反比例函数的典型例题集

合集下载

初二数学人教版(下册)反比例函数典型例题汇总(附答案)

初二数学人教版(下册)反比例函数典型例题汇总(附答案)

例 下面函数中,哪些是反比例函数?(1);(2);(3);(4);(5)3x y -=x y 8-=54-=x y 15-=x y .81=xy 解:其中反比例函数有(2),(4),(5).说明:判断函数是反比例函数,依据反比例函数定义,,它也可变形为xky =)0(≠k 及的形式,(4),(5)就是这两种形式.1-=kx y k xy =反比例函数的典型例题二例 在以下各小题后面的括号里填写正确的记号.若这个小题成正比例关系,填(正);若成反比例关系,填(反);若既不成正比例关系又不成反比例关系,填(非).(1)周长为定值的长方形的长与宽的关系 ( );(2)面积为定值时长方形的长与宽的关系 ( );(3)圆面积与半径的关系 ( );(4)圆面积与半径平方的关系 ( );(5)三角形底边一定时,面积与高的关系 ( );(6)三角形面积一定时,底边与高的关系 ( );(7)三角形面积一定且一条边长一定,另两边的关系 ( );(8)在圆中弦长与弦心距的关系 ( );(9)x 越来越大时,y 越来越小,y 与x 的关系 ( );(10)在圆中弧长与此弧所对的圆心角的关系 ( ).答:说明:本题考查了正比例函数和反比例函数的定义,关键是一定要弄清出二者的定义.例 已知反比例函数,y 随x 增大而减小,求a 的值及解析式.62)2(--=a xa y 分析 根据反比例函数的定义及性质来解此题.解 因为是反比例函数,且y 随x 的增大而减小,62)2(--=a xa y 所以 解得⎩⎨⎧>--=-.02,162a a ⎩⎨⎧>±=.2,5a a 所以,解析式为.5=a xy 25-=反比例函数的典型例题四例 (1)若函数是反比例函数,则m 的值等于( )22)1(--=m xm y A .±1B .1C .D .-13(2)如图所示正比例函数)与反比例函数的0(>=k kx y xy 1=图像相交于A 、C 两点,过A 作x 轴的垂线交x 轴于B ,连结BC .若的面积为S ,则:ABC ∆A . B .C .D .S 的值不确定1=S 2=S 3=S 解:(1)依题意,得 解得.⎩⎨⎧-=-≠-,12,012m m 1-=m 故应选D .(2)由双曲线关于O 点的中心对称性,可知:.x y 1=OBC OBA S S ∆∆=∴.12122=⋅=⨯⨯==∆AB OB AB OB S S OBA 故应选A .例已知,与x 成正比例,与x 成反比例,当时,;当21y y y +=1y 2y 1=x 4=y 时,,求时,y 的值.3=x 5=y 1-=x 分析 先求出y 与x 之间的关系式,再求时,y 的值.1-=x 解 因为与x 成正比例,与x 成反比例,1y 2y 所以.)0(,212211≠==k k xk y x k y 所以.xkx k y y y 2121+=+=将,;,代入,得1=x 4=y 3=x 5=y 解得 ⎪⎩⎪⎨⎧=+=+.5313,42121k k k k ⎪⎪⎩⎪⎪⎨⎧==.821,81121k k 所以.xx y 821811+=所以当时,.1-=x 4821811-=--=y 说明不可草率地将都写成k 而导致错误,题中给出了两对数值,决定了21k k 、的值.21k k 、反比例函数的典型例题六例 根据下列表格x 与y 的对应数值.x ……123456…y …632 1.5 1.21…(1)在直角坐标系中,描点画出图像;(2)试求所得图像的函数解析式,并写出自变量x 的取值范围.解:(1)图像如右图所示.(2)根据图像,设,取代入,得)0(≠=k xky 6,1==y x . ∴.16k=6=k ∴函数解析式为.)0(6>=x xy 说明:本例考查了函数的三种表示法之间的变换能力,即先由列表法通过描点画图转化为图像法,再由图像法通过待定系数法转化为解析法,题目新颖别致,有较强的趣味性.反比例函数的典型例题七例(1)一次函数与反比例函数在同一坐标系中的图像大致是如图中1+-=x y xy 3=的( )(2)一次函数与反比例函数在同一直角坐标系内的图像的大致12--=k kx y xky =位置是图中的( )解:的图像经过第一、二、四象限,故排除B 、C ;又的图像两支1+-=x y xy 3=在第一、三象限,故排除D .∴答案应选A .(2)若,则直线经过第一、三、四象限,双曲线的图0>k )1(2+-=k kx y xky =像两支在第一、三象限,而选择支A 、B 、C 、D 中没有一个相符;若,则直线0<k 经过第二、三、四象限,而双曲线的两支在第二、四象限,故只有C 正)1(2+-=k kx y 确.应选C .例已知函数是反比例函数,且其函数图像在每一个象限内,随24231-⎪⎭⎫ ⎝⎛+=mx m y y 的增大而减小,求反比例函数的解析式.x 解:因为是的反比例函数,y x 所以,所以或1242-=-m 21=m .21-=m 因为此函数图像在每一象限内,随的增大而减小,y x 所以,所以,所以,031>+m 31->m 21=m 所以反比例函数的解析式为.65xy =说明:此题根据反比例函数的定义与性质来解反比例函数 ,当时,xky =)0(≠k 0>k 随增大而减小,当时,随增大而增大.y x 0<k y x例 一个长方体的体积是100立方厘米,它的长是y 厘米,宽是5厘米,高是x 厘米.(1)写出用高表示长的函数关系式;(2)写出自变量x 的取值范围;(3)当厘米时,求y 的值;3=x (4)画出函数的图像.分析 本题依据长方体的体积公式列出方程,然后变形求出长关于高的函数关系式.解 (1)因为长方体的长为y 厘米,宽为5厘米,高为x 厘米,所以,所以.1005=xy xy 20=(2)因为x 是长方体的高.所以.即自变量x 的取值范围是.0>x 0>x (3)当时,(厘米)3=x 326320==y (4)用描点法画函数图像,列表如下:x…0.5251015…y…401042311…描点画图如图所示.例 已知力F 所作用的功是15焦,则力F 与物体在力的方向通过的距离S 的图象大致是( ).说明 本题涉及力学中作功问题,主要考查在力的作用下物体作功情况,由此,识别正、反比例函数,一次函数的图象位置关系.解 据,得15=,即,所以F 与S 之间是反比例函数关系,故S F W ⋅=S F ⋅SF 15=选(B ).例 一个圆台形物体的上底面积是下底面积的如果如下图所示放在桌上,对桌面的.32压强是,翻过来放,对桌面的压强是多少?Pa 200解:由物理知识可知,压力,压强与受力面积之间的关系是因为是同F p S .SFp =一物体,的数值不变,所以与成反比例.F p S 设下底面是,则由上底面积是,0S 032S 由,且时,,SFp =0S S =200=p 有.20020000S S pS F =⨯==因为是同一物体,所以是定值.0200S F =所以当时,032S S =).Pa (3003220000===S S S F p 因此,当圆台翻过来时,对桌面的压强是300帕.说明:本题与物理知识结合考查了反比例函数,关键是清楚对于同一个物体,它对桌面的压力是一定的.例如图,P 是反比例函数上一点,若图中阴影部分的矩形面积是2,求这个xky =反比例函数的解析式.分析 求反比例函数的解析式,就是求k 的值.此题可根据矩形的面积公式及坐标与线段长度的转化来解.解 设P 点坐标为.),(y x 因为P 点在第二象限,所以.0,0><y x 所以图中阴影部分矩形的长、宽分别为.y x ,-又,所以.因为,所以.2=-xy 2-=xy xy k =2-=k 所以这个反比例函数的解析式为.xy 2-=说明 过反比例函数图像上的一点作两条坐标轴的垂线,可得到一个矩形,这个矩形的面积等于中的.xky =k例 当n 取什么值时,是反比例函数?它的图像在第几象限内?122)2(-++=n n xn n y 在每个象限内,y 随x 增大而增大还是减小?分析 根据反比例函数的定义可知,是反比例函数,)0(≠=k xky 122)2(-++=n n x n n y 必须且只需且.022≠+n n 112-=-+n n 解 是反比例函数,则122)2(-++=n n xn n y ⎪⎩⎪⎨⎧-=-+≠+,11,0222n n n n ∴⎩⎨⎧-==-≠≠.10,20n n n n 或且即 .1-=n 故当时,表示反比例函数:.1-=n 122)2(-++=n n xn n y xy 1-=,01<-=k ∴双曲线两支分别在二、四象限内,并且在每个象限内,y 随x 的增大而增大.。

反比例函数经典例题

反比例函数经典例题

反比例函数经典例题1.(北京模拟)如图,直线AB 经过第一象限,分别与x 轴、y 轴交于A 、B 两点,P 为线段AB 上任意一点(不与A 、B 重合),过点P 分别向x 轴、y 轴作垂线,垂足分别为C 、D .设OC =x ,四边形OCPD 的面积为S .(1)若已知A (4,0),B (0,6),求S 与x 之间的函数关系式;(2)若已知A (a ,0),B (0,b ),且当x = 时,S 有最大值,求直线AB 的解析式;3498(3)在(2)的条件下,在直线AB 上有一点M ,且点M 到x 轴、y 轴的距离相等,点N 在过M 点的反比例函数图象上,且△OAN 是直角三角形,求点2.(北京模拟)已知点A 是双曲线y = (k 1>0)上一点,点A 的横坐标为1,过点A 作k 1x 平行于y 轴的直线,与x 轴交于点B ,与双曲线y =(k 2<0)交于点C .点D (m ,0)k 2x 是x 轴上一点,且位于直线AC 右侧,E 是AD 的中点.(1)如图1,当m =4时,求△ACD 的面积(用含k 1、k 2的代数式表示);(2)如图2,若点E 恰好在双曲线y =(k 1>0)上,求m 的值;k 1x (3)如图3,设线段EB 的延长线与y 轴的负半轴交于点F ,当m =2时,若△BDF 的面积为1,且CF ∥AD ,求k 1的值,并直接写出线段CF 的长.图1图2图33.(上海模拟)Rt △ABC 在直角坐标系中的位置如图所示,tan ∠BAC =,反比例函数12y =(k ≠0)在第一象限内的图象与BC 边交于点D (4,m ),与AB 边交于点E (2,n ),k x △BDE 的面积为2.(1)求反比例函数和直线AB 的解析式;(2)设直线AB 与y 轴交于点F ,点P 是射线FD 上一动点,是否存在点P 使以E 、F 、P 为顶点的三角形与△AEO 相似?若存在,求点P4.(安徽某校自主招生)如图,直角梯形OABC 的腰OC 在y 轴的正半轴上,点A (5n ,0)在x 轴的负半轴上,OA : AB : OC =5 : 5 :3.点D 是线段OC 上一点,且OD =BD .(1)若直线y =kx +m (k ≠0)过B 、D 两点,求k 的值;(2)在(1)的条件下,反比例函数y = 的图象经过点B .mx ①求证:反比例函数y =的图象与直线AB 必有两个不同的交点;mx ②已知点P (p ,-n -1),Q (q ,-n -2)在线段AB 上,当点E 落在线段PQ 上时,求n 的取值范围.5.(浙江杭州)在平面直角坐标系中,反比例函数与二次函数y =k ( x 2+x -1)的图象交于点A (1,k )和点B (-1,-k ).(1)当k =-2时,求反比例函数的解析式;(2)要使反比例函数与二次函数都是y 随着x 的增大而增大,求k 应满足的条件以及x 的取值范围;(3)设二次函数的图象的顶点为Q ,当△ABQ 是以AB 为斜边的直角三角形时,求k 的值.6.(浙江义乌)如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点D 为对角线OB 的中点,点E (4,n )在边AB 上,反比例函数y =在第一象限内的图象经过点k x D 、E ,且tan ∠BOA = .12(1)求反比例函数的解析式;(2)若反比例函数的图象与矩形的边BC 交于点F ,将矩形折叠,使点O 与点F 重合,折痕分别与x 、y 轴正轴交于点H 、G ,求线段OG 的长.7.(浙江某校自主招生)已知点P 的坐标为(m ,0),在x 轴上存在点Q (不与P 重合),以PQ 为边,∠PQM =60°作菱形PQMN ,使点M 落在反比例函数y =- 的图象上.(1)如图所示,若点P 的坐标为(1,0),图中已经画出一个符合条件的菱形PQMN ,若另一个菱形为PQ 1M 1N 1,求点M 1的坐标;(2)探究发现,当符合上述条件的菱形只有两个时,一个菱形的顶点M 在第四象限,另一个菱形的顶点M 1在第二象限.通过改变P 点坐标,对直线MM 1的解析式y =kx +b 进行探究可得k =__________,若点P 的坐标为(m ,0),则k =__________(用含m 的代数式表示);(3)继续探究:①若点P 的坐标为(m ,0),则m 在什么范围时,符合上述条件的菱形分别为两个、三个、四个?8.(浙江模拟)如图,在平面直角坐标系中,△AOB 的顶点O 是坐标原点,点A 坐标为(1,3),A 、B 两点关于直线y =x 对称,反比例函数y =(x >0)图象经过点A ,点P k x 是直线y =x 上一动点.(1)填空:B 点的坐标为(______,______);(2)若点C 是反比例函数图象上一点,是否存在这样的点C ,使得以A 、B 、C 、P 四点为顶点的四边形是平行四边形?若存在,求出点C 坐标;若不存在,请说明理由;(3)若点Q 是线段OP 上一点(Q 不与O 、P 重合),当四边形AOBP 为菱形时,过点Q 分别作直线OA 和直线AP 的垂线,垂足分别为E 、F ,当QE +QF +QB 的值最小时,求出Q 点坐标.9.(浙江模拟)已知点P (m ,n )是反比例函数y =(x >0)图象上的动点,PA ∥x 轴,6x PB ∥y 轴,分别交反比例函数y =(x >0)的图象于点A 、B ,点C 是直线y =2x 上的一3x 点.(1)请用含m 的代数式分别表示P 、A 、B 三点的坐标;(2)在点P 运动过程中,连接AB ,△PAB 的面积是否变化,若不变,请求出△PAB 的面积;若改变,请说明理由;(3)在点P 运动过程中,以点P 、A 、B 、C 为顶点的四边形能否为平行四边形,若能,请求出此时m的值;若不能,请说明理由.备用图11.(江苏泰州)如图,已知一次函数y 1=kx +b 的图象与x 轴相交于点A ,与反比例函数y 2= 的图象相交于B (-1,5)、C (,d )两点.点P (m ,n )是一次函数y 1=kx +b 的c x 52图象上的动点.(1)求k 、b 的值;(2)设-1<m < ,过点P 作x 轴的平行线与函数y 2=的图象相交于点D .试问△PAD 32c x 的面积是否存在最大值?若存在,请求出面积的最大值及此时点P 的坐标;若不存在,请说明理由;(3)设m =1-a ,如果在两个实数m 与n 之间(不包括m 和n )有且只有一个整数,求实数a 的取值范围.12.(江苏模拟)如图,双曲线y =(x >0)与过A (1,0)、B (0,1)的直线交于316x P 、Q 两点,连接OP 、OQ .(1)求证△OAQ ≌△OBP ;(2)若点C 是线段OA 上一点(不与O 、A 重合),CD ⊥AB 于D ,DE ⊥OB 于E .设CA =a .①当a 为何值时,CE =AC ?②是否存在这样的点C ,使得CE ∥AB ?若存在,求出点C 的坐标;若不存在,说明理由.13.(河北)如图,四边形ABCD 是平行四边形,点A (1,0),B (3,1),C (3,3).反比例函数y =(x >0)的图象经过点D ,点P 是一次函数m x y =kx +3-3k (k ≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数y =kx +3-3k (k ≠0)的图象一定过点C ;(3)对于一次函数y =kx +3-3k (k ≠0),当y 随x 的增大而增大时,确定点P 横坐标的取值范围(不必写出过程).14.(山东济南)如图,已知双曲线y = 经过点D (6,1),点C 是双曲线第三象限分支k x 上的动点,过C 作CA ⊥x 轴,过D 作DB ⊥y(1)求k 的值;(2)若△BCD 的面积为12,求直线CD 的解析式;(3)判断AB 与CD 的位置关系,并说明理由.15.(山东淄博)如图,正方形AOCB 的边长为4,反比例函数的图象过点E (3,4).(1)求反比例函数的解析式;(2)反比例函数的图象与线段BC 交于点D ,直线y =-x +b 12点F ,求点F 的坐标;(3)连接OF ,OE ,探究∠AOF 与∠EOC 的数量关系,并证明.16.(湖北某校自主招生)在直角坐标系中,O 为坐标原点,A 是双曲线y =(k >0)在k x 第一象限图象上的一点,直线OA 交双曲线于另一点C .(1)如图1,当OA 在第一象限的角平分线上时,将OA 向上平移 个单位后与双曲线在32第一象限的图象交于点M ,交y 轴于点N ,若 =,求k 的值;MN OA 12(2)如图2,若k =1,点B 在双曲线的第一象限的图象上运动,点D 在双曲线的第三象17.2=0,直线y =(1)求反比例函数的解析式;(2)将线段BC 绕坐标平面内的某点M 旋转180°后B 、C 两点恰好都落在反比例函数的图象上,求点M 的坐标;(3)在反比例函数的图象上是否存在点P ,使以PB 为直径的圆恰好过点C ?若存在,求点P18.(广西北海)如图,在平面直角坐标系中有Rt △ABC ,∠A =90°,AB =AC ,A (-2,0)、B (0,1)、C (d ,2).(1)求d 的值;(2)将△ABC 沿x 轴的正方向平移,在第一象限内B 、C 两点的对应点B ′、C ′ 正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B ′C ′ 的解析式;(3)在(2)的条件下,设直线B ′C ′ 交y 轴于点G .问是否存在x 轴上的点M 和反比例函数图象上的点P ,使得四边形PGMC ′是平行四边形.如果存在,请求出点M 和点P 的坐标;如果不存在,请说明理由.19.(广西玉林、防城港)如图,在平面直角坐标系xO y 中,梯形AOBC 的边OB 在x 轴的正半轴上,AC ∥OB ,BC ⊥OB ,过点A 的双曲线y =的一支在第一象限交梯形对角线OC k x 于点D ,交边BC 于点E .(1)填空:双曲线的另一支在第_________象限,k 的取值范围是_______________(2)若点C 的坐标为(2,2),当点E 在什么位置时,阴影部分面积S 最小?(3)若 = ,S △OAC =2,求双曲线的解析式.OD OC 1220.(福建厦门)已知点A (1,c )和点B (3,d )是直线y =k 1x +b 与双曲线y = (k 2>0)的交点.k 2x (1)过点A 作AM ⊥x 轴,垂足为M ,连接BM .若AM =BM ,求点B 的坐标;(2)设点P 在线段AB 上,过点P 作PE ⊥x 轴,垂足为E ,并交双曲线y =(k 2>0)k 2x 于点N .当 取最大值时,有PN =,求此时双曲线的解析式.PN NE 1221.(福建莆田)如图,一次函数y =k 1x +b 的图象过点A (0,3),且与反比例函数y = (x >0)的图象相交于B 、C 两点.k 2x (1)若B (1,2),求k 1·k 2的值;(2)若AB =BC ,则k 1·k 2的值是否为定值?若是,请求出该定值;若不是,请说明理由.22.(福建某校自主招生)如图1,已知直线y =- x +m 与反比例函数y =的图象在第一12k x 象限内交于A 、B 两点(点A 在点B 的左侧),分别与x 、y 轴交于点C 、D ,AE ⊥x 轴于E .(1)若OE ·CE =12,求k 的值;(2)如图2,作BF ⊥y 轴于F ,求证:EF ∥CD ;(3)在(1)(2)的条件下,EF =,AB =2,P 是x 轴正半轴上一点,且△PAB 是以55P 为直角顶点的等腰直角三角形,求P 点的坐标.。

完整版)反比例函数经典习题及答案

完整版)反比例函数经典习题及答案

完整版)反比例函数经典习题及答案反比例函数练题1.下列函数中,经过点(1.-1)的反比例函数解析式是()A。

y = 1/xB。

y = -1/xC。

y = 2/xD。

y = -2/x2.反比例函数y = -(k/ x)(k为常数,k ≠ 0)的图象位于()A。

第一、二象限B。

第一、三象限C。

第二、四象限D。

第三、四象限3.已知反比例函数y = (k - 2)/x的图象位于第一、第三象限,则k的取值范围是()A。

k。

2B。

k ≥ 2C。

k ≤ 2D。

k < 24.反比例函数y = k/x的图象如图所示,点M是该函数图象上一点,MN垂直于x轴,垂足是点N,如果三角形MON 的面积是2,则k的值为()A。

2B。

-2C。

4D。

-45.对于反比例函数y = 2/x,下列说法不正确的是()A。

点(-2.-1)在它的图象上B。

它的图象在第一、三象限C。

当x。

0时,y随x的增大而增大D。

当x < 0时,y随x的增大而减小6.反比例函数y = (2m - 1)x/(m^2 - 2),当x。

0时,y随x 的增大而增大,则m的值是()A。

±1B。

小于1的实数C。

-1D。

1/27.如图,P1、P2、P3是双曲线上的三点,过这三点分别作y轴的垂线,得到三个三角形P1A1O、P2A2O、P3A3O,设它们的面积分别是S1、S2、S3,则()。

A。

S1 < S2 < S3B。

S2 < S1 < S3C。

S3 < S1 < S2D。

S1 = S2 = S38.在同一直角坐标系中,函数y = -2与y = 2x的图象的交点个数为()A。

3B。

2C。

1D。

09.已知甲、乙两地相距s(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(h)与行驶速度v(km/h)的函数关系图象大致是()10.如图,直线y = mx与双曲线y = k/(x-2)交于A、B两点,过点A作AM⊥x轴,垂足为M,连结BM,若三角形ABM的面积为2,则k的值是()A。

反比例函数经典例题(有答案)

反比例函数经典例题(有答案)

一、反比例函数的对称性1、直线y=ax (a>0)与双曲线y= 3/x 交于A (x i, y〔)、B (X2, y2)两点,贝U 4x i y2-3x2y i=2、如图1,直线y=kx (k>0)与双曲线y= 2/x交于A, B两点,若A B两点的坐标分别为A (x i, y i),B (x2, y2),贝U x i y2+x2y i 的值为( )A 、-8B 、4C 、-4D 、0解析:直线Y=KX和双曲线Y=2/X图象都关于原点对称因此两交点A、B也关于原点对称X2=-Xi, Y2=-Yi双曲线形式可变化为XY=2即双曲线上点的横纵坐标乘积为 2因此XiYi=2XiY2+X2Yi=Xi(-Yi) + (-Xi) Yi=-XiYi-XiYi=-4图i 图2 图3 图4二、反比例函数中“ K”的求法1、如图2,直线l是经过点(i, 0)且与y轴平行的直线.Rt△ ABC中直角边AC=4, BC=3将BC边在直线l上滑动,使A, B在函数y=k/x的图象上.那么k的值是( )A、3 B 、6 C 、i2 D 、i5/4解析:BC 在直线X=i 上,设B(i , M),贝U C(i, M-3), .••A(5, M-3), 又A B都在双曲线上,二i*M=5*(M-3) , M=i5/4 即K=i5/4 2、如图3,已知点A、B在双曲线y= k/x (x>0)上,Adx轴于点C, Bdy轴于点D, AC与BD交于点P, P是AC的中点,若△ ABP的面积为3,则k=解析:A(xi,k/xi),B(x2,k/x2)AC:x=xi BD:y=k/x2P(xi,k/x2)k/x2=k/2xi 2xi=x2BP=x2-xi=xiAP=k/xi-k/x2=k/2xiS=xi*k/(2xi)*i/2)=k/4=3 k=i23、如图4,双曲线y= k/x (k > 0)经过矩形OABC的边BC的中点E,交AB于点D.若梯形ODBC的面积为3,则双曲线的解析式为( )A、y=i/xB、y=2/xC、y=3/xD、=6/解析:设E(x0,k/x0)E 是BC中点,二B(x0,2k/x0)B、D两点纵坐标相同,二D(x0/2,2k/x0)BD=x0/2,OC=x0,BC=2k/x0梯形面积=(BD+OC/ BC/2=3k/2=3•,- k=2 .•.双曲线的解析式为:y=2/x三、反比例函数“ K”与面积的关系1、如图5,已知双曲线y i=1/x(x >0) , y2=4/x(x >0),点P为双曲线y2=4/x上的一点,且PAlx 轴于点A, PBLy轴于点B, PA PB分别次双曲线y=/x于D C两点,则^ PCD的面积为( ) 图5 图6 图7解析:假设P的坐标为(a,b ),则C (a/4,b), D(a,b/4),PC=3/4*a PD=3/4*bS=1/2*3/4*a*3/4*b因为点P为双曲线y2=4/x上的一点所以a*b=4所以S=9/82、如图6,直线l和双曲线y=k/x(k >0)交于A B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为G D、E,连接OA OB 0P,设AAOC勺面积为S、△ BOD的面积为&、APOE的面积为S3,则( )A S I<S3B 、S I>S2>S3C 、S I=S2>&D 、S=S< S3解析:结合题意可得:AB者S在双曲线y=kx上,则有S1=S2而AB之间,直线在双曲线上方;故S1=SK S3.3、如图7,已知直线y=-x+3与坐标轴交于A、B两点,与双曲线y=k/x交于G D两点,且S3O C=&CO D=S\BOD 贝1J k=。

(完整版)反比例函数经典大题(有详细答案)

(完整版)反比例函数经典大题(有详细答案)

反比例函数1. 如图,函数b x k y +=11的图象与函数xk y 22=(0>x )的图象交于A 、B 两点,与y 轴交于C 点,已知A 点坐标为(2,1),C 点坐标为(0,3).(1)求函数1y 的表达式和B 点的坐标;(2)观察图象,比较当0>x 时,1y 与2y 的大小。

2、如图,正比例函数12y x =的图象与反比例函数ky x=(0)k ≠在第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知OAM ∆的面积为1. (1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴上求一点P ,使PA PB +最小.3、若反比例函数xky =与一次函数42-=x y 的图象都经过点A(a ,2) (1)求反比例函数x ky =的解析式;(2) 当反比例函数xky =的值大于一次函数42-=x y 的值时,求自变量x 的取值范围.ABOCxyOMxA(第5题)4、如图,在直角坐标系中,O 为坐标原点. 已知反比例函数y= (k 〉0)的图象经过点A (2,m ),过点A 作AB ⊥x 轴于点B ,且△AOB 的面积为 . (1)求k 和m 的值;(2)点C (x ,y )在反比例函数y= 的图象上,求当1≤x ≤3时函数值y 的取值范围;5、如图,四边形ABCD 为菱形,已知A (0,4),B (—3,0)。

⑴求点D 的坐标;⑵求经过点C 的反比例函数解析式.6、如图,一次函数3y kx =+的图象与反比例函数my x=(x 〉0)的图象交于点P ,PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,一次函数的图象分别交x 轴、y 轴于点C 、点D ,且S △DBP =27,12OC CA =。

(1)求点D 的坐标;(2)求一次函数与反比例函数的表达式;(3)根据图象写出当x 取何值时,一次函数的值小于反比例函数的值?xkxk BOA21xy A O PBC D7、已知一次函数y =kx +b 的图象交反比例函数42my x-=(x>0)图象于点A 、B ,交x 轴于点C . (1)求m 的取值范围;(2)若点A 的坐标是(2,-4),且13BC AB =,求m 的值和一次函数的解析式; (3)写出当x 取何值时,一次函数的值小于反比例函数的值?8、如图,正比例函数11y k x =与反比例函数22k y x=相交于A 、B 点,已知点A 的坐标为(4,n ),BD ⊥x 轴于点D ,且S △BDO =4。

初中数学-反比例函数典型例题

初中数学-反比例函数典型例题

∴ 方程 7a2 4a 1 0 无实数根. 因此过 A、B 两点的抛物线在 x 轴上截得的线段长不能等于 3.
典型例题六
例 在以下各小题后面的括号里填写正确的记号.若这个小题成正比例关系,填(正);若成 反比例关系,填(反);若既不成正比例关系又不成反比例关系,填(非). (1)周长为定值的长方形的长与宽的关系 [ ]; (2)面积为定值时长方形的长与宽的关系 [ ]; (3)圆面积与半径的关系 [ ]; (4)圆面积与半径平方的关系 [ ]; (5)三角形底边一定时,面积与高的关系 [ ]; (6)三角形面积一定时,底边与高的关系 [ ]; (7)三角形面积一定且一条边长一定,另两边的关系 [ ]; (8)在圆中弦长与弦心距的关系 [ ]; (9)x 越来越大时,y 越来越小,y 与 x 的关系 [ ]; (10)在圆中弧长与此弧所对的圆心角的关系 [ ].
物体, F 的数值不变,所以 p 与 S 成反比例.
2 设下底面是 S0 ,则由上底面积是 3 S0 ,

p
F S
,且 S
S0 时,
p
200 ,
有 F pS 200 S0 200S0.
因为是同一物体,所以 F 200S0 是定值.
所以当 S
2 3
S0
时,
p
F S
200S0 2 3 S0
300(Pa).
典型例题八
例 已知:关于 x 的方程 x2-3x+2k-1=0 的两个实数根的平方和不
象限内 y 随 x 的增大而减小.求满足上述条件的 k 的整数值. 解: 因为关于 x 的方程 x2-3x+2k-1=0 有两个实数根,所以Δ=(-3)2-4(2k-1)≥0,解得
(1) 设方程 x2-3x+2k-1=0 的两个根为 x1,x2,所以

完整版)反比例函数练习题含答案

完整版)反比例函数练习题含答案

完整版)反比例函数练习题含答案测试1 反比例函数的概念一、填空题1.一般的,形如 y=k/x 的函数称为反比例函数,其中x是自变量,y是因变量。

自变量x的取值范围是x≠0.2.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别。

1) 商场推出分期付款购电脑活动,每台电脑元,首付4000元,以后每月付y元,x个月全部付清,则y=(8000+)/x,是反比例函数。

2) 某种灯的使用寿命为1000小时,它的使用天数y与平均每天使用的小时数x之间的关系式为 y=1000/x,是反比例函数。

3) 设三角形的底边、对应高、面积分别为a、h、S。

当a=10时,S与h的关系式为 S=10h/2,是正比例函数;当S=18时,a与h的关系式为 h=36/a,是反比例函数。

4) 某工人承包运输粮食的总数是w吨,每天运x吨,共运了y天,则 y=w/x,是反比例函数。

3.下列各函数 y=1/(k2+1)、y=x/(x5+x12)、y=14-3x、y=2x和y=3x-1 中,是y关于x的反比例函数的有:①y=1/(k2+1)、② y=x/(x5+x12)、③ y=2x。

4.若函数 y=m/(x-1) (m是常数) 是反比例函数,则 m=1,解析式为 y=1/(x-1)。

5.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜片的焦距为0.25m,则 y=1000/x。

二、选择题6.已知函数 y=3x/(kx+1),当x=1时,y=-3,那么这个函数的解析式是 y=3x/(3k+1)。

(解析:由 y=-3=3/(3k+1) 可得 k=-1/3,代入原式得 y=3x/(3x-1)。

)7.已知 y 与 x 成反比例,当 x=3 时,y=4,那么 y=3 时,x 的值等于 4/3.三、解答题8.已知 y 与 x 成反比例,当 x=2 时,y=3.1) 求y 与x 的函数关系式:y=k/x,代入已知条件得k=6,因此函数关系式为 y=6/x。

反比例函数经典大题(有详细答案)

反比例函数经典大题(有详细答案)

反比例函数1. 如图,函数b x k y +=11的图象与函数xk y 22=(0>x )的图象交于A 、B 两点,与y 轴交于C 点,已知A 点坐标为(2,1),C 点坐标为(0,3).(1)求函数1y 的表达式和B 点的坐标;(2)观察图象,比较当0>x 时,1y 与2y 的大小.2、如图,正比例函数12y x =的图象与反比例函数ky x=(0)k ≠在第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知OAM ∆的面积为1.(1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴上求一点P ,使PA PB +最小.3、若反比例函数x ky =与一次函数42-=x y 的图象都经过点A (a ,2) (1)求反比例函数x ky =的解析式;(2) 当反比例函数xky =的值大于一次函数42-=x y 的值时,求自变量x 的取值范围.ABOCxyO Mx A(第5题)4、如图,在直角坐标系中,O 为坐标原点. 已知反比例函数y= (k>0)的图象经过点A (2,m ),过点A 作AB ⊥x 轴于点B ,且△AOB 的面积为 .(1)求k 和m 的值;(2)点C (x ,y )在反比例函数y= 的图象上,求当1≤x ≤3时函数值y 的取值范围;5、如图,四边形ABCD 为菱形,已知A (0,4),B (-3,0)。

⑴求点D 的坐标;⑵求经过点C 的反比例函数解析式.6、如图,一次函数3y kx =+的图象与反比例函数my x=(x>0)的图象交于点P ,PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,一次函数的图象分别交x 轴、y 轴于点C 、点D ,且S △DBP =27,12OC CA =。

(1)求点D 的坐标;(2)求一次函数与反比例函数的表达式;(3)根据图象写出当x 取何值时,一次函数的值小于反比例函数的值?xkxk B O A21xyA O PBC D7、已知一次函数y =kx +b 的图象交反比例函数42my x-=(x>0)图象于点A 、B ,交x 轴于点C . (1)求m 的取值范围;(2)若点A 的坐标是(2,-4),且13BC AB =,求m 的值和一次函数的解析式; (3)写出当x 取何值时,一次函数的值小于反比例函数的值?8、如图,正比例函数11y k x =与反比例函数22k y x=相交于A 、B 点,已知点A 的坐标为(4,n ),BD ⊥x 轴于点D ,且S △BDO =4。

反比例函数50道经典题

反比例函数50道经典题

P ABDCE 1. (2011甘肃兰州,15)如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数221k k y x++=的图象上。

若点A 的坐标为(-2,-2),则k 的值为 ( )A .1B .-3C .4D .1或-32. (2010广东广州)23.已知反比例函数y =8m x-(m 为常数)的图象经过点A (-1,6).(1)求m 的值;(2)如图9,过点A 作直线AC 与函数y =8m x-的图象交于点B ,与x 轴交于点C ,且AB =2BC ,求点C 的坐标.3、(门头沟)8. 如图,在矩形ABCD 中,AB =4,BC =3,点P 在CD 边上运动,联结AP ,过点B 作BE ⊥AP ,垂足为E ,设AP =x ,BE =y , 则能反映y 与x 之间函数关系的图象大致是4、(丰台)8.如图,在梯形ABCD 中,AD ∥BC ,∠B=90°,AD=1,AB=23, BC=2,点P 是BC 边上的一个动点(点P 与点B 不重合),DE ⊥AP于点E .设AP=x,DE=y .在下列图象中,能正确反映y 与x 的函数 关系的是BxyO ABCD B AOCy xABCDP E yx512 4 53 512 y x4 53y x512 4 53y x0 4 5312 5A .B .C .D .5、(顺义)16 .(5分) 如图,E 为矩形ABCD 的边CD 上的一个动点, BF ⊥AE 于F, AB=2 , BC=4, 设AE=x ,BF=y ,求y 与x 之间的关系式,并写出x 的取值范围.6、 (西城南)18.已知正比例函数和反比例函数的图象都经过点(2,2)A .(1)求这两个函数的解析式;(2)把直线OA 向下平移后与反比例函数的图象交于点(4,)B m ,求平移后直线的解析式. 7、(石景山)8.已知:点()m m A ,在反比例函数xy 4=的图象上,点B 与点A 关于坐标轴对称,以AB 为边作正方形,则满足条件的正方形的个数是A . 4B . 5C . 3D .8(8、顺义)17. (5分) 已知:如图,在平面直角坐标系xOy 中,直线AB 分别与x y 、轴交于点B 、A ,与反比例函数的图象分别交于点C 、D ,CE x ⊥轴于点E ,1tan 422ABO OB OE ∠===,,.求该反比例函数及直线AB 的解析式.9、(平谷)23. 如图,四边形OABC 是面积为4的正方形,函数)0x (xky >=的图象经过点B .(1) 求k 的值;(2)将正方形OABC 分别沿直线AB ,BC 翻折,得到正方形MABC ′和NA′BC .设线段M C ′,NA′分别与函数)0x (xky >=的图象交于点F ,E . 求线段EF 所在直线的解析式.10、(丰台)18.已知:反比例函数my x=(m ≠0)的图象经过点A (-2,6). (1)求m 的值;(2)如图,过点A 作直线AC 与函数my x=的图象交于点B ,与x 轴交于点C , 且BC 1=AC 3,求点B 的坐标.FDCABEOx y ACB ED11、(石景山)16.如图,已知:双曲线(0)ky x x=>经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为)4,8(-,求点C 的坐标.12、(西城南) 23. 反比例函数xky =(0>x )的图象过点A (2,3). (1)如图,OBC Rt ∆的OC 边在x 轴上,该反比例函数的图象经过OBC Rt ∆的斜 边OB 的中点D ,与BC 边交于E .过D 做DF ⊥x 轴,垂足为F .直接写出∆ODF 和∆OBE 的面积;(2)设M (n m ,)是该反比例函数图象上异于点A 的一点,过M 作平行于y 轴 的直线1l ,过A 作平行于x 轴的直线2l ,1l 与2l 交于点G .顺次连结OA ,AG , GM ,MO .设由它们围成的图形的面积为S ,求S 与m 的函数关系式.13. (2011甘肃兰州,15)如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数221k k y x++=的图象上。

反比例函数经典例题

反比例函数经典例题

反比例函数经典例题【一】考察概念例1 已知函数 y = (5m — 3)xn-2+ (n+m )(1)当m ,n 为何值时,是一次函数?(2)当m ,n 为何值时,为正比例函数? (3)当m ,n 为何值时,为反比例函数?例2 已知y=y 1+y 2 ,y 1与x +1成正比例,y2与x +1成反比例,当x =0时,y=-5;当x =2时,y=-7。

(1)求y与x 的函数关系式; (2)当y=5时,求x 的值 【二】察函数图象和性质 例3 在反比例函数y =xk 3-的图象上,当x >0时,y 随x 的增大而增大,则k 的取值范围为 。

例4 反比例函数y =x6的图象上有三点(x 1,y 1)、(x 2,y 2)、(x 3,y 3),其中x 1<x 2<0<x 3,则y 1,y 2,y 3用“<”连接 。

【三】考察反比例函数y =xk(0k ≠)中k 的几何意义 例5 点A 是反比例函数图象上的一点,过A 作AB ⊥y 轴于B 点,若△ABO 面积为2,则反比例函数解析式为 。

变形1:点A 是反比例函数图象上的一点,过A 作AB ⊥y 轴于B 点,点P 在x 轴上,△ABP 的面积为2,则反比例函数解析式为 。

变形2:如图,点D 、C 为反比例函数上两点,DF ⊥x 轴于点F ,CE ⊥y 轴于E ,则△DEF 与△CEF 面积的大小关系为 。

例6 如图,正比例函数y =kx (k>0)与反比例函数1yx=的图象交于A ,C 两点,过A 点作x 轴的垂线,交x 轴于B ,过C 点作y 轴的垂线交y 轴于D ,连结AB ,BC ,CD ,AD ,则ABCD 的面积为。

【四】综合问题例7 如图,在直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数m yx =的图象交于A(-2,1)、B(1,n)两点。

(1) 求上述反比例函数和一次函数的表达式;(2) 观察图象,写出一次函数值小于反比例函数值的x的取值范围?(3) 连接AO,BO,求△AOB的面积。

中考数学反比例函数综合经典题及答案

中考数学反比例函数综合经典题及答案

中考数学反比例函数综合经典题及答案一、反比例函数1.已知一次函数y=kx+b与反比例函数y= 交于A(﹣1,2),B(2,n),与y轴交于C 点.(1)求反比例函数和一次函数解析式;(2)如图1,若将y=kx+b向下平移,使平移后的直线与y轴交于F点,与双曲线交于D,E两点,若S△ABD=3,求D,E的坐标.(3)如图2,P为直线y=2上的一个动点,过点P作PQ∥y轴交直线AB于Q,交双曲线于R,若QR=2QP,求P点坐标.【答案】(1)解:点A(﹣1,2)在反比例函数y= 的图象上,∴m=(﹣1)×2=﹣2,∴反比例函数的表达式为y=﹣,∵点B(2,n)也在反比例函数的y=﹣图象上,∴n=﹣1,即B(2,﹣1)把点A(﹣1,2),点B(2,﹣1)代入一次函数y=kx+b中,得,解得:k=﹣1,b=1,∴一次函数的表达式为y=﹣x+1,答:反比例函数的表达式是y=﹣,一次函数的表达式是y=﹣x+1;(2)解:如图1,连接AF,BF,∵DE∥AB,∴S△ABF=S△ABD=3(同底等高的两三角形面积相等),∵直线AB的解析式为y=﹣x+1,∴C(0,1),设点F(0,m),∴AF=1﹣m,∴S△ABF=S△ACF+S△BCF= CF×|x A|+ CF×|x B|= (1﹣m)×(1+2)=3,∴m=﹣1,∴F(0,﹣1),∵直线DE的解析式为y=﹣x+1,且DE∥AB,∴直线DE的解析式为y=﹣x﹣1①.∵反比例函数的表达式为y=﹣②,联立①②解得,或∴D(﹣2,1),E(1,﹣2);(3)解:如图2由(1)知,直线AB的解析式为y=﹣x﹣1,双曲线的解析式为y=﹣,设点P(p,2),∴Q(p,﹣p﹣1),R(p,﹣),PQ=|2+p+1|,QR=|﹣p﹣1+ |,∵QR=2QP,∴|﹣p﹣1+ |=2|2+p+1|,解得,p= 或p= ,∴P(,2)或(,2)或(,2)或(,2).【解析】【分析】(1)把A的坐标代入反比例函数的解析式可求得m的值,从而可得到反比例函数的解析式;把点A和点B的坐标代入一次函数的解析式可求得一次函数的解析式;(2)依据同底等高的两个三角形的面积相等可得到S△ABF=S△ABD=3,再利用三角形的面积公式可求得点F的坐标,即可得出直线DE的解析式,即可求出交点坐标;(3)设点P(p,2),则Q(p,﹣p﹣1),R(p,﹣),然后可表示出PQ与QR的长度,最后依据QR=2QP,可得到关于p的方程,从而可求得p的值,从而可得到点P的坐标.2.如图,一次函数y=kx+b的图象分别与反比例函数y= 的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y= 的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M 的坐标.【答案】(1)解:把点A(4,3)代入函数y= 得:a=3×4=12,∴y= .OA= =5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.(2)解:∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得:x=2.5,∴点M的坐标为(2.5,0).【解析】【分析】(1)先求反比例函数关系式,由OA=OB,可求出B坐标,再代入一次函数解析式中求出解析式;(2)M点的纵坐标可用x 的式子表示出来,可套两点间距离公式,表示出MB、MC,令二者相等,可求出x .3.如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折现”)(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y= 与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.【答案】(1)解:如图1,新函数的性质:1.函数的最小值为0;2.函数图象的对称轴为直线x=3.由题意得,点A的坐标为(-3,0),分两种情况:①当x-3时,y=x+3;②当x<-3时,设函数解析式为y=kx+b,在直线y=x+3中,当x=-4时,y=-1,则点(-4,-1)关于x轴的对称点为(-4,1),把点(-4,1),(-3,0),代入y=kx+b中,得:,解得:,∴y=-x-3.综上,新函数的解析式为y=.(2)解:如图2,①∵点C(1,a)在直线y=x+3上,∴a=4,∵点C(1,4)在反比例函数y=上,∴k=4,∴反比例函数的解析式为y=.∵点D是线段AC上一动点,∴设点D的坐标为(m,m+3),且-3<m<1,∵DP∥x轴,且点P在双曲线上,∴点P的坐标为(,m+3),∴PD=-m,∴S△PAD=(-m)(m+3)=m2-m+2=(m+)2+,∵a=<0,∴当m=时,S有最大值,最大值为,又∵-3<<1,∴△PAD的面积的最大值为.②在点D的运动的过程中,四边形PAEC不能为平行四边形,理由如下:当点D为AC的中点时,其坐标为(-1,2),此时点P的坐标为(2,2),点E的坐标为(-5,2),∵DP=3,DE=4,∴EP与AC不能互相平分,∴四边形PAEC不能为平行四边形.【解析】【分析】(1)根据一次函数的性质,结合函数图象写出新函数的两条性质;利用待定系数法求新函数解析式,注意分两种情况讨论;(2)①先求出点C的坐标,再利用待定系数法求出反比例函数解析式,设出点D的坐标,进而得到点P的坐标,再根据三角形的面积公式得出函数解析式,利用二次函数的性质求解即可;②先求出A的中点D的坐标,再计算DP、DE的长度,如果对角线互相平分,则能成为平行四边形,如若对角线不互相平分,则不能成为平行四边形.4.如图,一次函数y=﹣x+3的图象与反比例y= (k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.【答案】(1)解:∵点A(1,a)在一次函数y=﹣x+3的图象上,∴a=﹣1+3=2,∴点A(1,2).∵点A(1,2)在反比例y= (k为常数,且k≠0)的图象上,∴k=1×2=2,∴反比例函数的表达式为y= .联立一次函数与反比例函数关系式成方程组,得:,解得:,,∴点B(2,1)(2)解:作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,如图所示.∵点B、B′关于x轴对称,∴PB=PB′.∵点A、P、B′三点共线,∴此时PA+PB取最小值.设直线AB′的函数表达式为y=mx+n(m≠0),将A(1,2)、B(2,﹣1)代入y=mx+n,,解得:,∴直线AB′的函数表达式为y=﹣3x+5.当y=﹣3x+5=0时,x= ,∴满足条件的点P的坐标为(,0).【解析】【分析】(1)将x=1代入直线AB的函数表达式中即可求出点A的坐标,由点A 的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数的表达式,联立两函数表达式成方程组,通过解方程组即可求出点B的坐标;(2)作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,由两点之间线段最短可得出此时PA+PB 取最小值,根据点A、B′的坐标利用待定系数法可求出直线AB′的函数表达式,再利用一次函数图象上点的坐标特征即可求出点P的坐标.5.【阅读理解】我们知道,当a>0且b>0时,(﹣)2≥0,所以a﹣2 +≥0,从而a+b≥2 (当a=b时取等号),【获得结论】设函数y=x+ (a>0,x>0),由上述结论可知:当x= 即x= 时,函数y有最小值为2(1)【直接应用】若y1=x(x>0)与y2= (x>0),则当x=________时,y1+y2取得最小值为________.(2)【变形应用】若y1=x+1(x>﹣1)与y2=(x+1)2+4(x>﹣1),则的最小值是________(3)【探索应用】在平面直角坐标系中,点A(﹣3,0),点B(0,﹣2),点P是函数y= 在第一象限内图象上的一个动点,过P点作PC⊥x轴于点C,PD⊥y轴于点D,设点P的横坐标为x,四边形ABCD的面积为S①求S与x之间的函数关系式;②求S的最小值,判断取得最小值时的四边形ABCD的形状,并说明理由.【答案】(1)1;2(2)4(3)解:①设P(x,),则C(x,0),D(0,),∴AC=x+3,BD= +2,∴S= AC•BD= (x+3)( +2)=6+x+ ;②∵x>0,∴x+ ≥2 =6,∴当x= 时,即x=3时,x+ 有最小值6,∴此时S=6+x+ 有最小值12,∵x=3,∴P(3,2),C(3,0),D(0,2),∴A、C关于x轴对称,D、B关于y轴对称,即四边形ABCD的对角线互相垂直平分,∴四边形ABCD为菱形.【解析】【解答】解:(1)∵x>0,∴y1+y2=x+ ≥2 =2,∴当x= 时,即x=1时,y1+y2有最小值2,故答案为:1;2;(2)∵x>﹣1,∴x+1>0,∴ = =(x+1)+ ≥2 =4,∴当x+1= 时,即x=1时,有最小值4,故答案为:4;【分析】(1)直接由结论可求得其取得最小值,及其对应的x的值;(2)可把x+1看成一个整体,再利用结论可求得答案;(3)①可设P(x,),则可表示出C、D的坐标,从而可表示出AC和BD,再利用面积公式可表示出四边形ABCD的面积,从而可得到S 与x的函数关系式;②再利用结论可求得其最得最小值时对应的x的值,则可得到P、C、D的坐标,可判断A、C关于x轴对称,B、D关于y轴对称,可判断四边形ABCD为菱形.6.如图,过原点的直线y=k1x和y=k2x与反比例函数y= 的图象分别交于两点A,C和B,D,连接AB,BC,CD,DA.(1)四边形ABCD一定是________四边形;(直接填写结果)(2)四边形ABCD可能是矩形吗?若可能,试求此时k1,k2之间的关系式;若不能,说明理由;(3)设P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,a=,b= ,试判断a,b的大小关系,并说明理由.【答案】(1)平行(2)解:∵正比例函数y=k1x(k1>0)与反比例函数y= 的图象在第一象限相交于A,∴k1x= ,解得x= (因为交于第一象限,所以负根舍去,只保留正根)将x= 带入y=k1x得y= ,故A点的坐标为(,)同理则B点坐标为(,),又∵OA=OB,∴ = ,两边平方得: +k1= +k2,整理后得(k1﹣k2)(k1k2﹣1)=0,∵k1≠k2,所以k1k2﹣1=0,即k1k2=1;(3)解:∵P(x1, y1),Q(x2, y2)(x2>x1>0)是函数y= 图象上的任意两点,∴y1= ,y2= ,∴a= = = ,∴a﹣b= ﹣ = = ,∵x2>x1>0,∴>0,x1x2>0,(x1+x2)>0,∴>0,∴a﹣b>0,∴a>b.【解析】【解答】解:(1)∵直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,∴OA=OC,OB=OD,∴四边形ABCD 是平行四边形;故答案为:平行;【分析】(1)由直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,即可得到结论.(2)联立方程求得A、B点的坐标,然后根据OA=OB,依据勾股定理得出 = ,两边平分得 +k1= +k2,整理后得(k1﹣k2)(k1k2﹣1)=0,根据k1≠k2,则k1k2﹣1=0,即可求得;(3)由P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,得到y1= ,y2= ,求出a= = = ,得到a﹣b= ﹣ = = >0,即可得到结果.7.如图所示,在平面直角坐标系xoy中,直线y= x+ 交x轴于点B,交y轴于点A,过点C(1,0)作x轴的垂线l,将直线l绕点C按逆时针方向旋转,旋转角为α(0°<α<180°).(1)当直线l与直线y= x+ 平行时,求出直线l的解析式;(2)若直线l经过点A,①求线段AC的长;②直接写出旋转角α的度数;(3)若直线l在旋转过程中与y轴交于D点,当△ABD、△ACD、△BCD均为等腰三角形时,直接写出符合条件的旋转角α的度数.【答案】(1)解:当直线l与直线y= x+平行时,设直线l的解析式为y= x +b,∵直线l经过点C(1,0),∴0=+b,∴b=,∴直线l的解析式为y=x−(2)解:①对于直线y= x+,令x=0得y=,令y=0得x=−1,∴A(0,),B(−1,0),∵C(1,0),∴AC=,②如图1中,作CE∥OA,∴∠ACE=∠OAC,∵tan∠OAC=,∴∠OAC=30°,∴∠ACE=30°,∴α=30°(3)解:①如图2中,当α=15°时,∵CE∥OD,∴∠ODC=15°,∵∠OAC=30°,∴∠ACD=∠ADC=15°,∴AD=AC=AB,∴△ADB,△ADC是等腰三角形,∵OD垂直平分BC,∴DB=DC,∴△DBC是等腰三角形;②当α=60°时,易知∠DAC=∠DCA=30°,∴DA=DC=DB,∴△ABD、△ACD、△BCD均为等腰三角形;③当α=105°时,易知∠ABD=∠ADB=∠ADC=∠ACD=75°,∠DBC=∠DCB=15°,∴△ABD、△ACD、△BCD均为等腰三角形;④当α=150°时,易知△BDC是等边三角形,∴AB=BD=DC=AC,∴△ABD、△ACD、△BCD均为等腰三角形,综上所述:当α=15°或60°或105°或150°时,△ABD、△ACD、△BCD均为等腰三角形.【解析】【分析】(1)设直线l的解析式为y= x+b,把点C(1,0)代入求出b即可;(2)①求出点A的坐标,利用两点间距离公式即可求出AC的长;②如图1中,由CE∥OA,推出∠ACE=∠OAC,由tan∠OAC=,推出∠OAC=30°,即可解决问题;(3)根据等腰三角形的判定和性质,分情况作出图形,进行求解即可.8.综合实践问题情景:某综合实践小组进行废物再利用的环保小卫士行动. 他们准备用废弃的宣传单制作装垃圾的无盖纸盒.操作探究:(1)若准备制作一个无盖的正方体形纸盒,如图1,下面的哪个图形经过折叠能围成无盖正方体形纸盒?(2)如图2是小明的设计图,把它折成无盖正方体形纸盒后与“保”字相对的是哪个字?(3)如图3,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无盖长方体形纸盒.①请你在图3中画出示意图,用实线表示剪切线,虚线表示折痕.②若四角各剪去了一个边长为xcm的小正方形,用含x的代数式表示这个纸盒的高为________cm,底面积为________cm2,当小正方形边长为4cm时,纸盒的容积为________cm3.【答案】(1)解:A.有田字,故A不能折叠成无盖正方体;B.只有4个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体;C.可以折叠成无盖正方体;D.有6个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体.故答案为:C.(2)解:正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,所以与“保”字相对的字是“卫”(3)x;(20﹣2x)2;576【解析】【解答】(3)解:①如图,②设剪去的小正方形的边长为x(cm),用含字母x的式子表示这个盒子的高为xcm,底面积为(20﹣2x)2cm2,当小正方形边长为4cm时,纸盒的容积为=x(20﹣2x)2=4×(20﹣2×4)2=576(cm3).故答案为:x,(20﹣2x)2, 576【分析】(1)由平面图形的折叠及正方体的展开图解答本题;(2)正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答;(3)①根据题意,画出图形即可;②根据正方体底面积、体积,即可解答.9.请完成下面题目的证明.如图,AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB 对称的两个点,连接OC,AC,且∠BOC<90°,直线BC与直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH;①求证:△CBH∽△OBC;②求OH+HC的最大值.【答案】(1)证明:由题意可知:∠CAB=∠GAF,∵AB是⊙O的直径,∴∠ACB=90°∵OA=OC,∴∠CAB=∠OCA,∴∠OCA+∠OCB=90°,∵∠GAF=∠GCE,∴∠GCE+∠OCB=∠OCA+∠OCB=90°,∵OC是⊙O的半径,∴直线CG是⊙O的切线;(2)证明:①∵CB=CH,∴∠CBH=∠CHB,∵OB=OC,∴∠CBH=∠OCB,∴△CBH∽△OBC解:②由△CBH∽△OBC可知:∵AB=8,∴BC2=HB•OC=4HB,∴HB= ,∴OH=OB-HB=∵CB=CH,∴OH+HC=当∠BOC=90°,此时BC=∵∠BOC<90°,∴0<BC<令BC=x∴OH+HC= = =当x=2时,∴OH+HC可取得最大值,最大值为5【解析】【分析】(1)由题意可知:∠CAB=∠GAF,∠GAF=∠GCE,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,从而可证明△CBH∽△OBC;②由△CBH∽△OBC可知:,所以HB= ,由于BC=HC,所以OH+HC=利用二次函数的性质即可求出OH+HC的最大值.10.如图1,抛物线y=ax2+bx﹣3经过点A,B,C,已知点A(﹣1,0),点B(3,0)(1)求抛物线的解析式(2)点D为抛物线的顶点,DE⊥x轴于点E,点N是线段DE上一动点①当点N在何处时,△CAN的周长最小?②若点M(m,0)是x轴上一个动点,且∠MNC=90°,求m的取值范围.【答案】(1)解:函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣3a=﹣3,解得:a=1,故函数的表达式为:y=x2﹣2x﹣3(2)解:①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小.设过点A、C'的一次函数表达式为y=kx+b,则:,解得:,故直线AC'的表达式为:y=﹣x﹣1,当x=1时,y=﹣2,故点N(1,﹣2);②如图2,过点C作CG⊥ED于点G.设NG=n,则NE=3﹣n.∵∠CNG+∠GCN=90°,∠CNG+∠MNE=90°,∴∠NCG=∠MNE,则tan∠NCG=n=tan∠MNE,故ME=﹣n2+3n,∴﹣1<0,故ME有最大值,当n时,ME,则m的最小值为:;如下图所示,当点N与点D重合时,m取得最大值.过C作CG⊥ED于G.∵y=x2﹣2x﹣3= y=(x-1)2﹣4,∴D(1,-4),∴CG=OE=1.∵EG=OC=3∴GD=4-3=1,∴CG=DG=1,∴∠CDG=45°.∵∠CDM=90°,∴∠EDM=45°,∴△EDM是等腰直角三角形,∴EM=ED=4,∴OM=OE+EM=1+4=5,∴m=5.故:m≤5.【解析】【分析】(1)函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即可求解;(2)①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小,即可求解;②如图2,ME=﹣n2+3n,求出ME最大值,则可求出m的最小值;当点N与点D处时,m取得最大值,求解即可.11.已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(2)在(1)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.【答案】(1)解:如图1,过点B作BD⊥AB,交x轴于点D,∵∠A=∠A,∠ACB=∠ABD=90°,∴△ABC∽△ADB,∴∠ABC=∠ADB,且∠ACB=∠BCD=90°,∴△ABC∽△BDC,∴∵A(﹣3,0),C(1,0),∴AC=4,∵BC=AC.∴BC=3,∴AB===5,∵,∴,∴CD=,∴AD=AC+CD=4+ =,∴OD=AD﹣AO=,∴点D的坐标为:(,0);(2)解:如图2,当∠APC=∠ABD=90°时,∵∠APC=∠ABD=90°,∠BAD=∠PAQ,∴△APQ∽△ABD,∴,∴∴m=,如图3,当∠AQP=∠ABD=90°时,∵∠AQP=∠ABD=90°,∠PAQ=∠BAD,∴△APQ∽△ADB,∴,∴∴m=;综上所述:当m=或时,△APQ与△ADB相似.【解析】【分析】(1)如图1,过点B作BD⊥AB,交x轴于点D,可证△ABC∽△ADB,可得∠ABC=∠ADB,可证△ABC∽△BDC,可得,可求CD 的长,即可求点D坐标;(2)分两种情况讨论,由相似三角形的性质可求解.12.在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.【答案】(1)解:将抛物线表达式变为顶点式,则抛物线顶点坐标为(1,-1);(2)解:①m=1时,抛物线表达式为,因此A、B的坐标分别为(0,0)和(2,0),则线段AB上的整点有(0,0),(1,0),(2,0)共3个;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;又有抛物线表达式,令y=0,则,得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,∴.【解析】【分析】(1)将抛物线表达式变为顶点式,即可得到顶点坐标;(2)①m=1时,抛物线表达式为,即可得到A、B的坐标,可得到线段AB上的整点个数;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;令y=0,则,解方程可得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,即可得到结论.。

反比例函数经典例题(含详细解答)解析

反比例函数经典例题(含详细解答)解析

反比例函数难题1、如图,已知△P1OA1,△P2A1A2,△P3A2A3…△P n A n-1A n都是等腰直角三角形,点P1、P2、P3…P n都在函数2、如图1,矩形ABCD的边BC在x轴的正半轴上,点E(m,1)是对角线BD的中点,点A、E在反比例函数y=(1)求AB的长;(2)当矩形ABCD是正方形时,将反比例函数y=kx的图象沿y轴翻折,得到反比例函数y=1kx的图象(如图2),求k1的值;(3)在条件(2)下,直线y=-x上有一长为2动线段MN,作MH、NP都平行y轴交第一象限内的双曲线y=kx于点H、P,问四边形MHPN能否为平行四边形(如图3)?若能,请求出点M的坐标;若不能,请说明理由.1.已知反比例函数y=2kx和一次函数y=2x-1,其中一次函数的图象经过(a ,b ),(a+k ,b+k+2)两点.(1)求反比例函数的解析式;(2)求反比例函数与一次函数两个交点A 、B 的坐标: (3)根据函数图象,求不等式2kx>2x-1的解集; (4)在(2)的条件下,x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,把符合条件的P 点坐标都求出来;若不存在,请说明理由.1.如图,在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象与反比例函数y =(m ≠0)的图象交于二、四象限内的A 、B 两点,与x 轴交于C 点,点B 的坐标为(6,n ),线段OA =5,E 为x 轴负半轴上一点,且s i n ∠AOE =45.(1)求该反比例函数和一次函数; (2)求△AOC 的面积.(1)过A 点作AD⊥x 轴于点D ,∵sin ∠AOE = 45,OA =5,∴在Rt△ADO 中,∵sin∠AOE=AD AO =AD 5= 45,xm∴AD=4,DO =OA2-DA2=3,又点A 在第二象限∴点A 的坐标为(-3,4),将A 的坐标为(-3,4)代入y = m x ,得4=m -3∴m=-12,∴该反比例函数的解析式为y =-12x ,∵点B 在反比例函数y =-12x 的图象上,∴n=-126=-2,点B 的坐标为(6,-2), ∵一次函数y =kx +b(k≠0)的图象过A 、B 两点,∴⎩⎨⎧-3k +b=4,6k +b =-2,∴⎩⎨⎧k =-23, b =2∴ 该一次函数解析式为y =-23x +2.(2)在y =-23x +2中,令y =0,即-23x +2=0,∴x=3,∴点C 的坐标是(3,0),∴OC =3, 又DA=4, ∴S△AOC=12×OC×AD=12×3×4=6,所以△AOC 的面积为6.练习1.已知Rt△ABC 的斜边AB 在平面直角坐标系的x 轴上,点C (1,3)在反比例函数y = k x的图象上,且sin∠BAC = 35.(1)求k 的值和边AC 的长; (2)求点B 的坐标.(1)把C (1,3)代入y = kx得k =3设斜边AB 上的高为CD ,则sin∠BAC =CD AC =35∵C (1,3) ∴CD=3,∴AC=5(2)分两种情况,当点B 在点A 右侧时,如图1有:AD=52-32=4,AO=4-1=3 ∵△ACD ∽ABC ∴AC 2=AD ·AB ∴AB=AC 2AD =254∴OB=AB -AO=254-3=134 图1此时B 点坐标为(134,0)图2 当点B 在点A 左侧时,如图2 此时AO=4+1=5 OB= AB -AO=254-5=54此时B 点坐标为(-54,0)所以点B 的坐标为(134,0)或(-54,0).1.如图,矩形ABOD 的顶点A 是函数与函数在第二象限的交点,轴于B ,轴于D ,且矩形ABOD 的面积为3.(1)求两函数的解析式.(2)求两函数的交点A 、C 的坐标. (3)若点P 是y 轴上一动点,且,求点P 的坐标.解:(1)由图象知k<0,由结论及已知条件得-k=3 ∴∴反比例函数的解析式为,一次函数的解析式为(2)由,解得,∴点A 、C 的坐标分别为(,3),(3,)(3)设点P 的坐标为(0,m ) 直线与y 轴的交点坐标为M (0,2)∵O xyB A CD∴∣PM∣=,即∣m-2∣=,∴或,∴点P的坐标为(0,)或(0,)1.如图,已知,是一次函数的图像和反比例函数的图像的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线与轴的交点的坐标及三角形的面积.解:(1)在上.反比例函数的解析式为:.点在上经过,,解之得一次函数的解析式为:(2)是直线与轴的交点当时,点1.(1)探究新知如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.(2)结论应用:①如图2,点M,N在反比例函数(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F.试证明:MN∥EF.②若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断MN与EF是否平行。

《反比例函数》典型例题、习题精选

《反比例函数》典型例题、习题精选

《反比例函数》典型例题、习题精选典型例题例题:1.若函数y = (m−2)x是反比例函数,则m的值为( )A.3或2 B.3 C.2D.−2答案:B解:∵y = (m−2)x是反比例函数,∴m−2≠0且m2−5m+5 = −1,解之得∴m = 3,答案为B.2.下列选项中,是反比例函数关系的是( )A.直角三角形两锐角的关系B.多边形的内角和m(度)与边长n的关系C.小车油箱中有油10升,则小车每千米耗油量x(升)与行驶路程s(千米)的关系D.人的身高y(cm)与他的年龄x(岁)的关系答案:C说明:直角三角形中两锐角之和为90º,不是反比例函数关系,A错;多边形内角和m与边长n的关系是m = (n−2)×180º,不是反比例函数关系,B错;选项C,不难得出xs = 10,即小车每千米耗油量x(升)与行驶路程s(千米)的关系是反比例函数关系,C正确;人的身高与他的年龄显然不是反比例关系,D错;答案为C.3.已知某品牌灯泡的使用寿命大约为4×103小时①这种灯泡可使用的天数d(天)与平均每日使用的小时h(小时)之间有怎样的函数关系?②如果平均每天使用5小时,则这种灯泡的使用寿命大约是多少天?解:①依题意得:dh = 4×103∴d =∴d与h是反比例函数关系,其关系式为d =②当h>5时,d == 800(天)∴若平均每天使用5小时,则这种灯泡的使用寿命大约为800天.4.某市上年度电价为0.8元,年用电量为1亿度,本年度计划将电价调至0.55元~0.75元之间,经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x−0.4)元成反比例,又当x = 0.65,y = 0.8.①求y与x之间的函数关系式;②若每度电的成本价为0.3元,则电价调至多少元时,本年度电力部门的收益将比上年度增加20%?解:①∵新增用电量y(亿度)与(x−0.4)元成反比例∴设y =∵当x = 0.65时,y = 0.8,∴0.8 =,解得k = 0.2∴y ==∴ y与x之间的函数关系式为y =.习题精选一.选择题1.若y与成反比例,x与成正比例,则y是z的( )A.正比例函数 B.反比例函数 C.一次函数 D.不能确定2.下列函数中,是反比例函数的是()A.y = −B.y = − C.y =−1 D.y =3.函数y = −kx与y =(k≠0)的图象的交点个数是()A.0 B. 1 C.2 D.不确定4.函数y = kx+b与y =(kb≠0)的图象可能是()A BC D5.若y与x成正比,y与z的倒数成反比,则z是x的()A.正比例函数B.反比例函数 C.二次函数 D.z随x增大而增大6.下列函数中y既不是x的正比例函数,也不是反比例函数的是()A. y = − B.10 = −5xy C.y =4 D.xy = −27.正比例函数y = kx与反比例函数y =若无交点,则有( )A.k>0,m<0 B.k<0,m>0 C.k·m>0 D.k·m<0二、填空题1.一般地,函数__________是反比例函数,其图象是__________,当k<0时,图象两支在__________象限内.2.已知反比例函数y =,当y = 6时,x = _________.3.反比例函数y = (a−3)的函数值为4时,自变量x的值是_________.4.反比例函数的图象过点(−3,5),则它的解析式为_________5.若函数y = 4x与y =的图象有一个交点是(,2),则另一个交点坐标是_________.三、解答题1.直线y = kx+b过x轴上的点A(,0),且与双曲线y =相交于B、C两点,已知B点坐标为(−,4),求直线和双曲线的解析式.2.已知一次函数y = x+2与反比例函数y =的图象的一个交点为P(a,b),且P到原点的距离是10,求a、b的值及反比例函数的解析式.3.已知函数y = (m2+ 2m)−2是一次函数,它的图象与反比例函数y =的图象交于一点,交点的横坐标是,求反比例函数的解析式.答案:一、1.B 说明:因为y与成反比例,所以可设y == k1x,同样x与成正比例,可设x = k2,所以y = k1(k2·) =,这样就可得出y是z的反比例函数,答案为B.2.B 3.A 4.A 5.A6.C7.D 说明:y = kx与y =的图象无交点可以下两种情形考虑;如图∴当k·m<0时,y = kx与y =无交点,答案为D.二、1.y =,k≠0;双曲线;二、四2. 3.−1 4.y =− 5.(−,−2)三、1.由题意知点A(,0),点B(−,4)在直线y = kx+b上,由此得∴∵点B(−,4)在双曲线y =上,∴,k= −2∴双曲线解析式为y = −2.由题设,得∴,∴a = 6,b = 8或a = −8,b = −6∴y =3.由已知条件∴∴m = 1使y = 3x−2,代入y =∴3x2−2x−k = 0因图象交于一点,∴Δ = 0即4+12k = 0∴k = −∴y = −.。

反比例函数典型例题

反比例函数典型例题

反比例函数典型例题例1、已知21y y y +=,x y 与1成正比例,22x y 与成反比例,且x=2时和x=3时。

y 的值都是19,求y 与x 之间的函数关系式。

例2、在函数1y x =的图象上有三个点的坐标分别为(1,1y )、(12,2y )、(3-,3y ),函数值y 1、y2、y 3的大小关系是 .例3、反比例函数xky =的图象如图所示,点M 是该函数图象上一点, MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则k 的值为 .例4如图6,直线1x 21y +=分别交x 轴、y 轴于点A ,C ,点P 是直线AC与双曲线xk y =的交点,x PB ⊥轴,垂足为点B ,OB=m ,APB∆的面积为4+14m 2,求点P 的坐标; 例5如图,函数xy 5=在第一象限的图象上有一点C (1,5),过点C 的直线y=-kx +b (k >0)与x 轴交于点A (a ,0).(1)写出a 关于k 的函数关系式; (2)当该直线与双曲线xy 5=在第一象限的另一交点D 的横坐标是9时, 求△COA 的面积.例6甲乙两地相距80千米,一辆汽车从甲地开往乙地,设汽车到达乙地所用的时间为t (小时),汽车速度v (千米/小时).你能写出 t 与v 之间的函数关系式吗?它们之间是什么函数关系?例7你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y (m)是面条的粗细(横截面积)s (mm 2)的反比例函数,其图象如图4所示.⑴写出y 与s 的函数关系式;⑵求当面条粗1.6mm 2时,面条的总长度是多少米?1 在反比例函数12my x-=的图象上有两点1122()()A x y B x y ,,,,当120x x <<时,有12y y <,则m 的取值范围是 。

2已知反比例函数x ky =和一次函数y =ax +b 的图象的一个交点为A (-3,4),且一次函数的图象与x 轴的交点到原点的距离为5,求反比例函数与一次函数3 如图,A 、B 是函数2y x=的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥轴,△ABC 的面积记为S ,则( )A . 2S =B . 4S =C .24S <<D .4S > 4 在反比例函数2y x=(0x >)的图象上,有点1234P P P P ,,,,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为123S S S ,,,则123S S S ++=. 5 如图,在x 轴的正半轴上依次截取112233445O A A A A A A A A A ====,过点12345A AAAA 、、、、分别作x 轴的垂线与反比例函数()20y x x =≠相交于点12345P PPPP 、、、、,得直角三角形1112233344455O P A A P A A P A A P A A P A 2、、、、,并设其面积分别为12345S S S S 、、、则5S的值为 ..6、如图,已知点A 、B 在双曲线xky =(x >0)上,AC ⊥x 轴于点C , BD ⊥y 轴于点D ,AC 与BD 交于点P ,P 是AC 的中点,若△ABP 的面积为3, 则k = .7 如图所示,反比例函数y=-8x 与一次函数y=-x+2的图像交于A ,B 两点. (1)求A ,B 两点的坐标;(2)求△AOB 的面积.2y x=xOP 1P 2P 3 P 4 12342。

反比例函数经典例题(含详细解答)

反比例函数经典例题(含详细解答)

反比例函数难题1、如图,已知△P1OA1,△P2A1A2,△P3A2A3…△P n A n-1A n都是等腰直角三角形,点P1、P2、P3…P n都在函数2、如图1,矩形ABCD的边BC在x轴的正半轴上,点E(m,1)是对角线BD的中点,点A、E在反比例函数y=(1)求AB的长;(2)当矩形ABCD是正方形时,将反比例函数y=kx的图象沿y轴翻折,得到反比例函数y=1kx的图象(如图2),求k1的值;(3)在条件(2)下,直线y=-x上有一长为2动线段MN,作MH、NP都平行y轴交第一象限内的双曲线y=kx于点H、P,问四边形MHPN能否为平行四边形(如图3)?若能,请求出点M的坐标;若不能,请说明理由.1.已知反比例函数y=2kx和一次函数y=2x-1,其中一次函数的图象经过(a ,b ),(a+k ,b+k+2)两点.(1)求反比例函数的解析式;(2)求反比例函数与一次函数两个交点A 、B 的坐标: (3)根据函数图象,求不等式2kx>2x-1的解集; (4)在(2)的条件下,x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,把符合条件的P 点坐标都求出来;若不存在,请说明理由.1.如图,在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象与反比例函数y =(m ≠0)的图象交于二、四象限内的A 、B 两点,与x 轴交于C 点,点B 的坐标为(6,n ),线段OA =5,E 为x 轴负半轴上一点,且s i n ∠AOE =45.(1)求该反比例函数和一次函数; (2)求△AOC 的面积.(1)过A 点作AD⊥x 轴于点D ,∵sin ∠AOE = 45,OA =5,∴在Rt△ADO 中,∵sin∠AOE=AD AO =AD 5= 45,xm∴AD=4,DO =OA2-DA2=3,又点A 在第二象限∴点A 的坐标为(-3,4),将A 的坐标为(-3,4)代入y = m x ,得4=m -3∴m=-12,∴该反比例函数的解析式为y =-12x ,∵点B 在反比例函数y =-12x 的图象上,∴n=-126=-2,点B 的坐标为(6,-2), ∵一次函数y =kx +b(k≠0)的图象过A 、B 两点,∴⎩⎨⎧-3k +b=4,6k +b =-2,∴⎩⎨⎧k =-23, b =2∴ 该一次函数解析式为y =-23x +2.(2)在y =-23x +2中,令y =0,即-23x +2=0,∴x=3,∴点C 的坐标是(3,0),∴OC =3, 又DA=4, ∴S△AOC=12×OC×AD=12×3×4=6,所以△AOC 的面积为6.练习1.已知Rt△ABC 的斜边AB 在平面直角坐标系的x 轴上,点C (1,3)在反比例函数y = k x的图象上,且sin∠BAC = 35.(1)求k 的值和边AC 的长; (2)求点B 的坐标.(1)把C (1,3)代入y = kx得k =3设斜边AB 上的高为CD ,则sin∠BAC =CD AC =35∵C (1,3) ∴CD=3,∴AC=5(2)分两种情况,当点B 在点A 右侧时,如图1有:AD=52-32=4,AO=4-1=3 ∵△ACD ∽ABC ∴AC 2=AD ·AB ∴AB=AC 2AD =254∴OB=AB -AO=254-3=134 图1此时B 点坐标为(134,0)图2 当点B 在点A 左侧时,如图2 此时AO=4+1=5 OB= AB -AO=254-5=54此时B 点坐标为(-54,0)所以点B 的坐标为(134,0)或(-54,0).1.如图,矩形ABOD 的顶点A 是函数与函数在第二象限的交点,轴于B ,轴于D ,且矩形ABOD 的面积为3.(1)求两函数的解析式.(2)求两函数的交点A 、C 的坐标. (3)若点P 是y 轴上一动点,且,求点P 的坐标.解:(1)由图象知k<0,由结论及已知条件得-k=3 ∴∴反比例函数的解析式为,一次函数的解析式为(2)由,解得,∴点A 、C 的坐标分别为(,3),(3,)(3)设点P 的坐标为(0,m ) 直线与y 轴的交点坐标为M (0,2)∵O xyB A CD∴∣PM∣=,即∣m-2∣=,∴或,∴点P的坐标为(0,)或(0,)1.如图,已知,是一次函数的图像和反比例函数的图像的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线与轴的交点的坐标及三角形的面积.解:(1)在上.反比例函数的解析式为:.点在上经过,,解之得一次函数的解析式为:(2)是直线与轴的交点当时,点1.(1)探究新知如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.(2)结论应用:①如图2,点M,N在反比例函数(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F.试证明:MN∥EF.②若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断MN与EF是否平行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数的典型例题一例 下面函数中,哪些是反比例函数? (1)3x y -=;(2)x y 8-=;(3)54-=x y ;(4)15-=x y ;(5).81=xy 解:其中反比例函数有(2),(4),(5).说明:判断函数是反比例函数,依据反比例函数定义,xky =)0(≠k ,它也可变形为1-=kx y 及k xy =的形式,(4),(5)就是这两种形式. 反比例函数的典型例题二例 在以下各小题后面的括号里填写正确的记号.若这个小题成正比例关系,填(正);若成反比例关系,填(反);若既不成正比例关系又不成反比例关系,填(非).(1)周长为定值的长方形的长与宽的关系 ( ); (2)面积为定值时长方形的长与宽的关系 ( ); (3)圆面积与半径的关系 ( ); (4)圆面积与半径平方的关系 ( );(5)三角形底边一定时,面积与高的关系 ( ); (6)三角形面积一定时,底边与高的关系 ( );(7)三角形面积一定且一条边长一定,另两边的关系 ( ); (8)在圆中弦长与弦心距的关系 ( );(9)x 越来越大时,y 越来越小,y 与x 的关系 ( ); (10)在圆中弧长与此弧所对的圆心角的关系 ( ). 答:说明:本题考查了正比例函数和反比例函数的定义,关键是一定要弄清出二者的定义.反比例函数的典型例题三例 已知反比例函数62)2(--=a xa y ,y 随x 增大而减小,求a 的值及解析式.分析 根据反比例函数的定义及性质来解此题. 解 因为62)2(--=a xa y 是反比例函数,且y 随x 的增大而减小,所以⎩⎨⎧>--=-.02,162a a 解得⎩⎨⎧>±=.2,5a a所以5=a ,解析式为xy 25-=.反比例函数的典型例题四例 (1)若函数22)1(--=mx m y 是反比例函数,则m 的值等于( )A .±1B .1C .3D .-1(2)如图所示正比例函数0(>=k kx y )与反比例函数x y 1=的图像相交于A 、C 两点,过A 作x 轴的垂线交x 轴于B ,连结BC .若AB C ∆的面积为S ,则:A .1=SB .2=SC .3=SD .S 的值不确定解:(1)依题意,得⎩⎨⎧-=-≠-,12,012m m 解得1-=m .故应选D . (2)由双曲线x y 1=关于O 点的中心对称性,可知:O BC O BA S S ∆∆=. ∴12122=⋅=⨯⨯==∆AB OB AB OB S S OBA .故应选A .反比例函数的典型例题五例 已知21y y y +=,1y 与x 成正比例,2y 与x 成反比例,当1=x 时,4=y ;当3=x 时,5=y ,求1-=x 时,y 的值.分析 先求出y 与x 之间的关系式,再求1-=x 时,y 的值. 解 因为1y 与x 成正比例,2y 与x 成反比例,所以)0(,212211≠==k k xk y x k y . 所以xkx k y y y 2121+=+=.将1=x ,4=y ;3=x ,5=y 代入,得⎪⎩⎪⎨⎧=+=+.5313,42121k k k k 解得 ⎪⎪⎩⎪⎪⎨⎧==.821,81121k k 所以xx y 821811+=. 所以当1-=x 时,4821811-=--=y . 说明 不可草率地将21k k 、都写成k 而导致错误,题中给出了两对数值,决定了21k k 、的值.反比例函数的典型例题六例 根据下列表格x(1量x 的取值范围.解:(1)图像如右图所示.(2)根据图像,设)0(≠=k xky ,取6,1==y x 代入,得16k=. ∴6=k . ∴函数解析式为)0(6>=x xy . 说明:本例考查了函数的三种表示法之间的变换能力,即先由列表法通过描点画图转化为图像法,再由图像法通过待定系数法转化为解析法,题目新颖别致,有较强的趣味性.反比例函数的典型例题七例(1)一次函数1+-=x y 与反比例函数xy 3=在同一坐标系中的图像大致是如图中的( )(2)一次函数12--=k kx y 与反比例函数xky =在同一直角坐标系内的图像的大致位置是图中的( )解:1+-=x y 的图像经过第一、二、四象限,故排除B 、C ;又xy 3=的图像两支在第一、三象限,故排除D .∴答案应选A .(2)若0>k ,则直线)1(2+-=k kx y 经过第一、三、四象限,双曲线xky =的图像两支在第一、三象限,而选择支A 、B 、C 、D 中没有一个相符;若0<k ,则直线)1(2+-=k kx y 经过第二、三、四象限,而双曲线的两支在第二、四象限,故只有C 正确.应选C .反比例函数的典型例题八例 已知函数24231-⎪⎭⎫ ⎝⎛+=mx m y 是反比例函数,且其函数图像在每一个象限内,y 随x的增大而减小,求反比例函数的解析式.解:因为y 是x 的反比例函数,所以1242-=-m ,所以21=m 或.21-=m 因为此函数图像在每一象限内,y 随x 的增大而减小,所以031>+m ,所以31->m ,所以21=m ,所以反比例函数的解析式为.65xy = 说明:此题根据反比例函数的定义与性质来解反比例函数xky =)0(≠k ,当0>k 时,y 随x 增大而减小,当0<k 时,y 随x 增大而增大.反比例函数的典型例题九例 一个长方体的体积是100立方厘米,它的长是y 厘米,宽是5厘米,高是x 厘米. (1)写出用高表示长的函数关系式; (2)写出自变量x 的取值范围; (3)当3=x 厘米时,求y 的值; (4)画出函数的图像.分析 本题依据长方体的体积公式列出方程,然后变形求出长关于高的函数关系式. 解 (1)因为长方体的长为y 厘米,宽为5厘米,高为x 厘米, 所以1005=xy ,所以xy 20=. (2)因为x 是长方体的高.所以0>x .即自变量x 的取值范围是0>x . (3)当3=x 时,326320==y (厘米) (4描点画图如图所示.反比例函数的典型例题十例 已知力F 所作用的功是15焦,则力F 与物体在力的方向通过的距离S 的图象大致是( ).说明 本题涉及力学中作功问题,主要考查在力的作用下物体作功情况,由此,识别正、反比例函数,一次函数的图象位置关系.解 据S F W ⋅=,得15=S F ⋅,即SF 15=,所以F 与S 之间是反比例函数关系,故选(B ).反比例函数的典型例题十一例 一个圆台形物体的上底面积是下底面积的.32如果如下图所示放在桌上,对桌面的压强是Pa 200,翻过来放,对桌面的压强是多少?解:由物理知识可知,压力F ,压强p 与受力面积S 之间的关系是.SFp =因为是同一物体,F 的数值不变,所以p 与S 成反比例. 设下底面是0S ,则由上底面积是032S , 由SFp =,且0S S =时,200=p , 有.20020000S S pS F =⨯==因为是同一物体,所以0200S F =是定值.所以当032S S =时,).Pa (3003220000===S S SF p因此,当圆台翻过来时,对桌面的压强是300帕.说明:本题与物理知识结合考查了反比例函数,关键是清楚对于同一个物体,它对桌面的压力是一定的.反比例函数的典型例题十二例 如图,P 是反比例函数xky =上一点,若图中阴影部分的矩形面积是2,求这个反比例函数的解析式.分析 求反比例函数的解析式,就是求k 的值.此题可根据矩形的面积公式及坐标与线段长度的转化来解.解 设P 点坐标为),(y x .因为P 点在第二象限,所以0,0><y x . 所以图中阴影部分矩形的长、宽分别为y x ,-.又2=-xy ,所以2-=xy .因为xy k =,所以2-=k . 所以这个反比例函数的解析式为xy 2-=. 说明 过反比例函数图像上的一点作两条坐标轴的垂线,可得到一个矩形,这个矩形的面积等于xky =中的k .反比例函数的典型例题十三例 当n 取什么值时,122)2(-++=n nx n n y 是反比例函数?它的图像在第几象限内?在每个象限内,y 随x 增大而增大还是减小?分析 根据反比例函数的定义)0(≠=k xky 可知,122)2(-++=n n x n n y 是反比例函数,必须且只需022≠+n n 且112-=-+n n .解 122)2(-++=n nx n n y 是反比例函数,则⎪⎩⎪⎨⎧-=-+≠+,11,0222n n n n ∴⎩⎨⎧-==-≠≠.10,20n n n n 或且即 1-=n .故当1-=n 时,122)2(-++=n n xn n y 表示反比例函数:xy 1-=.。

相关文档
最新文档