闪烁探测器资料

合集下载

闪烁探测器资料

闪烁探测器资料
Flash ADC可在一个通道中进行高频率(可达1G)多次测量 和A/D转换,将每一个电流脉冲随时间的变化经数字化后计录下 来,即可进行波形信息获取。为脉冲形状辨别粒子开辟了崭新的 空间。
12
例如:
R
i 20 50 i 1
A
50Biblioteka iAi右图为不同能量γ(电子)和α粒 子Qt ,Qp的分布,及不同能量下的 R。可以看出, 大200KeV时可 以将γ和α明显地区分开来。
发光衰减时间的测量
1. 用快PMT加示波器做相对参考测量

脉冲达到最大值的时刻为
f RC t m RC RC / f ) f ln(



用已知f的闪烁体推算出测量系统的RC,然后再测 量样品的f。 测量中RC应尽量大。 简单但误差大,尤其是参考样品与待测样品的衰减 时间相差较大时;无法确定多组分光的衰减时间
15
2、飞行时间探测器

动量为p,质量分别为m1和m2的二 个粒子飞行距离为L的时间差为:
2 2 L L L m12c 2 m2 c t 1 2 1 2 1c 2c c p p
当p>> mc 时,

t
2 2 L ( m1 m2 ) c 2 p2
6
五、晶体的光输出和均匀性测量


晶体的光输出和 均匀性影响能量 分辨率 用单能源测量
1 S ave 9
N 9 i
Si
S max S min U S ave
7
六、闪烁体的辐照效应

闪烁体在强辐照环境中随着辐 照剂量的增加光输出会减弱。
闪烁体在辐照下,光透过率和 吸收谱发生变化,导致光输出 降低。(颜色发生变化) 一般用比较辐照前后光输出的 变化来标定

闪烁体探测器原理

闪烁体探测器原理

闪烁体探测器原理
闪烁体探测器是一种用于探测和测量辐射粒子的仪器。

它基于闪烁体的原理,当被探测粒子进入闪烁体时,产生的能量会激发闪烁体中的原子和分子跃迁至高能级,然后快速回到基态,并释放出可见光。

该可见光被探测器内部的光电倍增管(photomultiplier tube,PMT)所转换和放大,最终转化为电
信号。

闪烁体的选择是非常关键的。

常见的闪烁体材料包括有机晶体(如NaI(Tl))、无机晶体(如CsI(Tl))和塑料闪烁体(如
BC-408)。

这些材料都具有较高的密度和原子数,能够有效
地捕获通过的粒子能量,并将其转化为可见光的形式。

在闪烁体探测器中,闪烁体材料通常被制成晶体或塑料条的形状。

当粒子进入闪烁体时,它与其中的原子或分子发生相互作用,产生电离和激发。

这些电离和激发会产生自由电子和离子,其中一部分被电场加速并引导到一个或多个光电倍增管中。

光电倍增管是检测器的关键组件之一。

它包含一个光学系统和一个电子增益系统。

光学系统将闪烁体产生的光转换为光电子,并经过多级倍增过程放大。

光电子在倍增过程中通过一系列的电子微通道,逐级增加电子数量,最终形成一个电子脉冲。

这个电子脉冲的数量和能量大小与入射粒子的能量有关,通过测量这些电子脉冲的数量和能量可以确定入射粒子的性质和能量。

闪烁体探测器的工作原理基于粒子与闪烁体的相互作用,将粒
子能量转换为可见光和电脉冲信号。

它在核物理、医学影像学、航空航天等领域有着广泛的应用。

闪烁体探测器原理

闪烁体探测器原理

闪烁体探测器原理闪烁体探测器是一种用于测量辐射的仪器,其原理是利用闪烁体材料对射线或粒子的敏感性来测量其能量和强度。

闪烁体探测器在核物理、医学影像学、核能工业等领域都有广泛的应用。

闪烁体探测器的原理主要包括闪烁体材料、光电倍增管和信号处理系统。

闪烁体材料是闪烁体探测器的核心部分,它能够将入射的辐射转化为可见光。

常见的闪烁体材料包括NaI(Tl)、CsI(Tl)等。

当射线或粒子入射到闪烁体材料中时,会激发其原子或分子的电子跃迁,产生光子。

这些光子被光电倍增管吸收后,会产生电子级联增强效应,最终转化为电荷脉冲信号。

光电倍增管是将闪烁体产生的光子转化为电荷信号的装置。

当光子进入光电倍增管时,会引发光电效应,产生电子。

这些电子会在光电倍增管中经过级联增强,最终转化为可测量的电荷脉冲信号。

光电倍增管具有高增益、低噪声和快速响应的特点,能够有效地将闪烁体产生的光信号转化为电荷信号。

信号处理系统是闪烁体探测器中用于处理和分析电荷脉冲信号的部分。

信号处理系统通常包括放大器、脉冲幅度分析器、多道分析器等。

放大器用于放大电荷脉冲信号,使其能够被后续的电子学设备处理。

脉冲幅度分析器用于测量电荷脉冲信号的幅度,从而确定辐射的能量。

多道分析器用于对不同能量的辐射进行分辨和测量。

除了闪烁体材料、光电倍增管和信号处理系统,闪烁体探测器的工作原理还涉及能量刻度、本底校正、探测效率等方面。

能量刻度是指通过标准放射源对闪烁体探测器进行能量校准,建立能量和幅度之间的对应关系。

本底校正是指对探测器本底辐射进行测量和修正,以保证测量结果的准确性。

探测效率是指探测器对入射辐射的探测能力,是衡量探测器性能优劣的重要指标。

总之,闪烁体探测器是一种利用闪烁体材料对辐射进行测量的仪器,其原理包括闪烁体材料、光电倍增管和信号处理系统。

通过对闪烁体产生的光信号进行放大、分析和处理,可以实现对入射辐射的能量和强度的测量。

闪烁体探测器在核物理、医学影像学、核能工业等领域有着重要的应用,对于研究和应用辐射具有重要的意义。

闪烁探测器的工作原理

闪烁探测器的工作原理

闪烁探测器的工作原理闪烁探测器是一种常用的辐射探测器,其工作原理基于闪烁效应。

闪烁效应是指当辐射粒子与探测材料相互作用时,引发探测材料中能量的吸收和发射,从而产生可见光的现象。

闪烁探测器的基本组成包括闪烁晶体、光电倍增管和信号处理电路。

首先,辐射粒子进入闪烁晶体时,会与晶体中的原子发生相互作用。

这些相互作用使得晶体中的电子从基态跃迁到激发态,并在很短的时间内返回基态。

在这个过程中,晶体吸收了辐射粒子的能量。

通过这种能量吸收,晶体中的原子被激发,形成了一个电子-空穴对。

接着,闪烁晶体中的电子-空穴对重新结合并释放出能量。

这部分能量以光子的形式发射出来。

光子的能量与辐射粒子入射时释放的能量成正比。

晶体中使用的材料通常是具有较高原子数和高密度的材料,如钠碘晶体、铯碘晶体等。

这些晶体在被激发后能够产生大量光子。

第三步,光子被闪烁晶体中的闪烁材料吸收,并使材料中的原子或分子从基态跃迁到激发态,由于激发态的电子处于不稳定状态,它们会以很短的时间内返回基态,并释放出与光子能量相等的光子。

这种光子的释放是有规律的,通常是快速且连续的。

然后,闪烁晶体中的光子进入到光电倍增管中。

光电倍增管是一种具有光电效应的真空管。

当光子进入光电倍增管后,会打击光电阴极上的电子,使其被弹出,形成电子云。

电子云受到倍增电场的作用,逐级倍增,最终形成一个带有大量电子的脉冲信号。

最后,这个电子信号经过信号处理电路进行放大、滤波、采集和计数等处理,得到最终的输出结果。

信号处理电路中通常会使用放大器、滤波器、模数转换器和多道分析器等设备。

通过这些设备的处理,闪烁探测器能够将辐射粒子的能量和入射强度转化为电信号输出。

总的来说,闪烁探测器的工作原理是通过辐射粒子与闪烁晶体相互作用,使得晶体中的电子-空穴对产生并释放出光子的能量。

光子进入光电倍增管中被放大形成电子信号,并经过信号处理电路处理得到最终结果。

闪烁探测器具有灵敏度高、能量分辨率好等优点,在核物理实验、医学影像学等领域得到了广泛的应用。

闪烁体探测器的基本介绍

闪烁体探测器的基本介绍

闪烁体探测器的基本介绍秦1林2(中国石油大学华东,青岛,255680)摘要:闪烁体探测器是利用电离辐射在某些物质中产生的闪光来进行探测的,也是目前应用最多、最广泛的电离辐射探测器之一。

关键词:闪烁体;辐射;电离激发早在1903年,威廉·克鲁克斯就发明了由硫化锌荧光材料制成的闪烁镜并用其观察镭衰变放出的辐射;卢瑟福在其著名的卢瑟福散射实验中也曾使用硫化锌荧光屏观测α粒子。

不过,由于传统荧光材料在使用上很不方便,闪烁探测器一直没有大的进展。

1947年Coltman和Marshall成功利用光电倍增管测量了辐射在闪烁体内产生的微弱荧光光子,这标志着现代闪烁体探测器的发端。

1.基本构成与原理闪烁体主要由闪烁体、光的收集部件和光电转换器件组成的辐射探测器。

图1 闪烁体探测器基本构造入射辐射在闪烁体内损耗并沉积能量,引起闪烁体中原子(或离子、分子)的电离激发,之后受激粒子退激放出波长接近于可见光的闪烁光子。

闪烁光子通过光导射入光电倍增管的光阴极并打出光电子,光电子受打拿级之间强电场的作用加速运动并轰击下一打拿级,打出更多光电子,由此实现光电子的倍增,直到最终到达阳极并在输出回路中产生信号。

2.闪烁体的分类很多物质都可以在粒子入射后而受激发光,因此闪烁体的种类很多,可以是固体、液体或气体。

闪烁体材料大致可分为以下三类:(1)用于γ射线探测的CsI(Tl)晶体无机闪烁体:包括碱金属卤化物晶体(如NaI(Tl)、CsI(Tl)等,其中Tl是激活剂)、其他无机晶体(如CdWO4、BGO等)、玻璃体。

(2)有机闪烁体:有机晶体(如蒽、芪等)、有机液体、塑料闪烁体。

(3)气体闪烁体:如氩、氙等。

3 闪烁体的性质3.1发光效率高能够将入射带电粒子的动能尽可能多地转换为闪烁光子数。

3.2线性好入射带电粒子损耗的能量在很大范围内与产生闪烁光子数保持线性关系。

3.3发射光谱与吸收光谱不重叠闪烁体介质对自身发射光是透明的,不存在自吸收。

闪烁探测器

闪烁探测器

• 热释光探测器 特性:能长时间地贮存电离辐射能,在受 热升温时,能放出光辐射,这种特性称为辐 射热释光。 • 分加热部分、光电转换部分和显示部分。


谢!
第二节 闪烁探测器 scintillator
• 闪烁探测器是目前核医学中最常用的探测器, 主要有γ闪烁探测器和液体闪烁探测器。 • 它与气体探测器相比,有分辨时间短、探测 效率高等优点,是目前使用最广的核辐射探 测器。
一、烁探测器的组成和工作原理
• 闪烁探测器主要有闪烁体、光电倍增管以及电子仪器三部分组成。 • 将闪烁体、光电倍增管以及前置放大器一起装在一个避光暗合中,称为探头。
• 三、光电倍增管 • 是一种光电转换器件,它的作用是将 闪烁体发射的微弱光信号转变成为放 大的电信号。
• 1、光电倍增管的主要特性 • 1)光阴极受到光照辐射后发射光子的概率与入射光波长的关系称为光谱响应。 • 暗电流:光电倍增管在一定的工作电压下,无光照和辐射时所产生的阳极电流称 为暗电流。 • 2)光电倍增管的保存 • 避光保存,工作时严禁打开暗盒,注意轻拿轻放。
• • • •
二、半导体探测器的结构和简单原理 P—N节 N接正 P节负 耗尽层增厚 带电粒子进入结区,由于电离作用而产生电子—空穴对,在外电场作用下,电子和空穴 分别向两极漂移,于是在输出回路产生脉冲信号,Li漂移探测器,用锗采用锂漂移工艺 制作的探测器称为锂漂移锗探测器。
• 第四节
其他类型的探测器
第三节 半导体探测器 ( Semiconductor detector)
• 一、半导体探测器的性能 • 半导体探测器是使用半导体材料制成的电离探测器。它的工作原理和气体电离室类似, 只是工作介质是固体而不是气体,所以有固体电离室之称。 • 半导体探测器具有能量分辨率高,线性范围宽,脉冲上升时间快等优点,因此,在能 谱测量中得到广泛的应用。 • 它的主要缺点是抗辐射性能差,输出脉冲幅度小,性能随温度变化大。

闪烁体探测器原理

闪烁体探测器原理

闪烁体探测器原理闪烁体探测器是一种常用于粒子物理实验和核物理实验中的探测器,它可以用来探测高能粒子的能量和种类。

闪烁体探测器的原理是利用闪烁体材料对入射粒子产生的闪烁光进行探测和测量,通过测量闪烁光的强度和时间分布来获取粒子的信息。

闪烁体探测器通常由闪烁体材料、光电倍增管和信号处理系统组成。

闪烁体材料是闪烁体探测器的核心部分,它能够将入射粒子的能量转化为可测量的光信号。

常用的闪烁体材料包括塑料闪烁体、无机晶体闪烁体等。

当高能粒子穿过闪烁体材料时,会与闪烁体原子发生相互作用,使得原子激发态跃迁到基态的过程中释放出光子,形成闪烁光。

光电倍增管是用来接收和放大闪烁体产生的光信号的装置,它能够将微弱的光信号转化为可观测的电荷脉冲信号。

当闪烁光进入光电倍增管时,会引起光电效应,使得光电倍增管产生电子,并经过倍增过程放大电子数目,最终输出一个与入射粒子能量成正比的电荷脉冲信号。

信号处理系统是用来接收、处理和分析光电倍增管输出的电荷脉冲信号的装置,它能够将电荷脉冲信号转化为能够被计算机或其他数据采集设备读取和分析的数字信号。

信号处理系统通常包括放大器、快门、多道分析器等部分,通过这些部分对电荷脉冲信号进行放大、选择、测量等处理,最终得到入射粒子的能谱和能量信息。

闪烁体探测器的工作原理可以用一个简单的模型来描述,当高能粒子穿过闪烁体材料时,会与闪烁体原子发生相互作用,使得原子激发态跃迁到基态的过程中释放出光子,形成闪烁光。

闪烁光被光电倍增管接收并放大,最终转化为电荷脉冲信号。

信号处理系统对电荷脉冲信号进行处理,得到入射粒子的能谱和能量信息。

总的来说,闪烁体探测器利用闪烁体材料对入射粒子产生的闪烁光进行探测和测量,通过测量闪烁光的强度和时间分布来获取粒子的信息。

它在粒子物理实验和核物理实验中起着重要的作用,是一种常用的粒子探测器。

闪烁探测器的组成

闪烁探测器的组成

闪烁探测器的组成
闪烁探测器是利用辐射在某些物质中产生的闪光来探测电离辐射的探测器。

闪烁探测器主要由以下几部分组成:
1. 闪烁体:闪烁体是闪烁探测器的核心部分,当闪烁体受到射线照射时,闪烁体会吸收射线能量并发出荧光。

荧光光子被收集到光电倍增管的光阴极上,通过光电效应打出光电子。

2. 光导和反射体:光导和反射体的作用是将荧光均匀地引导到光电倍增管的光阴极上,以提高探测效率。

光导一般由高折射率的玻璃制成,而反射体则用来将散射的荧光反射到光阴极上。

3. 光电倍增管:光电倍增管是闪烁探测器的另一个重要组成部分,它的作用是将光电子倍增并输出到后续电路中,以便进行信号处理和测量。

4. 前置放大器:前置放大器的作用是将光电倍增管输出的信号放大,以便进行后续的信号处理和测量。

5. 磁屏蔽和暗盒:磁屏蔽和暗盒的作用是减少外部磁场和光照对探测器的影响,从而提高探测器的测量精度和稳定性。

综上所述,闪烁探测器由闪烁体、光导和反射体、光电
倍增管、前置放大器和磁屏蔽及暗盒等组成。

这些组成部分协同工作,实现了对电离辐射的高效、高精度和高灵敏度探测。

如需了解更多信息,建议查阅相关文献或咨询专业人士。

闪烁体探测器工作原理

闪烁体探测器工作原理

闪烁体探测器工作原理闪烁体探测器是一种常用的辐射测量设备,它可以用于测量各种类型的辐射,如电离辐射、电磁辐射和粒子辐射等。

闪烁体探测器的工作原理是基于闪烁效应,即当辐射粒子通过闪烁体时,闪烁体会发光,并且发光的强度与入射辐射的能量有关。

闪烁体探测器通常包括一个闪烁体和一个光电倍增管。

闪烁体是一种具有闪烁效应的物质,它可以将辐射能量转化为光能。

当辐射粒子通过闪烁体时,它们与闪烁体内的原子或分子发生相互作用,激发或离子化这些原子或分子。

这些激发态或离子态的原子或分子会发生能级跃迁,从而释放出光子。

这些光子经过闪烁体的内部反射,最终被光电倍增管吸收。

光电倍增管是一种电子倍增器,它可以将光能转化为电能。

当光子进入光电倍增管时,它们会击中光电阴极,使其发射出电子。

这些电子经过倍增过程,通过一系列的二次发射和电子倍增,最终形成一个电子脉冲信号。

这个电子脉冲信号可以被放大和记录,从而得到辐射的测量结果。

闪烁体探测器具有灵敏度高、能量分辨率好和时间分辨能力强等优点。

它可以测量非常微弱的辐射信号,并且可以判断辐射的类型和能量。

这使得闪烁体探测器在核能、医学、环境监测和材料分析等领域得到广泛应用。

闪烁体探测器的性能主要取决于使用的闪烁体材料。

常用的闪烁体材料有无机晶体、有机闪烁体和液体闪烁体等。

无机晶体闪烁体具有较高的闪烁效率和较好的能量分辨率,适用于高能量辐射的测量。

有机闪烁体具有较快的闪烁时间和较短的衰减时间,适用于时间分辨测量。

液体闪烁体具有较高的闪烁效率和较好的能量分辨率,适用于较低能量辐射的测量。

除了闪烁体材料的选择,闪烁体探测器的性能还受其他因素的影响。

例如,闪烁体的尺寸和形状会影响到光子的发射和收集效率。

闪烁体与光电倍增管之间的耦合效率也会影响到探测器的灵敏度和能量分辨率。

此外,闪烁体探测器的工作温度和工作电压的选择也会对其性能产生影响。

闪烁体探测器是一种基于闪烁效应的辐射测量设备,它可以将辐射能量转化为光能,并进一步转化为电能。

41闪烁探测器

41闪烁探测器
有机闪烁体的发光机制
发射光谱与吸收光谱
由于 电子跃迁时,一部分能量以热运动形式带走,因此发射光子能量总是小于吸收光子能量,造成吸收光谱和发射光谱间的位移,从而减少了光的自吸收。 为了进一步改善光的传输,在有机闪烁体中加第二溶质-波长位移剂。其作用是吸收荧光后再发射波长较长的光,等于将发射光谱向长波方向移动。 也可更好地与光探测器的灵敏波长匹配。
Bicron公司生产的塑料闪体
Eljen Technology EJ200 高能科迪
有机闪烁体的优缺点及应用
发光效率低,输出脉冲幅度小,能量分辨率差。主要用于强度、计数和时间测量。在高能物理实验中,体积大、费用低、响应快成为主要考虑因素,选有机塑料闪烁体作触发计数器和取样式全吸收探测器。 发光时间短,10-8~10-9 s。配合快时间光电倍增管用于时间测量和快符合实验。 密度小,有效原子序数低,对射线探测效率低。但因价格便宜,时间性能好,在射线探测中也常使用。 含有大量的H原子,可以记录快中子。 塑料闪烁体可以测量、X、和快中子以及高能粒子,特别是经常用于快时间、高强度、快符合、反符合和高能物理实验中。
二、工作原理(3)
输出:形成的电压脉冲经射极跟随器或前置放大器输出,被一套电子学仪器放大、分析和记录。 输出脉冲与入射粒子能量成正比。 选择光产额大的晶体,提高光阴极光电转换效率,电子传输系数q和光电倍增管的放大倍数M,都可以使输出脉冲幅度增大。
闪烁探测器由闪烁体、光探测器件和相应的电子 学组成。其性能涉及: 闪烁体的性能:发光波长、发光时间和光传输性能 闪烁体的材料、比重和价格 闪烁体与光探测之间的光耦合、光收集 光探测器件的性能和价格 信号放大和接收
无机闪烁体的发光机制:固体能带论
晶格上的电子具有分离的能量带,价带和导带,之间为禁带。 纯晶体中,电子的激发可使处在价带的电子激发到导带,而具有短寿命的导带能级的电子将发射一个光子退激到价带。发光快,能量高(紫外区),但发光弱。

核辐射探测第三章 闪烁探测器

核辐射探测第三章 闪烁探测器

3、PMT 使用中的几个问题
1) 光屏蔽,严禁加高压时曝光。
2) 高压极性:正高压和负高压供电方式。
正高压供电方式,缺点是脉冲输出要用耐高压 的电容耦合,耐高压电容体积大,因而分布电 容大。高压纹波也容易进入测量电路。
负高压供电方式,阳极是地电位,耦合方式简 单,尤其在电流工作方式。但其阴极处于很高 地负电位,需要注意阴极对处于地电位的光屏 蔽外壳之间的绝缘。
纯晶体 Bi4Ge3O12 BGO
2) 有机闪烁体:有机晶体——蒽晶体等; 有机液体闪烁体及塑料闪烁体.
3) 气体闪烁体:Ar、Xe等。
2、闪烁体的发光机制
1) 无机闪烁体的发光机制
激活剂
重点分析掺杂的无机晶体,以NaI(Tl), CsI(Tl),CsI(Na)属于离子晶体等为最典 型,又称卤素碱金属晶体。
t
te
IV.闪烁探测器的电压脉冲信号
由等效电路
可得:
ItVR(0t)C0
dV(t) dt
Vt
et/R0C0
t
Itet/R0C0dt
C0 0
代入:I(t)nphTMeet/
令: QnphTMe
V (t)Q R 0C 0 e e t/R 0C 0 t/
C 0 (R 0C 0)
1、当 R0C0 时 V(t)QE
在很多情况下,与相比, pt 是一个非常窄的
时间函数,这时可以忽略电子飞行时间的涨落,
用函数来近似 pt
即:可设 p t M e t te
则:I(t)n ph Tte t tM e (tte)d t 0
求 解
0
It nphTMee(tte)/
I t
nphT Me
e(tte )/

闪烁体探测器概述

闪烁体探测器概述
苯乙烯(单体)+ PPO + POPOP,聚合成塑料。 17
四.常用闪烁体
1、NaI(Tl)晶体
优点:
密度大, =3.67g/cm3 ,探测效率高;
Z高,碘(Z=53)占重量85% ,光电截面大;
相对发光效率高,为蒽的两倍多;
发射光谱最强波长415nm,与PMT光谱响应配合; 晶体透明性能好;
能量分辨率较高,~7.5%@662keV-。
闪烁探测器
核辐射与某些透明物质相互作用,会使其电离、激发
而发射荧光;闪烁探测器就是利用这一特性工作的
时间特性好,探测效率高。 闪烁体 光电倍增管 闪烁探测器的输出信号
闪烁探测器的性能
单晶能谱仪—NaI(Tl)晶体谱仪
1
§9.1 闪烁探测器基本原理
闪烁探测器是利用辐射在某些物质中产生的电离、激 发而产生的荧光来探测电离辐射的探测器。闪烁探测器由 闪烁体、光电倍增管和相应的电子仪器三个主要部分组成。
nf
f
e
t f
t s + ns e
s
有机闪烁体的发光衰减曲线
14
几种闪烁体的发光衰减时间
闪 烁 体 BaF2 CsI(Tl)
f (ns)
0.6
s(s)
0.62
10
6.2 33
1.0
0.37 0.37

蒽 液体闪烁体
2.4
Байду номын сангаас1.3
0.20
0.23
15
塑料闪烁体
NaI(Tl)
使用闪烁体时还应考虑:
于10-9s)决定。
闪烁体受激后,电子退激过程及闪烁体发光过程一般服从指 数衰减规律 对于大多数无机晶体,t时刻单位时间发射光子数:

闪烁体探测器的基本介绍

闪烁体探测器的基本介绍

闪烁体探测器的基本介绍秦1林2(中国石油大学华东,青岛,255680)摘要:闪烁体探测器是利用电离辐射在某些物质中产生的闪光来进行探测的,也是目前应用最多、最广泛的电离辐射探测器之一。

关键词:闪烁体;辐射;电离激发早在1903年,威廉·克鲁克斯就发明了由硫化锌荧光材料制成的闪烁镜并用其观察镭衰变放出的辐射;卢瑟福在其著名的卢瑟福散射实验中也曾使用硫化锌荧光屏观测α粒子。

不过,由于传统荧光材料在使用上很不方便,闪烁探测器一直没有大的进展。

1947年Coltman和Marshall 成功利用光电倍增管测量了辐射在闪烁体内产生的微弱荧光光子,这标志着现代闪烁体探测器的发端。

1. 基本构成与原理闪烁体主要由闪烁体、光的收集部件和光电转换器件组成的辐射探测器。

图1 闪烁体探测器基本构造入射辐射在闪烁体内损耗并沉积能量,引起闪烁体中原子(或离子、分子)的电离激发,之后受激粒子退激放出波长接近于可见光的闪烁光子。

闪烁光子通过光导射入光电倍增管的光阴极并打出光电子,光电子受打拿级之间强电场的作用加速运动并轰击下一打拿级,打出更多光电子,由此实现光电子的倍增,直到最终到达阳极并在输出回路中产生信号。

2. 闪烁体的分类很多物质都可以在粒子入射后而受激发光,因此闪烁体的种类很多,可以是固体、液体或气体。

闪烁体材料大致可分为以下三类:(1)用于γ射线探测的CsI(Tl)晶体无机闪烁体:包括碱金属卤化物晶体(如NaI(Tl)、CsI(Tl)等,其中Tl是激活剂)、其他无机晶体(如CdWO4、BGO等)、玻璃体。

(2)有机闪烁体:有机晶体(如蒽、芪等)、有机液体、塑料闪烁体。

(3)气体闪烁体:如氩、氙等。

3 闪烁体的性质3.1发光效率高能够将入射带电粒子的动能尽可能多地转换为闪烁光子数。

3.2线性好入射带电粒子损耗的能量在很大范围内与产生闪烁光子数保持线性关系。

3.3发射光谱与吸收光谱不重叠闪烁体介质对自身发射光是透明的,不存在自吸收。

4 第四章 闪烁探测器解析

4 第四章 闪烁探测器解析

由于两个振动能态之间的能量间隔大于平均热运动能量 (0.025eV),在室温下几乎所有的分子都处于S00态。 入射带电粒子穿过上述有机分子附近并损失能量,使有机 分子的π 电子跃上较高的能态。被激发的较高的单一态π 电子 通过无辐射的内转换迅速地(约10-12s)退激到S1电子态。而且, 具有多余振动能量的任一电子态(例如S11或S12)又迅速地失去多 余的能量与周围分子达到热平衡。由于分子振动周期仅10-12s, 这一过程也是极快的。总之,在一简单的有机晶体中,入射带 电粒子产生激发的总效果就是经过一段可忽略的短时间后,产 生了处于S的振动态而具有s00、s01、s03、…等能级。 当分子由激发态s10跃回基态时,其发射光子的能量为s10与s00、 s01、s03…等能级的差值。这就决定了荧光的光谱(域称作“发 射光谱”)。一般,这都是在可见光与紫外光区域。
有机闪烁体的种类:
有机晶体闪烁体: 蒽;茋;萘;对联三苯等
闪烁体探测器主要由闪烁体、光电倍 增管和相应的电子学仪器三部分组成。
光电倍增管:由光阴极、 光阳极:收集倍增后的光 若干打拿极和阳极组成 电子,并建立起电信号, 通过起阻抗匹配作用的射 反射层:把反射物质包在闪烁体周围,使光子 极跟随器输入到后续的电 光阴极:闪烁体产生的光子在光阴 集中向光电倍增管方向射出 子学仪器中 极上发生光电效应,产生的光电子 在打拿极间加速及聚焦。闪烁体和 闪烁体:对射线灵敏并能产生闪烁光 光阴极间需加光耦合剂。 产生的光子向四面八方发射出去,一般光谱范 围从可见光到紫外光
对纯离子晶体,退激发出的光子容易被晶体自吸收,传输到晶体外 的光子很少; 由于离子晶体禁带宽度大,退激发出的光子能量为紫外范围,一般 光电倍增管的光阴极不能响应,这些发射的光子不能被有效利用。

闪烁探测器的设计原理及应用

闪烁探测器的设计原理及应用

闪烁探测器的设计原理及应用闪烁探测器是指一种能够探测高能带电粒子的探测器,主要应用于核物理、高能物理、天文物理等领域。

闪烁探测器的优点是具有高能量分辨率和高时间分辨率,可以追踪高能带电粒子的能量沉积和时间分布。

本文将介绍闪烁探测器的设计原理及其应用。

一、闪烁体闪烁探测器的核心是闪烁体,它是一种能够吸收高能带电粒子并发出光信号的材料。

因此,闪烁体的要求是具有高能量吸收率和高发光效率。

常用的闪烁体有无机晶体和有机塑料。

无机晶体包括NaI(Tl)、CsI(Tl)、Bi4Ge3O12等,其中NaI(Tl)是最常用的无机闪烁体。

有机塑料包括聚苯乙烯(PS)、聚甲基丙烯酸甲酯(PMMA)、聚异丁烯(PIB)等,其中聚苯乙烯是最常用的有机闪烁体。

无机晶体具有较高的能量分辨率和较长的寿命,而有机塑料具有较高的发光效率和低成本。

二、闪烁机制当高能带电粒子进入闪烁体时,与闪烁体原子发生相互作用,从而使原子中的电子被激发到较高的能级。

电子在激发态不稳定,会通过跃迁回到基态时释放出能量,并产生光子。

这些光子会在闪烁体内不断地反射和被发射,最终被闪烁探测器的光电倍增管或光电二极管探测到并转换为电信号。

三、闪烁探测器的组成闪烁探测器由闪烁体、光电倍增管或光电二极管、读出电路和数据处理系统等部分组成。

当闪烁体中的带电粒子产生光信号时,光电倍增管或光电二极管将其转换为电信号,并将其放大。

读出电路会将电信号转换为数字信号,并将其送回数据处理系统进行处理。

数据处理系统可以通过分析闪烁光信号的时间、能量等特征来确定带电粒子的能量和位置。

四、应用场景闪烁探测器广泛应用于核物理、高能物理、天文物理等领域。

其中最重要的应用场景是核物理实验。

闪烁探测器可以被用来探测放射性粒子的能量和位置,从而帮助研究核反应的基本原理。

同时,它还可以用于测量宇宙射线中带电粒子的能量,帮助研究宇宙空间的物理环境。

此外,闪烁探测器还可以应用于辐射检测和医学成像。

4 第四章 闪烁探测器解析

4 第四章 闪烁探测器解析

无机晶体闪烁体的种类: 掺有少量激活剂的无机盐晶体: 碘化钠(铊激活)NaI(Tl);碘化铯(铊激活)CsI(Tl)
硫化锌(银激活)ZnS(Ag)
玻璃体: 锂玻璃(铈激活) LiO2·2SiO2(Ce) 不掺杂纯晶体: 锗酸铋(BGO);钨酸镉(CWO);氟化钡(BaF2)
二、闪烁体的物理性质
1.发射光谱
几种典型闪烁体的发射光谱
2. 发光效率
发光效率是指闪烁体将吸收的射线能量转变为光的比例。 一般使用以下三个量来描述。
光能产额:核辐射在闪烁体中损失单位能量闪烁发射的光 子数。当粒子在闪烁体中损失的能量为E,闪烁过程发出 的总光子数为nph时,则光能产额
Y ph
n ph E
它的单位是光子数/兆电子伏(1/MeV)。1/Yph表示在闪烁体 中每产生一个光子所消耗的核辐射能量。
I( t ) Ife
τ f和τ s分别为快、慢两种 成分的发光衰减时间; τ f为 ns量级τ s约为数十至数百ns 量级,If和Is分别为快、慢 成分的发光强度。

t f
I se
0.6

t s
闪烁体 BaF2
τ f(ns) τ
6.2
33 2.4
s
(ns)
620

蒽 液闪
370
370 200
处于s10态的激发分子群按一定的平均寿命跃回基态并同时发 出光子。设用τ表示s10态的平均寿命,则激发后t时刻单位 时间内发射的光子数可表示为 I=I0e-t/τ
其中I0为t0时刻单位时间内从s10态跃回基态而发出的光子数。 一般τ是10-8~10-9s量级,故由s10跃回基态的发光过程是相 当快的,称作荧光。
碘 化 钠 晶 体 封 装 示 意 图
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、探测效率
无机闪烁体
• 对带电粒子效率非常高,故一般指 对的探测效率 • 探测效率:原子序数Z大 • 全能峰探测效率:原子序数Z大,能 量分辨好(发光强) • 晶体量能器需测0,效率是指能探 测到多低能量的射线。 发光强度和电子学噪声是关键 有机闪烁体 • 由于材质轻,对射线探测效率低, 主要探测带电粒子。 • 对大面积闪烁体,由于传输衰减, 远端效率较低。 降低甄别阈或提高PMT高压,但同 时增加噪声
测量 符合测量可得效率坪曲线, 以输出幅度最小的区域来确定 PMT的工作高压,一般取坪下边 沿+100V
1
五、时间测量

发光衰减时间快的闪烁体,可以用于定时测量
• 有快成份的无机闪烁体如:BaF2,CsF2等(110ns),可测带电粒子和的时间信息。 • 有机闪烁体,~ns,可做成大面积,探测带电粒子的时 间信息。 • 时间分辨包括电子学系统
6
五、晶体的光输出和均匀性测量


晶体的光输出和 均匀性影响能量 分辨率 用单能源测量
1 S ave 9
N 9 i
Si
S max S min U S ave
7
六、闪烁体的辐照效应

闪烁体在强辐照环境中随着辐 照剂量的增加光输出会减弱。
闪烁体在辐照下,光透过率和 吸收谱发生变化,导致光输出 降低。(颜色发生变化) 一般用比较辐照前后光输出的 变化来标定
Flash ADC可在一个通道中进行高频率(可达1G)多次测量 和A/D转换,将每一个电流脉冲随时间的变化经数字化后计录下 来,即可进行波形信息获取。为脉冲形状辨别粒子开辟了崭新的 空间。
12
例如:
R
i 20 50 i 1
A
50
i
A
i
右图为不同能量γ(电子)和α粒 子Qt ,Qp的分布,及不同能量下的 R。可以看出, 大200KeV时可 以将γ和α明显地区分开来。
11

电荷比较法
对不同的粒子,有不同的电荷比值:Qf/Q,Qs/Q
全部电荷 Qt
A
i t1
t2
i
部分电荷
Q p Ai
i t3
t4
t1为电流脉冲起始时间,t2一般在4s以上,它与能量 大小,脉冲幅度大小有关。 t3 和 t4介于t1,t2之间。 • 设置不同的积分时间 • QADC: 相同积分时间,一路延迟,另一路不延迟 • FADC读出
• 样品的统计性,与原料、工艺 相关。 • 剂量率要尽量与实际使用情况 相当。大剂量率损伤大因不易 恢复 • 辐照后需避光放置几天再测以 减少自发荧光。
8


• 标准的选取与总剂量有关
闪烁体
NaI(T CsI(T l) l)
CsI
BaF2
BGO
GeF
PbWO 4
塑料闪 烁体
累积辐 照剂量 rad
103
5
2. 单光子测量法





采用级联射线源 调节装置,使得一个射线激 发只接受一个光子。这个单光 电子信号的时间分布反映了发 光衰减时间。 保证单光子是关键。设置上甄 别阈,卡掉多光子信号。 调节小窗口,使得小窗口时的 计数率为大窗口的5%,此时 单光子的概率为97%。 精度取决于单光子信号端的 PMT的单光子渡越时间涨落 (~150ps)和时间零点的 精度(~60ps)。 可测多组荧光成份
t A
PM Sc int
N p.e
大面积闪烁体或有光导过渡的探测器,传 输导致光的弥散和衰减,时间分辨变差
2

脉冲前沿过甄别阈的时间受到电子学的 两个因素的影响。
脉冲前沿在阈值区涨落的影响 幅度大小对过阈时间的影响 • 极端情况为脉冲的上升沿 (快PMT~2ns) • 可用电子学(恒比定时甄别器)或 软件方法(同时测幅度,时幅修正)。 • 叠加在前沿的电子学小扰动 多阈值测量,脉冲光滑分析 • 组成脉冲前沿的光电子数目涨落 小块闪烁体,直接到达光阴极的快 光子多,传输时差也小,反映了该闪 3 烁体的本征时间分辨。
发光衰减时间的测量
1. 用快PMT加示波器做相对参考测量

脉冲达到最大值的时刻为
f RC t m RC RC / f ) f ln(



用已知f的闪烁体推算出测量系统的RC,然后再测 量样品的f。 测量中RC应尽量大。 简单但误差大,尤其是参考样品与待测样品的衰减 时间相差较大时;无法确定多组分光的衰减时间
时间分辨的测量


小块闪烁体可采用级联射线源 测量 与粒子的入射能量即光强有关
• 大面积闪烁探测器需考虑位置的影响,
可采用宇宙线。 对塑料闪烁体,传播速度 60ps/cm
• S1尺寸不能大,2cm ~100ps • TDC的门信号直接用S1的信号 4
1 2 tot / 2

优质因子
D FOM W1 W2
ΔD为甄别谱上两峰之间距离,W1、 W2分别为两峰的半高宽。FOM越 大,说明甄别效果越好。
13
二、有机闪烁体的应用
1、闪烁光纤
ቤተ መጻሕፍቲ ባይዱ
近20年来得到两个方面的促进:
• 铅-闪烁光纤电磁量能器的研究。制作简单,造价便宜,性能中等。 • 新型高灵敏度、低噪声的光电器件的突破使得闪烁光纤可以应用于 带电粒子的能量和径迹测量。
103
104
104
104
105
106
105
光输出下降约20%
9
§4-5 闪烁探测器的应用
一、无机闪烁体的应用
1、量能器
• 晶体建造的全吸收型电磁量能器是十分典型的应用 测量光子和电子 2% / E(GeV) 能量分辨可达 • 有机闪烁体作为取样量能器的灵敏层
10
2、粒子鉴别 脉冲形状甄别
PSD(Pulse Shape Discrimination)



光纤结构:
主要由塑料闪烁体制成。 由纤芯部分和包层组成。 只有满足全反射的闪烁光可以 长距离单向传输。3.4% 双涂层闪烁光纤(折射率渐近 减小到1.42)可使光输出效 率提高到5.6%。


不同质量的粒子在闪烁体中具有不同的荧光发射,激发 的光具有不同的发光衰减时间。利用此效应可以进行电 子或γ射线与重粒子(n、等)之间的区分 可用快慢两个成分来描述闪烁体的发光
N (t )
N f ()
f
e
t / f
N s(s ) e t / s
对无机闪烁体, 越重的粒子(电离能力强) 具有较短的发光衰减时间, s变化不大、 f 越快。 对有机闪烁体,则正好相反, f变化不大、 s 越快。
相关文档
最新文档