第9章凸轮机构应用和分类(1)

合集下载

第9章_凸轮机构及其设计

第9章_凸轮机构及其设计
是在圆柱面上开有曲线凹 槽或在圆柱端面上具有曲线轮 廓的构件。 它是一种空间凸轮机构。 行程可较大,但结构较复杂。e
ω
V
V
ω
ω
2、按推杆末端(the follower end)形状分:(如图9-5) 1)尖顶(knife-edge)推杆(图a、b): (a) (a) 结构简单,因是点接触,又是滑动 (d 摩擦,故易磨损。只宜用在受力不 (a)(a) ( (a) 大的低速凸轮机构中,如仪表机构。 图a) 图b)
▲ 注意:
1)所有运动过程的推杆位 移s是从行程的最近位臵 开始度量。回程时,推 杆的位移s是逐渐减小的。 2)凸轮的转角δ是从各个 运动过程的开始来度量。 如:在推程时,δ是从推程开始时进行度量;
在回程时,δ是从回程开始时进行度量。
3)有的凸轮δ01=0° (无远休),有的δ02=0°(无近休), 有的同时无远休和无近休。 e
2)运动线图——用于图解法
s = s(δ)—位移线图;如图9-8b所示。 v = v(δ)—速度线图; a = a(δ)—加速度线图。
图9-8
推杆的运动规律可分为基本运动规律和组合运动规律。 e
一)基本(Basic)运动规律
1、等速运动规律(一次多项式运动规律) v=常数。 s 1)方程: s=hδ/δ0 推程 v=hω/δ0 a=0 (9-3a) (δ:0~δ0)
对心直动尖顶 推杆盘形凸轮 机构
偏臵直动尖顶 推杆盘形凸轮 机构
对心直动滚子 直动平底推杆 推杆盘形凸轮 盘形凸轮机构 机构
摆动尖顶推杆 盘形凸轮机构
摆动滚子推杆 盘形凸轮机构
摆动平底推杆 盘形凸轮机构
上面介绍的是一些传统的凸轮机构,目前还研究出了 一些新型的凸轮机触,增加了接触面积, 提高了凸轮机构的承载能力。

凸轮机构及其应用

凸轮机构及其应用

械 压力角为0°,传力性能好。



v

F


科目 机械原理
⑶按推杆的运动型式分
专 直动推杆:作往复直线运动,又分对心直动 业 推杆和偏置直动推杆。 机 摆动推杆:作往复摆动。 械 制 造 与 自 动 化
科目 机械原理
根据凸轮与推杆保持接触的方法不同分
专 ①力封闭凸轮机构:利用推杆的重力、弹簧 业 力来使推杆与凸轮保持接触;
δ0 δ01
δ0'
ω δ02
为推 远 的近程 休 角休凸 止 度止轮 。 称。所 远 为近转 休 回休过 止 程止的 所 运所角对动对度应角应δ称凸0凸为轮'。轮推转转程过 过运 的的动 角角度度δ称0称为,为远从近休动休止件止角沿角δ导0δ路1。02移。动的
最大位移称为升距h。



科目 机械原理
高速场合






科目 机械原理
⑶运动规律特性分析
①最大速度
专 最大速度值越大,则从动件系统的动量也越大。若 业 机构在工作中遇到需要紧急停车的情况,由于从动
机 件系统动量过大,会出现操控失灵,造成机构损坏
械 制
等安全事故。
造 希望推杆运动速度的最大值越小越好。
与 ②最大加速度
自 最大加速度值的大小,会直接影响从动件系统的惯
科目 机械原理
第9章 凸轮机构及其应用
专 业
9-1 凸轮机构的应用和分类

9-2 推杆的运动规律
械 制
9-3 凸轮轮廓曲线的设计

9-4 凸轮机构的基本尺寸的确定

机械原理凸轮机构-201810

机械原理凸轮机构-201810

2. 对心滚子移动从动件盘形凸轮廓线的设计
已知凸轮的基圆半径rb,滚子
半径rr、凸轮角速度和从动件的运
动规律,设计该凸轮轮廓曲线。

s
8
7
5
3
1
9 10 11 12
13 14
实际轮廓曲线 A

O
1 3 5 7 8 9 11 13 15

120º 60º 90º 90º
设计步骤 ①③按作尖各顶滚直子动圆从的动内件(外盘)形包凸络轮 11 作线出—廓实线际—廓理线论。廓线。 ②以理论廓线上的各点为圆心
ρa=ρ-rr
轮廓失真
ρa=ρ-rr<0
ρ
ρ
rr
ρ =rr
rr
ρa=ρρ<-rr rr<0
外凸凸轮中:ρ实=ρ理-rr
1)若ρ实=0则出现尖点,磨损严重; 2)若ρ实<0则运动失真;
经验公式: rr=(0.1-0.5)r0 ;
rr≤0.8ρ理min ;
出现尖点,运动失真时所采取的办法:
1)r0↑→ρa↑; 2)rr ↓ ;
二、基圆半径r0:
rb

d
s d tan[ ]
e

s
2

e2
α、r0成反比关系: α↑→r0↓; α↓→r0↑;
三、滚子半径rr:
外凸凸轮:
内凹凸轮:
rr ρ
rr
ρa
ρ
ρ > rr
ρa=ρ-rr
ρa
ρa=ρ+rr
外凸凸轮中:
轮廓正常
rr
轮廓变尖:
ρ
ρa
ρ > rr
ρa=ρ-rr=0

机械原理-第9章凸轮机构及其设计

机械原理-第9章凸轮机构及其设计
③等加速回程段:(见书上) ④等减速回程段:(见书上)
①等加速推程段:
s = 2hδ2/δ02 v = 4hω δ /δ02 a = 4h ω 2/ δ02
②等减速推程段: s = h-2h(δ0-δ)2/δ02 v = 4hω(δ0-δ)/ δ02 a = -4hω2/δ02
由图知,有柔性冲击。
凸轮机构的适用场合: 广泛用于各种机械,特别是自动机械、自动控制装置
和装配生产线。
2.凸轮机构的分类
盘形凸轮 (1)按凸轮的形状分:移动凸轮 (板凸轮 )
圆柱凸轮
尖端推杆 (2)按从动件端部型式分 滚子推杆
平底推杆
直动推杆 (3)按从动件的运动方式分 摆动推杆
凸轮机构的命名:
从动件
原动件
对心
• 沿-w方向将基圆作相应等分;
• 沿导路方向截取相应的位移, 得到一系列点;
• 光滑联接。
2)对心直动滚子推杆盘形凸轮机构
s
h
h/2
w
O 1 2 3 /2 5 6 7 5 /4 10 11 127 /4 2
4
89
13 14
14 1
取长度比例尺l绘图
13
2
12 w
3
实际廓线
11
4
10
5
9
6
7
A5
C
6
2
B B180°B
6 5
4C
C
5
4φ3
C
φ3 2
A1Leabharlann R(3)按-w 方向划分圆R得 A0、A1、A2等点; 即得机架 反转的一系列
位置;
A4 A3
A2
(4)找从动件反转后的一系

第9章 凸轮机构及其设计(有答案)

第9章 凸轮机构及其设计(有答案)

1.图示凸轮机构从动件推程运动线图是由哪两种常用的基本运动规律组合而成?并指出有无冲击。

如果有冲击,哪些位置上有何种冲击?从动件运动形式为停-升-停。

(1) 由等速运动规律和等加速等减速运动规律组合而成。

(2) 有冲击。

(3) ABCD 处有柔性冲击。

2. 有一对心直动尖顶从动件盘形凸轮机构,为改善从动件尖端的磨损情况,将其尖端改为滚子,仍使用原来的凸轮,这时该凸轮机构中从动件的运动规律有无变化?简述理 由。

(1) 运动规律发生了变化。

(见下图 )(2)采用尖顶从动件时,图示位置从动件的速度v O P 2111=ω,采用滚子从动件时,图示位置的速度'='v O P 2111ω,由于O P O P v v 111122≠'≠',;故其运动规律发生改变。

3. 在图示的凸轮机构中,画出凸轮从图示位置转过60︒时从动件的位置及从动件的位移s。

总分5分。

(1)3 分;(2)2 分(1) 找出转过60︒的位置。

(2) 标出位移s。

4. 画出图示凸轮机构从动件升到最高时的位置,标出从动件行程h,说明推程运动角和回程运动角的大小。

总分5分。

(1)2 分;(2)1 分;(3)1 分;(4)1 分(1) 从动件升到最高点位置如图示。

(2) 行程h如图示。

(3)Φ=δ0-θ(4)Φ'=δ'+θ120时是渐开线,5.图示直动尖顶从动件盘形凸轮机构,凸轮等角速转动,凸轮轮廓在推程运动角Φ=︒从动件行程h=30 mm,要求:(1)画出推程时从动件的位移线图s-ϕ;(2)分析推程时有无冲击,发生在何处?是哪种冲击?-总分10分。

(1)6 分;(2)4 分(1)因推程时凸轮轮廓是渐开线,其从动件速度为常数v=r0⋅ω,其位移为直线,如图示。

(2) 推程时,在A 、B 处发生刚性冲击。

6. 在图示凸轮机构中,已知:AO BO ==20mm ,∠AOB =60ο;CO =DO =40mm ,∠=COD 60ο;且A B (、CD (为圆弧;滚子半径r r =10mm ,从动件的推程和回程运动规律均为等速运动规律。

凸轮机构

凸轮机构

机械设计基础
3.4 凸轮设计中的几个问题 设计凸轮机构时,不仅要保证从动件能实 现预定的运动规律,还要求整个机构传力性能 良好、结构紧凑。这些要求与凸轮机构的压力 角、基圆半径、滚子半径等因素相关。 3.4.1 凸轮机构的压力角问题 如图3-15所示为凸轮机构在推程中某瞬时 位置的情况,为作用在从动件上的外载荷,在 忽略摩擦的情况下,则凸轮作用在从动件上的 力将沿着接触点处的法线方向。此时凸轮机构 中凸轮对从动件的作用力(法向力)方向与从 动件上受力点速度方向所夹的锐角即为机构在 该瞬时的压力角,如图3-15所示。将力正交分 解为沿从动件轴向和径向两个分力,即
min
3.4.2 基圆半径的确定
从传动效率来看,压力角越小越好,但压力角减小将导致凸轮尺寸增大。由图315得压力角的计算公式
ds e d arctan
r02 e2 s
机械设计基础
其中,“-”为导路在凸轮轴的右侧,“+”为导路在凸轮轴的左侧。
显然,如果从动件位移s已给定,代表运动规律的
机械设计基础
2)滚子从动件凸轮机构 在从动件的尖顶处安装一个滚子,即成为滚子从动件,这样通过 将滑动摩擦转变为滚动摩擦,克服了尖顶从动件易磨损的缺点。滚子从 动件耐磨损,可以承受较大载荷,是最常用的一种从动件型式,如图35(b)所示。缺点是凸轮上凹陷的轮廓未必能很好地与滚子接触,从 而影响实现预期的运动规律。 3)平底从动件凸轮机构 在从动件的尖顶处固定一个平板,即成为平底从动件,这种从动 件与凸轮轮廓表面接触的端面为一平面,所以它不能与凹陷的凸轮轮廓 相接触,如图3-5(c)所示。这种从动件的优点是:当不考虑摩擦时, 凸轮与从动件之间的作用力始终与从动件的平底相垂直,传动效率较高, 且接触面易于形成油膜,利于润滑,故常用于高速凸轮机构。 在凸轮机构中,从动件不仅有不同的形状,而且也可以有不同的 运动形式。根据从动件的运动形式不同,可以把从动件分为直动从动件 (直线运动)和摆动从动件两种。在直动从动件中,若导路轴线通过凸 轮的回转轴,则称为对心直动从动件,否则称为偏置直动从动件。将不 同形式的从动件和相应的凸轮组合起来,就构成了种类繁多的各种不同 的凸轮机构。

机械原理课件9 凸轮机构

机械原理课件9 凸轮机构

1、凸轮廓线设计的基本原理
• 解析法、作图法 • 相对运动原理法:(也称反转法) • 此时,凸轮保持不动
• 对整个系统施加 -ω
运动
• 而从动件尖顶复合运动的 轨迹即凸轮的轮廓曲线。

A A A A A A A A
1 2
3’ 2’ 1’
ω
r0
1
O
2 3
3
2.用作图法设计凸轮廓线
1)对心直动尖顶从动件盘形凸轮
e
对心平底推杆凸轮机构
平底摆杆凸轮机构
从动件与凸轮之间易形成油膜,润滑状况好,受力平稳, 传动效率高,常用于高速场合。但与之相配合的凸轮轮廓 必须全部外凸。
偏心平底推杆凸轮机构
滚子摆杆凸轮机构
e
§9-2 推杆的运动规律
一.推杆常用的运动规律
凸轮机构设计的基本任务: 1)根据工作要求选定凸轮机构的形式; 2)推杆运动规律; 3)合理确定结构尺寸; 4)设计轮廓曲线。
a
2h 2
02
2 sin 0

R= 2
h
A 0 1 v
2
3 4
5
6
7
8

回程: s=h[1-δ /δ
0
′)/2π
0

+sin(2π δ /δ
0
0
]

v=hω [cos(2π δ /δ 0’)-1]/δ a=-2π
hω 2 sin(2π δ /δ

FI ma 0
(1).对心直动尖顶从动件盘形凸轮
s
h
对心直动尖顶从动件凸轮机构 中,已知凸轮的基圆半径rmin, 角速度ω和从动件的运动规律, 设计该凸轮轮廓曲线。 设计步骤小结:

第9章 凸轮机构及其设计.ppt

第9章 凸轮机构及其设计.ppt
当根单据击凸轮此机构处的工编作要辑求和母结版构条标件选题定了样其机式构的型式、
基本尺寸、推杆的运动规律和凸轮的转向之后,就可以进行凸轮 轮廓曲线的设计了。
•凸单轮廓击线此设处计的编方辑法母: 作版图文法本和解样析式法 •1.第凸二轮级廓线设计的基本原理
•无第论是三采级用作图法还是解析法设计凸轮廓线,所依据的基本 原理•都例第是偏反四置转级直法动原尖理顶。推杆盘形凸轮机构
可用•来单求摆击动此推处杆的编角辑位母移了版。文本样式 (• 3第)直二动级推杆圆柱凸轮廓线的设计 •3.第用三解级析法设计凸轮的轮廓曲线
律和•用已第解知析的四法机级设构计参凸数轮,廓求线凸,轮就廓是线根的据方工程作式所,要并求精的确推地杆计运算动出规凸 轮廓•线第上各五点级的坐标值。
(1)偏置直动滚子推杆盘形凸轮机构 (2)对心直动平底推杆盘形凸轮机构 (3)摆动滚子推杆盘形凸轮机构
(• 2第)三四角级函数运动规律 •1)第余推五弦程级加时速:度s=运h动[1-规c律os((π简δ /谐δ0)运]/2动规律)
在始、末两瞬时有柔性冲击。
2)正弦加速度运动规律(摆线运动规律)
推程时:s=h[(δ /δ0)-sin(2π δ /δ0) /(2π)]
6
推杆的运动规律(4/4)
既无刚性冲击,又无柔性冲击。
([α]<<αc)
•许第用压三力级角[α]的一般取值为 •推第程四时:级直动推杆[α]=30° • 第五级 摆动推杆[α]=35 °~ 45°
回程时: [α]=70 °~ 80°
13
凸轮机构基本尺寸的确定(3/7)
(21.)单凸凸轮轮击基机圆此构半的处径压的力编确角定与辑基圆母半径版的标关系题样式
r0≥{[(ds/dδ - e)/tan[α] - s]2+e2}1/2

孙桓《机械原理》笔记和课后习题(含考研真题)详解(凸轮机构及其设计)【圣才出品】

孙桓《机械原理》笔记和课后习题(含考研真题)详解(凸轮机构及其设计)【圣才出品】

第9章凸轮机构及其设计9.1 复习笔记一、凸轮机构的应用及分类1.凸轮机构的应用(1)相关概念①凸轮a.定义凸轮是指一个具有曲线轮廓或凹槽的构件;b.运动形式凸轮通常为主动件作等速转动,也有作往复摆动或移动的。

②推杆被凸轮直接推动的构件称为推杆,常为从动件。

③反凸轮机构凸轮为从动件而以推杆为主动件的机构称为反凸轮机构。

(2)凸轮机构的特点①优点a.适当地设计出凸轮的轮廓曲线,就能使推杆得到各种预期的运动规律;b.响应快速,机构简单紧凑。

②缺点a.凸轮廓线与推杆之间为点、线接触,易磨损;b.凸轮制造较困难。

(3)凸轮机构的应用发展①提出了许多适于在高速条件下采用的推杆运动规律以及一些新型凸轮机构;②凸轮机构的计算机辅助设计和制造、反求设计已获得普遍地应用,提高了设计和加工的速度及质量。

2.凸轮机构的分类(1)按凸轮的形状分①盘形凸轮a.具有变化向径的盘形构件绕固定轴线回转;b.作往复直线移动的盘形凸轮,称为移动凸轮。

②圆柱凸轮a.在圆柱面上开有曲线凹槽,或是在圆柱端面上作出曲线轮廓的构件;b.是一种空间凸轮机构,可认为是将移动凸轮卷于圆柱体上形成的。

(2)按推杆的形状分①尖顶推杆a.构造最简单,易磨损;b.只适用于作用力不大和速度较低的场合。

②滚子推杆a.磨损较小,可用来传递较大的动力;b.滚子常采用特制结构的球轴承或滚子轴承。

③平底推杆a.凸轮与平底的接触面间易形成油膜,润滑较好;b.常用于高速传动中。

(3)按推杆的运动形式分①作往复直线运动的直动推杆若轴线通过凸轮的回转轴心,则称为对心直动推杆,否则称为偏置直动推杆。

②作往复摆动的摆动推杆(4)根据凸轮与推杆保持接触的方法不同分①力封闭凸轮机构利用推杆的重力、弹簧力来使推杆与凸轮保持接触;②几何封闭的凸轮机构利用凸轮或推杆的特殊几何结构使凸轮与推杆保持接触。

二、推杆的运动规律1.研究推杆运动的意义(1)根据工作要求选定合适的凸轮机构的形式、推杆的运动规律和有关的基本尺寸;(2)根据选定的推杆运动规律设计凸轮的轮廓曲线;(3)推杆运动的选择,关系到凸轮机构的工作质量。

凸轮设计——精选推荐

凸轮设计——精选推荐

第九章凸轮机构及其设计§9.1 凸轮机构的应用及分类一、凸轮机构的应用凸轮机构是由具有曲线轮廓或凹槽的构件,通过高副接触带动从动件实现预期运动规律的一种高副机构。

广泛地应用于各种机械,特别是自动机械、自动控制装置和装配生产线中。

(尤其是需要从动件准确地实现某种预期的运动规律时)常用于将“简单转动”→“复杂移动”、“复杂摆动”、“与其它机构组合得到复杂的运动”。

图示为内燃机配气凸轮机构。

具有曲线轮廓的构件1叫做凸轮,当它作等速转动时,其曲线轮廓通过与推杆2的平底接触,使气阀有规律地开启和闭合。

工作对气阀的动作程序及其速度和加速度都有严格的要求,这些要求都是通过凸轮的轮廓曲线来实现的。

组成:凸轮、从动件、机架(高副机构)。

二、凸轮机构的特点1)只需改变凸轮廓线,就可以得到复杂的运动规律;2)设计方法简便;3)构件少、结构紧凑;4)与其它机构组合可以得到很复杂的运动规律5)凸轮机构不宜传递很大的动力;6)从动件的行程不宜过大;7)特殊的凸轮廓线有时加工困难。

三、凸轮机构的类型凸轮机构的分类:1)盘形凸轮按凸轮形状分:2)移动凸轮3)柱体凸轮1)尖底从动件;按从动件型式分:2)滚子从动件;3)平底从动件1)力封闭→弹簧力、重力等按维持高副接触分(封闭)槽形凸轮2)几何封闭等宽凸轮等径凸轮共轭凸轮§9.2 从动件常用运动规律设计凸轮机构时,首先应根据工作要求确定从动件的运动规律,然后再按照这一运动规律设计凸轮廓线。

以尖底直动从动件盘形凸轮机构为例,说明从动件的运动规律与凸轮廓线之间的相互关系。

基本概念:基圆——凸轮理论轮廓曲线最小向径.r0所作的圆。

行程——从动件由最远点到最近点的位移量h(或摆角 )推程——从动件远离凸轮轴心的过程。

回程——从动件靠近凸轮轴心的过程。

推程运动角——从动件远离凸轮轴心过程,凸轮所转过的角度。

回程运动角——从动件靠近凸轮轴心过程,凸轮所转过的角度。

远休止角——从动件在最远位置停留过程中凸轮所转过的角度。

机械原理 第 章 凸轮机构及其设计

机械原理 第 章 凸轮机构及其设计

13 14
1) 将位移曲线若干等分;
2) 沿-w方向将偏距圆作相应等分;
3) 沿导路方向截取相应的位移,得 到一系列点;
4) 光滑联接。
5)偏置直动滚子从动件盘形凸轮机构
取长度比例尺l绘图
s
h
w h/2
13 12 11
10 w
9
8 7
14 1 2
3 4 5 6
O 1 2 3 /2 5 6 7 5 /4 10 11 127 /4 2
↑对心直动尖端推杆盘形 凸轮机构
↓对心直动滚子推杆盘形 凸轮机构
↑偏置直动尖端推杆盘形凸 轮机构
↓对心直动平底推杆盘形 凸轮机构
↑尖端摆动凸轮机构 ↓平底摆动凸轮机构
↑滚子摆动凸轮机构
(4)按凸轮与从动件保持接触的方式分 力封闭型凸轮机构
利用推杆的重力、弹簧力或其他外力使推杆与凸轮保持 接触的
刚性冲击 柔性冲击 无冲击 柔性冲击 无冲击
适用场合
低速轻载 中速轻载 高速中载 中低速中载 中高速轻载
除上述以外,还有其它运动规律,或将上述常用运动规律组 合使用。如“改进梯形加速度运动规律”、“变形等速运动规 律”。
3.推杆运动规律的选择
1)只要求当凸轮转过某一角度δ0时,推杆完成一行程h或φ。
4
89
13 14
取长度比例尺l绘图
14 1
13
2
12 w
3
11
4
10
5
9
6
7
实际廓线
理论廓线
4)偏置直动尖端推杆盘形凸轮机构
取长度比例尺l绘图
s
h
w h/2
13 12 11
10 w
9

机械基础(凸轮机构)

机械基础(凸轮机构)

s h
3.余弦加速度运动规律:
O
从动件加速度在起点和终点存在 v
有限值突变,故有柔性冲击;
0/2 p h /20
若从动件作无停歇的升-降-升
O
连续往复运动,加速度曲线变为 a
连续曲线,可以避免柔性冲击;
O
可适用于高速的场合。
0/2 p22 h /202
0/2 -p22 h /202
0
0 0
凸轮机构
一.任务资讯
(一)凸轮机构的应用及分类
凸轮:具有控制从动件运动规律的某种曲线或凹槽的主动件。 作等速回转运动或往复移动。 凸轮机构:由凸轮、从动件(推杆)和机架组成的高副机构。
机架3
从动件2
1 O1
凸轮1
(一)凸轮机构的应用及分类
1、凸轮机构的应用(Application of Cams)
定的运动规律回到起始位置的过程。
8、回程运动角:
与回程相应的凸轮转角δ0 ' 。 δ0 ' =∠COD
9、近休止:
从动件停留在凸轮最近处。
10、近休止角:
从动件在最近位置停止不动所 对应的凸轮转角δs'。
δs' =∠AOD
O
B'
h
A
δs' D δt
δh δs
w
B
C
11、从动件位移线图: 以纵坐标代表从动件位移s2 ,横坐标代表凸轮转角 δ1或时间t,所画出的图形为位移曲线图。
与推程相应的凸轮转角δ0。 δ0= ∠AOB
O
B'
h
A
δs' D δ0
δ0 ' δs
w
B
C

《机械原理》课件_第9章_凸轮机构及其设计

《机械原理》课件_第9章_凸轮机构及其设计

Vmax
(hω /δ 0)×
amax
(hω /δ
0 2)
冲击
推荐应用范围 低速轻载
×
刚性
1.0

等加等减速
五次多项式 余弦加速度
2.0
1.88 1.57
4.0
5.77 4.93
柔性
无 柔性
中速轻载
高速中载 中速中载
正弦加速度
改进正弦加速度
2.0
1.76
6.28
5.53


高速轻载
高速重载
§9-3 凸轮轮廓曲线的设计
3
边界条件:
起始点:δ =0,s=0, v=0, a=0 终止点:δ =δ 0,s=h, v=0,a=0 求得:C0=C1=C2=0, C3=10h/δ C4=15h/δ
0 4 0 3
v
,
s
h
a δ δ
0
, C5=6h/δ
0
5
位移方程: s=10h(δ /δ 0)3-15h (δ /δ 0)4+6h (δ /δ 0)5

δ
rr
s0 (1)
B0
r0
x
n
x= (s0+s)sinδ + ecosδ y= (s0+s)cosδ - esinδ
第9章 凸轮机构及其设计
§9-1 § 9- 2 § 9- 3 凸轮机构的应用和分类 推杆的运动规律 凸轮轮廓曲线的设计 一、凸轮廓线设计方法的基本原理 二、用图解法设计凸轮廓线
1)对心直动尖顶推杆盘形凸轮 2)对心直动滚子推杆盘形凸轮 3)对心直动平底推杆盘形凸轮 4)偏置直动尖顶推杆盘形凸轮
5)摆动尖顶推杆盘形凸轮机构 6)直动推杆圆柱凸轮机构 7)摆动推杆圆柱凸轮机构

机械原理凸轮机构

机械原理凸轮机构

O
Ov
1
1
2 3 4 5 6 234 56
速度的变化率(即跃度j)在这些 位置为无穷大——柔性冲击
v
O
2
适应场合:中速轻载
O
2
a a0
O 2
j
3.简谐运动(余弦加速度运动)
当质点在圆周上作匀速运动 时,它在该圆直径上的投影所构 成的运动规律—简谐运动
s
h 2
1
cos
π Φ
φ
特点:有柔性冲击
作平底的内包络线,即为所要设计 的凸轮廓线
4.4 解析法设计平面凸轮轮廓曲线
一、直动滚子从动件盘形凸轮
已知:凸轮以等角速度 逆
y
时针方向转动,凸轮基园半
径ro、滚子半径rr,导路和凸
e
轮轴心间的相对位置及偏距e,
B0 ''
n
从动件的运动规律 s s(。)
1. 理论廓线方程: B(x, y)
s0 O
4.1.2 凸轮机构的分类
1. 按凸轮的形状分类
盘形凸轮 移动凸轮
圆柱凸轮
盘形凸轮:最基本的形式,结构简单,应用最为广泛
移动凸轮:凸轮相对机架做直线运动
圆柱凸轮:空间凸轮机构
2. 按从动件的形状分类
尖端能以任意复杂的凸轮轮廓 保持接触,从而使从动件实现 任意的运动规律。但尖端处极 易磨损,只适用于低速场合。
d
min
s
e
L

rb r' Cu
O
4.6 圆柱凸轮机构
一、直动从动件圆柱凸轮机构
O
rm 1
O a)
v1
η η
1
η 2
v2

凸轮机构的应用及其分类

凸轮机构的应用及其分类

作图步骤:
1、建立坐标系,并将横 坐标6等分,以从动件 h 3 推成h作为直径作半圆, 2 并将其6等分。分别记 作1、2、3、4、5、6。 2、分别作这些等分点关 于轴和s轴的垂线,分 别俩俩对应相交于1‘、2’ 3‘、4‘、5’、6‘。 4
5
6 4’ 3’
5’ 6’
2’
1’ 1 O 1 2 3 4 5 6
0, s 0 , s h
1 2 sin( ) 2 h 2 v 1 cos( ) 2 h 2 2 a sin( ) 2 s h
二、组合运动规律简介
运动规律组合应遵循的原则:
从动件常用基本运动规律特性
运动规律 等 速
(h / ) (h 2/ 2 )
vmax
a max
冲击特性 刚性 柔性 柔性 无
适用范围 低速轻载 中速轻载 中速中载 高速轻载
等加速等减速
余弦加速度 正弦加速度
1.0 2.0 1.57 2.00
4.00 4.93 6.28
s
h
0 v
x 1 1 2 2 y 1 1 2 2 B 2 2 1 2
当不计凸轮与从动件之 间的摩擦 时,凸轮给予从 动件的力F是沿法线方向, 从动件运动方向与力F之间 的锐角α即压力角。凸轮压 力角是反映机构传力特性 的一个重要参数。如图所示, 力F可分解为沿从动件运动 方向的有用分力F′和使从件 紧压导路的有害分力F″,且 F″=F′tgα
1、n=1的运动规律 s = c0+c1
v= c1 a=0 =0, s=0; =, s=h.
v h
h S
a0
等速运动规律
s

9 凸轮机构

9 凸轮机构

当凸轮和轴单独制作时,凸轮上要作出轮毂,
可取凸轮工作廓线的最小直径等于或大于轴径的 1.6 ~ 2)倍。 (3)按诺谟图确定rb
凸轮转角δ0 h/r0 等速运动
凸轮转角δ0 h/r0
正弦加速度运动 余弦加速度运动
h/r0 等加等减速运动
h/r0
αmax
αmax 诺模图
应用实例:一对心直动滚子推杆盘形凸轮机构,δ0=45º ,h=13 mm, 推杆以正弦加速度运动,要求αmax ≦30º ,试确定凸轮的基圆半径r0 。 作图得:h/r0=0.26 r0=≧ 50 mm
3)圆柱凸轮 (端面)
(2)从动件形状分类 1)尖端从动件 2)曲面从动件 3)滚子从动件 4)平底从动件
(3)按从动件的运动形式分类 1)移动从动件(对心、偏置) 2)摆动从动件
(4)按保持接触方式分类 1)力封闭(重力、弹簧) 2)几何形状封闭 •凹槽凸轮机构 •凸缘凸轮机构 •等宽凸轮机构 •等径凸轮机构 •共轭凸轮机构
s
3.运动规律的组合 将几种运动规律组合 , 以改善运动特性。 组合原则 要保证在衔接 点上运动参数保持连续;在运 动的始末处满足边界条件。
o v o a o -∞
h



+∞

s h
将几种运动规律组合 , 以改善运动特性。
o v



正弦改进等速运动规律
o a o
4.选择运动规律应考虑的问题(了解) 选择原则: 1)机器的工作过程只要求凸轮转过一角度δ0时, 推杆完成一行程h(直动推杆)或φ(摆动推杆), 对运动规律并无严格要求。则应选择直线或圆弧等 易加工曲线作为凸轮的轮廓曲线。如夹紧凸轮。 2)机器的工作过程对推杆运动有要求,则应严格按 工作要求的运动规律来设计凸轮廓线。如刀架进给凸 轮。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
按照凸轮与从动件维持 高副接触的方法分类
力锁合 形锁合
2020/10/17
§4-1 凸轮机构的应用和分类
力锁合
所谓力锁合型,是指 利用重力、弹簧力或 其它外力使从动件与 凸轮轮廓始终保持接 触。
2020/10/17
§4-1 凸轮机构的应用和分类
形锁合
所谓形锁合型,是指 利用高副元素本身的 几何形状使从动件与 凸轮轮廓始终保为半径作的 圆。
基圆半径
即为最小向径r0。
2020/10/17
§4-1 凸轮机构的应用和分类
基本概念
偏距
凸轮回转中心至从动 件导路的偏置距离e。
偏距圆
以e为半径作的圆。
2020/10/17
§4-1 凸轮机构的应用和分类
基本概念
行程
从动件往复运动的最 大位移,用h表示。
第四章 凸轮机构及其设计
§4-1 凸轮机构的应用和分类
Knowledge Points
凸轮机构的组成 凸轮机构的分类 凸轮机构的优点、缺点
2020/10/17
§4-1 凸轮机构的应用和分类
凸轮机构的组成
凸轮是具有曲线轮廓 或凹槽的构件
凸轮机构一般由凸轮、 从动件和机架三个构 件组成。
凸轮轮廓线与从动件之间是点或线接触的 高副,易于磨损,故多用于传力不大的场 合。
2020/10/17
§4-1 凸轮机构的应用和分类
§4-2 从动件的运动规律
Knowledge Points
多项式运动规律 三角函数运动规律 组合运动规律
2020/10/17
§4-1 凸轮机构的应用和分类
基本概念
s c 0 c 1 c 22 c nn
式中c0、cl、c2、…、cn为n+1个 系数。这n+1个系数可以根据对 运动规律所提的n+1个边界条件 来确定。
2020/10/17
§4-1 凸轮机构的应用和分类
多项式运动规律
一次多项式
从动件速度为常量,故称为等速运动规
律,由于其位移曲线为一条斜率为常数的 斜直线,故又称直线运动规律。
特点:速度曲线连续,不会产生刚
性冲击;因加速度曲线在运动的起始、 中间和终止位置有突变,会产生柔性 冲击。
适用场合:中速轻载。
2020/10/17
§4-1 凸轮机构的应用和分类
多项式运动规律
五次多项式
其位移方程式中多项式剩余项 的次数为3、4、5,故称3-4-5 次多项式运动规律。也称五次多 项式运动规律。
盘形凸轮
这种凸轮是一个绕固 定轴转动并且具有变 化向径的盘形零件, 如。当其绕固定轴转 动时,可推动从动件 在垂直于凸轮转轴的 平面内运动。它是凸 轮的最基本型式,结 构简单,应用最广。
2020/10/17
§4-1 凸轮机构的应用和分类
移动凸轮
当盘形凸轮的转轴位 于无穷远处时,就演 化成了图示的移动凸 轮(或楔形凸轮)。 凸轮呈板状,它相对 于机架作直线移动。
2020/10/17
§4-1 凸轮机构的应用和分类
凸轮机构的优点
结构简单、紧凑,占据空间较小;具有多 用性和灵活性,从动件的运动规律取决于 凸轮轮廓曲线的形状。对于几乎任意要求 的从动件的运动规律,都可以毫无困难地 设计出凸轮廓线来实现。
2020/10/17
§4-1 凸轮机构的应用和分类
凸轮机构的缺点
2020/10/17
§4-1 凸轮机构的应用和分类
凸轮机构的分类
按照凸轮的形状分类 按照从动件的型式分
类 按照凸轮与从动件维
持高副接触的方法分 类
2020/10/17
§4-1 凸轮机构的应用和分类
凸轮机构的分类
按照凸轮的形状分类 盘形凸轮 移动凸轮 圆柱凸轮
2020/10/17
§4-1 凸轮机构的应用和分类
2020/10/17
§4-1 凸轮机构的应用和分类
基本概念
推程
从动件背离凸轮轴心 运动的行程。
推程运动角
与推程对应的凸轮转 角。
2020/10/17
§4-1 凸轮机构的应用和分类
基本概念
回程
从动件向着凸轮轴心 运动的行程。
回程运动角
与回程对应的凸轮转 角。
2020/10/17
§4-1 凸轮机构的应用和分类
2020/10/17
§4-1 凸轮机构的应用和分类
平底从动件
从动件与凸轮轮廓之 间为线接触,接触处 易形成油膜,润滑状 况好。此外,在不计 摩擦时,凸轮对从动 件的作用力始终垂直 于从动件的平底,受 力平稳传动效率高, 常用于高速场合。
2020/10/17
§4-1 凸轮机构的应用和分类
凸轮机构的分类
2020/10/17
§4-1 凸轮机构的应用和分类
圆柱凸轮
如果将移动凸轮卷成 圆柱体即演化成圆柱 凸轮。图示为自动机 床的进刀机构。在这 种凸轮机构中凸轮与 从动件之间的相对运 动是空间运动,故属 于空间凸轮机构。
2020/10/17
§4-1 凸轮机构的应用和分类
凸轮机构的分类
按照从动件的型式分类 尖底从动件 滚子从动件 平底从动件
特点:速度曲线和加速度曲线 均连续无突变,故既无刚性冲击 也无柔性冲击。
2020/10/17
§4-1 凸轮机构的应用和分类
尖底从动件
从动件的尖端能够与 任意复杂的凸轮轮廓 保持接触,从而使从 动件实现任意的运动 规律。
2020/10/17
§4-1 凸轮机构的应用和分类
滚子从动件
为减小摩擦磨损,在 从动件端部安装一个 滚轮,把从动件与凸 轮之间的滑动摩擦变 成滚动摩擦,因此摩 擦磨损较小,可用来 传递较大的动力,故 这种形式的从动件应 用很广。
特点:速度曲线不连续,从动件运动起
始和终止位置速度有突变,会产生刚性冲 击。
适用场合:低速轻载。
2020/10/17
§4-1 凸轮机构的应用和分类
多项式运动规律
二次多项式
从动件在推程或回程的前半段作等
加速运动,后半段作等减速运动,通 常加速度和减速度绝对值相等。由于 其位移曲线为两段在O点光滑相连的 反向抛物线,故又称为抛物线运动规 律。
基本概念
远休止角
从动件在最远处停留 凸轮的转角。
近休止角
从动件在距离回转中 心最近处停留凸轮的 转角。
2020/10/17
§4-1 凸轮机构的应用和分类
基本概念
从动件位移线图
从动件位移s与凸轮转 角φ的对应关系。
2020/10/17
§4-1 凸轮机构的应用和分类
多项式运动规律
一般形式
相关文档
最新文档