06 刚体动力学 I
刚体动力学
●
刚体基本动力学量
现在取 Axyz 坐标系为一个平动参考系 , 则刚体上的 R 点相对速度为 v r R =× R
dV
【定理】刚体相对动量为 p r =× mt R C
证明:pr =∫ v r R dV =∫ × R R dV
=×∫ R R dV =×m t RC(证毕)
⇒ L'A =∫ R2 I − R R ⋅ R dV =[∫ R2 I − R R R dV ]⋅
= J A⋅
(证毕)
1 1 ' 【定理】刚体相对动能为 T r = ⋅L A= ⋅J A⋅ 2 2
证明: T r=
1 1 2 v r R dV = ∫ v r⋅v r R dV ∫ 2 2 1 1 × R ⋅ v R dV = R × v r ⋅ R dV ∫ ∫ r 2 2
【推论】匀质刚体如果有一过 A 的镜像对称面,则过 A 且 与该镜像面垂直的轴是主轴;如果过 A 有两个正交的 镜像面,则两镜像面过 A 点的法线以及镜像面的交线 构成主轴系;匀质旋转体的旋转轴和任意与之正交的 两正交轴构成主轴系 . (请自己根据定义证明) 【定理】假定角速度在主轴坐标系下表示为
d d' J A⋅ 是矢量, J A⋅ = J A⋅× J A⋅ dt dt
⇒⋯⇒ J A⋅ = J XZ X J YZ Y J ZZ Z = ˙ Z ˙
d e ⋅M A ⇒ Z⋅ J A⋅= J ZZ = ≡M Z ¨ Z dt
2
J lk = J kl
(证毕)
因为:
lk =kl , Rl R k = Rk Rl
注:一般把 Jlk 称为惯量系数,由于对称性,只有 6 个是独立的 注:如果 AXYZ 不是固连在刚体上的坐标系,则 R 相对 AXYZ 有 转动,那么在 AXYZ 上看到的质量分布一般会随时间改变, 故在这个坐标系中惯量系数依赖于时间 . 注:如果 AXYZ 不是固连在刚体上的坐标系,在少数有良好对称性 的情况下 AXYZ 上看到的质量分布可能不随时间改变,此时在 这个坐标系中惯量系数是常数 .
刚体动力学
以上论及的只是单刚体动力学。由于现代科学技术的发展,多刚体系统动力学的研究也正在开展中(见多刚 体系统)。
参考文献
1、词条作者:陈滨.《中国大百科全书》74卷(第一版)力学词条:刚体动力学:中国大百科全书出版社, 1987 :168-170页.
谢谢观看
逐项类比。同质点质量m对应的量是Iz。m是质点运动时惯性的度量;Iz则是刚体定轴转动时转动惯性的度量。 这正是Iz称为“转动惯量”的来由。
应用刚体定轴转动的微分方程(2)可以对物理摆的运动规律、旋转机械输入和输出功率同平衡转速的关系进 行研究。刚体定轴转动的另一重要研究课题是支承的动载荷。动载荷是与刚体转动角速度有关的载荷。当刚体既 满足静平衡——刚体的重心在转动轴上,又满足动平衡——旋转轴是惯性主轴时,支承才不受动载荷的作用。这 个结论在工程上有重要价值(见动平衡)。
刚体平面运动是机器部件一种常见的运动形态,例如曲柄连杆、滚轮等的运动。过刚体质心作刚体平面运动 的固定平面,此平面在刚体上截得一平面图形。此图形在上述固定平面上的运动完全刻画了刚体的平面运动。由 运动学可知,刚体的平面运动可由质心C在平面上相对固定坐标系Oxy的运动和刚体绕过C并同固定平面垂直的轴 Cz的转动合成(图2)。刚体的旋转轴Cz虽然在空间中变动,但它的方向不变,相对刚体的位置也不变,因而刚 体绕Cz轴旋转的转动惯量是常值Iσ,绕Cz轴的动量矩为
刚体一般运动是对惯性坐标系而言的。设C为刚体的质心,Cxyz为同刚体固联的质心惯性主轴坐标系。因刚 体一般运动可分解为平动和绕质心的转动,故应用质心运动定理和对质心的动量矩定理,可以立即建立刚体一般 运动的微分方程组:
《刚体动力学 》课件
牛顿第二定律
物体的加速度与作用在物 体上的力成正比,与物体 的质量成反比。
牛顿第三定律
对于任何两个相互作用的 物体,作用力和反作用力 总是大小相等,方向相反 ,作用在同一条直线上。
刚体的平动
刚体的平动是指刚体在空间中 的位置随时间的变化而变化, 而刚体的形状和大小保持不变
的运动。
刚体的平动具有三个自由度 ,即三个方向的平动。
05
刚体的动力学方程
刚体的动力学方程
牛顿第二定律
刚体的加速度与作用力成正比,与刚体质量 成反比。
刚体的转动定律
刚体的角加速度与作用力矩成正比,与刚体 对转动轴的转动惯量成反比。
刚体的动量方程
刚体的动量变化率等于作用力对时间的积分 。
刚体的自由度与约束
自由度
描述刚体运动的独立变量,如平动自由度和转动 自由度。
约束
限制刚体运动的条件,如固定约束、滑动约束等 。
约束方程
描述刚体运动受约束的数学表达式。
刚体的动力学方程的求解方法
解析法
通过代数运算求解动力学方程,适用于简单问 题。
数值法
通过迭代逼近求解动力学方程,适用于复杂问 题。
近似法
通过近似模型求解动力学方程,适用于实际问题。
06
刚体动力学中的问题与实例 分析
人工智能和机器学习的发展将为刚体 动力学的研究提供新的思路和方法, 有助于解决复杂动力学问题。
感谢您的观看
THANKS
船舶工程
在船舶工程中,刚体动力学 用于研究船舶的航行稳定性 、推进效率以及船舶结构的 安全性等。
兵器科学与技术
在兵器科学与技术领域,刚 体动力学用于研究弹药的发 射动力学、火炮的射击精度 和稳定性等。
《刚体动力学 》课件
常用方法:拉格朗日方程、 哈密顿原理等
注意事项:需要熟练掌握 数学基础
数值法
定义:数值法 是一种通过数 值计算求解刚 体动力学问题
的方法
特点:精度高、 计算速度快、 适用于复杂问
题
常用算法:有 限元法、有限 差分法、有限
体积法等
应用领域:航 空航天、机械 制造、土木工
程等领域
近似法
近似法的定义和特点
刚体转动实例
风力发电机:利用风力驱动风车叶片旋转,通过变速器和齿轮装置将动力传递至发电机,最终 转化为电能。
搅拌机:利用电动机驱动搅拌器旋转,对物料进行搅拌、混合和输送等操作。
洗衣机:利用电动机驱动洗衣机的滚筒旋转,通过水和洗涤剂的作用将衣物清洗干净。
旋转木马:利用电动机驱动旋转木马旋转,使人们能够欣赏到各种美丽的景观和音乐。
物理教师
需要了解刚体 动力学知识的
相关人员
Part Three
刚体动力学概述
刚体定义
刚体:在运动过程中,其内部任意两点间的距离始终保持不变的物体 刚体运动:刚体的运动是相对于其他物体的位置和姿态的变化
刚体动力学:研究刚体运动过程中所受到的力、力矩以及运动状态变化规律的科学
刚体动力学的研究对象:各种工程实际中的刚体,如机械零件、构件、机构等
动能定理
定义:动能定理是描述物体动能变化的定理 表达式:动能定理的表达式为ΔE=W 应用范围:动能定理适用于一切具有动能变化的物理系统 注意事项:在使用动能定理时需要注意初始和终了状态的动能
Part Five
刚体动力学应用实 例
刚体平动实例
刚体平动定义 刚体平动应用实例1 刚体平动应用实例2 刚体平动应用实例3
刚体动力学在各领 域的应用
《刚体动力学》课件
单击此处输入你的项正文,文字是您思想的提炼。
应用场景:碰撞、打击、爆炸等 角动量定理 角动量定理
定义:角动量是物体转动惯量和角速度的乘积 单击此处输入你的项正文,文字是您思想的提炼。
角动量定理公式:L=Iω
单击此处输入你的项正文,文字是您思想的提炼。
应用场景:行星运动、陀螺仪等
刚体的滚动和滑动摩擦
刚体滚动:刚体在平面内绕固定点转动,滚动摩擦力产生的原因和影响
刚体滑动摩擦:刚体在平面内滑动时产生的摩擦力,滑动摩擦系数与接触面材料和粗糙度等因素 的关系
刚体滚动和滑动摩擦的应用实例:例如,汽车轮胎与地面之间的滚动摩擦力,以及机械零件之间 的滑动摩擦力等
刚体滚动和滑动摩擦的实验研究:通过实验研究刚体滚动和滑动摩擦力的影响因素和规律,为实 际应用提供理论支持
04
刚体动力学基本原理
牛顿第二定律
定义:物体加速度的大小跟作用 力成正比,跟物体的质量成反比
应用:解释物体运动状态变化的 原因
添加标题
添加标题
公式:F=ma
添加标题
添加标题
注意事项:只适用于宏观低速运 动的物体
动量定理和角动量定理
定义:动量是物体质量与速度的乘积
单击此处输入你的项正文,文字是您思想的提炼。
刚体动力学研究内容
刚体的定义和性质 刚体运动的基本形式 刚体动力学的基本方程 刚体动力学的研究方法
刚体动力学发展历程
早期发展:古代力学对刚体的研究 经典力学时期:牛顿、伽利略等经典力学大师对刚体动力学的研究 弹性力学时期:弹性力学的发展对刚体动力学的影响 现代发展:计算机技术和数值模拟方法在刚体动力学中的应用
课程内容:刚体 的平动、转动、 碰撞等动力、力学等相关专 业的本科生和研 究生
刚体的一般运动的运动学和与动力学动力学
加速度
刚体在一段时间内速度的 变化率,表示刚体速度变 化的快慢。
刚体的平动
平动
刚体在运动过程中,其上任意两 点都沿着同一直线作等距离的移 动。
平动特点
刚体上各点的速度和加速度都相 等,与参考系的选择无关。
刚体的转动
转动
刚体绕某一定点做圆周运动。
转动特点
刚体上各点的速度和加速度大小相等,方向不同。
阻尼振动
阻尼振动是指由于阻力作用而使振动系统受到损 耗的振动。
受迫振动
受迫振动是指在外力作用下产生的振动。
刚体的稳定性和平衡性
静态平衡
刚体在静止状态下,如果受到微小扰 动后能恢复到原来的平衡位置,则称 该平衡为静态平衡。
动态平衡
刚体在运动状态下,如果受到微小扰 动后能保持原来的运动状态不变,则 称该平衡为动态平衡。
感谢观看
THANKS
刚体的平衡
总结词
刚体的平衡是指刚体在运动或静止时,其上各点的加速度均为零的状态。
详细描述
刚体的平衡可以通过力的合成和分解来分析。当刚体处于平衡状态时,其上各点的加速度均为零,即合外力为零。 根据力的平移定理,可以将力的作用点平移至刚体的质心,从而将刚体平衡问题转化为质点平衡问题。同时,根 据力矩平衡条件,可以得出刚体平衡的条件为合外力矩为零。
力矩和角速度
总结词
力矩是力和力臂的乘积,它描述了力对刚体转动的效应;角速度是描述刚体转动快慢的 物理量。
详细描述
力矩是力和力臂的乘积,其方向垂直于力和力臂所在的平面。力矩可以改变刚体的转动 状态,包括转动方向和角速度大小。角速度是描述刚体绕固定点转动的快慢的物理量, 其方向与转动方向相同。公式表示为M=FL,其中M表示力矩,F表示力,L表示力臂。
刚体运动的动力学方程
一、已知刚体的转动规律,求作用于刚体上的外力 例12-4 二、已知作用于刚体上的力矩,求转动规律 例12-5 例12-6
第四节 动静法
节
一、质点的达朗伯原理
二、质点系的达朗伯原理
平面任意力系的平衡条件: (1)力系中各力在X 轴和Y轴上投影的代数和为零; (2)力系中各力对平面内任一点的力矩的代数和为零
第二节 刚体简单运动的动力学方程
一、平动刚体的动力学方程
平动刚体的动力学方程 :
刚体的质心加速度
二、刚体定轴转动的动力学方程
二、刚体定轴转动的动力学方程
刚体定轴转动的转动定律: 刚体绕定轴转动时,作用于刚体 上的合外力矩等于刚体对转轴的转动惯量与角加速度的乘积。
上式反映了刚体的转动状态变化与其所受的外力矩之间的关系, 称为刚体定轴转动动力学基本方程。
成是车轮随同车厢的平动和
相对车厢的转动的合成.
车轮对于静系的平面运动 车厢(动系Ax y ) 相对静系的平动
(绝对运动) (牵连运动)
车轮相对车厢(动系Ax y)的转动
(相对运动)
所以,平面运动随基点平动的运动规律与基点的选择有关, 而绕基点转动的规律与基点选取无关.(即在同一瞬间,图 形绕任一基点转动的 ,都是相同的)基点的选取是任意的。 (通常选取运动情况已知的点作为基点)
动静法的应用:刚体的平动和绕定轴转动 1、刚体的平动
例题
;
惯性力系的主矢等于刚体质量和质心加速度的乘积,方向和加 速度方向相反。 惯性力系的主矩等于转动惯量和角加速度的乘积,但方向和刚 体转动的角加速度相反。
练习
(m1>m2)
第五节 点的复合运动分析
有关概念
两种参考系——动参考系和静参考系 三种运动——绝对运动、相对运动和牵连运动 三种速度——绝对速度、相对速度和牵连速度
高中物理竞赛辅导之刚体动力学
其轴的转动惯量与圆盘的相同。
球体绕其直径的转动惯量
将均质球体分割成一系
列彼此平行且都与对称轴垂
直得圆盘,则有
JO
1 dm r 2 2
1 2
r 2dz
r
2
R 1( R2 z2 )2 dz
R 2
8 R5 2 mR2
15
5
z
r
z
dz R
om
JO
2 mR2 5
设任意物体绕某固定轴O的转动惯量为J,绕 通过质心而平行于轴O的转动惯量为Jc,则有
0 t 2 gt R
达到纯滚动时有: vc R
解得作纯滚动经历的时间:
t v0 2g h R
3 g
3 g
2)达到纯滚动时经历的距离:
x
v0t
1 2
at 2
v02
3 g
1 2
g
v02
3g 2
5v02
5h R
18 g 9
例 5 质量为 mA 的物体 A 静止在光滑水平面上,
和一质量不计的绳索相连接,绳索跨过一半径为 R、质
J 1 ml2 3
球壳: 转轴沿直径
J 2 mr2 3
竿
子
长
些
还
是
短
些
较
安
飞轮的质量为什么
全
大都分布于外轮缘?
?
例1 一长为 l 质量为 m 匀质细杆竖直放置,其
下端与一固定铰链 O 相接,并可绕其转动. 由于此竖
直放置的细杆处于非稳定平衡状态,当其受到微小扰
动时,细杆将在重力作用下由静止开始绕铰链O 转动.
压力N 和刹车片与圆盘间的摩擦系数均已被实验测出.试
第二篇动力学第五章刚体动力学的基本概念
第二篇动力学第五章刚体动力学的基本概念第二篇动力学第五章刚体动力学的基本概念一、目的要求1.深入地理解力、刚体、平衡和约束等重要概念。
2.静力学公理(或力的基本性质)是静力学的理论基础,要求深入理解。
3.能正确地将力沿坐标轴分解和求力在坐标轴上的投影,对合力投影定理有清晰的理解。
4. 理解力对点之矩的概念,并能熟练地计算。
5.深入理解力偶和力偶矩的概念,明确力偶的性质和力偶的等效条件。
6.明确和掌握约束的基本特征及约束反力的画法。
7.熟练而正确地对单个物体与物体系统进行受力分析,画出受力图。
二、基本内容1.重要概念1)平衡:物体机械运动的一种特殊状态。
在静力学中,若物体相对于地面保持静止或作匀速直线平动,则称物体处于平衡。
2)刚体:在力作用下不变形的物体。
刚体是静力学中的理想化力学模型。
3)约束:对非自由体的运动所加的限制条件。
在刚体静力学中指限制研究对象运动的物体。
约束对非自由体施加的力称为约束反力。
约束反力的方向总是与约束所能阻碍的物体的运动或运动趋势的方向相反。
4)力:物体之间的相互机械作用。
其作用效果可使物体的运动状态发生改变和使物体产生变形。
前者称为力的运动效应或外效应,后者称为力的变形效应或内效应,理论力学只研究力的外效应。
力对物体作用的效应取决于力的大小、方向、作用点这三个要素,且满足平行四边形法则,故力是定位矢量。
5)力的分类:集中力、分布力;主动力、约束反力6)力系:同时作用于物体上的一群力称为力系。
按其作用线所在的位置,力系可以分为平面力系和空间力系,按其作用线的相互关系,力系分为共线力系、平行力系、汇交力系和任意力系等等。
7)等效力系:分别作用于同一刚体上的两组力系,如果它们对该刚体的作用效果完全相同,则此两组力系互为等效力系。
8)平衡力系:若物体在某力系作用下保持平衡,则称此力系为平衡力系。
9)力的合成与分解:若力系与一个力FR 等效,则力FR 称为力系的合力,而力系中的各力称为合力FR 的分力。
《大学物理期末复习》刚体动力学课件
刚体的自由振动
总结词
刚体的自由振动是指刚体在无外力作用下的振动,其振动频率由刚体的固有属性决定。
详细描述
刚体的自由振动是由其内部的弹性力和惯性力相互平衡而产生的。当刚体受到初始扰动 时,其内部的弹性力会试图将其恢复到平衡位置,而惯性力则试图保持其运动状态不变。 在无外力作用的情况下,这种相互作用会导致刚体进行周期性的振动。刚体的自由振动
自行车行驶的稳定性分析
自行车行驶的稳定性是保证骑行安全的关键因素之一。通过 刚体动力学原理,可以分析自行பைடு நூலகம்在行驶过程中的稳定性和 倾倒趋势。
在自行车倾倒过程中,车轮与地面之间的摩擦力、车身的质 心位置和转动惯量等因素都会影响自行车的稳定性。了解这 些因素之间的关系,有助于优化自行车的设计和骑行技巧, 提高行驶的安全性和稳定性。
ERA
刚体的定义与特性
刚体的定义
01
刚体是指在力的作用下,其内部任意两点之间的距离始终保持
不变的物体。
刚体的特性
02
刚体具有不可变形的特性,其形状和大小在力的作用下不会发
生改变。
刚体的运动
03
刚体的运动是指刚体在空间中的位置随时间的变化而变化的过
程。
刚体运动的基本形式
01
平动
转动
02
03
振动
刚体在空间中的位置随时间变化, 但刚体的各个点都沿着同一直线、 以相同的速度移动。
THANKS
感谢观看
《大学物理期末复习》刚
BIG DATA EMPOWERS TO CREATE A NEW
ERA
体动力学课件
• 刚体动力学概述 • 刚体的转动惯量 • 刚体的转动定律 • 刚体的振动与波动 • 刚体动力学应用实例
第六章 刚体动力学1
π R 2 dl
2
1 4 R π R l 2
2
空心圆柱绕中心轴的转动惯量为 1 1 4 4 2 J ( π R2 l π R1 l ) m( R2 R12 ) 2 2
University physics AP Fang
例: 求均匀的薄球壳绕直径的转动惯量 解: 切为许多垂直于轴的圆环
T'
T
i
TR T ' r
M i TR T' R
University physics AP Fang
二、刚体转动定律 —— 表述刚体绕轴转动的动力学方程 实验证明 当 M 为零时, 则刚体保持静止或匀速转动
与 M 成正比, 而与J 成反比 当存在 M 时,
M J
刚体的转动定律
取 mi ,其动能为
O
ri
P
vi
• mi
1 2 1 Eki miv i mi ri 2 2 2 2
刚体的总动能 1 2 Ek Eki mi ri 2 2
各质量元速度不同, 但角速度相同
1 2
1 mi ri J 2 J 为刚体对一定轴的转动惯量 2
Байду номын сангаасT2 '
a1 R T2 a 2 r
2
R T' 1
O
m1 R m2 r g 2 2 J 1 J 2 m1 R m2 r
T1
1
J 1 J 2 m2 r m2 rR T1 m1 g 2 2 J 1 J 2 m1 R m2 r
2
m2 g
如何确定 T2 ?
M kJ
《大学物理期末复习》刚体动力学课件
掌握弹性力对刚体运动的影响
详细描述
弹性力是刚体动力学中另一个重要的问题。解决这类问题需要掌握弹性力的计算方法, 包括胡克定律和弹性常数的概念,以及弹性力在不同运动状态下对刚体运动的影响。同 时,还需要考虑弹性力与刚体质量、加速度等因素的关系,以及弹性力对刚体振动和稳
定性的影响。
01
02
03
阻尼振动定义
刚体在受到阻尼作用下的 振动状态。
阻尼振动特点
振动的能量逐渐减小,最 终趋向于静止状态。
阻尼振动方程
通过求解刚体的运动方程 ,可以得到阻尼振动的解 。
05
刚体动力学中的常见问题 与解决方法
刚体在非惯性系中的运动问题
总结词
理解非惯性系中刚体的运动规律
详细描述
刚体在非惯性系中的运动问题主要涉及到相对运动和科里奥利力。解决这类问题需要理解非惯性系中 刚体的运动规律,掌握科里奥利力的计算方法,以及如何应用这些概念来分析具体的物理现象。
在实际应用中,可以通过合理设计结构、选择合适的材料、加强维护保养等方式来提高刚体的平衡与稳 定性。
刚体的平衡与稳定问题也是物理学中的一个重要研究领域,对于深入理解力学原理、发展新的技术手段 等方面具有重要意义。
04
刚体的振动与阻尼
刚体的自由振动
自由振动定义
刚体在没有任何外力作用下的振动状态。
自由振动特点
振动的周期和振幅与初始条件有关,不受外力影响。
自由振动方程
通过求解刚体的运动方程,可以得到自由振动的解。
刚体的受迫振动
1 2
受迫振动定义
刚体在外力作用下的振动状态。
受迫振动特点
振动的周期和振幅与外力有关,与初始条件无关 。
刚体动力学运动学问题专题讲解
Ml s lS mM
lS
ml S mM
例2质心运动定律来讨论以下问题
一长为l、密度均匀的柔软链条,其单位长度 的质量为λ.将其卷成一堆放在地面.若手提 链条的一端,以匀速v 将其上提.当一端被提 离地面高度为 y 时,求手的提力.
y y yC o
F
c
解:建立图示坐标系
i 竖直方向作用于链条的合外力为
例3
设有一质量为2m的弹丸,从地面斜抛出去,它飞行在
最高点处爆炸成质量相等的两个碎片,其中一个竖直自由下落,另 一个水平抛出,它们同时落地.问第二个碎片落地点在何处?
解:选弹丸为一系统,爆炸前、 后质心运动轨迹不变.建立 图示坐标系.
2m O
m
m1 m2 m x1 0
xC为弹丸碎片落地时质心 离原点的距离. xC
xC
C
xC
m x
x2
m1 x1 m2 x2 m1 m2
x2 2 xC
7
/12
2. 质心运动定理 dri mi miv i drc d t • 质心的速度 vc dt m m
P mvc —— 质点系的总动量
Pi m
•
质心的加速度和动力学规律
v R
4m gh 2m M R
例题3 一质量为m、半径为R的均质圆柱,在水 平外力作用下,在粗糙的水平面上作纯滚动,力 的作用线与圆柱中心轴线的垂直距离为l,如图所 示。求质心的加速度和圆柱所受的静摩擦力。 解:设静摩擦力 f 的方向如 图所示,则由质心运动方程
l ac
F
圆柱对质心的转动定律:
二、质心
1. 质心
质心运动定理
第六章刚体动力学_大学物理
第七章机械振动刚体转动的角坐标、角位移、角速度和角加速度的概念以及它们和有关线量的关系刚体定轴转动的动力学方程,熟练使用刚体定轴转动定律刚体对固定轴的角动量的计算,正确应用角动量定理及角动量守恒定理掌握刚体的概念和刚体的基本运动理解转动惯量的意义及计算方法,会利用平行轴定理和垂直轴定理求刚体的转动惯量掌握力矩的功,刚体的转动动能,刚体的重力势能等的计算方法了解进动现象和基本描述§6.1 刚体和自由度的概念一. 力矩力是引起质点或平动物体运动状态(用动量描述)发生变化的原因.力矩则是引起转动物体运动状态(用动量聚描述)发生变化的原因.将分解为垂直于z 轴和平行于z 轴的两个力及,如右图.由于不能改变物体绕z 轴的转动状态,因此定义对转轴z 的力矩为零.这样,任意力对z 轴的力矩就等于力对z 轴的力矩,即力矩取决于力的大小、方向和作用点.在刚体的定轴转动中,力矩只有两个指向,因此一般可视为代数量.根据力对轴的力矩定义,显然,当力平行于轴或通过轴时,力对该轴的力矩皆为零.讨论:(1)力对点的力矩.(2) 力对定轴力矩的矢量形式力矩的方向由右螺旋法则确定.(3) 力对任意点的力矩,在通过该点的任一轴上的投影,等于该力对该轴的力矩.例: 已知棒长L,质量M,在摩擦系数为μ 的桌面转动(如图)求摩擦力对y 轴的力矩.解: 以杆的端点O 为坐标原点,取Oxy坐标系,如图在坐标为x 处取线元dx,根据题意,这一线元的质量和摩擦力分别为则该线元的摩擦力对y轴的力矩为积分得摩擦力对y轴的力矩为注: 在定轴转动中,力矩可用代数值进行计算,例如二. 刚体对定轴的转动定律实验证明: 当力矩M为零时,则刚体保持静止或匀速转动,当存在M时,角加速度β与M成正比,而与转动惯量J 成反比,即.也可写成国际单位中k=1.若设作用在刚体上的外力对z轴的力矩总和为合外力矩,刚体对z 轴的转动惯量为J, 则有上式表明,刚体绕定轴转动时,刚体对该轴的转动惯量与角加速度的乘积,等于作用在刚体上所有外力对该轴的力矩的代数和.该式称为刚体绕定轴转动微分方程,也称转动定律.讨论:(1) M 正比于β ,力矩越大,刚体的β越大(2) 力矩相同,若转动惯量不同,产生的角加速度不同(3) 与牛顿定律比较,转动定律的理论证明:如右图,在刚体上任取一质量元,作用在质量元上的力可以分为两类:表示来自刚体意外一切力的合力(称外力),表示来自刚体内各质点对该质量元作用力的合理(称内力).刚体绕定轴Z 转动过程中,质量元以为半径作圆周运动,按牛顿第二定律,有将此矢量方程两边都投影到质量元的圆轨迹切线方向上,则有再将此式两边乘以,则得对固定轴的力矩对所有质量元求和,则得等式右边第一项为合外力矩;第二项为所有内力对z 轴的力矩总和,由于内力总是成对出现,而且每对内力大小相等、方向相反,且在一条作用线上,因此内力对z 轴的力矩的和恒等于零.又.则有即证.三. 转动惯量刚体对某Z 轴的转动惯量,等于刚体上各质点的质量与该质点到转轴垂直距离平方的乘积之和,即事实上刚体的质量是连续分布的,故上式中的求和可写为定积分,即刚体对轴转动惯量的大小决定于三个因素,即刚体的质量、质量对轴的分布情况和转轴的位置.(1) J 与刚体的总质量有关例 1 两根等长的细木棒和细铁棒绕端点轴转动惯量解:在如图的棒上取一线元dx,则积分得其转动惯量为显然,本题中,则(2) J 与质量分布有关例2 圆环绕中心轴旋转的转动惯量解: 在如图的圆环上取一线元dl,则积分得其转动惯量为例3 圆盘绕中心轴旋转的转动惯量解: 在如图的圆盘上取一宽为dr的圆环带,令,则质量元则积分得圆盘的转动惯量为(3) J 与转轴的位置有关例 4 均匀细棒绕端点轴转动惯量解: 在如图棒上取一线元dx,积分得棒的转动惯量为例 5 均匀细棒对通过中心并与棒垂直得轴的转动惯量解: 如图,以杆的中心O为坐标原点,取Oxz坐标系.积分得棒对z轴的转动惯量为四. 平行轴定理及垂直轴定理1. 平行轴定理设刚体得质量为M,质心为C,刚体对通过质心某轴z(称为质心轴)得转动惯量为.如有另一与z 轴平行的任意轴,且z和两轴间的垂直距离L.刚体对轴的转动惯量设为,则可以证明:.即刚体对任意轴(轴)的转动惯量等于刚体对通过质心并与该轴平行的轴(z轴)的转动惯量加上刚体的质量与两轴间垂直距离L平方的乘积.这个结论称为平行轴定理.例1 : 求均匀细棒的转动惯量.解: 如图,已知均质杆对质心轴z 的转动惯量为,为通过杆的一端、且与z 轴平行的轴的转动惯量,按平行轴定理有2.垂直轴定理如右图所示, x、y轴在刚体内, z轴垂直于刚体.则刚体对z 轴的转动惯量等于其对x、y轴的转动惯量之和此即为垂直轴定理.例求对圆盘的一条直径的转动惯量解:以圆盘圆心C为坐标圆点,建立xyz 坐标系如右图.易求得圆盘对z 轴的转动惯量为根据垂直轴定理,有又则五. 转动定律的应用举例例1 一轻绳绕在半径r =20 cm 的飞轮边缘,在绳端施以F =98 N 的拉力,飞轮的转动惯量J =0.5 kg·m 2,飞轮与转轴间的摩擦不计,(如图)求: (1) 飞轮的角加速度(2) 如以重量P =98 N 的物体挂在绳端,试计算飞轮的角加速度解: (1) 根据转动定律,有(2) 分别对物体和飞轮进行受力分析,如图所示,根据牛顿运动定律和转动定律,有,因为,所以有例2一根长为l , 质量为m 的均匀细直棒,可绕轴O 在竖直平面内转动,初始时它在水平位置求它由此下摆角时的解: 在直棒上取如图的质量元dm ,则积分得整个直棒重力对轴O的力矩为又故由上式可以看出,重力对整个棒的合力矩等于重力全部集中于质心所产生的力矩.则角加速度为:又, 则杆下摆至角速度为例3圆盘以在桌面上转动,受摩擦力而静止求到圆盘静止所需时间解:在圆盘内取一半径为r 的,厚度为dr 的环带, 其质量为该环带的摩擦力对质心轴的力矩为积分得圆盘的摩擦力力矩为由转动定律得所以,得则例4如图一个刚体系统,已知转动惯量,现有一水平作用力作用于距轴为处求轴对棒的作用力(也称轴反力)解: 设轴对棒的作用力为N,分解为.由转动定律得由质心运动定理得解得打击中心则思考题1. 刚体可有不止一个转动惯量吗? 除了刚体的形状和质量以外,要求它的转动惯量,还要已知什么信息?2.能否找到这样一个轴,刚体绕该轴的转动惯量比绕平行于该轴并通过质心的轴的转动惯量小?3.刚体在力矩作用下绕定轴转动,当力矩增大或减小时,其角速度和角加速度将如何变化?4.猫有一条长长的尾巴,它习惯于在阳台上睡觉,因而从阳台上掉下来的事情时有发生.长期的观察表明猫从高层的楼房的阳台掉到楼外的人行道上时,受伤的程度将随高度的增加而减少,据报道有只猫从32层楼掉下来,也仅仅只有胸腔和一颗牙齿有轻微的损伤.为什么会这样呢?(点击图片播放动画)§ 6.2 绕定轴转动刚体的动能动能定理一. 转动动能刚体I 绕定轴z 转动,转动惯量,某时刻t ,角速度ω ,角加速度为β,设想刚体是由大量质点组成,现研究质量为的质点i,如图.显然,质点i 的速度为,由质点动能的定义知,质量i 的动能为由于动能为标量且永为正,故整个刚体的动能E等于组成刚体所有质点动能的算数和,即即绕定轴转动刚体的动能,等于刚体对转动的转动惯量于其角速度平方乘积的一半. 将刚体绕定轴转动的动能与质点的动能加以比较,再一次看出转动惯量对应于质点的质量,即转动惯量是刚体绕轴转动惯性大小的量度.二.力矩的功力的累积过程——力矩的空间累积效应功的定义如图,设绕定轴z 转动刚体上P 点作用有一力,现研究刚体转动时力在其作用点P 的元路程ds 上的功.由图易得即作用在定轴转动刚体上的力的元功,等于该力对转轴的力矩于刚体的元角位移的乘积.这也称为力矩的元功.力矩作功的微分形式对一有限过程刚体从角坐标到的过程中,力矩对刚体所作的功为若力矩M为常数,则上式可以进一步写成既作用在定轴转动刚体上的常力矩在某一转动过程中对刚体所作的功,等于该力矩与刚体角位移的乘积.讨论:(1) 合力矩的功(2) 力矩的功就是力的功(3) 内力矩作功之和为零三. 转动动能定理——力矩功的效果力矩的元功此式表示绕定轴转动刚体动能的微分,等于作用在刚体上所有外力元功的代数和.这就是绕定轴转动刚体的动能定理的微分形式. 若定轴转动的刚体在外力作用下,角速度从变到,则由微分式,可得到式中A 表示刚体角速度从变到这一过程中,作用于刚体上的所有外力所作功的代数和. 上式表明,绕定轴转动刚体在任一过程中动能的增量,等于在该过程中作用在刚体上所有外力所作功的总和.这就是绕定轴转动刚体的动能定理的积分形式.刚体的机械能等于刚体的动能、重力势能之和.其中的重力势能为故刚体的机械能又可表示为刚体的机械能守恒,则有对于包括刚体的系统,功能原理和机械能守恒定律仍成立.例1一根长为l , 质量为m 的均匀细直棒,可绕轴O 在竖直平面内转动,初始时它在水平位置求它由此下摆角时的解: 易得杆摆至角时对O 轴的力矩为由动能定理,重力矩作的功得又,由此得即例2图示装置可用来测量物体的转动惯量.待测物体A 装在转动架上,转轴Z 上装一半径为r的轻鼓轮,绳的一端缠绕在鼓轮上,另一端绕过定滑轮悬挂一质量为m 的重物.重物下落时,由绳带动被测物体A绕Z 轴转动.今测得重物由静止下落一段距离h .所用时间为t .求物体 A 对Z 轴的转动惯量.设绳子不可伸缩,绳子、各轮质量及轮轴处的摩擦力矩忽略不计.待测物 A 的机械能:重物m 的机械能:由机械能守恒得:又则可得故,物体 A 对Z 轴的转动惯量为思考题1.两个重量相同的球分别用密度为的金属制成,今分别以角速度绕通过球心的轴转动,试问这两个球的能量之比多大?§ 6.3 动量矩和动量矩守恒定律一. 质点动量矩( 角动量) 定理和动量矩守恒定律1.质点的动量矩设一质点在平面S ,如图所示.在时刻t,质点的动量为,对某固定点O质点的位矢为,则质点对O点的动量矩(或质点对O点的角动量)定义为: 位矢和动量的矢积,即根据矢积定义,质点对O点动量的大小为:指向由右螺旋法则确定.(可以证明,质点对某点的动量矩,在通过该点的任意轴上的投影就等于质点对该轴的动量矩)特例:质点作圆周运动时,说明: (1) 质点的动量矩与质点的动量及位矢(取决于固定点的选择)有关(2) 当质点作平面运动时,质点对运动平面内某参考点O 的动量矩也称为质点对过O 垂直于运动平面的轴的动量矩例一质点m ,速度为v ,如图所示A、B、C 分别为三个参考点,此时m 相对三个点的距离分别为.求此时刻质点对三个参考点的动量矩解: 质点对某点的动量矩, 在通过该点的任意轴上的投影就等于质点对该轴的动量矩2. 质点的动量矩定理质点为m 的质点,在力的作用下运动,某一时刻t ,质点相对固定点O 的位矢为,速度为,按上述质点动量矩的定义,有两边对时间求导,得由于,故上式右边第二项为零,而第一项中,因此,上式右边第二项是作用在质点上所有力的合力对O 点的力矩,即此式表明,在惯性系中,质点对任意固定点O的动量矩对时间的导数,等于作用在质点上所有力的合力对同一点O 的力矩.这就是质点动量矩定理.质点动量矩定理的微分形式:质点动量矩定理的积分形式:质点所受合力矩的冲量矩等于质点的动量矩的增量说明:(1) 冲量矩是质点动量矩变化的原因(2) 质点动量矩的变化是力矩对时间的积累结果质点动量矩定理也可直接用来求解质点动力学问题,特别是质点在运动过程中始终和一个点或一根轴相关联的问题,例如单摆运动,行星运动等问题.3. 质点动量矩守恒定律在质点动量矩定理可以看出,当作用在质点上的合力对固定点的力矩恒为零时,质点对该点的动量矩为常矢量,即若时,=常矢量这就是质点动量守恒定律.讨论:(1) 动量矩守恒定律是物理学的基本定律之一,它不仅适用于宏观体系,也适用于微观体系, 且在高速低速范围均适用(2) 通常对有心力:过O 点,M= 0, 动量矩守恒.例如由动量矩守恒定律可导出行星运动的开普勒第二定律行星对太阳的位矢在相等的时间内扫过相等的面积例发射一宇宙飞船去考察一质量为M 、半径为R 的行星, 当飞船静止于空间距行星中心4R 时,以速度发射一质量为m 的仪器.要使该仪器恰好掠过行星表面求θ 角及着陆滑行的初速度多大解:由引力场(有心力)系统的机械能守恒得由质点的动量矩守恒得则所以有二. 刚体定轴转动的动量矩定理和动量矩守恒定律1. 刚体定轴转动的动量矩刚体以角速度ω 绕定轴z转动时,刚体上任意一点均在各自所在的垂至于z轴的平面那作圆周运动,如图.由于刚体上任一质点对z轴的动量矩都具有相同的方向(或者说都具有相同的正负号),因此整个刚体对z轴的动量矩应为各质点对z轴的动量矩之和,即上式表明,绕定轴转动刚体对z 轴的动量矩,等于刚体对该轴的转动惯量与角速度的乘积.2. 刚体定轴转动的动量矩定理将动量矩表达式对时间求导,得由于刚体对给定轴的转动惯量是一常量,因此利用前面讲过的转动定律,可以将上式进一步写成上式表明,绕定轴转动刚体对z轴的动量矩对时间的导数,等于作用在刚体上所有外力对z轴的力矩的代数和.这就是刚体绕定轴转动情况下的动量矩定理.动量矩定理微分形式:将上式两边乘以dt并积分,得动量矩定理积分形式:,分别表示在时刻转动刚体对z轴得动量矩,成为在时间内对z 轴得冲量矩.冲量矩表示了力矩在一段时间间隔内的积累效应.上式表明,定轴转动刚体的动量矩在某一时间间隔内的增量,等于同一时间间隔内作用在刚体上的冲量矩.3. 刚体绕定轴转动的动量矩守恒定律当作用在定轴转动刚体上的所有外力对转轴的力矩代数和为零时,根据动量矩定理式,刚体在运动过程中动量矩保持不变(守恒),即=0时,=常量.以上的讨论是对绕定轴转动的刚体进行的.对绕定轴转动的可变形物体来说,如果物体上各点绕定轴转动的角速度相同,即可用同一角速度来描述整个物体的转动状态,则某一时刻t , 物体对转动轴的动量矩也可表示为该物体在时刻t 对同一轴的转动惯量与角速度的乘积.只是由于物体上各点相对于轴的位置是可变的,所以对轴的转动惯量不再是一个常量,可表示为可以证明,这是可变形物体对转轴的动量矩对时间的导数仍然等于作用于该可变形物体的所有外力对同一轴的力矩的代数和,即仍成立. 这时如果作用在可变形物体上所有外力对该轴的力矩的代数和恒为零,则在运动过程中,可变形物体对转轴的动量矩保持不变(守恒).更一般地说,如果作用在质点系上所有外力对某一固定轴的力矩之和为零,则质点系对该轴的动量矩保持不变,这是动量矩守恒定律的更为一般的表述形式.动量矩守恒定律在实际生活中及工程中有着广泛的应用.例如花样滑冰的表演者可以容过伸展或收回手脚(改变对轴的转动惯量)的动作来调节旋转的角速度.例一长为l 的匀质细杆,可绕通过中心的固定水平轴在铅垂面内自由转动,开始时杆静止于水平位置.一质量与杆相同的昆虫以速度垂直落到距O点l /4 处的杆上,昆虫落下后立即向杆的端点爬行,如图所示.若要使杆以匀角速度转动.求昆虫沿杆爬行的速度解:设杆和昆虫的质量均为m ,昆虫与杆碰后以共同的角速度转动.昆虫落到杆上的过程为完全非弹性碰撞,对于昆虫和杆构成的系统,和外力矩为零,动量矩守恒,故有化简此式可得杆的转动角速度,即由题可知,此后杆以此角速度作匀速转动.设碰后t 时刻,杆转过角,昆虫爬到距O 点为r的位置处, 此时,昆虫和杆系统所受合外力矩为根据动量定理,有由题设不变,所以其中的值为带入上式有因此,为了使保持不变,昆虫的爬行速率应为说明:此题使一个系统绕定轴转动问题.在解此题的过程中应用了动量矩定理,该定理与刚体绕定轴转动定律的区别.三. 进动如图为一玩具陀螺,我们发现如果陀螺不绕自身对称轴旋转,则它将在起重力对质点O的力矩作用下翻到.但是当陀螺以很高的转速绕自身对称轴(称作自转或自旋)时,尽管陀螺仍然受重力矩作用,陀螺却不会翻到.陀螺的重力对O点的力矩作用结果将使陀螺的自转轴沿虚线所示的路径画出一个圆锥面来.我们称陀螺高速旋转时,其轴绕铅直轴的转动为进动.陀螺绕其对称轴以角速度高速旋转,如下图.对固定点O,它的动量矩L 可近似(未计进动部分的动量矩)表示为作用在陀螺上的力对O 点的力矩只有重力的力矩.显然, 垂至于动量矩矢量,按动量矩定理→可见在极短的时间内,动量矩的增量与d与平行, 也垂直于.这表明,在dt 时间内,陀螺在重力矩作用下,其动量矩的大小未变,但方向却改变了(方向绕铅直轴z 转过了dθ角)事实上,由于,带入动量矩定理式中.得所以,若陀螺自转角速度保持不变,则进动角速度也应保持不变.实际上由于各种摩擦阻力矩的作用,将使不断减小,与此同时,进动角速度Ω 将逐渐增大,进动将变得不稳定.以上的分析是近似的,只适用于自转角速度比进动角速度Ω 大得多得情况.因为有进动的存在,陀螺的总动量矩除了上面考虑到的因自转运动产生的一部分外,尚有进动产生的部分.只有在时,才能不计及因进动而产生的动量矩.思考题1. 如果一个质点在作直线运动,那么质点相对于那些点动量矩守恒?2. 如果作用在质点上的总力矩垂直于质点的动量矩,那么质点动量矩的大小和方向会发生变化吗?3. 当刚体转动的角速度很大时,作用在上面的力及力矩是否一定很大?4. 一个人随着转台转动,两手各拿一只重量相等的哑铃,当他将两臂伸平,他和转台的转动角速度是否改变?5. 试说明: 两极冰山的融化是地球自转速度变化的原因之一.。
第六章:刚体动力学I
O
-3π
-2π -π π 2π 3π
φ
φ C
特点 : (1) 2 =
(2) h<-1 时无解 ;h=-1 时稳定平衡点 2nπ
(3) -1<h<1 时对应为有限周期摆动(红线) (5) h>1 单向转动(黑粗线) (4)h=1 一种是不稳定点 2nπ+π; 一种是摆向最高点 , 周期∞(蓝线) (6) 相曲线走向如箭头所示
利用质心系角动量定理可证明 J ZZ = ¨ M Z (思路同定轴转动) (证毕)
【推论】若质心与瞬心距离恒定,则对瞬心角动量定理成立 .
1 C ,2 , 1 证明思路:第一步证明 J zz = J ZZ m t r C ⇒ r C =const. ⇔ J zz =const.
a z 2
a
[
]
1 1 2 2 2 2 ˙ 质点 m 动能 T = m v = m r ˙ r 2 2 L 2 2 2 刚性杆惯量系数 J zz =∫ x y dV =∫0 r m0 / L dr = 1 m0 L 2 3
˙ 质点 m 角动量 L = m r
对轴的力矩 M z =−mg l sin ⇒ V =− mg l cos
1 2 机械能守恒 E = J zz ˙ −mgl cos =const. 2 1 2 − cos = h =const. d 2 2 0=mgl / J zz , = 0 t , = 令 d 下面画出相图定性说明(可用椭圆函数定量求解 , 感兴趣可查参考书)
W i = 0 刚体内力不做功 , 故 d 1 2 T =∭ [ v r ] dV 1 2 2 T = J ZZ ˙ 2 2 2
v = ˙ X Y
刚体运动的动力学方程解析
二、刚体定轴转动的动力学方程
三、刚体定轴转动动力学方程的应用
四、动静法
质点系的达朗伯原理
五、点的复合运动
• 点的速度合成
六、刚体的复杂运动
基点法
速度投影法
速度瞬心法
J
=J=1对2 对M1mRmM:2
:m
Rm2 g
T m2a a
g T1
T ma
R
m
a
amgR
a R
2
解方程得:
a
m m M
g
2
R
例2 一个飞轮的质量为69kg ,半径为0.25m,正在以每分1000转 的转速转动。现在要制动飞轮,要求在5.0秒内使它均匀减速而 最后停下来。摩擦系数为0.46。求闸瓦对轮子的压力N为多大? (J = mR2 )
J
=
A
J
+
C
m
L 2
2
1 12
mL2
1 4
mL2
1 mL2 3
推广: 若有任一轴与过质心的轴 平行且相距d ,刚体对其转动惯 量为: J J C m d 2 , 称为平行轴 定理。
dc
第三节 刚体简单运动动力学方程的应用
主要研究刚体定轴转动动力学方程的应用
一、已知刚体的转动规律,求作用于刚体上的外力 例12-4
二、已知作用于刚体上的力矩,求转动规律 例12-5 例12-6
第四节 动静法
节
一、质点的达朗伯原理
二、质点系的达朗伯原理
平面任意力系的平衡条件: (1)力系中各力在X 轴和Y轴上投影的代数和为零; (2)力系中各力对平面内任一点的力矩的代数和为零
动静法的应用:刚体的平动和绕定轴转动 1、刚体的平动
《刚体动力学》PPT课件
ox
l x
2
为转轴, 如图所示。在距离转轴为x 处取棒元dx,
其质量为
m dm dx
l
7
根据式(5-4), 应有
J
l / 2 l / 2
x
2
m l
dx
1 3
m l
x3
l /2 l / 2
1 ml2 8.3 102 kg m2 12
棒的转动动能为
Ek
1 2
J 2
1 0.083 632 J 2
(2) 闸瓦对飞轮施加的 摩擦力矩所作的功。
d
闸瓦
N
解:为了求得飞轮从制 飞轮
f
动到停止所转过的角度
和摩擦力矩所作的功A, 必须先求得摩擦力、摩擦力矩
和飞轮的角加速度。
27
闸瓦对飞轮施加的摩擦力的大小等于摩擦系数与
正压力的乘积
f N 0.50 500 N 2.5 102 N
方向如图所示。摩擦力相对z 轴的力矩就是摩擦
1.7 102J
8
例2 计算质量为m,长为l 的细棒绕一端的转动惯量。
解: J r2dm
z
dm dx m dx
l
Oo
dm
r2 x2
x dx
x
J l x2 m dx 1 m x3 l
0l
3l 0
J 1 ml2 3
对质量均匀分布的门对门轴的转动惯量也相同。
9
例5-3 如图半圆形匀质细杆,半径为 R,
cosi
因为dsi = ri d, 并且cosi = sini , 所以
dAi Firi sini d Mzid 19
dAi Firi sini d Mzid
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对轴的力矩 M z =−mg l sin ⇒ V =− mg l cos
1 2 机械能守恒 E = J zz ˙ −mgl cos =const. 2 1 2 − cos = h =const. d 2 2 0=mgl / J zz , = 0 t , = 令 d 下面画出相图定性说明(可用椭圆函数定量求解 , 感兴趣可查参考书)
e 故运动微分方程也可表示为 J zz = ¨ Mz
附:关于 Jzz=JZZ 的证明 . 证明:坐标变换关系为 Z=z, X=xcosφ+ysinφ, Y=-xsinφ+ycosφ 可以证明 dXdYdZ=dxdydz, X2+Y2=x2+y2
X , Y , Z = x cos y sin ,− x sin y cos , z ≡ x , y ,z
d 1 1 2 2 e m t v C J ZZ ˙ =∑ n F n ⋅v n dt 2 2
蚂蚁位置与 x 轴夹角 θ. 设固连于圆盘的直线逆时针转过角 φ ,
˙ ⇒ ˙ u/ R ⇒ u = R − = ˙ ˙ −
质点系所受外力只有 mg 不过轴心 O ,可应用角动量定理
d a [ J zz ˙ L z ]=−mg R sin dt
˙ 其中蚂蚁对 O 轴的角动量 Lza = mR2
O
-3π
-2π -π π 2π 3π
φ
φ C
特点 : (1) 2 =
(2) h<-1 时无解 ;h=-1 时稳定平衡点 2nπ
(3) -1<h<1 时对应为有限周期摆动(红线) (5) h>1 单向转动(黑粗线) (4)h=1 一种是不稳定点 2nπ+π; 一种是摆向最高点 , 周期∞(蓝线) (6) 相曲线走向如箭头所示
z
y r θ x
m0g mg
FB
这些力对 z 轴的力矩为零,利用复合质点系对 z 轴的角动量 定理,有
d a a ˙ ˙ [ J zz L z ]=0 ⇒ J zz L z = const. dt
这些力对复合质点系也不做功,利用复合质点系动能定理, 有
d 1 1 ˙ 2 T a = 0 ⇒ J zz ˙ 2T a =const. J zz dt 2 2
u 8g 讨论:当 2 时 , 蚂蚁可以爬过最高点 . R R m0 / m2
m0 / m 2 u u 8g 当 2 时 , 蚂蚁可以爬到 arccos 1 − 4 gR R R m0 / m2
2
2
[
2
]
思考题:请问以下做法是否可以?为什么? 应用动能定理
d 1 2 a ˙ J zz T =−mg R sin ˙ dt 2
J ZZ =∭ dXdYdZ X Y X , Y , Z =∭ dxdydz x y x , y , z = J zz
2 2 2 2
【推论】定轴转动的刚体满足动能定理
d 1 2 e J ZZ ˙ =M Z ˙ dt 2
W e d W i 证明:动能定理告诉我们 dT =d
W i = 0 刚体内力不做功 , 故 d 1 2 T =∭ [ v r ] dV 1 2 2 T = J ZZ ˙ 2 2 2
v = ˙ X Y
பைடு நூலகம்
W e d e d r n =∑ F n ⋅ =∑ F ne ⋅× r n =∑ ⋅ r n× F ne dt dt e ⋅ r × F e = ( 证毕 ) = ˙ ∑Z ˙ M
if M z = M z , then ∃ V =−∫ M d z
⇒d
[
1 1 2 2 ⇒ E = J J zz V = 0 ˙ zz ˙ V = const.(证毕) 2 2
]
例题 1 物理摆 . 讨论重力场中绕光滑固定水平轴摆动的刚体运动行为 解:建立图示本征坐标系 Oxyz. 记转轴到质心连线 OC 与 x 轴夹角为 φ, |OC|=l. 首先可以证明均匀重力场对刚体产生的合力矩 等价于作用在质心的总重力产生的力矩 . O φl C x mg y
n n Z
注:对于定轴转动刚体,由于 Jzz=JZZ 是常数,故动能定理 也可表示为
d 1 2 e J zz ˙ =Mz ˙ dt 2
注:对于定轴转动刚体动能定理与角动量定理不独立
【推论】如果 Mz 是仅仅含 φ 的函数,则机械能守恒 .
证明:
d 1 1 2 2 J zz J zz ˙ =Mz ˙ ⇒d ˙ =M z d dt 2 2
因此,根据初始状态可写出复合质点系的运动微分方程
1 ˙ m r 2 = ˙ 1 m0 L 2 0 m L 0 m0 L2 3 3 2
1 1 1 L 2 2 2 2 2 ˙ 2 1 m r ˙ = 1 1 m0 L 2 2 m0 L m 0 ˙ r 0 0 2 3 2 2 3 2 2
1 1 2 2 2 ˙ J = m0 R T = mR , zz 2 2
a
[
]
˙ ⇒ ˙ u/ R u = R − = ˙ ˙ −
1 u 1 2 2 2 ˙ ˙ = mg R d cos ⇒⋯⇒ d m0 R − mR 4 R 2
1 1 2 ˙ m m R d = mg d cos 这完全不同于角动量定理得到的方程 0 2 2 到底哪个结果是对的呢?
x x
设 Oxyz 是本征坐标系 , Cxyz 是质心系 , CXYZ 是刚体固连系 , 夹角 φ.
【定理】刚体平面运动满足
mt r ¨ C = F , ∩ z =0
J ZZ = ¨ MZ
e
证明:我们可以把截面放在 Oxy 面内,故 z≡0. 利用质心运动定理,即有 m t r ¨ C= F
e
a z 2
a
[
]
1 1 2 2 2 2 ˙ 质点 m 动能 T = m v = m r ˙ r 2 2 L 2 2 2 刚性杆惯量系数 J zz =∫ x y dV =∫0 r m0 / L dr = 1 m0 L 2 3
˙ 质点 m 角动量 L = m r
( 请结合右上图思考 )
●
定轴转动刚体与其它质点组成的复合质点系
设其他质点对 z 轴角动量为 L
a z
, 动能记为 T
a
z (Z)
【推论】复合质点系对 z 轴角动量定理为
d a e [ J zz ˙ L z ]= M z dt
作用在复合质点系 上的外力合力矩
ω A x φ X
圆盘的惯量系数 J zz =∫ x y dV =∫0
2 2
R
1 2 r m0 / R 2 r dr = m 0 R 2
2 2
于是可以得到
1 ¨ m0 m R =− mg sin 2
⇒
1 ¨ =− ˙ ˙ 1 1 m0m R d ˙ 2 = mg d cos m0m R mg sin ⇒ 2 2 2
第六章
刚体动力学 I
— 定轴转动和平面平行运动
§6.1 定轴转动
●
运动微分方程
在轴上取基点 A ,建立本征参考系 Axyz 以及与刚体固连的坐标系 AXYZ. 使得 z(Z) 恰好为转动轴 . 自由度: DOF=1, 用转角 φ 表示 , 只需要 1 个运动微分方程
z (Z)
ω A
Y y X
刚体是特殊的质点系,满足对固定轴的 角动量定理 dL Z dL z e e
R
C , ⋅ r C ×a C 第二步用力矩定义及质心运动定理证明 M ZC = M z1− mt z r' r'C d , , , r C × vC = r ˙ C × vC r C ×aC 第三步 O1 dt d , , 2 , , z⋅ r C × aC = r C ˙ v C = 0 ˙ z ×r C ⇒ z⋅ r C ×v C =r ,C2 ˙ 瞬心 dt
Y y
证明:这是质点系对 z 轴角动量定理的自然推论 .
【推论】复合质点系动能定理为
d 1 2 a e i J zz ˙ T = w w dt 2
[
]
注:复合质点系的动能 定理与角动量定理独立
证明:这是质点系动能 定理的自然推论 .
作用在复合质点系 的内外力功率总和
例题 2 水平匀质细管长为 L ,质量为 m0, 能绕过管一端并与其固连的竖直轴转动; FA 轴质量可忽,轴承处光滑;管内放质量 为 m 的小球;初始时,管的角速度为 ω0 , 小球位于管的中点、相对管的速度为零; 设小球与管壁间无摩擦;试求小球运动 规律以及出口时速度 . 解:取本征坐标系 Oxyz, 并以极坐标 {r,θ} 表示小球的位置 . 系统所受外力如图所示,杠的重力 m0g , 小球重力 mg ,以及轴的约束力 FA 和 FB.
初始态 :
˙ 0 = u / R 0 = 0, ˙ 0 = 0 ⇒
2 2 u u 4 g 1− cos u u 4 g 1 − cos ˙ ˙ ⇒ = − = − − ⇒⋯⇒ = − ˙ 2 2 R R m0 / m2 R R m0 / m 2 R R
if r c =const. ⇒ r ˙ C =× r C = v C
, , ,
第四步
J ZZ = ¨ M Z ⇒ J zz = ¨ M z , 即对瞬心角动量定理成立 .( 证毕 )
C
C