太阳位置计算
日出日落的方位角度计算公式
计算日出日落的方位角度公式要计算任意一个地方在任意一天日出日落的方位角度,可以用下面的公式:方位角=90 - 0.5arccos[2(sinM/cosN)^2- 1]公式中,M表示的是某天太阳直射的纬度,N表示的是某地的纬度,^2表示平方。
例如,北京在北纬40度,则N=40,夏至这一天太阳在北纬23.5度(太阳直射北纬23.5度),即M=23.5,把N和M的值代入上式,可求得方位角=31度意思是,夏至这一天,在北京的人看来,太阳是从东偏北31度的方位升起的,是在西偏北31度的方位落下的。
说明:1本公式是在理想条件下推导出来的,即假设地球是个标准球体。
而实际上地球两极略扁,而且各地也有高山、洼地等,所以计算结果可能与实测结果有一点误差。
2 太阳围绕地球旋转的轨迹实际上是螺旋线(好象在地球外面套一根弹簧),所以实际上每天日出和日落的方位角稍微有点差别。
例如,在春分到夏至这段时间,日出方位角要略小于日落方位角。
昼夜长短的计算公式:Cost=-tgδ*tgφ太阳视位置太阳视位置指从地面上看到的太阳的位置,用太阳高度角和太阳方位角两个角度作为坐标表示。
太阳高度角指从太阳中心直射到当地的光线与当地水平面的夹角,其值在0°到90°之间变化,日出日落时为零,太阳在正天顶上为90°(本万年历中显示的高度角均已进行了蒙气差的订正,蒙气差值取自天文年历)。
太阳方位角即太阳所在的方位,指太阳光线在地平面上的投影与当地子午线的夹角,可近似地看作是竖立在地面上的直线在阳光下的阴影与正南方的夹角。
方位角以正南方向为零,由南向东向北为负,由南向西向北为正,如太阳在正东方,方位角为-90°,在正东北方时,方位为-135°,在正西方时方位角为90°,在正北方时为±180°。
实际上太阳并不总是东升西落,只有在春秋分两天,太阳是从正东方升,正西方落。
在北半球,从春分到秋分的夏半年中,太阳从东偏北的方向升(方位角为-90°到-180°之间),在西偏北的方向落(方位角为90°到180°之间);而从秋分到下一年春分的冬半年中,太阳从东偏南的方向升(方位角为-90°到0°之间),在西偏南的方向落(方位角为0°到90°之间)。
一种计算太阳的位置
一种太阳位置计算摘要一种新的太阳位置的准定算法。
在考虑高浓度热力系统情况下,准确的太阳位置跟踪是非常重要的。
在许多文献中发现简单的太阳位置的算法精确度在0.01度,而复杂的天文算法精度能0.0003度,但需要大量的计算。
在本文中提出的算法是一个精密度在两者之间的情况(最大误差0.0027度),可以应用在所有的太阳能工程应用方面的计算当中,在太阳能工程计算中比较方便的快速算法。
1.引言这项太阳的位置算法的精度高(在2003-2023年这一段时间内,最大的误差0.0027度)和不复杂的算法。
这种准确度应该够所有生活中太阳能工程的需要。
在文献中找到的许多快速计算太阳位置的算法,用于工程应用。
才发现他们需要的计算量较小,但他们最大的不足是通常误差大0.01度。
Spencer公式(Spencer,1971年)达到最大误差超过0.25度;Pitman和Vant-Hull算(Pitman和Vant-Hull,1978年)减小误差到0.02度;Walraven算法(Walraven,1978年),Walraven随后的修正,改进(Walraven,1979年,Archer,1980年;Wilkinson,1981年,1983年;Muir,1983年),误差在0.013度。
Michalsky算法(Michalsky,1988年),用于比较准确的工作,最大误差0.011度;最后一个算法,SPA算法(Blanco-Muriel et al,2001年)最大误差0.008度。
所有这些算法正确的计算时间为有限周期时间。
例:1950-2050用Michalsky算法, 1995-2015用SPA算法。
也有一些高精度天文算法,如Meeus(1988年)提出的数值计算方法, Reda和Andreas (2004年)有一种适合太阳能应用算法,众所周知的SPA(太阳的位置算法)。
在很长一段时见(2000b.C.- 6000a.C)该算法最大误差小于0.0003度,但需要大量的计算。
第24章太阳位置计算
第24章太阳位置计算[许剑伟于家里2008-3-30下午]一、低精度计算:当计算精度要求为0.01度,计算太阳位置时可假设地球运动是一个纯椭圆,也就说忽略月球及行星摄动,计算表达如下。
设JD是儒略日数,可以用第7章表述的方法计算。
T为J2000起算的儒略世纪数:T = (JD-2451545.0)/36525计算时要保留足够的小数位数,5位小数是不够的(除非所需的太阳黄经的精度要求不高),注意,T表达为儒略世纪数,所以T误差0.00001相当于0.37日。
接下来,太阳几何平黄经:Lo = 280°.46645 + 36000°.76983*T + 0°.0003032*T^2 (Date平分点起算)太阳平近点角: M = 357°.52910 + 35999°.05030*T - 0°.0001559*T^2 -0°.00000048*T^3 地球轨道离心率:e = 0.016708617 - 0.000042037*T - 0.0000001236*T^2太阳中间方程:C = +(1°.914600 - 0°.004817*T -0°.000014*T*T) * sin(M)+(0°.019993 - 0°.000101*T) * sin(2M)+ 0°.000290*sin(3M)那么,太阳的真黄经是:Θ= Lo + C真近点角是:v = M + C日地距离的单位是"天文单位",距离表达为:R = 1.000001018 (1-e^2) / (1+e*cos(v)) ……24.5式式中的分子部分的值变化十分缓慢。
它的值是:0.9997190 1800年0.9997204 1900年0.9997218 2000年0.9997232 2100年太阳黄经Θ可由上述的方法算出,它是Date黄道分点坐标中的真几何黄经,需通过计算地心坐标星体位置也可算出。
日出日落的方位角度计算公式
计算日出日落的方位角度公式要计算任意一个地方在任意一天日出日落的方位角度,可以用下面的公式:方位角=90 - 0.5arccos[2(sinM/cosN)^2- 1]公式中,M表示的是某天太阳直射的纬度,N表示的是某地的纬度,^2表示平方。
例如,北京在北纬40度,则N=40,夏至这一天太阳在北纬23.5度(太阳直射北纬23.5度),即M=23.5,把N和M的值代入上式,可求得方位角=31度意思是,夏至这一天,在北京的人看来,太阳是从东偏北31度的方位升起的,是在西偏北31度的方位落下的。
说明:1本公式是在理想条件下推导出来的,即假设地球是个标准球体。
而实际上地球两极略扁,而且各地也有高山、洼地等,所以计算结果可能与实测结果有一点误差。
2 太阳围绕地球旋转的轨迹实际上是螺旋线(好象在地球外面套一根弹簧),所以实际上每天日出和日落的方位角稍微有点差别。
例如,在春分到夏至这段时间,日出方位角要略小于日落方位角。
昼夜长短的计算公式:Cost=-tgδ*tgφ太阳视位置太阳视位置指从地面上看到的太阳的位置,用太阳高度角和太阳方位角两个角度作为坐标表示。
太阳高度角指从太阳中心直射到当地的光线与当地水平面的夹角,其值在0°到90°之间变化,日出日落时为零,太阳在正天顶上为90°(本万年历中显示的高度角均已进行了蒙气差的订正,蒙气差值取自天文年历)。
太阳方位角即太阳所在的方位,指太阳光线在地平面上的投影与当地子午线的夹角,可近似地看作是竖立在地面上的直线在阳光下的阴影与正南方的夹角。
方位角以正南方向为零,由南向东向北为负,由南向西向北为正,如太阳在正东方,方位角为-90°,在正东北方时,方位为-135°,在正西方时方位角为90°,在正北方时为±180°。
实际上太阳并不总是东升西落,只有在春秋分两天,太阳是从正东方升,正西方落。
在北半球,从春分到秋分的夏半年中,太阳从东偏北的方向升(方位角为-90°到-180°之间),在西偏北的方向落(方位角为90°到180°之间);而从秋分到下一年春分的冬半年中,太阳从东偏南的方向升(方位角为-90°到0°之间),在西偏南的方向落(方位角为0°到90°之间)。
太阳高度计算公式
太阳高度计算公式
1太阳高度计算公式
太阳高度计算公式是用来计算太阳在地球上的相对高度的一种公式。
它是基于地球的自转和公转而设计的,以及太阳的位置(时间节点)的计算方法。
它的公式如下:
太阳高度h=ARCSIN[SIN纬度*SIN天顶角]+COS纬度*COS 天顶角
其中,纬度是地球表面的测量标准,天顶角则是指从地面到太阳的角度。
2使用太阳高度计算公式
太阳高度计算公式将地理位置和太阳的位置(时间节点)结合起来,以计算出太阳相对地球来说的高度。
此外,它还考虑了自转和公转的因素。
使用计算公式,首先需要计算纬度,纬度可以通过测量地球表面的公制尺寸的仪器来测量。
接下来可以计算天顶角,天顶角通过测量从地面到太阳的角度来计算。
最后将纬度和天顶角代入上面的公式中,即可得到太阳高度。
太阳高度计算公式也可以用于太阳能发电、视觉检测以及船舶行为预测等情况,这些情况都依赖于太阳的高度来获取自然能量和太阳光,进而实现不同的目的。
3太阳高度计算公式的局限性
太阳高度计算公式仅考虑了自转和公转的因素,以及太阳的位置。
因此,它对太阳高度的运行有一定的局限性,不能够完全反映太阳最终的高度。
除此之外,太阳高度计算公式也忽略了其他因素,例如气压、温度等。
这些因素都会影响太阳在地球上的最终高度,因此如果要计算出太阳的准确高度,则需要考虑这些因素。
4结论
太阳高度计算公式是一种依赖于地球的自转和公转,以及太阳的位置(时间节点)的计算方法,用以计算太阳在地球上的相对高度的公式。
虽然它能够大致计算出太阳高度,但通常情况下也需要考虑其他因素才能得到更准确的结果。
用天文测量简历精确计算太阳位置的方法
用天文测量简历精确计算太阳位置的方法天文测量是一种精确测量天体位置和运动的科学技术,是太空探索和星际旅行的重要基础。
太阳作为地球最为重要的天体之一,它的位置对于日常生活、导航、气象预测以及科学研究都具有重要意义。
本文将介绍几种通过天文测量精确计算太阳位置的方法。
方法一:日晷法日晷是一种将太阳高度角与时间联系起来的仪器,经过精确测量,可以用来计算太阳在天空中的位置。
日晷的基本原理是利用太阳的影子来测量时间。
根据太阳影子在地面上的轨迹以及影子长度的变化,可以确定太阳的高度角和方位角。
通过对太阳高度角和方位角的测量和计算,可以确定太阳在天空中的位置。
方法二:天文学三角测量法天文学三角测量法是利用三角形中的角度和边长来计算未知角度和边长的一种方法。
在天文学中,通过观测天体的位置和运动轨迹,可以使用天文学三角测量法来测量它们的距离、速度和位置等信息。
其中,使用天文学三角测量法测量太阳的位置,是通过观测太阳在两个不同地点的高度角和方位角,以及两个地点的距离来计算太阳在天空中的位置。
方法三:望远镜观测法望远镜观测法是利用望远镜来观察太阳,通过测量太阳的大小和位置,来计算太阳在天空中的位置。
望远镜可以提供更加精确和详细的太阳图像,同时也可以通过望远镜的调节和校正来消除大气的影响,进一步提高观测精度。
方法四:地球磁场观测法地球磁场观测法是利用地球磁场的变化来精确测量太阳位置的一种方法。
太阳活动会影响地球磁场,因此,通过观测地球磁场的变化,可以获得太阳活动的信息。
通过计算地球磁场的变化,以及太阳、地球和观测点的位置,可以计算出太阳在天空中的位置。
以上四种方法是通过天文测量精确计算太阳位置的常用方法。
不同的方法适用于不同的场景和精度要求。
无论使用哪种方法,天文测量的基础仍然是精确测量和计算。
因此,天文学家和测量技术人员需要具备精确测量和计算的技能,以及对天文学的深刻理解和热爱。
相关数据是指对研究对象进行的各种观测、测量、实验等数据,是进行科学研究和分析的基础。
太阳直射点经纬度计算公式
太阳直射点经纬度计算公式1太阳直射点的经纬度计算大家都知道,地球运行时它会不断地运动。
而太阳又永远保持在绝对静止的位置,而绕地球行转一圈等于一天时间。
这就意味着,在一天之内,太阳在地球上有一个“直射点”,它就是日光为期一天的移动所画出的圈上有许多直线,有一个处于东南方的经纬度永远处于太阳直射点。
因此,计算太阳最终直射点的经纬度就成为一个有趣的问题。
无论多么复杂,只要理解了一些基本的原理,就可以计算出结果。
1计算地球的轨道倾角由于太阳的轨道是非平行的,运动的方向也有所变化,所以想要计算出太阳最终直射点的经纬度,首先应该确定出地球轨道的倾角。
具体来说,通过观察太阳最终直射点位置,可以得出它的轨道倾角。
而地球轨道的正确倾角大约是23.4°,这也是太阳在每一天经过的最大角度。
2计算太阳在不同经度下的高度当我们确定了地球轨道的倾角后,就可以计算出太阳在不同的经度下的高度了。
具体来说,只要根据坐标系中的单位弧度确定都经度,确定每一经度对应的太阳升高角,每个日出时刻经度就可以绘制出一条太阳高度曲线。
不难看出,太阳在一天中心经度的最高点就是太阳直射点,其太阳升高角也比其他经度稍高一些。
3计算太阳直射点的经纬度当我们确定了太阳在不同经度下的高度,就可以计算出太阳最终直射点的经纬度了。
具体来说,要首先确定整个斜率的参数,然后将太阳最终直射点放在斜率上,以此来确定太阳最终直射点的经纬度。
到这里,就可以计算出太阳最终直射点的经纬度,有的的这两个经度坐标就可以根据自己的情况,将太阳最终直射点的位置移动过去了。
总之,要计算太阳最终直射点的经纬度,首先要确定地球轨道的倾角,然后计算太阳在不同经度下的高度,最后将太阳最终直射点放在斜率上,以此来计算其经纬度的坐标。
计算方法虽然不难,但一定要理解核心原理,才能准确地计算出最终的结果。
太阳方位计算原理
由于在两组坐标系中的矢量 s 相同,我们可以得到: cosz=(sinδ)(sin λ)+(cosδ)(cosλ)cosω 6. 太阳方位角的计算 “定位三角形”并如下图所示,球面三角形 ABC 以弧 AB,BC 和 AC 为边。假设球的半 径为 r,则弧 AB 的弧长为 rc,其中 c 为弧 AB 所对圆心角。这个角称为弧 AB 的中心角。因为边长与中心角是一一对应的在同一个球面三角形中,因此习惯上 用中心角来表示球面三角形的边。这样做的优点是与球的半径无关。球面三角形 的角定义为由包含球面三角形两条边的大圆所在的平面组成的二面角。 球面三角形的角由大写字母(A,B,C)来表示,其对应的边有小写字母(a, b,c)来表示。
对儒略历,取 B = 0
要求的儒略日即为:
JD = INT(365.25(Y+4716))+INT(30.6001(M+1))+D+B-1524.5
(7.1)
使用数值 30.6 取代 30.6001 才是正确的,但我们仍使用 30.6001,以确保总
能取得恰当的整数。事实上可用 30.601 甚至 30.61 来取代 30.6001。例如,5 乘
上面是讲一些预备知识,下面开始正式的计算。 当计算精度要求为 0.01 度,计算太阳位置时可假设地球运动是一个纯椭圆, 也就说忽略月球及行星摄动,计算表达如下。 设 JD 是儒略日数,可以用上面的方法计算。T 为 J2000 起算的儒略世纪数: T = (JD-2451545.0)/36525 计算时要保留足够的小数位数,5 位小数是不够的(除非所需的太阳黄经的精 度要求不高),注意,T 表达为儒略世纪数,所以 T 误差 0.00001 相当于 0.37 日。 接下来,太阳几何平黄经: L0 = 280°.46645 + 36000°.76983*T + 0°.0003032*T2 (当日平分点黄经起算) 太阳平近点角: M = 357°.52910 + 35999°.05030*T - 0°.0001559*T2 -0°.00000048*T3 地球轨道离心率:
Micheal-Yang太阳位置计算公式
太阳方位角/高度角计算公式2014/4/14Micheal-Yang1. 太阳高度角sinHs sin sin cos cos cost ϕδϕδ=⋅+⋅⋅式中,表示太阳高度角,表示地理纬度,表示太阳赤纬,表示时角。
(太阳赤纬和时角的概念请自行百度。
)由式中可见,地理纬度,还需要求太阳赤纬和时角。
太阳赤纬和时角的求法见下。
2. 太阳方位角()()/cosAs sinHs sin sin cosHs cos ϕδϕ=⋅−⋅式中,表示太阳高度角,表示地理纬度,表示太阳赤纬。
3. 太阳赤纬设太阳赤纬为delta ,有:delta(deg)=[0.006918-0.399912cos(b)+0.070257sin(b)-0.006758cos(2b)+0.000907sin(2b)-0.002697cos(3b)+0.00148sin(3b)](180/pi)其中delta 的单位为度(deg);pi=3.1415926为圆周率;b(deg)=360N/365,单位为度(deg); N 为日数,自每年1月1日开始计算。
4. 时角时角由太阳时求得。
太阳时角在正午时约为零,上午为负,下午为正,日出时约为-90°,日没时约为90°。
平均每小时时角变化15°。
太阳时角t = ( 真太阳时(called True Time) - 12 ) * 15°我们知道,一般情况下,我们的时钟显示12:00时,太阳并没有位于正中间,这是因为我们的时钟时间(也叫“平太阳时”)与真太阳时有一定的偏差,而真太阳时的12:00正是太阳位于正中,即方位角为0的时间。
真太阳时=平太阳时+真太阳时时差。
还有一点我们要注意,由于我国全国使用的都是“北京时间”,因此在计算真太阳时时,还要计算由于经度不同带来的时差。
虽然是“北京时间”,但“北京时间”是根据东经120°测得的,因此计算时差时,要以东经120°为标准。
太阳位置求算公式与计算举例
太阳位置求算公式与计算举例默认分类2022-11-14 21:04:44阅读393评论2 字号:大中小订阅太阳位置求算公式与计算举例杨齐聪在新农村建设和城市高楼群落的规划设计中,为了解决土地采用率与满意采光通风最低要求的冲突,常会遇到各幢楼房各部位的采光时间和日墙方位角的计算。
太阳位置可由太阳高度角hs和方位角as打算,依据球面三角基本公式可得:一、太阳高度角hs求算公式Sinhs=sinδsinφ+cosδcosφcosω (1)式中δ为太阳赤纬,表示太阳光线与地球赤道面的夹角,一年四季每天都在变动着,冬至B δ=-23o27,,春分日和秋分日δ=0°,夏至日5二23。
27';φ为测点纬度,如北京φ=39°48'∖西安φ=34°18;上海φ=31o10∖杭州φ=30°19;临海φ=28°51'∖福州φ=26°05'∖台北φ=25°20'∖广州φ=23°08∖3为太阳时角,以当地正午为0。
,上午为负,每小时一15。
,下午为正,每小时+15。
,ω在赤道面上每小时变化为=15°, 3所表示的是真太阳时;与时钟不同。
现举例计算于下:1.求北纬30。
地方冬至日正午时刻和下午1时、2时(均指地方时)的太阳高度角。
①正午时刻太阳时角为0。
,即3=0°将5=—23°27'、φ=30∖ 3=0。
代入(1)式得Sinh !E^=sin(-23027,)sin300+cos(-23027,)cos300cos00=-0.3979×0.5+0.9175×0.8660×1=-0.19895+0.79456=0.5956h正午=36°33'(查正弦数学用表所得,下同)则北纬30。
地方冬至日正午时刻的太阳高度角为36。
33:②下午1时(上午11时与此高度角同),太阳时角为15°,即ω=15o得Sinh 下午 1 0'J =sin(-23o27,)si∩3O o+cos(-23o27,)cos3O o cos15°=-0.19895+0.79456×0.9659=-0.19895+0.7675=0.5685h下午1时二34°39'则北纬30。
太阳方位角计算公式
太阳方位角计算公式太阳方位角是指太阳光线照射地球表面的方向角度,用于描述太阳的位置。
在地理学、气象学、太阳能利用等领域中,太阳方位角的计算十分重要。
本文将介绍常用的太阳方位角计算公式。
1. 太阳方位角的定义太阳方位角是从南方向起算的,以正南为0度,正西为90度,正北为180度,正东为270度。
太阳方位角的范围一般为0到360度。
2. 基于地理位置的太阳方位角计算在计算太阳方位角时,首先需要确定地理位置的经度和纬度。
根据经度和纬度的不同,太阳方位角的计算公式也有所不同。
2.1. 根据地球倾斜角的太阳方位角计算公式当地球自转轴倾斜角为23.5度时,太阳的赤纬(太阳光线与地球赤道平面的夹角)可以通过以下公式来计算:sin(太阳赤纬) = sin(地球倾斜角) * sin(太阳天顶角)其中,太阳天顶角为太阳光线与地球竖直向上的夹角。
太阳方位角可根据以下公式计算:cos(太阳方位角) = cos(90°-太阳赤纬) * sin(方位角) / cos(太阳赤纬)2.2. 根据时角的太阳方位角计算公式时角是太阳位于当地子午线上的角度,可通过以下公式计算:时角 = 当地真太阳时 - 当地标准中午时其中,当地真太阳时是指太阳在当地的真实时刻,而当地标准中午时是指太阳经过当地子午线的时刻。
太阳方位角可以根据以下公式计算:tan(太阳方位角) = sin(时角) / (sin(纬度) * cos (时角) - cos(纬度) * tan(太阳赤纬))3. 示例假设我们要计算纬度为30度,经度为120度的地点的太阳方位角。
首先,我们需要计算太阳赤纬,可以使用第2.1节中的公式:sin(太阳赤纬) = sin(23.5°) * sin(太阳天顶角)然后,根据第2.1节中的公式计算太阳方位角:cos(太阳方位角) = cos(90°-太阳赤纬) * sin(方位角) / cos(太阳赤纬)在有了太阳赤纬的数值之后,我们也可以使用第2.2节中的公式计算太阳方位角:tan(太阳方位角) = sin(时角) / (sin(30°) * cos(时角) - cos(30°) * tan(太阳赤纬))4. 结论本文介绍了通过地理位置的经度和纬度来计算太阳方位角的常用公式。
日出方位角计算公式
日出方位角计算公式日出方位角计算公式:日出方位角=90 - 0.5arccos[2(sinM/cosN)^2- 1];公式中,M-某天太阳直射的纬度,N-某地的纬度,^2-平方。
太阳方位角计算公式:太阳高度角hs:sinhs=sinφ·sinδ+cosψ·cosδ·cosΩ;式中 hs-太阳高度角、φ-地理纬度、δ-赤纬、Ω-时角。
太阳方位角As:COSAs= sinhs·sinψ-sinδ/(coshs·cosψ);式中As-太阳方位角。
太阳高角度:太阳高度角是从观测者所在地和太阳中心的联线与地平面所夹的角度。
天顶角是是高度角的余角,也就是(90°–gS )。
当太阳的高度角为90°,即太阳位于天顶,因此太阳的天顶角为0。
日地距离计算公式:ER=1.000423+0.032359sinθ+0.000086sin2θ-0.008349cosθ+0.000115cos2θ;式中θ称日角,即θ=2πt/365.2422。
太阳方位角的测定方法:对于中国区域,早上太阳光从东边射来,中午太阳光从南边射来,傍晚太阳光从西边边射来,早上的太阳方位角在90°左右(但一年当中,有一定的角度范围变化),正中午的太阳方位角在180°(正南方),傍晚的太阳方位角在270°左右(但一年当中,有一定的角度范围变化)。
例如北京处在北纬约40°,一年中,早上的太阳方位角变化量约为90°±31°;对于陆地卫星系统而言,如美国的Landsat TM/ETM+,该卫星的过境(中国)时间大概是早上到中午之间,因此其太阳方位角一般在0°和90°之间;对于地球上任何位置,当太阳处于春分点或秋分点,即太阳赤纬是0°的时候,初升的太阳方位角是90°整,正午太阳方位角是180°,落日的时候太阳方位角是270°;对北半球而言,当太阳赤纬大于0°的时候太阳从东偏北方向升起,此时太阳方位角小于90°,中午180°,落日时太阳方位角大于270°。
当地平太阳计算规则
当地平太阳计算规则
当地平太阳计算规则是指在一天中,太阳在天空中的位置与地平线的关系。
根据地球自转的原理,太阳在天空中的位置会随着时间的变化而不断变化。
当地平太阳高度角为0度时,太阳正好在地平线上,此时的时间称为当地的日出时间或日落时间。
当地平太阳高度角为90度时,太阳正好在正上方,此时的时间称为当地的正午时间。
当地平太阳计算规则的具体计算方法如下:
1.确定当地的地理位置和时区。
2.根据当地的经纬度和时区,计算出当地的太阳时角。
太阳时角是指太阳在天空中的位置与正南方向的夹角。
3.根据太阳时角和当地的地理位置,计算出当地的太阳高度角。
太阳高度角是指太阳在天空中的位置与地平面的夹角。
4.根据太阳高度角和当地的时间,计算出当地的日出时间、正午时间和日落时间。
需要注意的是,当地平太阳计算规则的具体计算方法可能因地区、时区和时间等因素而有所不同。
在实际应用中,应根据具体情况进行综合考虑,并严格遵循相关的标准和规范。
太阳辐射计算讲座第二讲相对于斜面的太阳位置计算
8在太阳能利用工作中,太阳辐射计算十分重要。
为了帮助读者掌握太阳辐射计算方法,我们请长期从事太阳辐射研究工作的中国气象科学研究院王炳忠研究员编写了《太阳辐射计算讲座》,供大家学习,参考。
———编者———第二讲相对于斜面的太阳位置计算王炳忠太阳辐射计算讲座在第一讲中,主要介绍平面上太阳位置的计算。
由于大多数太阳能装置都是倾斜放置的,故本讲着重讨论这种情况下的太阳位置计算问题,具体又可区分为朝向赤道方向和任意朝向两种情况。
1朝向赤道(即正南)方向假设北纬50°某地有一朝向赤道呈30°倾斜放置的太阳集热器,其相对于太阳光线的入射状况与北纬20°地区水平放置的集热器的入射状况相当,这一点从图1中可以清楚地看到。
推而广之,也可以说在纬度为φ的某地朝向赤道方向是β倾斜放置的太阳能装置,其相对于太阳光线的入射状况与纬度为φ-β地区水平放置的装置的入射状况一致。
这样一来,入射角θ根据上一讲中太阳高度角的计算公式,可以改写为cos θ=sin δsin (φ-β)+cos δ・cos (φ-β)・cos τβ(1)需要注意的是,这里的θ又称天顶角,它与高度角h 的关系为θ=90°-h 。
每日清晨,当太阳光线第一次能入射到朝南的倾斜面上的时角,称为该斜面的日出时角τβ。
此刻θ=90°(或高度角为零),即cos θ=0,于是有:cos τβ=-sinδsin (φ-β)/cos δ・cos (φ-β)(2)或τβ=arccos〔-tan δ・tan (φ-β)〕(3)利用式(3)进行计算时,可区分为3种情况:①δ=0°,即春、秋分时,τ=90°。
②δ>0°,即夏季前后时段,τ>τβ,即水平面上的日出时刻早于倾斜面。
③δ<0°,即冬季前后时段,τ<τβ,即数学计算结果为倾斜面上的日出早于水平面,但由于实际上这是讲不通的,所以应当改写为如下的通式:τβ=min{arccos〔-tan δ・tan φ〕,arccos 〔-tan δ・tan (φ-β)〕}(4)式中min 的含义为取括号中两个计算结果中的小者。
极昼地点时太阳高度的计算
极昼地点时太阳高度的计算公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]极昼地点0时太阳高度的计算一、正午太阳高度(H)的计算在北半球极昼区的正午太阳高度为当地地方时12时太阳光线与当地地平线的倾角,此时太阳位于正南天空。
其计算方法与非极昼区一致:公式一:正午太阳高度H=90-两地间的纬度差即正午太阳高度H=90-(当地地理纬度±太阳直射点纬度)(“±” 的用法:当地地理纬度与太阳直射点纬度在同一半球时用“-”,不同半球则用“+” )二、最小太阳高度(h)的计算在北半球极昼区的最小太阳高度为当地地方时0时或24时太阳光线与当地地平线的倾角,即子夜时太阳高度,此时太阳位于正北天空(极点除外)。
可分极点、出现极昼的最低纬度和两者之间的地区三种情况。
1、 极点 在地球自转运动中,北极点不动,故太阳始终在正南天空且太阳高度 只有年变化而无日变化,即一日内最小太阳高度和最大太阳高度一样。
假设当日太阳直射点的地理纬度为x,则用公式一可得出:h=H=90-(90-x)=x推论一:如某地在一日内太阳高度保持不变,则该地一定位于极点,且太阳高度的大小与当日太阳直射点的地理纬度数值相等。
2、出现极昼的最低纬度 如图1:N 为北极,O 为地心,M (纬度为x )为太阳直射点,则A 点为晨昏线与某纬线圈的切点,其所在的纬线就是当日出现极昼的最低纬度。
根据几何知识可知∠MOC+∠AOB=90,即A 点的地理纬度为北纬(90°-x )。
读图可知A 点此时的地方时为0时或24时,太阳位于正北方的地平线上,故其最小太阳高度h=0;其正午太阳高度H=90-〔(90-x )-x 〕=2x 。
O A l 1 l 2 MC B N 图1推论二:出现极昼的最低纬度的最小太阳高度h=0;其正午太阳高度H=直射点纬度的2倍。
3、极点和出现极昼的最低纬度之间的地区如图2:N 为北极,O 为地心,M (纬度为x )为太阳直射点,A (纬度为90-x )为切点,P (纬度为y )点为北半球出现极昼现象的某地与0时经线的交点, 1l 、2l 、3l 分别是过M 、P 、A 三点的太阳水平光线,它们相互平行。
太阳位置计算
第24章太阳位置计算[许剑伟于家里 2008-3-30下午]一、低精度计算:当计算精度要求为0.01度,计算太阳位置时可假设地球运动是一个纯椭圆,也就说忽略月球及行星摄动,计算表达如下。
设JD是儒略日数,可以用第7章表述的方法计算。
T为J2000起算的儒略世纪数:T = (JD-2451545.0)/36525计算时要保留足够的小数位数,5位小数是不够的(除非所需的太阳黄经的精度要求不高),注意,T表达为儒略世纪数,所以T误差0.00001相当于0.37日。
接下来,太阳几何平黄经:Lo = 280°.46645 + 36000°.76983*T + 0°.0003032*T^2 (Date平分点起算)太阳平近点角: M = 357°.52910 + 35999°.05030*T - 0°.0001559*T^2 -0°.00000048*T^3地球轨道离心率: e = 0.016708617 - 0.000042037*T - 0.0000001236*T^2太阳中间方程:C = +(1°.914600 - 0°.004817*T -0°.000014*T*T) *sin(M)+(0°.019993 - 0°.000101*T) * sin(2M)+ 0°.000290*sin(3M)那么,太阳的真黄经是:Θ = Lo + C真近点角是: v = M + C日地距离的单位是"天文单位",距离表达为:R = 1.000001018 (1-e^2) / (1+e*cos(v)) ……24.5式式中的分子部分的值变化十分缓慢。
它的值是:0.9997190 1800年0.9997204 1900年0.9997218 2000年0.9997232 2100年太阳黄经Θ可由上述的方法算出,它是Date黄道分点坐标中的真几何黄经,需通过计算地心坐标星体位置也可算出。
求太阳位置计算公式
求太阳位置计算公式太阳位置计算公式。
太阳是我们太阳系中最重要的星体之一,它对地球的生态系统和气候产生了深远的影响。
因此,了解太阳的位置对于很多领域都是至关重要的,比如农业、建筑、航海和天文学等。
在这篇文章中,我们将探讨太阳位置的计算公式,以便更好地理解太阳的运动规律。
首先,我们需要了解一些基本的天文学概念。
地球围绕太阳运转,因此太阳的位置是随着时间和地点的变化而变化的。
太阳的位置可以用两个参数来描述,太阳的高度角和方位角。
太阳的高度角是指太阳在天空中的高度,通常是以地平线为基准的角度。
而太阳的方位角则是指太阳在地平面上的方向,通常是以正北方向为基准的角度。
为了计算太阳的位置,我们需要使用一些基本的天文学公式。
首先,我们需要知道地球的自转轴与公转轨道之间的倾角,这个倾角约为23.5度。
其次,我们需要知道地球的自转周期,也就是一天的长度,约为24小时。
最后,我们需要知道地球围绕太阳公转的周期,也就是一年的长度,约为365.25天。
有了这些基本的参数,我们就可以开始计算太阳的位置了。
首先,我们需要计算太阳的赤纬和赤经。
赤纬是指太阳在赤道平面上的投影角度,而赤经则是指太阳在黄道平面上的投影角度。
这两个角度可以通过以下公式来计算:sin(δ) = sin(ε) sin(θ)。
cos(α) = cos(θ) cos(δ) / cos(φ)。
其中,δ表示太阳的赤纬,ε表示地球的自转轴与公转轨道的倾角,θ表示太阳的赤纬角,α表示太阳的赤经,φ表示观测点的纬度。
通过这两个公式,我们就可以得到太阳的赤纬和赤经了。
接下来,我们可以计算太阳的高度角和方位角了。
太阳的高度角可以通过以下公式来计算:sin(α) = sin(δ) sin(φ) + cos(δ) cos(φ) cos(H)。
其中,H表示太阳时角,可以通过以下公式来计算:H = 15 (t 12) + λ。
其中,t表示当地的时间,λ表示当地的经度。
通过这两个公式,我们就可以得到太阳的高度角了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第24章太阳位置计算
[许剑伟于家里 2008-3-30下午]
一、低精度计算:
当计算精度要求为0.01度,计算太阳位置时可假设地球运动是一个纯椭圆,也就说忽略月球及行星摄动,计算表达如下。
设JD是儒略日数,可以用第7章表述的方法计算。
T为J2000起算的儒略世纪数:
T = (JD-2451545.0)/36525
计算时要保留足够的小数位数,5位小数是不够的(除非所需的太阳黄经的精度要求不高),注意,T表达为儒略世纪数,所以T误差0.00001相当于0.37日。
接下来,
太阳几何平黄经:Lo = 280°.46645 + 36000°.76983*T + 0°.0003032*T^2 (Date平分点起算)
太阳平近点角: M = 357°.52910 + 35999°.05030*T - 0°.0001559*T^2 -0°.00000048*T^3
地球轨道离心率: e = 0.0 - 0.000042037*T - 0.0000001236*T^2
太阳中间方程:C = +(1°.914600 - 0°.004817*T -0°.000014*T*T) * sin(M)+(0°.019993 - 0°.000101*T) * sin(2M)+ 0°.000290*sin(3M)
那么,太阳的真黄经是:Θ = Lo + C
真近点角是: v = M + C
日地距离的单位是"天文单位",距离表达为:R = 1.000001018 (1-e^2) / (1+e*cos(v)) ……24.5式
式中的分子部分的值变化十分缓慢。
它的值是:
0.9997190 1800年
0.9997204 1900年
0.9997218 2000年
0.9997232 2100年
太阳黄经Θ可由上述的方法算出,它是Date黄道分点坐标中的真几何黄经,需通过计算地心坐标星体位置也可算出。
要取得Date黄道坐标中太阳的视黄经λ,还应对Θ进行章动修正及光行差修正。
如果精度要求不高,可用下式修正:
Ω = 125°.04 - 1934°.136*T
λ = Θ - 0°.00569 -0°.00478*sin(Ω)
某此时候,我们需要把太阳黄经转到J2000坐标中,在1900-2100年范围内可利用下式进行: Θ2000 = Θ - 0°.01397*(year-2000)
如果还想取得更高的转换精度(优于0.01度),那么你可以使用第25章的方法进行坐标旋转。
Date黄道坐标中的太阳黄纬不超过1".2,如果对精度要求不是很高,可以置0。
因此,太阳的地心赤经α及赤纬δ可以用下式(24.6式,24.7式)计算,式中ε是黄赤交角(由21章的21.2式计算)。
tanα = cosεsinΘ / cosΘ ……24.6式
sinδ = sinεsinΘ ……24.7式
如果要想得到太阳的视赤经及赤纬,以上二式中的Θ应换为λ,ε应加上修正量:
+0.00256*cos(Ω)
[译者注]:实际上就是对Θ补上黄经章动及光行差,ε补上交角章动后再转到赤道坐标中。
也可在赤道坐标中补章动及光行差,但公式不同。
公式24.6当然可以转为:tan(α) = cos(ε)*tan(Θ),接下来,我们要注意α与Θ应在同一象限。
然而,如果你使用计算机语中有ATN2函数(C语言是atan2),那最好保持24.6式不变,这样就可直接利用ATN2函数算出α,即:α= ATN2( cos(ε)*sin(Θ),cos(Θ) )
例24.a——计算1992-10-13,0点,即力学时TD=JDE 2448908.5时刻的太阳位置。
我们算得:
T = -0.0
Lo= -2318°.19281 = 201°.80719
M = -2241°.00604 = 278°.99396
e = 0.0
C = -1°.89732
Θ= 199°.90987 = 199°54' 36"
R = 0.99766
Ω= 264°.65
λ= 199°.90897 = 199°54' 32"
εo= 23°26'24".83 = 23°.44023 (由21章的21.2式算得)
ε= 23°.43999
α视= -161°.61918 = +198°.38082 = 13h.225388 = 13h 13m 31s.4δ视= -7°.78507 = -7°47' 06"
使用VSOP87行星理论计算出的的正确值是:(请与上面的结果做一下比较)
Θ= 199°54' 26".18
λ= 199°54' 21".56
β= +0".72
R = 0.
α视= 13h 13m 30s.749
δ视= -7°47' 01".74。