人教版-数学-九年级上册-25.3用频率估计概率导学案
人教版数学九年级上册 25、3 用频率估计概率 教案
25. 3用频率估计概率教学目标(1)知识与技能目标学会依据问题特点,用频率来估计事件发生的概率。
(2)过程与方法目标提高发现问题、提出问题、分析问题、解决问题的能力,体会概率的基本思想,感受到概率在问题决策中的重要作用,进一步树立数据的观念。
(3)情感态度价值观目标养成学数学、用数学的意识,体验数学的应用价值。
目标解析:1、能够通过试验获得事件发生的频率,并通过大量重复试验,让学生体会到随机事件内部所蕴涵的客观规律——频率的稳定性. 知道大量重复试验时频率可作为事件发生概率的估计值.2、结合生活实例,能进一步明晰频率与概率的区别与联系,了解用频率估计概率的方法与列举法求概率的区别,并能够通过对事件发生频率的分析,估计事件发生的概率.3、在经历用试验的方法探究概率的过程中,培养学生的动手能力、处理数据的能力,进一步增强统计意识、发展概率观念,同时培养学生实事求是的态度、勇于探索的精神及交流与协作精神.教学重、难点重点:了解用频率估计概率的必要性和合理性.难点:教师要注意提问的准确性,并且举恰当的例子,使学生深入理解用频率估计概率,避免出现不必要的枝节。
三、教学问题诊断分析1、由于学生初学概率,且在此之前面对求概率的随机事件都是等可能事件,对于一些结果不是等可能的随机事件(如:认为姚明一次罚篮的结果进与不进是等可能的)会依然采取列举法,这类现象产生的原因是对用列举法求概率的两个条件把握不够,对事件发生的可能性大小分析不透彻所致.2、频率在一定程度上可以反映随机事件发生的可能性大小,但频率本身是随机的,在试验前不能确定,无法从根本上刻画事件发生可能性的大小,只有在大量重复试验的条件下,可以近似地作为这个事件的概率. 概率是巨大数据统计后得出的结论,是一种大的整体趋势,是频率在理论上的期望值,它是一个确定的常数,是客观存在的,与试验次数无关. 频率与概率是从量变到质变,是对立统一的. 对于初学者,对两者关系的理解,还需要一个循序渐进的过程.3、容易忽略“大量重复试验”这个用频率估计概率前提条件. 这一问题的出现也是对概率思想的内涵把握不够所致. 概率是针对大量重复试验而言的,如果试验次数太少,试验频率可能会与理论概率值产生较大的偏差,进而不能合理的估计概率.教学流程(一)情景引入:问题1:姚明罚篮一次命中概率有多大?播放“NBA”(美国男子篮球职业联赛)火箭队VS老鹰队的比赛片段,在姚明罚篮球出手后,画面停滞,屏幕显示:问题:姚明罚进的概率有多大?学生先思考、讨论、发言后媒体出示甲、乙、丙的说法:甲:100% 姚明是世界明星嘛!乙:50% 因为只有进和不进两种结果,所以概率为50%. 丙:80% 姚明很准的,大概估计有80%的可能性.同学们,你们同意谁的观点?学生充分交流后,老师对不同说法进行适当的评价,并借机复习用列举法求概率的条件,引导学生分析进与不进的可能性不相等,不能用列举法来求概率.师:那它究竟有没有规律,或者说还有没有其它的办法探求概率呢?屏幕上闪烁显示08—09赛季姚明罚篮命中率86. 6%.师:姚明的命中率从何而来?(统计结果)怎么统计的?(罚中个数与罚球总数的比值)这个比值叫什么?(这实际上就是频率,这种方法实际上就是用频率估计概率)在此基础上,导出课题.(二)试验探究问题2:怎样用频率估计概率?1、抛掷一枚硬币正面(有数字的一面)向上的概率是二分之一,这个概率能否利用刚才计算命中率方法──通过统计很多掷硬币的结果来得到呢?2、试验一(掷硬币试验)(配合亲切童声播放)全班共分10个小组,每小组8人,共抛50次,推荐组长一名,组长不参与抛掷.表1(个人抛掷情况统计表)表2(小组抛掷情况统计表)表3(硬币抛掷统计表)问题3:分析试验结果及史上数学家大量重复试验数据,大家有何发现?3、分析数据全班填写表3得到硬币正面向上频率的同时,教师在黑板上绘制折线图,完成后教师提问:①随着抛掷次数的增加,“正面向上”的频率在哪个数字的左右摆动?②随着抛掷次数的增加,“正面向上”的频率在0. 5的左右摆动幅度有何规律?(学生从折线图1中难以发现)师:接下来,我们增加试验次数,看看有什么新的发现,历史上有许多数学家为了弄清其中的规律,曾坚持不懈的做了成千上万次的掷硬币试验.引导学生关注数学家的严谨,师:还有一位数学家,做了八万多次的试验.观察频率在0. 5附近摆动幅度有何规律?观察折线图2:③请大家分析,两个折线图反映的规律有何区别?什么原因造成了不同?学生得出:图一,试验次数少一些,“正面向上”的频率在0. 5左右摆动的幅度大一些.④你们认为出现的规律与试验次数有何关系?(试验次数越多频率越接近0. 5,即频率稳定于概率.)⑤数学家为什么要做那么多试验?⑥当“正面向上”的频率逐渐稳定到0. 5时,“反面向上”的频率呈现什么规律?概率与频率稳定值的关系是什么呢?师生共同小结:至此,我们就验证了可以用计算罚篮命中率的方法来得到硬币“正面向上”的概率.(三)揭示新知问题4:为什么可以用频率估计概率?师:其实,不仅仅是掷硬币有规律,人们在大量的生产生活中发现:对于一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率也总在一个固定数附近摆动,显示出一定的稳定性.引出瑞士数学家雅各布·伯努利最早阐明频率具有稳定性,介绍其家族前后三代共出13位大数学家和大物理学家,进行数学史的教育.师:由于大量重复试验的频率具有稳定性,由此可根据这个稳定的频率来估计概率.归纳:一般地,在大量重复试验中,如果事件A发生的概率m/n会稳定在某个常数p附近,那么事件A发生的概率P(A)=P.教师指出这是从统计的角度给出了概率的定义,也是探求概率的一种新方法,列举法仅限于试验结果有限个和每种结果出现的可能性相等的事件求概率,而用频率估计概率的方法不仅适用于列举法求概率的随机事件,而且对于试验的所有可能结果不是有限个,或各种结果发生的可能性不相等的随机事件,我们也可以用频率来估计概率.问题5:频率与概率有什么区别与联系?学生思考、讨论后全班交流. 此处重点强调学生理解,若不能概括、归纳,则直接出示答案. (四)巩固练习牛刀小试某射击运动员在同一条件下的射击成绩记录如下:①计算表中相应的“射中9环以上”的频率(精确到0. 01);②这些频率稳定在哪一个常数附近?③根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0. 1). 伶牙俐齿(1)天气预报说下星期一降水概率为90%,下星期三降水概率为10%,于是有位同学说:下星期一肯定下雨,下星期三肯定不下雨,你认为他说的对吗?(2)小明投篮5次,命中4次,他说一次投中的概率为5分之4对吗?(3)小明的爸爸这几天迷上了体育彩票,该体育彩票每注是一个7位的数码,如能与开奖结果一致,则获特等奖;如果有相连的6位数码正确,则获一等奖;……;依次类推,小明的爸爸昨天一次买了10注这种彩票,结果中了一注一等奖,他高兴地说:“这种彩票好,中奖率高,中一等奖的概率是10%!小明爸爸的说法正确吗?”设计方案1、老王投资在鱼塘里放了一些鱼苗,秋天了,他准备出售这些鱼,但要想卖一个好价钱就必须估计鱼塘里有多少条鱼,这可难住了老王。
人教版数学九年级上册25.3《利用频率估计概率》教案
人教版数学九年级上册25.3《利用频率估计概率》教案一. 教材分析《人教版数学九年级上册》第25.3节“利用频率估计概率”是概率统计部分的一个重要内容。
本节课主要让学生掌握利用频率来估计概率的方法,理解频率与概率的关系,并能够运用这一方法解决一些简单的实际问题。
教材通过实例引入频率估计概率的概念,引导学生探究频率与概率的关系,并运用这一方法解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了概率的基本概念,了解了随机事件和必然事件。
但是,对于利用频率来估计概率的方法,学生可能比较陌生,需要通过实例和练习来理解和掌握。
此外,学生可能对于如何将频率与概率的关系应用到实际问题中,还需要进一步的引导和培养。
三. 教学目标1.知识与技能目标:让学生掌握利用频率来估计概率的方法,理解频率与概率的关系。
2.过程与方法目标:通过实例和练习,培养学生运用频率估计概率解决实际问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,培养学生的探究精神和合作精神。
四. 教学重难点1.重点:利用频率来估计概率的方法,频率与概率的关系。
2.难点:如何将频率与概率的关系应用到实际问题中。
五. 教学方法1.情境教学法:通过实例引入频率估计概率的概念,引导学生探究频率与概率的关系。
2.问题驱动法:通过设置问题,引导学生思考和探究,培养学生的解决问题的能力。
3.合作学习法:分组讨论和交流,培养学生的合作精神和团队意识。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示实例和练习题目。
2.练习题目:准备一些相关的练习题目,用于巩固和拓展学生的知识。
七. 教学过程导入(5分钟)教师通过一个简单的实例引入频率估计概率的概念。
例如,抛硬币实验,抛掷一枚硬币,记录正面朝上的频率,然后引导学生思考:这个频率与硬币正反面朝上的概率有什么关系?呈现(10分钟)教师通过PPT呈现一些实例,让学生观察和分析频率与概率的关系。
例如,掷骰子实验,掷骰子100次,记录各个数字出现的频率,然后引导学生思考:这个频率与骰子各个数字出现的概率有什么关系?操练(10分钟)教师让学生分组讨论,每组选择一个实例,进行频率估计概率的实验。
人教版九年级数学上册25.3 用频率估计概率(第2课时)导学案
25.3.2《用频率估计概率(第2课时)》导学案一、学习目标1、知识技能:①熟练掌握用频率来估计概率的计算方法;②能用频率来估计概率的知识来解决实际问题。
2、数学思考:①通过几道题的练习,让学生掌握用频率来估计概率的计算方法;②通过实践,培养学生的计算、归纳能力.3、解决问题:能用频率来估计概率的知识来解决生活中的实际问题。
4、情感态度:引导学生对例题情景的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心.二、预习内容自学课本144页至147,完成下列问题:1、理解课本144页中的问题1,完成相应的填空并根据频率数值估计幼树移植成活的概率。
2、理解课本145页中的问题2,弄懂解题的思路。
3、尝试完成147页中的练习。
三、探究学习1、自主探究解决问题某林业部门要考查某种幼树在一定条件的移植的成活率,应采用什么具体做法?下表是一张模拟的统计表,请补出表中的空缺,并完成表后的填空.移植总数(n)成活率(m)成活的频率(保留三位小数)1080.80050472702350.871400369750662150013350.890350032030.915700063359000807314000126280.902从表可以发现,幼树移植成活的频率在_________左右摆动,并且随着统计数据的增加,这种规律愈加越明显,所以估计幼树移植成活率的概率为________2、某水果公司以2元/千克的成本新进了10 000千克的柑橘,如果公司希望这些柑橘能够获得利润5 000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?销售人员首先从所有的柑橘中随机地抽取若干柑橘,进行了“柑橘损坏率”统计,并把获得的数据记录在表中,请你帮忙完成下表.(1)、填表(2)、从表可以看出,柑橘损坏的频率在常数_____左右摆动,并且随统计量的增加这种规律逐渐______,那么可以把柑橘损坏的概率估计为这个常数.如果估计这个概率为0.1,则柑橘完好的概率为_______(3)、根据现有的条件求出每千克的定价?写出解题思路四、巩固测评1、某农科所在相同条件下做了某作物种子发芽率的实验,结果如下表所示:一般地,1 000千克种子中大约有多少是不能发芽的?种子个数发芽种子个数发芽种子频率100 94200 187300 282400 338500 435600 530700 624800 718900 8141000 981五、学习心得。
人教版九年级数学上册25.3用频率估计概率优秀教学案例
1.教师可以布置相关的作业,让学生巩固所学的内容,并提高学生的应用能力。例如,教师可以让学生设计一个实验,用频率来估计某个事件的概率,并将实验结果写成报告。
2.教师可以鼓励学生在课后进行自主学习,进一步深入研究频率与概率的相关知识。例如,教师可以推荐一些相关的数学文章和书籍,让学生进行阅读和思考。
(四)反思与评价
1.教师可以引导学生进行自我反思,让学生思考自己在实验和解决问题中的优点和不足。例如,教师可以提问:“你在实验中发现了什么规律?你在解决问题时遇到了哪些困难?你是如何解决的?”
2.教师可以进行课堂评价,对学生的学习情况进行反馈,鼓励学生的优点,并提出改进的建议。例如,教师可以对学生的实验报告进行评价,对学生的团队合作和问题解决能力进行肯定,并提出进一步改进的建议。
4.培养情感态度与价值观:教师在教学过程中关注学生的情感态度与价值观,引导学生积极参与课堂活动,体验数学学习的乐趣,培养学生的自信心和坚持、勤奋的优良品质。
5.反馈与评价:教师在教学过程中注重学生的反馈与评价,通过课堂评价、自我反思等方式,对学生的学习情况进行及时反馈,鼓励学生的优点,并提出改进的建议,有助于学生的持续发展。
(四)总结归纳
1.教师可以引导学生进行自我反思,让学生思考自己在实验和解决问题中的优点和不足。例如,教师可以提问:“你在实验中发现了什么规律?你在解决问题时遇到了哪些困难?你是如何解决的?”
2.教师可以进行课堂评价,对学生的学习情况进行反馈,鼓励学生的优点,并提出改进的建议。例如,教师可以对学生的实验报告进行评价,对学生的团队合作和问题解决能力进行肯定,并提出进一步改进的建议。
(三)小组合作
1.教师可以将学生分成小组,让学生在小组内进行合作实验,共同探究频率与概率之间的关系。例如,教师可以让学生小组合作设计实验,收集数据,分析频率与概率之间的关系。
人教版九年级数学上册导学案:25.3_用频率估计概率【精品】
25.3 用频率估计概率学习目标:1.理解用频率估计概率的方法;2.了解概率的实验背景及其现实意义.学习重点:通过对事件发生的频率的分析估计事件发生的概率学习难点:合理设计模拟试验,分析频率稳定值从而得到该事件的概率学习过程一、自主学习1、在生产的100件产品中,有95件正品,5件次品。
从中任抽一件是次品的概率为( ).A.0.05B.0.5C.0.95D.952、小明是个小马虎,晚上睡觉时将两双不同的袜子放在床头,早上起床没看清随便穿了两只就去上学,问小明正好穿的是相同的一双袜子的概率是多少?(用两种不同方法求解)二、合作学习1.实验:小组合作完成教材P140实验,并记录在下表中:描点: 思考:(1)分析上面图像可以得出频率随着实验次数的增加,稳定于 左右. (2)从试验数据看,硬币正面向上的概率估计是(3)根据推理计算可知,抛掷硬币一次正面向上的概率应该是结论 对于一般的随机事件,在大量重复试验时,随着实验次数的增加,一件事件出现的频率,总在一个 数的附近摆动,我们就可以用这个数去估计此事件的概率。
归纳:一般地,在大量重复试验中,如果事件A 发生的频率稳定于某个常数p,那么事件A 发生概率的概率 : P(A)= p通常我们用频率估计出的概率是一个近似值,即概率约为p 。
2、运用:P143问题1:某林业部门要考察某种幼树在一定条件的移植成活率,就采用什么具体做法? 某林业部门要考查某种幼树在一定条件的移植成活率. (1)它能够用列举法求出吗?为什么? (2)它应用什么方法求出?50 100 150 200 250 300 350 400 450 500……试验次数n(3)请完成下表,并求出移植成活率.由上表可以发现,幼树移植成活的频率在左右摆动,并且随着移植棵数越越大,这种规律愈加明显.所以估计幼树移植成活的概率为.四、拓展训练问题2、某水果公司以2元/千克的成本新进了10000千克的柑橘,如果公司希望这种柑橘能够获得利润5000元,那么在出售柑橘(已经去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?销售人员首先从所有的柑橘中随机地抽取若干柑橘,•进行了“柑橘损坏表”统计,并把获得的数据记录在下表中,请你帮忙完成下表.四、小结1、弄清一种关系——频率与概率的关系当试验次数很多或试验时样本容量足够大时,一件事件发生的频率与相应的概率会非常接近.此时,我们可以用一件事件发生的频率估计这一事件发生的概率.2、了解一种方法——用多次试验频率去估计概率3、体会一种思想——用样本去估计总体;用频率去估计概率五、作业1.当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,求概率是用( ).A.通过统计频率估计概率B.用列举法求概率C.用列表法求概率D.用树形图法求概率2. 在抛一枚均匀硬币的实验中,如果没有硬币,则下列可作为替代物的是()A.一颗均匀的骰子B.瓶盖C.图钉D.两张扑克牌(1张黑桃,1张红桃)3. 不透明的袋中装有3个大小相同的小球,其中2个为白色球,另一个为红色球,每次从袋中摸出一个球,然后放回搅匀再摸,研究恰好摸出红色小球的机会,以下替代实验方法不可行的是()A.用3张卡片,分别写上“白”、“红”,“红”然后反复抽取B.用3张卡片,分别写上“白”、“白”、“红”,然后反复抽取C.用一枚硬币,正面表示“白”,反面表示“红”,然后反复抽取D.用一个转盘,盘面分:白、红两种颜色,其中白色盘面的面积为红色的2倍,然后反复转动转盘4.在一个暗箱里放有a个除颜色外其他完全相同的球,这a个球中红球只有3个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱。
人教版九年级数学上册253用频率估计概率(教案)
5.通过实例,让学生感受概率在生活中的重要性,培养学生的数据分析能力。
二、核心素养目标
1.数据分析:培养学生通过收集、整理、描述和分析数据,发现数据背后的规律,运用频率估计概率,提高解决实际问题的能力;
2.逻辑推理:引导学生运用数学语言和符号,进行逻辑推理,理解频率与概率之间的关系,培养严谨的逻辑思维能力;
c.在培养数据分析能力时,可以让学生分组进行试验,收集数据,然后讨论如何整理和分析这些数据,得出合理的结论。
直接输出:
四、教学流程
1.导入新课:通过提问方式引导学生回顾之前学过的概率知识,为新课学习做好铺垫。
-提问:“我们之前学过如何表示事件发生的可能性?它与今天我们要学习的频率估计概率有什么联系?”
人教版九年级数学上册253用频率估计概率(教案)
一、教学内容
人教版九年级数学上册253节“用频率估计概率”:本节课主要内容包括:
1.理解频率和概率的关系,通过大量重复试验,观察频率的稳定值来估计概率;
2.掌握利用频率估计概率的方法,并能运用该方法解决实际问题;
3.分析频率与概率之间的关系,探讨频率随试验次数增加的变化规律;
6.总结回顾:强调频率估计概率的重要性,巩固学生对本节知识点的掌握。
-总结:“通过今天的学习,我们知道了频率可以用来估计概率,这对于解决实际问题具有重要意义。”
7.作业布置:布置与频率估计概率相关的作业,强化学生对知识点的应用。
-布置:“请同学们课后思考,生活中还有哪些情况可以用频பைடு நூலகம்来估计概率?并尝试举例说明。”
三、教学难点与重点
1.教学重点
-理解频率与概率的关系:强调通过大量重复试验,观察频率的稳定值来估计概率,使学生掌握这一核心概念。
九年级数学上册 25.3 用频率估计概率导学案1 (新版)新人教版
用频率估计概率1. 理解当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.2. 了解用频率估计概率的方法与列举法求概率的区别,并能够通过对事件发生频率的分析,估计事件发生的概率.重点:了解用频率估计概率的必要性和合理性.难点:大量重复试验得到频率稳定值的分析,对频率与概率之间关系的理解.一、自学指导.(20分钟)自学:阅读教材P142~146.归纳:对于一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示出一定的稳定性.当重复试验的次数大量增加时,事件发生的频率就稳定在相应的概率附近,因此,可以通过大量重复试验,用一个事件发生的频率来估计这一事件发生的概率.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(2分钟)1.小强连续投篮75次,共投进45个球,则小强进球的频率是__0.6__.2.抛掷两枚硬币,当抛掷次数很多以后,出现“一正一反”这个不确定事件的频率值将稳定在__0.5左右.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)红星养猪场400头猪的质量(质量均为整数:千克)频率分布如下,其中数据不在分点上.组别频数频率46 ~ 50 40 0.151 ~ 55 80 0.256 ~ 60 160 0.461 ~ 65 80 0.266 ~ 70 30 0.07571~ 75 10 0.025从中任选一头猪,质量在65 kg以上的概率是__0.1 .二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(6分钟)某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购物10元以上能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:(1) 计算并完成表格:转动转盘的次数n 100 150 200 500 800 1000落在“铅笔”的次数m 68 111 136 345 546 701落在“铅笔”的频率错误!0.68 0.74 0.68 0.69 0.6825 0.701 (2)请估计,当次数很大时,频率将会接近多少?(3)转动该转盘一次,获得铅笔的概率约是多少?(4)在该转盘中,标有“铅笔”区域的扇形的圆心角大约是多少?(精确到1°)【答案】:(2)0.69;(3)0.69;(4)0.69×360°≈248°.学生总结本堂课的收获与困惑.(2分钟)尽管随机事件在每次试验中发生与否具有不确定性,但只要保持试验条件不变,那么这一事件出现的频率就会随着试验次数的增大而趋于稳定,这个稳定值就可以作为该事件发生概率的估计值.学习至此,请使用本课时对应训练部分.(10分钟)。
人教版九年级上册数学第25章25.3《用频率估计概率》教案
2.难点内容的突破
a.采用图表、动态演示等方法,帮助学生形象地理解频率与概率的关系。
b.通过小组讨论、教师引导等方式,让学生深入探讨频率稳定性定理,明确其背后的数学原理。
c.设计具有挑战性的实际问题,指导学生如何将问题抽象为数学模型,运用所学知识进行解决。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解频率和概率的基本概念。频率是指某一事件在多次实验中发生的次数与实验总次数的比值。概率则是理论上的长期稳定值,表示某一事件发生的可能性。它们在预测和决策中起着重要作用。
2.案例分析:接下来,我们来看一个具体的案例。通过抛硬币实验,观察正面朝上的频率,并与理论概率进行比较,分析频率与概率之间的关系。
b.概率的定义及与频率的关系;
c.用频率估计概率的原理和方法;
d.频率稳定性定理;
e.实例分析:抛硬币、掷骰子、抽卡片等实验。
二、核心素养目标
(1)培养学生的数据分析观念,使其能够运用频率估计概率,解决实际问题;
(2)提高学生的逻辑思维能力,理解频率与概率之间的关系,掌握频率稳定性定理;
(3)通过实验和实例,培养学生观察、分析、归纳和推理的能力;
人教版九年级上册数学第25章25.3《用频率估计概率》教案
一、教学内容
人教版九年级上册数学第25章25.3《用频率估计概率》教案:
(1)理解频率和概率的关系,掌握用频率估计概率的方法;
(2)通过实验和实例,观察和分析频率的稳定性和趋近性;
(3)运用频率估计概率,解决实际问题;
(4)章节内容:
a.频率的定义及计算方法;
5.注重教学反馈,及时了解学生的学习情况,针对学生的薄弱环节进行有针对性的辅导。
九年级数学上册 25.3 用频率估计概率导学案 (新版)新人教版
25.3 用频率估计概率预习案一、预习目标及范围:1.理解试验次数较大时试验频率趋于稳定这一规律.2.结合具体情境掌握如何用频率估计概率.3.通过概率计算进一步比较概率与频率之间的关系预习范围:P142-147二、预习要点1、是针对大量反复试验而言的,大量反复试验反映的规律并非在每一次试验中发生.2、用估计概率,就是取多次试验发生的逐渐稳定的常数来估计概率,值得注意的是,同一试验中重复的次数越多,事件发生的越接近概率,但永远不能代替概率.三、预习检测1、某篮球运动员在同一条件下进行投篮练习,结果如下表所示,计算表中各对应频率,并根据频率的稳定性估计概率。
2、抛掷硬币试验结果表:3、某批乒乓球产品质量检查结果表:4、某种油菜籽在相同条件下的发芽试验结果表:探究案一、合作探究活动内容1:探究1:探究频率与概率的关系问题 1 抛掷一枚硬币,正面(有数字的一面)向上的概率是二分之一,这个概率能否利用试验的方法──通过统计很多掷硬币的结果来得到呢?【试验要求】1.全班同学分组,每组六名同学分为三小组,分别做投掷试验。
2.统计试验结果,按要求计算频率(频率结果保留两位小数),向组长汇报,并由组长填写好表格.投掷试验的总次数不少于100次.3.组长将表格交给老师.(以两个小组为例)试验汇报:(以一组为例)问题2 分析试验结果及下面数学家大量重复试验数据,大家有何发现?试验者抛掷次数n “正面向上”次数m “正面向上”频率()棣莫弗2048 1061 0.518布丰4040 2048 0.5069费勒10000 4979 0.4979皮尔逊12000 6019 0.5016皮尔逊24000 12012 0.5005 问题3 分析试验结果及下面数学家大量重复试验数据,大家有何发现?试验次数越多频率越接近0. 5,即频率稳定于概率。
问题4 为什么可以用频率估计概率?一般地,在大量重复试验中,如果事件A 发生的概率mn会稳定在某个常数p 附近,那么事件A 发生的概率P (A )=p .问题5 频率与概率有什么区别与联系?所谓频率,是在相同条件下进行重复试验时事件发生的次数与试验总次数的比值,其本身是随机的,在试验前不能够确定,且随着试验的不同而发生改变. 而一个随机事件发生的概率是确定的常数,是客观存在的,与试验次数无关. 从以上角度上讲,频率与概率是有区别的,但在大量的重复试验中,随机事件发生的频率会呈现出明显的规律性:随着试验次数的增加,频率将会越来越集中在一个常数附近,具有稳定性,即试验频率稳定于其理论概率.活动2:探究归纳一般地,当试验的可能结果有很多且各种可能结果发生的可能性相等时, 则用列举法,利用概率公式P (A )=mn的方式得出概率. 当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,常常是通过统计频率来估计概率,即在同样条件下,大量重复试验所得到的随机事件发生的频率的稳定值来估计这个事件发生的概率.探究2:频率估计概率的应用 填表:由上表可知:柑橘损坏率是,完好率是 .答:0.10;0.90活动内容2:典例精析例1 某水果公司以2元/千克的成本新进了10000千克柑橘,如果公司希望这些柑橘能够获得利润5000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?分析根据上表估计柑橘损坏的概率为0.1,则柑橘完好的概率为0.9.解:根据估计的概率可以知道,在10000千克柑橘中完好柑橘的质量为10000×0.9=9000千克,完好柑橘的实际成本为设每千克柑橘的销价为x元,则应有(x-2.22)×9000=5000,解得x≈2.8.因此,出售柑橘时每千克大约定价为2.8元可获利润5000元.二、随堂检测1.一水塘里有鲤鱼、鲫鱼、鲢鱼共1 000尾,一渔民通过多次捕获实验后发现:鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里有鲤鱼尾,鲢鱼尾.2. 养鱼专业户为了估计他承包的鱼塘里有多少条鱼(假设这个塘里养的是同一种鱼),先捕上100条做上标记,然后放回塘里,过了一段时间,待带标记的鱼完全和塘里的鱼混合后,再捕上100条,发现其中带标记的鱼有10条,鱼塘里大约有鱼多少条?3.抛掷硬币“正面向上”的概率是0.5.如果连续抛掷100次,而结果并不一定是出现“正面向上”和“反面向上”各50次,这是这什么?4.某池塘里养了鱼苗10万条,根据这几年的经验知道,鱼苗成活率为95%,一段时间准备打捞出售,第一网捞出40条,称得平均每条鱼重 2.5千克,第二网捞出25条,称得平均每条鱼重2.2千克,第三网捞出35条,称得平均每条鱼重2.8千克,试估计这池塘中鱼的重量.参考答案预习检测:1.0.75;0.8;0.8;0.85;0.83;0.8;0.76;(0.8)2. 0.53.0.944.0.9随堂检测1.310;2702. 解:设鱼塘里有鱼x条,根据题意可得10100,100x解得x=1000.答:鱼塘里有鱼1000条.3. 答:这是因为频数和频率的随机性以及一定的规律性.或者说概率是针对大量重复试验而言的,大量重复试验反映的规律并非在每一次试验中都发生.4.解:先计算每条鱼的平均重量是:(2.5×40+2.2×25+2.8×35)÷(40+25+35)=2.53(千克);所以这池塘中鱼的重量是2.53×100000× 95%=240350(千克).。
人教版九年级数学上册25.3用频率估计概率导学案
课题:用频率估计概率【学习目标】1、 当事件的试验结果不是有限个或结果发生的可能性不相等时,要用频率来估计概率。
2、 通过试验,理解当试验次数较大时试验频率稳定于理论概率,进一步发展概率观念。
【学习重点】当事件的试验结果不是有限个或结果发生的可能性不相等时,要用频率来估计概率。
【学习难点】通过试验,理解当试验次数较大时试验频率稳定于理论概率,进一步发展概率观念。
【学习过程】预学一 知识链接:1、假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,那么三只雏鸟中有两只雌鸟的概率是() A. B. C. D. 2、中考体育男生抽测项目规则是:从立定跳远、实心球、引体向上中随机抽一项,从50米、50×2米、100米中随机抽一项,恰好抽中实心球和50米的概率是() A. B. C. D. 思考:当事件要经过多个步骤(即三步或三步以上)时,我们常通过____的方法列举所有可能的结果,找出事件A 可能发生的结果,再利用公式____求概率.二、探究新知:1、自主探究:阅读课本P142—P146,完成表25-3、25-4、25-5、25-6中的数据。
2、探究:上表中,随着投篮次数的增加,投中频率的变化趋势有何规律?导学1、事件发生的概率随着 的增加,逐渐 在某个数值附近,我们可以用平稳时6183853231613291来估计这一事件的概率。
2、当试验的所有可能结果不明有限个,或各种可能结果发生的可能性不相等时,求(估计)概率是用()A、通过统计频率估计概率B、用列举法求概率C、用列表法求概率D、用树形图求概率3、关于频率与概率的关系,下列说法正确的是()A、频率等于概率;B、当实验次数很大时,频率稳定在概率附近;C、当实验次数很大时,概率稳定在频率附近;D、实验得到的频率与概率不可能相等。
4、从一个不透明的口袋里,摸出红球的概率为0.2,而袋中红球有3个,则袋中共有球个.5、从全市5000份试卷中随机抽取400份试卷,其中有360份成绩合格,估计全市成绩合格的人约人。
人教版数学九年级上册25.3《利用频率估计概率》教学设计
人教版数学九年级上册25.3《利用频率估计概率》教学设计一. 教材分析人教版数学九年级上册25.3《利用频率估计概率》是学生在学习了概率的基本概念和计算方法后,进一步学习利用频率来估计概率的一节内容。
通过本节课的学习,学生能够理解频率与概率之间的关系,学会如何利用频率来估计概率,并能够运用这一方法解决一些实际问题。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和数学基础,对于概率的基本概念和计算方法已经有了一定的了解。
但是,学生在利用频率估计概率方面可能还存在一些困难,如对频率与概率之间的关系理解不深,以及对实际问题解决方法的掌握不够熟练。
三. 教学目标1.让学生理解频率与概率之间的关系,能够利用频率来估计概率。
2.培养学生运用数学知识解决实际问题的能力。
3.提高学生对数学的兴趣和自信心。
四. 教学重难点1.频率与概率之间的关系。
2.利用频率估计概率的方法。
3.实际问题中如何运用频率估计概率。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过探究问题来理解频率与概率之间的关系。
2.利用多媒体演示和实例分析,帮助学生直观地理解频率估计概率的方法。
3.学生进行小组讨论和合作交流,培养学生的团队协作能力和解决问题的能力。
4.结合课后练习和实际问题,巩固学生对频率估计概率的理解和应用。
六. 教学准备1.多媒体教学设备。
2.教学课件和教学素材。
3.练习题和实际问题。
七. 教学过程1.导入(5分钟)利用多媒体展示一些与概率相关的日常生活实例,引导学生回顾概率的基本概念和计算方法,为新课的学习做好铺垫。
2.呈现(10分钟)展示教材中关于利用频率估计概率的内容,引导学生理解频率与概率之间的关系。
通过实例分析,让学生直观地感受利用频率估计概率的方法。
3.操练(10分钟)学生进行小组讨论,探讨如何利用频率来估计概率。
然后,让学生进行课堂练习,巩固对频率估计概率的理解。
4.巩固(10分钟)针对学生在练习中遇到的问题,进行讲解和解答。
人教版九年级数学上册25.3用频率估计概率(第1课时)导学案
25.3用频率估计概率第一课时导学案学习目标:1、知道当事件的试验结果不是有限个或结果发生的可能性不相等时,要用频率来估计概率。
2、理解当试验次数较大时试验频率稳定于理论概率,并可据此估计某一事件发生的概率。
教学过程一、问题引入体育课上,八年级167组织了投篮比赛,分5轮进行,每轮投10次。
求小明同学罚进球的命中率(概率)?能用列举法求吗?二、实验探究1、抛掷一枚硬币正面(有数字的一面)向上的概率是二分之一,这个概率能否利用刚才计算命中率方法——通过统计很多掷硬币的结果来得到呢?活动:抛掷一枚硬币 50 次,统计“正面向上”出现的频数,计算频率,填写表格,思考观察随着重复试验次数的增加,“正面向上”的频率的变化趋势是什么?三、体会归纳方法用频率估计概率。
四、运用方法问题:抛掷一枚图钉,你能估计出“钉尖朝上”的概率吗?用频率估计概率:猜一猜:“钉尖朝上”可能性与“钉尖朝下”的可能性哪个更大?活动:抛掷一枚图钉 50 次,统计“钉尖朝上”出现的频数,观察频率变化,估计“钉尖朝上”的概率。
五、归纳小结随机事件的概率的定义:弄清了一种关系------频率与概率的关系:当试验次数很多或试验时样本容量足够大时,一件事件发生的频率与相应的概率会非常接近.此时,我们可以用一件事件发生的频率来估计这一事件发生的概率。
了解了一种方法-------用多次试验频率去估计概率。
体会了一种思想:用样本去估计总体,用频率去估计概率。
六、巩固练习1.抛掷一只纸杯的重复试验的结果如下表:(1) 在表内的空格初填上适当的数。
(2)任意抛掷一只纸杯,杯口朝上的概率为。
2.明天下雨的概率为95%,那么下列说法错误的是()A、明天下雨的可能性较大B、明天不下雨的可能性较小C、明天有可能性是晴天D、明天不可能性是晴天3.有一种麦种,播种一粒种子,发芽的概率是98%,成秧的概率为85%.若要得到10 000株麦苗,则需要粒麦种。
(精确到1粒)4.对某服装厂的成品西装进行抽查,结果如下表:(1)请完成上表。
人教版九年级数学上册 25.3 用频率估计概率 精品导学案3 新人教版
用频率估计概率学习目标:知识和技能:能利用估计的概率来解决实际问题。
2、过程和方法:(1)接触并了解到设计实验进行频率估计的方法。
(2)了解模拟实验的方法,会设计模拟实验去估计概率。
3、情感、态度、价值观:(1)了解频率估计概率的必要性。
(2)通过利用频率来估计概率,再利用概率解决实际问题,让学生明白学习概率的意义,提高他们学习的积极性。
学习重点:用概率解决实际问题。
学习难点:综合考虑影响解决实际问题的各个因素。
导学过程一、课前预习:阅读教材144页,思考下列问题:1、柑橘损坏概率和完好概率之间有什么关系?2、由教材中表25—6可以发现,随着统计量的增加,柑橘的损坏率有什么规律?二、课堂导学:1、导入概率知识对于大家来说充满趣味性和吸引力,更为重要的是它与现实生活联系十分紧密。
在日常生活中,概率在问题决策中具有重要的作用,你在学习中感觉到了吗?2、出示任务、自主学习能利用估计的概率来解决实际问题。
3、合作探究阅读教材144页,回答下列问题:1.回答“问题2”时,首先应该解决的问题是什么?(确定柑橘损坏的概率)2.直接影响决策的因素是什么?(柑橘的损坏率)3.求柑橘的损坏率的方法是什么?4,通过学习,我们发现柑橘的损坏率和完好率之间有什么关系?(概率和为1)5.由教材中表25—6可以发现,随着统计量的增加,柑橘的损坏率有什么规律?三、展示反馈1.完成《问题导学》135页“自主测评”1---32.完成课本145页练习四、学习小结:1. 概率在问题决策中具有重要的作用。
2、用模拟实验代替实际调查,用计算器产生的随机数进行模拟实验在现实中应用广泛。
五、达标检测:1.完成《问题导学》136——-137“基础反思”1——32.(湖北武汉)在科学课外活动中,小明同学在相同的条件下做了某种作物种子发芽的实验,结果如下表所示:种子数(个)100 200 300 400发芽种子数(个)94 187 282 376由此估计这种作物种子发芽率约为_________(精确到0.01)。
九年级数学上册 25.3 用频率估计概率导学案3 (新版)新
用频率估计概率学习目标:【知识与技能】学会根据问题的特点,用统计概率来估计事件发生的概率,培养分析问题、解决问题的能力【过程与方法】通过对问题过程的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法【情感、态度与价值观】通过研究如何用统计概率求一些现实生活中的概率问题,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值【重点】通过对事件发生的频率的分析来估计事件发生的概率【难点】大量重复试验得到频率稳定值的分析和事件的模拟试验学习过程:一、自主学习(一)复习巩固1、古典概率条件是什么?用什么方法求?2、用列举法求概率有哪几种?(二)自主探究思考:当实验的所有结果不是有限个;或各种可能结果发生的可能性不相等时.又该如何求事件发生的概率呢?如:1)某射击运动员射击一次,命中靶心的概率是__2)掷一次骰子,向上的一面数字是6的概率是____.1、历史上曾有人作过抛掷硬币的大量重复实验,结果如下表所示抛掷次数(n) 2048 4040 12000 30000 24000 正面朝上数(m) 1061 2048 6019 14984 12012频率(m/n)实验结论:当抛硬币的次数很多时,出现下面的频率值是稳定的,接近于常数 ,在它附近摆动.2、某林业部门要考察某种幼树在一定条件的移植成活率,就采用什么具体做法?某林业部门要考查某种幼树在一定条件的移植成活率.(1)它能够用列举法求出吗?为什么?(2)它应用什么方法求出?(3)请完成下表,并求出移植成活率.移植总数(n)成活数(m)成活的频率(mn)10 8 0.8050 47 ____270 235 0.871400 369 ____750 662 ____1500 1335 0.8903500 3203 0.9157000 6335 _____900 8073 _____14000 12628 0.902由上表可以发现,幼树移植成活的频率在____左右摆动,并且随着移植棵数越来越大,这种规律愈加明显. 所以估计幼树移植成活的概率为_____.(三)、归纳总结:1、一般地,在大量重复试验中,如果事件A发生的频率稳定于某个常数p,那么事件A发生概率的概率: P(A)= p通常我们用频率估计出来的概率要比频率保留的数位要少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25.3用频率估计概率
1.当事件的试验结果不是有限个或结果发生的可能性不相等时,要用频率来估计概率.
2.通过试验,理解当试验次数较大时试验频率稳定于理论概率,发展概率观念.
3.体会频率与概率的联系与区别,发展学生根据频率的集中趋势估计概率的能力.
阅读教材第142至144页,完成下列问题.
自学反馈
1.估算幼苗的移植成活率,运输中柑橘完好的概率,种子的发芽率等事例中,都利用了________________的方法来计算.
2.在种子发芽率的试验中,科研人员经过大量实验得到不同数量的种子发芽的频率都约是0.78,则可以估计种子发芽率是________,从而可估计200千克的种子约有________千克种子发芽.3.一个密闭不透明的盒子里有若干个黑球,在不允许将球倒出来的情况下,为估计黑球的个数,小刚向其中放入8个白球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到白球,估计盒中大约有黑球()
A.28个B.30个C.36个D.42个
4.含有4种花色的36张扑克牌的牌面都朝下,每次抽出一张记下花色后再原样放回,洗匀牌后再抽.不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有________张.
5.一个口袋中有12个白球和若干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程5次,得到的白球数与10的比值分别为:0.4,0.1,0.2,0.1,0.2.根据上述数据,小亮可估计口袋中大约有________个黑球.
活动1小组讨论
例1某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:
(1)计算并完成表格:
转动转盘
100 150 200 500 800 1 000的次数n
落在“铅
笔”
68 111 136 345 564 701
的次数m
落在“铅
笔”
0.68 0.74 0.68 0.69 0.705 0.701
的频率m
n
(2)请估计,当n很大时,落在“铅笔”的频率将会接近多少?
解:0.7.
(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?
解:0.7.
例2在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:
摸球的次数n 100 150 200 500 800 1000
摸到白球的
58 96 116 295 484 601
次数m
摸到白球的0.58 0.64 0.58 0.59 0.605 0.601
频率m
n
(1)请估计,当n很大时,摸到白球的频率将会接近0.6;
(2)假如你去摸一次,你摸到白球的概率是0.6,摸到黑球的概率是0.4;
(3)试估算口袋中黑、白两种颜色的球各有多少只?
解:8,12.
频率与概率有什么区别与联系?
(1)一般地,频率是随着试验次数的变化而变化.
(2)概率是一个客观的数量.
(3)频率是概率的近似值,概率是频率的稳定值,它是频率的科学抽象,当试验次数越来越多时,频率围绕概率摆动的平均幅度会越来越小,即频率靠近概率.
活动2跟踪训练
1.某篮球队在平时训练中,运动员甲的3分球命中率是70%,运动员乙的3分球命中率是50%.在一场比赛中,甲投3分球4次,命中一次;乙投3分球4次,全部命中.全场比赛即将结束,甲、乙两人所在球队还落后对方球队2分,但只有最后一次进攻机会了,若你是这个球队的教练,问:
(1)最后一个3分球由甲、乙中谁来投,获胜的机会更大?
(2)请简要说说你的理由.
2.小颖有20张大小相同的卡片,上面写有1~20这20个数字,她把卡片放在一个盒子中搅匀,每次从盒中抽出一张卡片,记录结果如下:
实验次数20 40 60 80 100 120 140 160 180 200
3的倍数
5 13 17 2
6 32 36 39 49 55 61
的频数
3的倍数
的频率
(1)完成上表;
(2)频率随着试验次数的增加,稳定于什么值左右?
(3)从试验数据看,从盒中摸出一张卡片是3的倍数的概率估计是多少?
(4)根据推理计算可知,从盒中摸出一张卡片是3的倍数的概率应该是多少?
当试验次数较大时,试验频率稳定于理论概率.
阅读教材第144至146页,完成下列问题.
自学反馈
1.盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为( )
A .90个
B .24个
C .70个
D .32个
2.从生产的一批螺钉中抽取1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品概率约为( )
A .11 000
B .1200
C .12
D . 3.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100粒黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来有( )
A .10粒
B .160粒
C .450粒
D .500粒
4.在“抛一枚均匀硬币”的实验中,如果现在没有硬币,那么下面各个试验中哪个不能代替
( )
A .两张扑克,“黑桃”代替“正面”,“红桃”代替“反面”
B .两个形状大小完全相同,但一红一白的两个乒乓球
C .扔一枚图钉
D .人数均等的男生、女生,以抽签的方式随机抽取一人
活动1 小组讨论
例1 在抛一枚均匀硬币的试验中,如果没有硬币,则下列可作为替代物的是(D )
A .一颗均匀的骰子
B.瓶盖
C.图钉
D.两张扑克牌(1张黑桃,1张红桃)
例2不透明的袋中装有3个大小相同的小球,其中2个为白色球,另一个为红色球,每次从袋中摸出一个球,然后放回搅匀再摸,研究恰好摸出红色小球的机会,以下替代试验方法不可行的是(C)
A.用3张卡片,分别写上“白1”、“白2”,“红”,然后反复抽取
B.用3张卡片,分别写上“白”、“白”、“红”,然后反复抽取
C.用一枚硬币,正面表示“白”,反面表示“红”,然后反复抛
D.用一个转盘,盘面分白、红两种颜色,其中白色盘面的面积为红色的2倍,然后反复转动转盘.
模拟试验解决实际问题的合理性.
例3王叔叔承包了鱼塘养鱼,到了收获时期,他想知道池塘里大约有多少条鱼,于是他先捞出1 000条鱼,将他们做上标记,然后放回鱼塘,经过一段时间后,待有标记的鱼完全混合到鱼群中后,从中捕捞出150条鱼,发现有标记的鱼有3条,则:
(1)池塘内约有多少条鱼?
(2)如果每条鱼重0.5千克,每千克鱼的利润为1元,那么估计它所获得的利润为多少元?
解:(1)50 000条.(2)25 000元.
活动2跟踪训练
妈妈有一张马戏团门票,小明、小华和小红都想去看演出,怎么办呢?妈妈想用掷骰子的办法决定,你觉得这样公平吗?说说你的理由?但由于一时找不到骰子,妈妈决定用一个小长方体(涂有三种颜色,对面的颜色相同)来代替,你觉得这样公平吗?选哪种颜色获得门票的概率更大?说说你的理由.
实验:二人一组,一人抛掷小长方体,一人负责记录,合作完成30次试验,并完成下面表格的填写和有关结论的得出.
颜色红绿蓝
频数
频率
概率
问题:(1)你认为哪种情况的概率最大?
(2)当试验次数较小时,比较三种情况的频率,你能得出什么结论?
活动3课堂小结
1.当事件的试验结果不是有限个或结果发生的可能性不相等时,要用频率来估计概率.
2.模拟试验在实际问题中的作用.
3.怎样对一个简单的问题提出一种可行的模拟试验.
【预习导学1】
自学反馈
1.频率来估计概率 2.0.78156 3.A 4.9 5.48
【合作探究1】
活动2跟踪训练
1.略.(答案合理即可) 2.(1)0.250.3250.2830.3250.320.30.2790.3060.306 0.305(2)0.3.(3)0.3.(4)0.3.
【预习导学2】
自学反馈
1.B 2.B 3.C 4.C
【合作探究2】
活动2跟踪训练
略.。