假设法解题(二)
假设法解题(二)1.掌握用假设法解决鸡兔同笼问题、归一问题的方法。
2.学会利用假设法、列举法解决归一问题。
3.逐步培养学生的数学抽象能力,并向学生渗透转化、函数等数学思想和方法。
1.弄清题意,找出一个适当的未知数,用字母x表示;2.找出题目中数量间的相等关系;3.根据相等关系列出方程;4.解方程并检验,写出答案。
鸡兔同笼问题:笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26条腿。
鸡和兔各有几只?(1)分析题意①鸡和兔共8只。
②鸡和兔共有26条腿。
③鸡有2条腿。
④兔有4条腿。
解题关键:采用假设法,假设全是一种动物(如全是鸡或全是兔),然后根据腿的差数可以推断出一种动物的头数。
解题规律:假设全是鸡,兔子头数=(总腿数-鸡腿数)÷2;即兔子头数=(总腿数-2×总头数)÷2。
假设全是兔子,鸡的只数=(兔子腿数-总腿数)÷2,即鸡的只数=(4×总头数-总腿数)÷2(2)列表法:这里我们需要求兔的只数和鸡的只数,共有两个未知数。
那我们可以设一个未知数为X,再把另一个表示出来。
这道题我们可以设鸡的知数为X只,根据兔和鸡共有8只。
那兔的只数就可以表示成:(8-X)只,因为一只鸡有2条腿,所以X只鸡就共有2X条腿。
一只兔有4只脚,(8-X)只兔就有4(8-X)只脚。
又因为鸡和兔共有26只脚,所以2X+4(8-X)=26①解:设鸡有X只,兔有(8-X)只。
2X+4(8-X)=26在解的时候可以根据等式的性质将减变成加,分别加上4X,再来解。
②解:设有兔X只,鸡有(8-X)只。
4X+2(8-X)=26同样抽生说出自己想法。
那种方程好解一点,(设兔的只数为X好解点)所以我们可以设脚数多的兔为X,在解的时候容易一点。
列方程的重点是找出等量关系:设头数,以脚数相等来列出方程;小结:请同学们回忆一下,在解决鸡兔同笼问题时,用到了哪些方法?(列表法,假设法和列方程)求比一个数的几倍多几(或少几)的数例1.甲、乙两数的和是300,甲数的25比乙数的14多55,甲、乙两数各是多少?练习1.畜牧场有绵羊、山羊共800只,山羊的25比绵羊的12多50只,这个畜牧场有山羊、绵羊各多少只?练习2.师傅和徒弟共加工零件840个,师傅加工零件的个数的58比徒弟加工零件个数的23多60个,师傅和徒弟各加工零件多少个?运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
六年级奥数第五讲 假设法解题 全集
第10讲 假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的41与乙数的51的和是42,求两数各是多少? 练习1:1、甲、乙两人共有钱150元,甲的21与乙的101的钱数和是35元,求甲、乙两人各有多少元钱?2、甲、乙两个消防队共有338人。
抽调甲队人数的71,乙队人数的31,共抽调78人,甲、乙两个消防队原来各有多少人?【例题2】彩色电视机和黑白电视机共250台。
如果彩色电视机卖出91,则比黑白电视机多5台。
问:两种电视机原来各有多少台?练习2:1、姐妹俩养兔120只,如果姐姐卖掉71,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2、学校有篮球和足球共21个,篮球借出31后,比足球少1个,原来篮球和足球各有多少个?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的83与徒弟加工零件个数的74的和为49个,师、徒各加工零件多少个?练习3:1、某商店有彩色电视机和黑白电视机共136台,卖出彩色电视机的52和黑白电视机的73,共卖出57台。
问:原来彩色电视机和黑白电视机各有多少台?2、甲、乙两个消防队共有336人,抽调甲队人数的75、乙队人数的73,共抽调188人参加灭火。
问:甲、乙两个消防队原来各有多少人?【例题4】甲、乙两数的和是300,甲数的52比乙数的41多55,甲、乙两数各是多少? 练习4:1、畜牧场有绵羊、山羊共800只,山羊的2/5比绵羊的21多50只,这个畜牧场有山羊、绵羊各多少只?2、师傅和徒弟共加工零件840个,师傅加工零件的个数的85比徒弟加工零件个数的32多60个,师傅和徒弟各加工零件多少个?【例题5】育红小学上学期共有学生750人,本学期男学生增加61,女学生减少51,共有710人,本学期男、女学生各有多少人?练习5:1、金放在水里称,重量减轻191,银放在水里称,重量减少101,一块重770克的金银合金,放在水里称是720克,这块合金含金、银各多少克?2、某中学去年共招新生475人,今年共招新生640人,其中初中招的新生比去年增加48%,高中招的新生比去年增加20%,今年初、高中各招收新生多少人?三、课后作业1、海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的31多50吨,五月份完成总数的52少70吨,还有420吨没完成,第二季度原计划生产多少吨?2、小明甲养的鸡和鸭共有100只,如果将鸡卖掉201,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?3、学校买来足球和排球共64个,从中借出排球个数的41和足球个数的31后,还剩下46个,买来排球和足球各是多少个?4、某校六年级甲、乙两个班共种100棵树,乙班种的101比甲班种的31少16棵,两个班各种多少棵?5、袋子里原有红球和黄球共119个。
六年级奥数分册第10周 假设法解题【精编】.doc
第十周 假设法解题(一)专题简析:假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
例题1甲、乙两数之和是185,已知甲数的14 与乙数的15的和是42,求两数各是多少?【思路导航】假设将题中“甲数的14 ”、“乙数的15 ”与“和为42”同时扩大4倍,则变成了“甲数与乙数的45 的和为168”,再用185减去168就是乙数的15 。
解: 乙:(185-42×4)÷(1-15×4)=85答:甲数是100,乙数是85。
练习11. 甲、乙两人共有钱150元,甲的12 与乙的110的钱数和是35元,求甲、乙两人各有多少元钱?2. 甲、乙两个消防队共有338人。
抽调甲队人数的17 ,乙队人数的13,共抽调78人,甲、乙两个消防队原来各有多少人?3. 海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的13多50吨,五月份完成总数的25少70吨,还有420吨没完成,第二季度原计划生产多少吨?例题2彩色电视机和黑白电视机共250台。
如果彩色电视机卖出19,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出19后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-19 )=89。
(250+5)÷(1+1-19)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习21. 姐妹俩养兔120只,如果姐姐卖掉17,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2. 学校有篮球和足球共21个,篮球借出13后,比足球少1个,原来篮球和足球各有多少个?3. 小明甲养的鸡和鸭共有100只,如果将鸡卖掉120,还比鸭多17只,小明家原来养的鸡和鸭各有多少只例题3。
六年级奥数假设法解题
专题一:假设法解题(一)一、假设法是解应用题时常用的一种思维方法。
在一些应用题中,要求两个或两个以上的未知量,思考时可以先假设要求的两个或几个未知数相等,或者先假设要求的两种量是同一种量。
用假设法解题时要找准与假设的内容相对应的关系,善于把假定的内容和数据加以调整,从而得到正确的答案。
例1.有5元的和10元的人民币共14张,共100元。
问5元币和10元币各多少张?【思路导航】假设一:5元和10元的张数相等,此时5元和10元各有7张,总面值为105元,与实际值相差5元,此时将1张10元换为1张5元即可,5÷(10-5)=1(次)。
假设二:全是5元币,此时总面值为5×14=70(元),与实际值相差:100-70=30(元),将1张5元换为1张10元面值将增加5元,需要调换次数为:30÷(10-5)=6(次)。
假设三:全是10元币。
随堂练习:有1元、2元、5元的汽车票50张,总面值为116元。
已知1元的比2元的多2张,问三种面值的汽车票各有几张?【思路导航】条件处理:先取出2张1元,此时2元与1元票数相等。
假设一:假设三种票值票数相等为:(50-2)÷3=16(张)。
此时总票值为:16×(1+2+5)=128(元),为保证每次换票后1元票与2元票张数相等,需要用两张5元票与1元票、2元票各一张进行对换。
由于假设值大于实际值:116-2=114(元)。
其中相差:128-114=14(元),每次对换改变票值为:5+5-1-2=7(元)。
需要对换次数为:14÷7=2(次)。
假设二:假设全是5元票以此展开。
例2.甲乙二人投飞镖比赛,规定每中一次记10分,脱靶一次倒扣6分。
两人各投10次,共得152分。
其中甲比乙多得16分,问两人各中多少次?【思路导航】条件处理:先利用数量关系求解甲乙各自分数,然后参照例1确定假设思路求解问题。
随堂练习:甲组工人生产一种零件,每天生产250个。
小学六年级奥数--假设法解题
假设法解题假设法解题的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾来求解。
例1:学校阅览室有文艺书和科技书一共125本,如果文艺书借出1/7,比科技书还多5本。
原来文艺书和科技书各有多少本?例2:二年级两个班共有学生90人,其中少先队员71人。
一班少先队员占本班人数的75%,二班少先队员人数占本班人数的5/6,一班少先队员比二班少先队员多几人?例3:甲乙两数的和是300,甲数的2/5比乙数的1/4多55,甲乙两数各是多少?例4:水果店里西瓜与白瓜个数比是7:5,如果每天卖白瓜40个、西瓜50个,若干天后白瓜正好卖完,西瓜还剩36个。
水果店里原有西瓜多少个?例5:王明平时积蓄下来的零花钱比陈刚的3倍还多6.4元,若两人各买了一本4.4元的故事书后,王明的钱是陈刚的8倍。
陈刚原有零花钱多少元?作业:1.甲乙两种商品成本价共200元,若甲乙商品分别按20%和30%的利润定价,并按9折出售,共可获得利润27.7元,则乙商品的成本价是多少元?2.一项工程,小王单独干6天后,小刘接着单独干9天,可以完成任务总量的2/5,如果小王单独干9天后,小刘接着干6天,可以完成任务总量的7/20。
则小王和小刘一起完成这项工程需要多少天?3.田径世锦赛男子4*100米接力,每队可报6名选手参赛,唯一一个起跑最快的跑第一棒,第四棒有2个人选,则可排出的组合有多少种?4.某商场搞促销,消费100元送20元代金券,某顾客先花100元买了一件衬衫,再用代金券及现金买了同样的衬衫,则顾客得到的折扣相当于几折?5.王老师在课堂上出了一道加法算术题,张明把个位上的4看成9,把十位上的8看成3,结果算错为118,那么正确答案是?6.一本300页的书,将所有页码排成一列,其中数字3一共有多少个?7.某学校共有10个获奖名额分配到某年级各个班,每个班至少有一个名额,若有36种不同的分配方案,该年级最多有多少个班?8.某知识竞赛,共有50道选择题,评分标准是:答对一题得3分,答错一题扣1分,不答的题得0分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
假设法解题
专题简析:
已知甲是乙的几分之几,又知甲与乙各改变一定的数量后两者之间新的倍数关系,要求甲、乙两个数是多少,这样的应用题称为变倍问题。
应用题中的变倍问题,有两数同增、两数同减、一增一减等各种情况。
虽然其中的数量关系比较复杂,但解答时的关键仍是确定哪个量为单位“1”,然后通过假设,找出变化前后的相差数相当于单位“1”的几分之几,从而求出单位“1”的量,其他要求的量就迎刃而解了。
例题1 两根铁丝,第一根长度是第二根的3倍,两根各用去6米,第一根剩下的长度是第二根剩下的长度的5倍,第二根原来有多少米?
练习1
1.丁晓原有书的本数是王阳的5倍,若两人同时各借出5本给其他同学,则丁
晓书的本数是王阳的10倍,两人原来各有书多少本?
2.在植树劳动中,光明中学植树的棵数是光明小学的3倍,如果中学增加450
棵,小学增加400棵,则中学是小学的2倍。
求中、小学原来各植树多少棵?
例题2 王明平时积蓄下来的零花钱比刚的3倍多6.40元,若两个人各买了一本4.40元的故事书后,王明的钱就是刚的8倍,刚原来有零花钱多少元?
练习2
1.甲书架上的书比乙书架上的3倍多50本,若甲、乙两个书架上各增加150本,则甲书架上的书是乙书架上的2倍,甲、乙两个书架原来各有多少本书?
2.箱子里有红、白两种玻璃球,红球比白球的3倍多2粒,每次从箱子里取出7粒白球和15粒红球,若干次后,箱子里剩下3粒白球和53粒红球,那么,箱子里白球原有多少粒?
例题3 小红的彩笔枝数是小刚的12
,两人各买5枝后,小红的彩笔枝数是小刚的23
,两人原来各有彩笔多少枝?
练习3
1. 小华今年的年龄是爸爸年龄的16 ,四年后小华的年龄是爸爸的14
,求小华和爸爸今年的年龄各是多少岁?
2. 甲书架上的书是乙书架上的57
,甲、乙两个书架上各增加90本后,甲书架上的书是乙书架上的45
,甲、乙两各书架原来各有多少本书?
例题4 王芳原有的图书本数是卫的45
,两人各捐给“希望工程”10本后,则王芳的图书的本数是卫的710
,两人原来各有图书多少本?
练习4
1.甲书架上的书是乙书架上的4
5
,从这两个书架上各借出112本后,甲书架
上的书是乙书架上的4
7
,原来甲、乙两个书架上各有多少本书?
2.小明今年的年龄是爸爸的
6
11
,10年前小明的年龄是爸爸的
4
9
,小明和爸爸
今年各多少岁?
例题5 某校六年级男生人数是女生的2
3
,后来转进2名男生,转走3名女生,
这时男生人数是女生的3
4
,现在男、女生各有多少人?
练习5
1.有一堆棋子,黑子是白子的2
3
,现在取走12粒黑子,添上18粒白子后,
黑子是白子的
5
12
,现在白子、黑子各有多少粒?
2.爱华小学和曙光小学的同学参加小学数学竞赛,去年的比赛中,爱华小学得一等奖的人数是曙光小学的2.5倍。
今年的比赛中,爱华小学得一等奖的人数减少了1人,曙光小学增加了6人,这时曙光小学得一等奖的人数是爱华小学的2倍。
两校去年的一等奖的同学各有多少人?
答案:
练1 1、王阳:(5×5-5)÷(10-5)+5=9本
丁晓: 9× 5=45本
2、小学:(400×3-450)÷(3-2)-400=350棵
中学:350×3=1050棵
练2 1、乙:(150×3-150-50)÷(3-2)-150=100本甲:100×3+50=350本
2 、【53-(3×3+2)】÷(7×3-15)=7次
原有的白球:7×7+3=52个
练3 1、爸爸:(4-4×1
6
)÷(
1
4
-
1
6
)-4=36岁
小华:36×1
6
=6岁
3、乙:(90-90×5
7
)÷(
4
5
-
5
7
)-90=210本
甲:210×5
7
=150本
练4 1、乙:(112-112×4
7
)÷(
4
5
-
4
7
)=210本
甲:210×4
5
=168本
2、爸爸:(10-10×4
9
)÷(
6
11
-
4
9
)=55岁
小明:55×
6
11
=30岁
练5
2、白:(12+18×2
3
)÷(
2
3
-
5
12
)=96粒
黑:96×
5
12
=40粒
3、曙光:(1+6×2.5)÷(2.5-1
2
)-6=2人
爱华:2×2.5=5人
每周一练
一、填空题
1. a 是一个四位数,四舍王入取近似值为4.68,a 的最大值是( )。
2. 奶奶今年67岁,子今年13岁,那么( )年后,奶奶年龄是子年龄的4倍。
3. 一个梯形,若下底减少3cm ,上底和高都不变,它的面积减少272cm ,若高减少3cm ,上底和下底都不变,它的面积减少602cm ,原来梯形的面积是
( )2cm 。
4. 六年级学生的人数,无论分成8人一组,10人一组,还是12人一组都正好分完,六年级至少有( )人。
5. 如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44。
那么7*4=( ),210*2=( )。
二、计算
33338712 ×79+790×6666114 975×0.25+934
×76-9.75
1234+2341+3412+4123 23456+34562+45623+56234+62345
三、一本文艺书,小明第一天看了全书的1
3
,第二天看了余下的
3
5
,还剩下48
页,这本书共有多少页?
四、筑路队修一段路,第一天修了全长的1
5
又100米,第二天修了余下的
2
7
,
还剩500米,这段公路全长多少米?。