铸造工艺基础要点

合集下载

铸造工艺基础知识及理论

铸造工艺基础知识及理论

铸造工艺基础知识及理论目录一、基础概念 (2)1.1 铸造的定义与意义 (3)1.2 铸造工艺的种类与应用 (4)二、铸造材料 (6)三、铸造设备 (7)3.1 熔炼设备 (9)3.2 锻造设备 (10)3.3 后处理设备 (11)四、铸造工艺过程 (12)五、铸造工艺设计 (13)5.1 工艺方案的确定 (15)5.2 工艺参数的选择 (16)5.3 工艺文件的编制 (18)六、铸造质量与控制 (20)6.1 铸造缺陷的产生原因及防止措施 (22)6.2 铸造质量检测方法与标准 (23)七、铸造生产与环境 (24)7.1 铸造生产的环保要求 (26)7.2 环保设备的应用与管理 (27)八、现代铸造技术的发展趋势 (28)8.1 快速凝固与近净形铸造技术 (30)8.2 数字化与智能化铸造技术 (31)8.3 生物铸造与绿色铸造技术 (33)一、基础概念铸造工艺是指将熔炼好的液态金属浇入铸型,待其凝固后获得所需形状和性能的金属制品的过程。

它是制造业中非常重要的工艺之一,广泛应用于汽车、航空、建筑、电子等领域。

铸造工艺的基础知识主要包括液态金属的性质、铸型(即模具)的设计与制造、浇注系统、凝固过程以及后处理等。

这些知识是理解和掌握铸造工艺的基本前提。

液态金属的性质:液态金属在铸造过程中的流动性、填充能力、冷却速度等对其最终的产品质量有着决定性的影响。

了解液态金属的成分、温度、粘度等基本性质对于铸造工艺的设计和实践都是非常重要的。

铸型的设计与制造:铸型是形成金属制品形状和内部结构的重要工具。

铸型的设计需要考虑到金属液的流动性和凝固特性,以及制品的精度和表面质量要求。

铸型的制造也需要选用合适的材料,并经过精密加工才能达到设计要求。

浇注系统:浇注系统是连接铸型和液态金属的通道,包括浇口杯、直浇道、横浇道和内浇道等部分。

合理的浇注系统设计可以确保金属液均匀地注入铸型,并有利于热量和气体的排出,从而提高制品的质量和生产效率。

第一章铸造工艺基础

第一章铸造工艺基础

1-3铸造内应力、变形和裂纹
• 铸造内应力:铸件的固态收缩受到阻碍而引起的内应力。 • 残余内应力:一直保持到室温的铸造内应力 • 临时内应力:在冷却过程中暂存的铸造内应力 • 铸造内应力是铸件产生变形和裂纹的基本原因 • 按内应力产生原因不同分为热应力和机械应力 一、铸造内应力的形成 • 介绍热应力和机械应力的产生 1.热应力: • 1)定义:由于铸件的壁厚不均,各部分冷却速度不同,各部分收缩 不一致引起的内应力。 • 2)金属应力状态改变:(金属自高温至室温) • 金属在再结晶温度以上处于塑性状态,在再结晶温度以下处于弹性状 态,再结晶温度是分界点 • 塑性状态降温 弹性状态 • 弹性状态升温 塑性状态
流动性
二、浇注条件 • 1.浇注温度: “决定性”影响 浇温升高充型能力越强 • 实践中可利用此规律对薄壁铸件或流动性较差的合金可适当提高浇温, 提高充型能力 • 浇温也不宜过高,否则易产生缩孔、缩松等缺陷 • 2.充型压力 • 合金受压越大充型能力越强 三、铸型填充条件 • 1.铸型材料: • 铸型导热系数和比热容升高,合金充型能力下降 • 2.铸型温度: • 铸型温度升高减缓冷却速度,充型能力升高 • 3.铸型中气体: • 铸型中气体阻碍液体合金的充型,应减少之.
三、铸件的裂纹与防止 • 铸造内应力超过材料强度极限时产生裂纹 1.热裂 • (1)定义:在高温下形成的裂纹 • (2)形状特征:缝隙宽、形状曲折、缝内呈氧化色 • (3)形成原因:合金完全凝固前固态收缩已开始,晶粒间存在液体, 强度、塑性低 • (4)分布:一般分布在应力集中部位 • (5)主要影响因素:合金性质、铸型阻力 • (6)防止方法①使铸件结构合理②改善铸型和型芯的退让性③减少 浇、冒口对铸件收缩的机械阻碍④内浇口设置符合同时凝固原则⑤减 少合金中有害杂质含量。 2.冷裂 • (1)含义:在低温下形成的裂纹 • (2)形状特征:裂纹细小,呈连续直线状,缝内呈轻微氧化色 • (3)分布:常出现在形状复杂工件的受拉伸部分

铸造培训-铸造基本知识

铸造培训-铸造基本知识

前一页
后一页
回主页
三、铸型充填条件
(1)铸型的材料
(2)铸型温度 铸型温度越高,液态金属与铸型的
温差越小,充型能力越强。 (3)铸型中的气体
前一页
后一页
回主页
§1-2 铸件的凝固与收缩
一、铸件的凝固方式
温度
1. 逐层凝固
2. 糊状凝固 3. 中间凝固 影响铸件凝固方 式的主要因素:
温度
a b c
前一页 后一页 回主页
金属型铸造
金属型铸造是在重力作用下将金属液体浇入金属铸型以 获得铸件的方法。铸型用金属制成,可反复使用,故又称永久 型铸造。
前一页
后一页
回主页
金属型铸造
特点: •节省造型材料, “一型多铸” •精度高,IT12~IT16,Ra<12.5μm •生产率高 •周期长,成本高,工艺参数严格 •无透气性,浇不到、裂纹等缺陷。
这些有别于砂型铸造的其他铸造方法通称为特种铸造。 金属型铸造
挤压铸造 离心铸造 七 种 常 见 的 特 种 铸 造 方 法
回主页
压力铸造
特种铸造 陶瓷型铸造 低压铸造
前一页 后一页
熔模铸造
熔模铸造
在易熔模样表面包覆若干层耐火材料,待其硬化干燥后, 将模样熔去制成中空型壳,经浇注而获得铸件的一种 成形工艺方法。模样材料多位蜡质,又称为失蜡铸造。
前一页
后一页
回主页
低压铸造
1、低压铸造的工艺过程 :
1)准备合金液和铸型 2)升液,浇注。
3)增压凝固。 4)减压、降液。 5)开型取出铸件。
前一页
后一页
回主页
低压铸造
特点:
•充型压力和速度便于控制,适用于各种铸型;

铸造工艺基础(1)

铸造工艺基础(1)

铸造工艺基础一、概述铸造是一种古老而重要的金属加工技术,它是将熔融的金属倒入模具中,待其冷却凝固后形成所需形状的金属零件的过程。

铸造工艺广泛应用于机械、航空、汽车、船舶、电力等工业领域,是制造各种零部件和产品的关键技术之一。

二、铸造工艺流程1.模具设计:根据产品图纸或样品,设计出模具的结构和尺寸。

2.模具制造:按照设计图纸,制造出精确的模具。

3.熔炼金属:将所需的金属材料加热至熔融状态。

4.浇注:将熔融的金属液体倒入模具中。

5.冷却凝固:使金属液体在模具中冷却凝固。

6.脱模:从模具中取出铸件。

7.清理和加工:对铸件进行清理、加工和检验,以满足产品要求。

三、铸造方法1.砂型铸造:利用砂型进行铸造的方法,适用于生产各种形状和尺寸的铸件。

2.金属型铸造:利用金属模具进行铸造的方法,适用于生产中小型、形状简单的铸件。

3.压力铸造:在高压下将熔融的金属注入模具,实现快速凝固和成型的方法,适用于生产小型、高精度、高强度铸件。

4.离心铸造:利用旋转的模具,将熔融的金属注入其中,实现离心浇注的方法,适用于生产管状、套筒状等旋转体铸件。

5.消失模铸造:利用可溶性泡沫塑料制造铸型,将熔融的金属注入其中,待冷却后泡沫塑料溶解,形成铸件的方法。

四、铸造材料铸造常用的材料有铸铁、铸钢、铝合金、铜合金等。

不同的材料具有不同的物理和化学性能,需要根据产品要求选择合适的材料。

五、铸造缺陷及预防措施1.气孔:铸件内部存在气体形成的孔洞,可采用控制熔炼温度和浇注速度、提高模具排气能力等措施预防。

2.缩孔:铸件冷却过程中,由于体积收缩引起的孔洞,可通过控制金属液的补缩量来预防。

3.夹渣和夹砂:铸件表面或内部的渣子和砂粒,可通过控制熔炼温度和时间、保持模具清洁等措施预防。

4.裂纹:铸件冷却过程中产生的裂纹,可通过优化模具设计和制造工艺、控制铸件壁厚等措施预防。

5.组织疏松:铸件内部组织不紧密,可通过控制熔炼温度和浇注温度等措施预防。

铸造工艺设计要点

铸造工艺设计要点

铸造工艺设计1.铸造工艺方法的选择:(1)零件结构特点:主要包括铸件的壁厚大小、形状及重量大小。

砂型铸造不受影大小、重量影响;熔模铸造能铸出最小孔径为0.5mm,最小壁厚为0.3mm,不适合做厚件。

(2)合金种类:熔模铸造可铸造任何合金,对高熔点合金效果更为突出(3)批量大小及交货期限:砂型铸造的生产批量不受限制,特别适合于交货期限较短,批量不大的铸件;熔模铸造生产周期长,但对生产批量限制不大。

(4)铸件技术要求:熔模铸造表面粗糙度可达12.5~3.2μm,砂型铸造为~12.5μm(5)经济分析:当铸件批量小时,砂型铸造费用最低2.铸件浇注位置的选择原则:(1)铸件上的重要工作面和大平面应尽量朝下或垂直安放。

(2)应保证铸件有良好的液态金属导入位置,保证铸件能充满。

(3)保证铸件能自上而下的顺序凝固。

(4)应尽量少用或不用砂芯;若需要使用砂芯时,应保证其安放稳固、通气顺利和检查方便3.铸件的分型面选择:(1)最好将整个铸件安置在同一半型中成型,若铸件不能在同一半型内成型时,应力求将铸件上机械加工面或若干重要的加工面与机械加工初基准面安置在同一半型内成型。

(2)应尽量减少分型面的数目。

(3)应尽量不用或少用砂芯。

(4)分型面应尽量选择平面。

(5)注意减轻铸件清理和机械加工量。

4.铸件机械加工初基准的选择:(1)应尽量选择铸件非加工面为初基准。

(2)应选择加工余量最小或尺寸公差最小的表面为初基准面、(3)应选择铸件尺寸最稳定的表面为加工初基准面。

(4)当铸件上没有合适的初基准时,可增设工艺凸台作为“辅助”基准(工艺基准)5.铸造工艺设计参数:它是指铸造工艺设计时需要确定的某些数据,它包括:(1)铸件机械加工余量:在铸件加工表面上留出,准备切削去的金属层厚度,称为机械加工余量。

其选择与铸造合金种类、铸造方法和生产批量、铸件尺寸大小和加工精度要求、铸件加工面在浇注时的位置有关。

(2)铸造工艺余量:它是为了满足工艺上的某些要求而附加的金属层,主要应用于:a、为保证铸件顺序凝固,有利于冒口补缩,因而在铸件上附加的工艺余量(即补贴);b、为保证铸件机械加工精度和简化铸造工艺、模具结构,对一些需要进行加工、尺寸精度要求搞的小孔、凸缘、台阶以及难以铸造的狭窄沟槽等均以工艺余量的形式,由机械加工直接成型。

铝合金铸造基础知识

铝合金铸造基础知识
R14含硅量多(14-16%),属于过共晶,由于硅含量高,相对应的耐磨性较 好,我厂专门用来生产耐磨性要求较高的拨叉。
5 、铝硅合金中其它元素的作用:
镁:可提高强度和屈服极限,提高了合金的切削加工性。 锌:锌在铝合金中能提高流动性,增加热脆性,降低耐蚀性,故应控制锌的含 量在规定范围中。 铁:铁以FeAl3、Fe2Al7和Al-Si- Fe的片状或针状组织存在于合金中,降低 机械性能,这种组织还会使合金的流动 性减低,热裂性增大,但由于铝合金对模具 的粘附作用十分强烈,当铁含量在 0.6%以下时尤为强烈。当超过0.6%后,粘模现 象便大为减轻,故含铁量一般应控制在0.6~1%范围内对压铸是有好处的,但最高 不能超过1.5%。 锰:锰在铝合金中能减少铁的有害影响,能使铝合金中由铁形成的片状或针状 组织变为细密的晶体组织,故一般铝合金允许有0.5%以下的锰存在。含锰量过高时, 会引起偏析。 镍:镍在铝合金中能提高合金的强度和硬度,降低耐蚀性。镍与铁的作用一样, 能减少合金对模具的熔蚀,同时又能中和铁的有害影响,提高合金的焊接性能。 钛:能显著细化铝合金的晶粒组织,提高合金的机械性能,降低合的热裂倾向。
三.铸造基本知识
1、定义:铸造就是液态金属的一种成型方式。 2、铸造的分类: 铸造的种类较多,有传统的砂型铸造、重力铸造、熔模铸造、高压铸造、低压铸造、 消失模具铸造、离心铸造、陶瓷型铸造、连续铸造等。 3、我厂采用的铸造方法主要有以下几种: ⑴、金属型铸造(重力铸造) 金属型铸造又称硬模铸造,它是将液体金属浇入金属铸型,在重力的作用下结晶凝固 以获得铸件的一种铸造方法。凝固顺序是自下而上的。 ⑵、高压铸造 压力铸造是将液态或半液态金属, 在高压作用下, 以高的速度填充压铸模的型腔, 并在压力下快速凝固而获得铸件的一种方法。压铸时常用压力是从几兆帕至几十兆帕 (即几十到几百个大气压) , 填充初始速度在 0.5~70m/s 范围内。因此, 高压和高速 是压铸法与其他铸造法的根本区别, 也是重要特征 。

熔模铸造的工艺设计要点及注意事项

熔模铸造的工艺设计要点及注意事项

熔模铸造的工艺设计要点及注意事项熔模铸造是一种常见的铸造工艺,它可以制造出形状复杂、尺寸精确的金属零件。

以下是熔模铸造的工艺设计要点及注意事项。

1. 材料选择:熔模铸造通常使用耐火材料制作模具,如陶瓷、石膏等。

要根据所需零件的材料选择合适的熔模材料,并确保其能够承受高温和金属液体的侵蚀。

2. 模具设计:模具的设计要考虑到零件的形状、尺寸和表面质量要求。

模具应具有足够的强度和刚度,以抵抗金属液体的压力和温度变化。

同时,还应考虑到材料浇注和铸造后的冷却收缩等因素,并合理设置浇口、排气口和浇筑系统。

3. 浇注温度控制:熔模铸造的关键是要控制好金属液体的浇注温度。

过高的温度会导致铸件表面粗糙,过低的温度则会引起金属流动的困难。

因此,在铸造前,需要对金属液体进行合适的预热和测温,确保温度控制在合适的范围内。

4. 熔模烧结:熔模铸造的首要步骤是烧结模具。

烧结过程需要控制好温度和时间,以保证模具能够具备足够的强度和耐火性。

烧结后,还需要进行模具的表面修整和涂料处理,以提高模具的表面质量和涂层的粘附力。

5. 金属液体的浇注:对金属液体进行浇注时,需要注意浇注速度和浇注方式。

过快的浇注速度会引起金属液体剧烈冲击模具,容易导致模具破裂或产生气孔和夹杂物。

而过慢的浇注速度则会导致金属液体凝固不完全。

此外,还需注意金属液体的均匀浇注,避免产生冷隔。

6. 冷却和晾热处理:在铸造完成后,需要对铸件进行冷却和晾热处理。

冷却过程应缓慢进行,以防止因温度变化引起的热应力和变形。

晾热处理有助于提高铸件的机械性能和组织均匀性。

总之,熔模铸造的工艺设计要点及注意事项包括材料选择、模具设计、浇注温度控制、熔模烧结、金属液体的浇注和冷却晾热处理等。

合理的工艺设计能够确保铸件的质量和精度,提高生产效率和产品品质。

继续写:7. 模具温度控制:熔模铸造中,模具温度的控制是非常重要的。

模具的温度过高会导致模具磨损加剧,模具寿命减少,并且可能引起铸件的气孔和缺陷。

工程材料及成形工艺 第3版 第9章 铸造

工程材料及成形工艺 第3版 第9章 铸造
第9章 铸 造
9.1 铸造工艺基础 9.2 砂型铸造 9.3 铸造工艺 9.4 铸件的结构工艺性 9.5 特种铸造
9.1 铸造工艺基础
9.1.1 铸造概念
将液态合金浇注到与零件形状、尺寸相适应的
铸型空腔中,待其冷却凝固,以获得毛坯或零件的
生产方法称为铸造。
铸造的基本过程:
液态 金属
充型
凝固 收缩
铸件
哇,铸造真简单!!
与其它成型方法相比,铸造在机器制造业中应用极其广 泛。在机床、内燃机、重型机器中,铸件重量占70~90%;在 风机、压缩机中铸件重量占60~80%;在农业机械中铸件占 40~70%;在汽车中铸件占20~30%。
铸造具有如下优点:
1.适于复杂零件:适于用来生产复杂外形复杂内腔的 零件。
9.1.2 合金的铸造性能
1 合金的流动性
流动性是液态金属充满铸型型腔, 获得形状完整、轮廓清晰铸件的基本条 件。流动性好的合金,充型能力强,流 动性差的合金,充型能力差。如果金属 的流动性不足,则会在金属液还未充满 铸型前就停止了流动,使铸件产生浇注
不足或冷隔缺陷。
影响流动性的因素主要有: (1)合金的成分(2)浇注条件 (3)铸型条件 (4)铸件结构
机 器 造 型
过 程
水 管 接 头
下 型 的
3、砂芯制造
砂芯的主要作用是形成铸 件的内腔,有时也形成铸件的 局部外形。砂芯用芯盒制造。
刷涂料:提高耐高温性, 防止粘砂。
烘干:提高强度和透气性。
4、合 型
将上型、下型、砂芯 组合在一起的过程称为合 型,又称合箱。
合型工作包括: ①铸型的检查; 压铁 ②下芯; ③合上下型; ④上、下型的定位; ⑤铸型的紧固。

金属铸造知识点总结

金属铸造知识点总结

金属铸造知识点总结金属铸造的基础知识点包括:原料准备、模具设计、熔炼、铸造工艺及后处理等方面。

下面将对这些知识点做一一总结。

1. 原料准备铸造的原料主要包括金属合金和模具材料。

(1)金属合金金属合金是用于铸造的主要原料,它可以根据不同的需求进行选择。

常见的金属合金包括铝合金、铜合金、镁合金、锌合金、钢铁等。

每种金属合金的特性不同,适用于不同的工程应用。

铸造的金属合金选择要考虑材料的强度、耐腐蚀性、硬度、热膨胀系数等因素。

此外,不同金属合金的熔点也有所不同,需要根据熔炼设备的条件做出合适的选择。

(2)模具材料模具是用来容纳熔化金属,并在冷却后形成所需形状的工具。

模具材料需要具有一定的强度和耐磨损性。

常见的模具材料包括铸铁、钢材和耐磨陶瓷等。

选择模具材料时需要考虑成本、使用寿命、热传导性能等因素。

2. 模具设计模具的设计是金属铸造中非常重要的一环,它直接影响着铸件的形状、尺寸和表面质量。

(1)模具结构模具的结构一般包括上模、下模以及芯子等部件。

其结构应该考虑到金属液体流动路径、气体排出、冷却等因素。

(2)模具制造模具的制造一般采用铸造、钳工、数控加工等工艺。

模具表面需要经过精密的加工,以保证铸件的尺寸和表面质量。

3. 熔炼金属铸造的熔炼是指将所选金属合金加热至其熔点并熔化成液态,以便进行后续的注入模具。

(1)熔炼设备熔炼设备一般包括电弧炉、感应炉、熔化炉等。

选择合适的熔炼设备需要考虑到金属合金的种类、批量、能源消耗等因素。

(2)金属液体处理金属液体在熔炼过程中需要进行去气、除渣、合金调配等处理。

去气和除渣可以通过气体吹炼、剧烈搅拌等方式进行,而合金调配则是通过添加不同的合金元素来调整金属的化学成分以满足工程要求。

4. 铸造工艺铸造工艺是金属铸造过程中最核心的部分,包括金属液体的注入、冷却和凝固等环节。

(1)液态金属的注入液态金属在熔炼后,需要通过合适的工艺设备(如浇注杯、浇口等)注入到模具中。

注入工艺需要考虑金属的流动路径、气体排出和避免金属渗漏等问题。

材料成形技术1-1.铸造工艺基础

材料成形技术1-1.铸造工艺基础
2020/12/10
同时凝固
2020/12/10
3、铸件的变形与裂纹
铸造应力大于屈服强度 铸造应力大于抗拉强度
变形 裂纹
2020/12/10
(1)铸件的变形
2020/12/10
防止变形方法
• 设计铸件时壁厚均匀,形状对称。 • 工艺上采取同时凝固。 • 模型制成与铸件变形相反的形状,抵消
铸件变形。 • 时效。
(1)(2)体收缩:从液态到常温体积改 变量。 (3)线收缩:固态合金由高温到常温的 尺寸改变量。 各种合金收缩率及其计算见5、6页。
影响收缩的因素
1)化学成分 碳钢:含碳量增加,凝固收缩增加,固态收
缩略减; 灰铸铁:碳、硅增加,收缩率减小;
硫阻碍石墨化,增加收缩率。 2)浇注温度 3)铸件结构和铸型条件
(1)合金的流动性 ——液态合金的流动能力。
2020/12/10
2020/12/10
决定合金流动性的因素
1)合金的种类 熔点:高熔点合金凝固快,流动性差。 导热率 液体粘度
2020/12/10
2)合金的成分
2020/12/10
3)杂质与含气量
2020/12/10
(2)浇注条件
• 浇注温度 灰铸铁:1200℃~1380℃ 铸钢:1520℃~1620℃ 铝合金:680℃~780℃
合金的液态收缩和凝固收缩越大(铸钢 、白口铁、铝青铜),越容易形成缩孔 。
浇注温度高,液态收缩大,容易形成缩 孔。
结晶温度范围宽的合金,倾向于糊状凝 固,易形成缩松。纯金属和共晶合金倾 向于逐层凝固,易形成集中缩孔。
2020/12/10
(2)缩孔和缩松的防止
2020/12/10
2020/12/10

铸造必备基础知识

铸造必备基础知识

铸造必备基础知识在进行铸造工艺之前,了解铸造必备的基础知识是非常重要的。

本文将介绍铸造工艺的基本概念、材料选择、铸造方法、设计和工艺控制等方面的知识。

一、铸造的基本概念铸造是指将熔化的金属或非金属材料,通过浇筑或其他注入方式,借助于一定形状的模具,在其冷却过程中制成所需的零件或产品的工艺过程。

铸造是制造业中最常用的成型方法之一,具有形状复杂、尺寸精确、材料多样化等优点。

二、材料选择在铸造中,常用的金属材料包括铁、铜、铝、锌等。

选择合适的材料取决于产品的需求,如机械性能、耐腐蚀性、导电性等。

此外,还要考虑材料的可铸造性,如熔点、流动性等特性。

三、铸造方法铸造方法主要分为砂型铸造、金属型铸造和持续铸造等几种。

砂型铸造是最常见的一种,通过在模具中填充湿砂,形成铸型,然后在铸型中浇注熔化的金属。

金属型铸造主要用于高温合金和特殊材料的铸造。

持续铸造适用于大量生产和连续铸造的情况。

四、设计和工艺控制在进行铸造产品的设计时,需要考虑模具的结构、冷却方式、缩孔和气孔等缺陷的预防。

同时,还需要进行合理的工艺控制,如控制熔化温度、浇注速度、冷却时间等,来保证产品的质量。

五、常见问题和解决方法在铸造过程中,常见的问题包括缺陷、变形和裂纹等。

要解决这些问题,可以采用改进模具设计、增加冷却措施、调整工艺参数等方法。

六、铸造在工业中的应用铸造广泛应用于机械制造、汽车、航空航天、建筑等领域。

铸造的发展还推动了材料科学和工艺技术的进步。

七、总结铸造是一种常见且重要的制造方法,它具有成本低、生产效率高等特点。

在进行铸造前,了解铸造的基本概念、材料选择、铸造方法、设计和工艺控制等方面的知识是必不可少的,有助于提高产品的质量和生产效率。

随着科技的不断进步,铸造技术也在不断革新,为各行各业的发展做出了重要贡献。

铸造工艺技术要点

铸造工艺技术要点

铸造工艺技术要点铸造工艺是一种通过将液态金属或合金注入到模具中,然后通过凝固和冷却使其成型的工艺。

它是制造金属零件和组件的重要方法之一。

以下是铸造工艺技术的一些要点:1. 材料选择:铸造的主要材料是金属或合金。

在选择材料时,需要考虑应用环境、工作温度、强度要求等因素。

常用的铸造材料有铁、铝、镁、铜等。

2. 模具设计:模具是铸造过程中非常重要的工具,它决定了最终产品的形状。

模具设计需要考虑产品的形状、尺寸、壁厚等因素,并确保模具的强度和耐用性。

3. 熔炼和准备金属:在铸造过程中,需要熔炼原材料以得到液态金属。

这个过程通常在高温下进行,通常使用电炉或燃煤炉进行。

熔炼后,金属被倒入预先准备好的浇口中。

4. 浇注和充填:一旦金属熔化,它将通过浇口注入到模具中。

浇口的大小和位置要经过合理的设计,以确保金属能够充分填充模具的空腔。

充填过程需要控制浇注速度和温度,避免产生气泡和缺陷。

5. 凝固和冷却:一旦金属进入模具,它会开始凝固和冷却。

这个过程需要控制好时间和温度,以确保金属能够完全凝固并达到所需的机械性能。

通常,凝固和冷却的过程是自然进行的,但也可以通过加热或冷却设备来加速。

6. 脱模和后续处理:一旦金属凝固,模具可以打开,并将铸件取出。

在脱模过程中需要小心操作,以避免破坏铸件的形状。

取出后,铸件可能需要进行修整、抛光、热处理等后续步骤,以达到最终的要求。

7. 检验和质量控制:铸造工艺中的质量控制非常重要。

铸件需要经过非破坏性和破坏性的检测,以确保其尺寸、密度和机械性能符合要求。

常用的检测方法包括X射线检测、磁粉检测、超声波检测等。

8. 设备和工艺改进:铸造工艺技术在不断发展和改进中。

随着新材料和新工艺的引入,铸造设备和工艺也在不断提升。

例如,电磁搅拌技术可以提高液态金属的均匀性,数控铸造技术可以提高铸件的精度。

总结来说,铸造工艺技术在金属制造领域具有重要作用。

通过合理的材料选择、模具设计、熔炼、浇注、凝固、冷却、脱模、后续处理、检验和质量控制等步骤,可以获得质量优良的铸件。

机械制造2-1 铸造工艺基础知识

机械制造2-1 铸造工艺基础知识

10
2.1
铸造的工艺基础知识
• 2.1.1 液态合金的充型 合金流动性的定义
流动性是指液态(熔融)金属的流动能力。 它是影响液态金属充型能力的主要因素之一, 也是合金的主要铸造性能之一。
11
2.1
铸造的工艺基础知识
• 2.1.1 液态合金的充型 合金流动性的测量方法
常用浇注标准螺旋形试样的方法进行测定。 螺旋形试样的长度越长,则液态合金的流动性越好。 常用合金的螺旋形试样的长度数值见P11表2-1。
22
充型能力的影响因素
主要影响因素:铸型条件和浇注条件 2.浇注条件:
浇注条件又与浇注系统结构、浇注温度和充型压力有关。 (2)浇注温度: 浇注温度越高,合金保持液态的时 间越长,金属液粘度降低,杂质容 易上浮或溶解,故合金流动性好, 充型能力强。但浇注温度过高,液 态合金收缩增大,吸收气体多,氧 化严重,流动性反而会下降。因此 在保证流动性的前提下,浇注温度 应尽可能低一些。
25
砂型铸造的充型压力由 直浇道的静压力产生。
2.1
铸造的工艺基础知识
• 2.1.2 铸件的凝固与收缩
浇入铸型型腔的液态金属在冷凝过程中,如果其 液态收缩和凝固收缩得不到补充,铸件将产生缩孔 或缩松等铸造缺陷。因此,必须合理地控制铸件的 凝固过程。 1. 铸件的凝固方式 铸件的凝固: 液态合金转变为固态铸件的过程称为铸件的凝固。
阶段的收缩。用体收缩率表示。合金的结晶温度范围越大, 体收缩率也越大。液态收缩和凝固收缩时金属液体积缩小, 是形成缩孔和缩松的基本原因。
a)
a) 合金状态图
b)
c)
b) 一定温度范围合金 c) 共晶合金
图2-6 铸造合金收缩过程示意图

铸造基础知识总结

铸造基础知识总结

铸造——将液体金属浇注到具有与零件形状相应的铸型型腔中,待其冷却凝固后获得铸件的方法。

作为一种成型工艺,熔铸的基本优点在于液态金属的抗剪应力很小,易于成型。

优点:1、原材料来源广,价格低廉,如废钢、废件、切屑等;生产成本低,与其它成形工艺相比,铸造具有明显的优势。

2、铸造是金属液态成形,因此可生产形状十分复杂,尤其是具有复杂内腔的各种尺寸规格的毛坯或零件。

3、铸件的形状尺寸与零件非常接近,减少了切削量,属于无切削加工;4、铸件的大小、重量及生产批量不受限制,可生产多种金属或合金的产品,比较灵活。

5、应用广泛,农业机械中40%~70%、机床中70%~80%的重量都是铸件。

缺点:1、铸件的力学性能不如相同化学成分的锻件好2、铸件质量不够稳定,工序多,影响因素复杂,工艺过程较难控制。

3、制品中有各种缺陷与不足。

微观组织随位置变化,化学成分随位置变化。

如铸件内部常存在气孔、缩孔、缩松、夹杂、砂眼和裂纹等缺陷。

4、尺寸精度较低。

5、铸造生产的劳动条件较差。

砂型铸造中,单件、小批量生产,工人劳动强度大砂型铸造——是以砂为主要造型材料制备铸型的一种铸造方法。

主要工序为:制作模样及型芯盒,配制型砂、芯砂,造型、造芯及合箱,熔化与浇注,铸件的清理与检查等。

简述砂型铸造的基本工艺过程。

(1)造型:用型砂及模样等工艺设备制造铸型。

通常分为手工造型和机器造型。

造芯、涂料、开设浇注系统、合型。

(2)熔炼与浇注熔炼:使金属由固态转变为熔融状态。

浇注:将熔融金属从浇包注入铸型。

(3)落砂与清理落砂:用手工或机械使铸件与型砂、砂箱分开。

清理:落砂后在铸件上清理表面粘砂、型砂、表面金属等。

金属型铸造——将液态金属浇入金属材料制成的铸型中以获得铸件的方法。

优点:1、尺寸精度高,表面质量好,机械加工余量小;2、金属型导热性好,冷却速度快,铸件晶粒细小,力学性能好;3、一型多铸,生产效率高,易于机械化或自动化;4、节省造型材料,环境污染小,劳动条件好。

铸造知识点大全

铸造知识点大全

铸造知识点大全铸造是一种将熔化的金属或合金倒入模具中,然后冷却凝固使其成型的制造工艺。

它是制造业中最古老、最常用的工艺之一。

本文将介绍铸造的主要知识点,帮助读者对铸造工艺有更深入的了解。

1. 铸造基础知识铸造的基础知识包括铸造工艺分类、铸造材料、模具制造等内容。

1.1 铸造工艺分类铸造工艺一般可以分为压力铸造、重力铸造、连续铸造和特殊铸造等。

每种工艺都有其特点和适用范围。

•压力铸造:通过施加压力使熔化金属充满模腔,并提高铸件的致密性。

常见的压力铸造方法包括压铸和挤压铸造。

•重力铸造:利用重力作用使熔化金属流入模腔。

重力铸造包括砂型铸造、金属型铸造和熔模铸造等。

•连续铸造:连续铸造是指连续地制造相同形状和尺寸的铸件,例如连铸和直接浇铸等。

•特殊铸造:特殊铸造是指一些特殊的铸造工艺,例如真空铸造、气体压铸和低压铸造等。

1.2 铸造材料铸造材料主要包括金属和非金属材料。

•金属材料:常见的金属铸造材料有铁、铝、铜、镁等。

不同的金属材料具有不同的特性和应用领域。

•非金属材料:非金属铸造材料包括陶瓷、塑料、橡胶等。

这些材料在一些特殊的铸造工艺中被广泛应用。

1.3 模具制造模具是铸造过程中的关键设备,它决定了铸件的形状和尺寸精度。

模具制造包括模具设计、材料选择和加工工艺等环节。

•模具设计:模具设计依据铸件的形状和尺寸要求,确定模具的结构和尺寸。

•材料选择:模具材料应具有高温强度、耐磨性和导热性等特性。

•加工工艺:模具加工工艺包括铣削、车削、磨削等工艺,以保证模具精度和表面质量。

2. 铸造工艺流程铸造工艺流程是指从原料准备到铸件成型的整个过程。

它包括模具制备、熔炼、浇注和冷却等阶段。

2.1 模具制备模具制备是铸造工艺流程的第一步,主要包括模具设计、材料选择和加工制造等。

2.2 熔炼熔炼是将金属原料加热至熔点并使其熔化的过程。

熔炼设备常用的有电炉、煤气炉和电阻炉等。

2.3 浇注浇注是指将熔化的金属倒入模具中,填充模腔。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铸造工艺基础知识一、铸造方法常见的铸造方法有以下几种:1、砂型铸造:砂型铸造是将原砂和粘结剂、辅助材料按一定比例混制好以后,用模型造出砂型,浇入液体金属而形成铸件的一种方法。

砂型铸造是应用最普遍的一种铸造方法。

2、熔模铸造:熔模铸造又称“失蜡铸造”,通常是在蜡模表面涂上数层耐火材料,待其硬化干燥后,将其中的蜡模熔去而制成型壳,再经过焙烧,然后进行浇注,而获得铸件的一种方法。

由于获得的铸件具有较高的尺寸精度和表面粗糙度,所以又称“熔模精密铸造”。

3、金属型铸造:金属型铸造又称硬模铸造,它是将液体金属用重力浇注法浇入金属铸型,以获得铸件的一种铸造方法。

所以又称“重力铸造”。

4、低压铸造:低压铸造是液体金属在压力作用下由下而上的充填型腔,以形成铸件的一种方法。

由于所用的压力较低,所以叫低压铸造。

5、压力铸造:压力铸造简称压铸,是在高压作用下,使液态或半液态金属以较高的速度充填压铸型型腔,并在压力作用下凝固而获得铸件的一种方法。

6、离心铸造:离心铸造是将液体金属浇入旋转的铸型中,使液体金属在离心力的作用下充填铸型和凝固成形的一种铸造方法。

7、连续铸造:连续铸造是将熔融的金属不断浇入一种叫做结晶器的特殊金属型中,凝固了的铸件连续不断的从结晶器的另一端拉出,从而获得任意长度或特定长度铸件的一种方法。

8、消失模铸造:消失模铸造是采用泡沫气化模造型,浇注前不用取出模型,直接往模型上浇注金属液,模型在高温下气化,腾出空间由金属液充填成型的一种铸造方法。

也叫“实型铸造”。

二、零件结构的铸造工艺性分析零件结构的铸造工艺性通常指的是零件的本身结构应符合铸造生产的要求,既便于整个铸造工艺过程的进行,又利于保证产品质量。

对产品零件图进行分析有两方面的作用:第一,审查零件结构是否符合铸造生产的工艺要求。

因为零件的设计者往往不完全了解铸造工艺。

如发现结构设计有不合理的地方,就要与有关方面进行研究,在不影响使用要求的前提下,予以改进。

这对简化工艺过程、保证质量及降低成本均有极大作用。

第二,在既定的零件结构条件下,考虑在铸造过程中可能出现的主要缺陷,在工艺设计中采取相应工艺措施予以避免。

(一)从避免缺陷方面审查铸件结构的合理性1、铸件应有合理的壁厚每一种合金都有其适宜的壁厚范围。

壁厚太薄,容易出现浇不足;太厚,容易出现晶粒粗大,机械性能降低。

2、铸件收缩时不应有严重阻碍,注意壁厚的过渡和铸造圆角铸件厚薄相接、拐弯、交接之处,都应采取逐渐过渡和转变的形式,并应采用较大圆角相连接,以免造成突然转变以及应力集中,引起裂纹等缺陷。

对于牌号较高、收缩大的合金铸件尤其注意,以防止因严重阻碍铸件收缩而造成裂纹。

3、内壁厚度应小于外壁厚度铸件内部的筋和壁等,散热条件较差,因此应比外壁薄些,以便使整个铸件的外壁和内壁能均匀的冷却,防止产生内应力和裂纹。

4、壁厚力求均匀,减少厚大部分,防止形成热节如果壁厚不均匀,铸件冷却也不均匀,在交接处易产生内应力、易于形成缩松、缩孔和裂纹。

5、有利于补缩和实现顺序凝固对于厚大件,应根据零件特点,设置冒口,进行补缩。

6、注意防止铸件的翘曲变形对于细长件、大的平板件,在铸件收缩时,由于冷却不一致,很容易引起翘曲变形。

应多布置加强筋,防止此类变形。

7、避免水平方向出现较大的平面在浇注时,水平大平面液流上升速度很慢,较长时间烘烤铸型顶面,极易造成夹砂、浇不足等缺陷,也不利于金属夹杂物和气体的排出。

(二)从简化铸造工艺过程角度审查零件结构的工艺性1、改进妨碍起模的凸台、凸缘、筋板的结构铸件侧壁上的凸台(搭子)、凸缘、筋板等,常常妨碍起模,不得不增加砂芯。

所以,尽量改进,以简化铸造模具。

2、尽量取消铸件外表侧凹铸件侧壁上如有凹入部分,常常妨碍起模,不得不增加砂芯。

所以,尽量改进,以简化铸造模具。

3、改进铸件内腔结构,减少砂芯数量4、减少和简化分型面尽量采用平直分型面,减少曲面分型。

5、有利于砂芯的固定和排气底面有利于砂芯固定,顶面有利于砂芯排气。

6、去除不必要的圆角有些外圆角对铸件质量影响不大,但却对造型和制芯等工艺过程有不良效果,应予以去除。

三、造型、制芯方法产品零件设计结束后,应根据产品结构及铸造厂的实际情况,确定合理的造型、制芯方式。

以下简单介绍当前广泛应用的各种造型、制芯方式。

(一)造型方法1、手工造型(手工粘土砂、手工树脂砂)手工造型适宜于简单、小批量多品种铸件。

砂型硬度低,表面粗糙度、尺寸精度差,效率低。

2、普通机器造型(Z145、Z148、Z1410等)普通机器造型适宜于批量较大、产品要求较高的铸件。

砂型硬度中等,表面粗糙度、尺寸精度较好,效率较高。

3、高压造型(平压头、成型压头、多触头)高压造型适宜于批量不大、尺寸较大的铸件。

砂型硬度高、表面粗糙度、尺寸精度较好,效率较高。

4、水平分型流水线造型(静压线、KW线)水平分型流水线造型适宜于大批量、复杂铸件。

砂型硬度很高、表面粗糙度、尺寸精度很好,效率很高。

5、垂直分型流水线造型(DISA线)垂直分型流水线造型适宜于大批量、尺寸中等及较小的铸件,尤其适宜于球铁件。

砂型硬度很高、表面粗糙度、尺寸精度很好,效率很高。

(二)制芯方法1、手工制芯(粘土砂、合脂油、树脂砂)手工制芯适宜于简单、小批量铸件。

表面粗糙度、尺寸精度差,效率低。

2、热芯盒制芯(6kg、12kg、25kg、40kg、100kg)热芯盒制芯是将混制好的热芯砂(或覆膜砂)通过热芯盒射芯机射入热芯盒模具内,在220-260℃下保温一段时间,然后开模取出成品砂芯的一种制芯方式。

热芯盒制芯目前应用广泛,它的适用范围很广,几乎所有砂芯都可以用它制作。

砂芯强度很高,表面粗糙度、尺寸精度很好,效率很高。

3、壳芯盒制芯壳芯盒制芯是将成品覆膜砂通过壳芯机射入壳芯盒模具内,待周边形成8mm左右硬壳后,旋转,倒出剩余余砂,在220-260℃下保温一段时间,然后开模取出成品砂芯的一种制芯方式。

壳芯盒制芯应用范围也很广泛,主要应用于简单、圆周类砂芯。

砂芯强度很高,表面粗糙度、尺寸精度很好,效率很高。

4、冷芯盒制芯冷芯盒制芯是将混制好的冷芯砂通过冷芯盒射芯机射入冷芯盒内,然后吹入气体(三乙胺或二氧化硫)固化的一种制芯方式,因为它在常温下固化,所以叫冷芯盒制芯。

冷芯盒制芯是目前应用最广泛的一种制芯方式,几乎所有砂芯都可以用它制作。

砂芯强度很高,表面粗糙度、尺寸精度很好,效率很高。

砂芯发气量低、溃散性好。

四、砂型铸造铸件浇注位置的确定铸件的浇注位置是指浇注时铸件在型内所处的位置。

浇注位置的确定是铸造工艺设计中重要的一环,关系到铸件的质量能否得到保证,也涉及铸件尺寸精度以及造型工艺过程。

1、铸件的重要加工面应朝下或呈侧立面这是因为气孔、非金属夹杂物等容易出现在上表面,铸件向下的底面和侧立面通常比较光洁,出现缺陷的可能性小,而且底面组织致密。

2、尽可能使铸件的大平面朝下,以避免形成夹砂和夹杂缺陷对于大的平板类铸件,必要时可采用倾斜浇注,以增加液体金属的上升速度,防止夹砂缺陷。

3、应保证铸件能充满铸件很薄的部分应朝下。

4、应有利于实现顺序凝固对厚薄不均、易于形成缩孔、缩松或质量要求较高的铸件,浇注位置的选择应有利于实现顺序凝固。

5、应尽可能避免使用吊砂、吊芯或悬臂式砂芯6、应使合箱位置、浇注位置和铸件的冷却位置相一致针对手工生产,与机器造型及流水线造型无关。

五、分型面的选择分型面是指两半铸型相互接触的表面。

除了实型铸造法以外,都要选择分型面。

有时是平面,有时是曲面。

1、应尽量使铸件全部或大部置于同一半型内两半型铸件总是或多或少有一些错移,影响铸件尺寸精度。

2、应尽量减少分型面的数目此指手工多箱造型。

3、便于下芯、合箱及检查型腔尺寸因此,应尽量把主要砂芯放在下半砂箱中。

4、应注意减轻落砂、清理和机械加工的工作量应尽量减小分型面飞边、披缝。

六、砂芯设计砂芯设计在铸造工艺中很关键,它直接影响着铸件的尺寸精度以及相互关联尺寸。

1、涂料层厚度应根据每个厂家的具体情况、涂料种类,确定相应的涂料层厚度。

在模具设计中予以增加涂料层厚度。

2、芯头间隙应根据芯头大小和具体结构,选择合理的芯头间隙。

一般控制在0.1-0.5mm之间。

上芯头间隙大,下芯头间隙小。

3、芯头斜度为方便合箱,砂芯芯头要设计拔模斜度。

一般上芯头斜度大,下芯头斜度小。

4、特殊定位芯头对于有方向要求的圆芯头,必须设计缺口定位,以保证产品内部形状方向准确。

5、压环设计为保证砂型能紧紧压住砂芯,经常在上模样芯头顶面设计一圈半圆凹沟,造型后在上模型形成一凸起环形砂,合箱后能紧紧压住砂芯,芯头定位牢固。

6、防压环设计在模样水平芯头靠近模样的根部,设计凸起圆环,高度为0.5-1mm,宽度为5-10mm。

造型后,相应部位形成一下凹的环状缝隙。

下芯、合箱时,它可防止此处砂型被压塌,因而可防止掉砂缺陷。

7、挤砂槽设计在下模样芯头边缘设计一道凸起圆环,深度约2-5mm。

造型后,在砂型内形成一环凹槽,用来存放个别散落砂粒。

七、铸造工艺参数设计1、铸造收缩率影响铸造收缩率的因素很多,如:合金的种类及成分,铸件冷却、收缩时受到阻力的大小,冷却条件的差异等。

每个铸造厂家,应根据自己的生产条件,确定合适的铸造收缩率。

一般,铸铁取1℅。

2、机械加工余量在铸件加工表面上留出的、准备切去的金属层厚度,称为机械加工余量。

机械加工余量应根据铸件大小、造型方式所达到的铸件精度、加工表面所处的浇注位置、铸件结构而确定。

3、拔模斜度影响拔模斜度的因素也很多。

如:铸件大小、模样高度、模样的表面粗糙度、造型方式等。

一般取30′- 3°。

4、最小铸出孔及槽应根据模具表面粗糙度、拔模斜度、孔的深度等,来确定最小铸出孔及槽。

铸铁件流水线造型能铸出12-15mm的最小孔及槽。

5、工艺补正量对于需加工孔的圆凸台、棋子,设计图纸尺寸往往偏小,铸造时需人为加大尺寸,此即工艺补正量。

6、分型负数对于干模及树脂砂生产的大铸件,在合箱时为了防止跑火,在分型面处常常用石棉绳或其它东西密封,容易垫高砂型,影响铸件尺寸。

所以设计模样时,往往在分型面处人为减小模样尺寸,此即分型负数。

7、反变形量在铸造较大平板类、床身类铸件时,由于冷却速度的不均匀性,铸件冷却后常出现变形。

在制造模样时,按铸件可能产生变形的相反方向做出反变形模样,使铸件冷却后变形的结果正好将反变形抵消。

此予变形量即反变形量。

8、砂芯负数大芯盒制芯时,由于分盒面接触面积太大,制出的砂芯总是或多或少有一定披缝,砂芯尺寸比模具尺寸大。

所以,设计芯盒时,人为减小一定尺寸,此即砂芯负数。

射芯机制芯一般取0.2-0.3mm。

八、浇注系统设计1、浇口杯设计(1)浇口杯形状浇口杯形状分为漏斗形和池形两大类。

漏斗形简单,挡渣作用小,主要用于小型铸铁件及铸钢件。

相关文档
最新文档