绥化市初中数学数据分析经典测试题附解析

合集下载

(中考精品卷)黑龙江省绥化市中考数学真题(解析版)

(中考精品卷)黑龙江省绥化市中考数学真题(解析版)

二○二二年绥化市初中毕业学业考试数学试题一、单项选择题(本题共12个小题,每小题3分,共36分)1. 化简12-,下列结果中,正确的是( ) A. 12 B. 12- C. 2 D. -2【答案】A【解析】【分析】根据绝对值的运算法则,求出绝对值的值即可. 【详解】解:1122-= 故选:A .【点睛】本题考查根据绝对值的意义求一个数的绝对值,求一个数的绝对值:①当a 是正数时,│a │=a ;②当a 是负数时,│a │=-a ;③当a =0时,│0│=0.掌握求一个数的绝对值的方法是解答本题的关键.2. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D. 【答案】D【解析】【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【详解】解:A .是轴对称图形,不是中心对称图形,故本选项不符合题意; B .是轴对称图形,不是中心对称图形,故本选项不符合题意;C .不是轴对称图形,是中心对称图形,故本选项不符合题意;D .既是轴对称图形,又是中心对称图形,故本选项符合题意.故选:D .【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.3. 下列计算中,结果正确的是( )A. 22423x x x +=B. ()325x x = 2=- D.2=±【答案】C【解析】【分析】根据合并同类项法则、幂的乘方运算法则、开立方运算、求一个数的算术平方根,即可一一判定.【详解】解:A.22223x x x +=,故该选项不正确,不符合题意;B.()326x x =,故该选项不正确,不符合题意;2=-,故该选项正确,符合题意;2=,故该选项不正确,不符合题意;故选:C . 【点睛】本题考查了合并同类项法则、幂的乘方运算法则、开立方运算、求一个数的算术平方根,熟练掌握和运用各运算法则是解决本题的关键.4. 下列图形中,正方体展开图错误的是( )A. B. C. D.【答案】D【解析】【分析】利用正方体及其表面展开图的特点解题.【详解】D 选项出现了“田字形”,折叠后有一行两个面无法折起来,从而缺少面,不能折成正方体,A 、B 、C 选项是一个正方体的表面展开图.故选:D .【点睛】此题考查了几何体的展开图,只要有“田”“凹”字的展开图都不是正方体的表面展开图.5. 2x -+在实数范围内有意义,则x 的取值范围是( )A. 1x >-B. 1x -…C. 1x -…且0x ≠D. 1x -…且0x ≠【答案】C【解析】 【分析】根据二次根式被开方数不能为负数,负整数指数幂的底数不等于0,计算求值即可;【详解】解:由题意得:x +1≥0且x ≠0,∴x ≥-1且x ≠0,故选: C .【点睛】本题考查了二次根式的定义,负整数指数幂的定义,掌握其定义是解题关键. 6. 下列命题中是假命题的是( )A. 三角形的中位线平行于三角形的第三边,并且等于第三边的一半B. 如果两个角互为邻补角,那么这两个角一定相等C. 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角D. 直角三角形斜边上的中线等于斜边的一半【答案】B【解析】【分析】利用三角形的中位线定理、邻补角性质、切线长定理以及直角三角形斜边上的中线的性质分别判断后即可确定正确的选项.【详解】解:A. 三角形的中位线平行于三角形的第三边,并且等于第三边的一半,是真命题,故此选项不符合题意;B. 如果两个角互为邻补角,那么这两个角不一定相等,故此选项是假命题,符合题意;C. 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角,是真命题,故此选项不符合题意;D. 直角三角形斜边上的中线等于斜边的一半,是真命题,故此选项不符合题意; 故选:B【点睛】考查了命题与定理的知识,解题的关键是了解三角形的中位线定理、邻补角性质、切线长定理以及直角三角形斜边上的中线的性质.7. 如图,线段OA 在平面直角坐标系内,A 点坐标为()2,5,线段OA 绕原点O 逆时针旋转90°,得到线段OA ',则点A '的坐标为( )A. ()5,2-B. ()5,2C. ()2,5-D. ()5,2-【答案】A【解析】【分析】如图,逆时针旋转90°作出OA ',过A 作AB x ⊥轴,垂足为B ,过A '作A B x ''⊥轴,垂足为B ',证明()A OB BOA AAS '∠ ≌,根据A 点坐标为()2,5,写出5AB =,2OB =,则5OB '=,2A B '=,即可写出点A 的坐标.【详解】解:如图,逆时针旋转90°作出OA ',过A 作AB x ⊥轴,垂足为B ,过A '作A B x ''⊥轴,垂足为B ',∴90A BO ABO ∠'=∠=︒,OA OA '=,∵18090A OB AOB A OA '∠+∠=︒-∠'=︒,90AOB A ∠+∠=︒,∴A OB A ∠'=∠,∴()A OB BOA AAS '∠ ≌,∴OB AB '=,A B OB '=,∵A 点坐标为()2,5,∴5AB =,2OB =,∴5OB '=,2A B '=,∴()5,2A '-,故选:A .【点睛】本题考查旋转的性质,证明A OB BOA '∠ ≌是解答本题的关键.8. 学校组织学生进行知识竞赛,5名参赛选手的得分分别为:96,97,98,96,98.下列说法中正确的是( )A. 该组数据的中位数为98B. 该组数据的方差为0.7C. 该组数据的平均数为98D. 该组数据的众数为96和98 【答案】D【解析】【分析】首先对数据进行重新排序,再根据众数,中位数,平均数,方差的定义进行求值计算即可.【详解】解:数据重新排列为:96,96,97,98, 98,∴数据的中位数为:97,故A 选项错误; 该组数据的平均数为9696979898975++++= ,故C 选项错误; 该组数据的方差为:()()()()()22222196979697979798979897=0.85⎡⎤-+-+-+-+-⎣⎦,故B 选项错误;该组数据的众数为:96和98,故D 选项正确;故选:D .【点睛】本题主要考查数据中名词的理解,掌握众数,中位数,平均数,方差的定义及计算方法是解题的关键.9. 有一个容积为243m 的圆柱形的空油罐,用一根细油管向油罐内注油,当注油量达到该油罐容积的一半时,改用一根口径为细油管口径2倍的粗油管向油罐注油,直至注满,注满油的全过程共用30分钟,设细油管的注油速度为每分钟x 3m ,由题意列方程,正确的是( )A. 1212304x x +=B. 1515244x x +=C. 3030242x x +=D. 1212302x x+= 【答案】A【解析】【分析】由粗油管口径是细油管的2倍,可知粗油管注水速度是细油管的4倍.可设细油管的注油速度为每分钟x 3m ,粗油管的注油速度为每分钟4x 3m ,继而可得方程,解方程即可求得答案.【详解】解:∵细油管的注油速度为每分钟x 3m ,∴粗油管的注油速度为每分钟4x 3m , ∴1212304x x+=. 故选:A .【点睛】此题考查了分式方程的应用,准确找出数量关系是解题的关键.10. 已知二次函数2y ax bx c =++的部分函数图象如图所示,则一次函数24y ax b ac =+-与反比例函数42a b c y x++=在同一平面直角坐标系中的图象大致是( )A. B.C. D.【答案】B【解析】【分析】根据2y ax bx c =++的函数图象可知,0a >,240b ac ->,即可确定一次函数图象,根据2x =时,420y a b c =++>,即可判断反比例函数图象,即可求解.【详解】解:∵二次函数2y ax bx c =++的图象开口向上,则0a >,与x 轴存在2个交点,则240b ac ->,∴一次函数24y ax b ac =+-图象经过一、二、三象限,二次函数2y ax bx c =++的图象,当2x =时,420y a b c =++>,∴反比例函数42a b c y x++=图象经过一、三象限 结合选项,一次函数24y ax b ac =+-与反比例函数42a b c y x++=在同一平面直角坐标系中的图象大致是B 选项故选B 【点睛】本题考查了一次函数,二次函数,反比例函数的图象与性质,掌握二次函数的图象与系数的关系是解题的关键.11. 小王同学从家出发,步行到离家a 米的公园晨练,4分钟后爸爸也从家出发沿着同一路线骑自行车到公园晨练,爸爸到达公园后立即以原速折返回到家中,两人离家的距离y (单位:米)与出发时间x (单位:分钟)的函数关系如图所示,则两人先后两次相遇的时间间隔为( )A. 2.7分钟B. 2.8分钟C. 3分钟D. 3.2分钟【答案】C【解析】【分析】先根据题意求得A 、D 、E 、F 的坐标,然后再运用待定系数法分别确定AE 、AF 、OD 的解析式,再分别联立OD 与AE 和AF 求得两次相遇的时间,最后作差即可.【详解】解: 如图:根据题意可得A (8,a ),D (12,a ),E (4,0),F (12,0) 设AE 的解析式为y =kx +b ,则048k b a k b =+⎧⎨=+⎩ ,解得4a k b a⎧=⎪⎨⎪=-⎩ ∴直线AE 的解析式为y =4a x -3a 同理:直线AF 的解析式为:y =-4a x +3a ,直线OD 的解析式为:y =12a x 联立124a y x a y x a ⎧=⎪⎪⎨⎪=-⎪⎩,解得62x a y =⎧⎪⎨=⎪⎩ 联立1234a y x a y x a ⎧=⎪⎪⎨⎪=-+⎪⎩,解得934x a y =⎧⎪⎨=⎪⎩ 两人先后两次相遇的时间间隔为9-6=3min .故答案为C .【点睛】本题主要考查了一次函数的应用,根据题意确定相关点的坐标、求出直线的解析式成为解答本题的关键.12. 如图,在矩形ABCD 中,P 是边AD 上的一个动点,连接BP ,CP ,过点B 作射线,交线段CP 的延长线于点E ,交边AD 于点M ,且使得ABE CBP =∠∠,如果2AB =,5BC =,AP x =,PM y =,其中25x <….则下列结论中,正确的个数为( )(1)y 与x 的关系式为4y x x =-;(2)当4AP =时,ABP DPC ∽;(3)当4AP =时,3tan 5EBP ∠=.A. 0个B. 1个C. 2个D. 3个【答案】C【解析】 【分析】(1)证明ABM APB ∽,得AB AM AP AB=,将2AB =,AP x =,PM y =代入,即可得y 与x 的关系式; (2)利用两组对应边成比例且夹角相等,判定ABP DPC ∽;(3)过点M 作MF BP ⊥垂足为F ,在Rt APB △中,由勾股定理得BP 的长,证明FPM APB ∽,求出MF ,PF ,BF 的长,在Rt BMF △中,求出tan EBP ∠的值即可.【详解】解:(1)∵在矩形ABCD 中,∴AD BC ∥,90A D ∠=∠=︒,5BC AD ==,2AB DC ==, ∴APB CBP ∠=∠,∵ABE CBP =∠∠,∴ABE APB ∠=∠,∴ABM APB ∽, ∴AB AM AP AB=, ∵2AB =,AP x =,PM y =, ∴22x y x -=, 解得:4y x x =-, 故(1)正确;(2)当4AP =时,541DP AD AP =-=-=, ∴12DC DP AP AB ==, 又∵90A D ∠=∠=︒,∴ABP DPC ∽,故(2)正确;(3)过点M 作MF BP ⊥垂足为F ,∴90A MFP MFB ∠=∠=∠=︒,∵当4AP =时,此时4x =,4413y x x =-=-=, ∴3PM =,在Rt APB 中,由勾股定理得:222BP AP AB =+,∴BP ===,∵FPM APB ∠=∠,∴FPM APB ∽, ∴MF PF PM AB AP PB==,∴24MF PF ==∴MF =,PF =∴BF BP PF =-=-=∴3tan 4MF EBP BF ∠=== 故(3)不正确;故选:C .【点睛】本题主要考查相似三角形的判定和性质,勾股定理的应用,矩形的性质,正确找出相似三角形是解答本题的关键.二、填空题(本题共10个小题,每小题3分,共30分)13. 一个不透明的箱子中有5个红球和若干个黄球,除颜色外无其它差别.若任意摸出一个球,摸出红球的概率为14,则这个箱子中黄球的个数为______个. 【答案】15【解析】【分析】设黄球个数为x 个,根据概率计算公式列出方程,解出x 即可.【详解】解:设:黄球的个数为x 个, 5154x =+ 解得:15x =,检验:将15x =代入520x +=,值不为零,∴15x =是方程的解,∴黄球的个数为15个,故答案为:15.【点睛】本题考查概率计算公式,根据题意列出分式方程并检验是解答本题的关键. 的14. 因式分解:()()269m n m n +-++=________.【答案】()23m n +-【解析】【分析】将()m n +看做一个整体,则9等于3得的平方,逆用完全平方公式因式分解即可.【详解】解:()()269m n m n +-++ ()()22233m n m n =+-⨯⨯++()23m n =+-.【点睛】本题考查应用完全平方公式进行因式分解,整体思想,能够熟练逆用完全平方公式是解决本题的关键.15. 不等式组360x x m ->⎧⎨>⎩的解集为2x >,则m 的取值范围为_______. 【答案】m ≤2【解析】【分析】先求出不等式①的解集,再根据已知条件判断m 范围即可. 【详解】解:360x x m ->⎧⎨>⎩①②, 解①得:2x >,又因为不等式组的解集为x >2∵x >m ,∴m ≤2,故答案为:m ≤2.【点睛】本题考查了解一元一次不等式组,能根据不等式的解集和已知得出m 的范围是解此题的关键.16. 已知圆锥的高为8cm ,母线长为10cm ,则其侧面展开图的面积为_______.【答案】60πcm 2【解析】【分析】利用勾股定理易得圆锥的底面半径,那么圆锥的侧面积=底面周长×母线长÷2.【详解】解:圆锥的高为8cm ,母线长为10cm ,由勾股定理得,底面半径=6cm ,底面周长=12πcm ,侧面展开图的面积=12×12π×10=60πcm 2.故答案为:60πcm 2.【点睛】本题利用了勾股定理,圆的周长公式和扇形面积公式求解.17. 设1x 与2x 为一元二次方程213202x x ++=的两根,则()212x x -的值为________. 【答案】20【解析】【分析】利用公式法求得一元二次方程的根,再代入求值即可; 【详解】解:∵213202x x ++= △=9-4=5>0,∴13x =-+23x =-,∴()212x x -=((223320-++==,故答案为:20;【点睛】本题考查了一元二次方程的解,掌握公式法解一元二次方程是解题关键. 18. 定义一种运算;sin()sin cos cos sin αβαβαβ+=+,sin()sin cos cos sin αβαβαβ-=-.例如:当45α=︒,30β=︒时,()sin 4530︒+︒=12=,则sin15︒的值为_______.【解析】 【分析】根据sin()sin cos cos sin αβαβαβ-=-代入进行计算即可.【详解】解:sin15sin(4530)︒=︒-︒=sin 45cos30cos 45sin 30︒︒︒︒-12【点睛】此题考查了公式的变化,以及锐角三角函数值的计算,掌握公式的转化是解题的关键.,且有公共顶点A,则19. 如图,正六边形ABCDEF和正五边形AHIJK内接于O的度数为______度.BOH【答案】12【解析】【分析】连接AO,求出正六边形和正五边形的中心角即可作答.【详解】连接AO,如图,∵多边形ABCDEF是正六边形,∴∠AOB=360°÷6=60°,∵多边形AHIJK是正五边形,∴∠AOH=360°÷5=72°,∴∠BOH=∠AOH-∠AOB=72°-60°=12°,故答案为:12.【点睛】本题考查了正多边形的中心角的知识,掌握正多边形中心角的计算方法是解答本题的关键.20. 某班为奖励在数学竞赛中成绩优异的同学,花费48元钱购买了甲、乙两种奖品,每种奖品至少购买1件,其中甲种奖品每件4元,乙种奖品每件3元,则有______种购买方案.【答案】3##三【解析】【分析】设购买甲种奖品x 件,乙种奖品y 件,列出关系式,并求出3124y x =-,由于1≥x ,1y ≥且x ,y 都是正整数,所以y 是4的整数倍,由此计算即可.【详解】解:设:购买甲种奖品x 件,乙种奖品y 件,4348x y +=,解得3124y x =-, ∵1≥x ,1y ≥且x ,y 都是正整数,∴y 是4的整数倍,∴4y =时,341294x ⨯=-=, 8y =时,381264x ⨯=-=, 12y =时,3121234x ⨯=-=, 16y =时,3161204x ⨯=-=,不符合题意, 故有3种购买方案,故答案为:3.【点睛】本题考查列关系式,根据题意判断出y 是4的整数倍是解答本题的关键. 21. 如图,60AOB ∠=︒,点1P 在射线OA 上,且11OP =,过点1P 作11PK OA ⊥交射线OB 于1K ,在射线OA 上截取12PP ,使1211PPPK =;过点2P 作22P K OA ⊥交射线OB 于2K ,在射线OA 上截取23P P ,使2322P P P K =.按照此规律,线段20232023P K 的长为________.20221+【解析】【分析】解直角三角形分别求得11PK,22P K,33P K,……,探究出规律,利用规律即可解决问题.【详解】解:11PK OA⊥,11OPK∴△是直角三角形,在11Rt OPK中,60AOB∠=︒,11OP=,12111tan60PP PK OP∴==⋅︒=11PK OA⊥,22P K OA⊥,1122PK P K∴∥,2211OP K OPK∴△∽△,222111P K OPPK OP∴=,=221P K∴=,同理可得:2331P K =+,3441P K =,……, 11n n n P K -∴=+,2022202320231P K ∴=,20221.【点睛】本题考查了图形的规律,解直角三角形,平行线的判定,相似三角形的判定与性质,解题的关键是学会探究规律的方法.22. 在长为2,宽为x (12x <<)的矩形纸片上,从它的一侧,剪去一个以矩形纸片宽为边长的正方形(第一次操作);从剩下的矩形纸片一侧再剪去一个以宽为边长的正方形(第二次操作);按此方式,如果第三次操作后,剩下的纸片恰为正方形,则x 的值为________. 【答案】65 或32【解析】【分析】分析题意,根据x 的取值范围不同,对剩下矩形的长宽进行讨论,求出满足题意的x 值即可.【详解】解:第一次操作后剩下的矩形两边长为2x - 和x , (2)22x x x --=- ,又12x <<Q ,220x ∴-> ,2x x ∴-> ,则第一次操作后,剩下矩形的宽为2x -,所以可得第二次操作后,剩下矩形一边为2x - ,另一边为:(2)22x x x --=- ,∵第三次操作后,剩下的纸片恰为正方形,∴第二次操作后剩下矩形的长是宽的2倍,分以下两种情况进行讨论:①当222x x --> ,即43x <时 ,第三次操作后剩下的矩形的宽为22x - ,长是2x - ,则由题意可知:22(22)x x -=- ,解得:65x = ; ②当222x x --< ,即43x >时, 第三次操作后剩下的矩形的宽为2x - ,长是22x - ,由题意得:222(2)x x -=- , 解得:32x = , 65x ∴= 或者32x = .故答案为:65 或32. 【点睛】本题考查了矩形的性质,正方形的性质以及分类讨论的数学思想方法,熟练掌握矩形,正方形性质以及分类讨论的方法是解题的关键.三、解答题(本题共6个小题,共54分)23. 已知:ABC .(1)尺规作图:用直尺和圆规作出ABC 内切圆的圆心O ;(只保留作图痕迹,不写作法和证明)(2)如果ABC 的周长为14cm ,内切圆的半径为1.3cm ,求ABC 的面积.【答案】(1)作图见详解(2)9.1【解析】【分析】(1)根据角平分线的性质可知角平分线的交点为三角形内切圆的圆心,故只要作出两个角的角平分线即可;(2)利用割补法,连接OA ,OB ,OC ,作OD ⊥AB ,OE ⊥BC ,OF ⊥AC ,这样将△ABC 分成三个小三角形,这三个小三角形分别以△ABC 的三边为底,高为内切圆的半径,利用提取公因式可将周长代入,进而求出三角形的面积.【小问1详解】解:如下图所示,O 为所求作点,【小问2详解】解:如图所示,连接OA ,OB ,OC ,作OD ⊥AB ,OE ⊥BC ,OF ⊥AC ,∵内切圆的半径为1.3cm ,∴OD =OF =OE =1.3,∵三角形ABC 的周长为14,∴AB +BC +AC =14, 则111222ABC AOB COB AOC S S S S AB OD BC OE AC OF =++=⋅⋅+⋅⋅+⋅⋅△△△△ 111.3() 1.3149.122AB BC AC =⨯⨯++=⨯⨯= 故三角形ABC 的面积为9.1.【点睛】本题考查三角形的内切圆,角平分线的性质,割补法求几何图形的面积,能够将角平分线的性质与三角形的内切圆相结合是解决本题的关键.24. 如图所示,为了测量百货大楼CD 顶部广告牌ED 的高度,在距离百货大楼30m 的A 处用仪器测得30DAC ∠=︒;向百货大楼的方向走10m ,到达B 处时,测得48EBC ∠=︒,仪器高度忽略不计,求广告牌ED 的高度.(结果保留小数点后一位)1.732≈,sin 480.743︒≈,cos 480.669︒≈,tan 48 1.111︒≈)【答案】4.9m【解析】【分析】先求出BC 的长度,再分别在Rt △ADC 和Rt △BEC 中用锐角三角函数求出EC 、DC ,即可求解.【详解】根据题意有AC =30m ,AB =10m ,∠C =90°,则BC =AC -AB =30-10=20,在Rt △ADC 中,tan 30tan 30DC AC A =⨯∠=⨯=o ,在Rt △BEC 中,tan 20tan 48EC BC EBC =⨯∠=⨯o ,∴20tan 48DE EC DC =-=⨯-o即20tan 4820 1.11110 1.732 4.9DE =⨯-≈⨯-⨯=o故广告牌DE 的高度为4.9m .【点睛】本题考查了解直角三角形的应用,掌握锐角三角函数的性质是解答本题的关键. 25. 在平面直角坐标系中,已知一次函数11y k x b =+与坐标轴分别交于()5,0A ,50,2B ⎛⎫ ⎪⎝⎭两点,且与反比例函数22k y x =的图象在第一象限内交于P ,K 两点,连接OP ,OAP △的面积为54.(1)求一次函数与反比例函数的解析式;(2)当21y y >时,求x 的取值范围;(3)若C 为线段OA 上的一个动点,当PC KC +最小时,求PKC 的面积.【答案】(1)115,22y x =-+22.y x= (2)01x <<或4x >,(3)65【解析】 【分析】(1)先运用待定系数法求出直线解析式,再根据OAP △的面积为54和直线解析式求出点P 坐标,从而可求出反比例函数解析式;(2)联立方程组并求解可得点K 的坐标,结合函数图象可得出x 的取值范围; (3)作点K 关于x 轴的对称点K ',连接KK ',PK '交x 轴于点C ,连接KC ,则PC +KC 的值最小,求出点C 的坐标,再根据PKC AKM KMC PAC S S S S ∆∆∆∆=--求解即可.【小问1详解】解:∵一次函数11y k x b =+与坐标轴分别交于()5,0A ,50,2B ⎛⎫ ⎪⎝⎭两点, ∴把()5,0A ,50,2B ⎛⎫ ⎪⎝⎭代入11y k x b =+得, 1505,2k b b +=⎧⎪⎨=⎪⎩,解得,11252k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴一次函数解析式为115,22y x =-+ 过点P 作PH x ⊥轴于点H ,∵(5,0),A∴5, OA=又5,4PAOS∆=∴15 524PH⨯⨯=∴1,2 PH=∴151 222x-+=,∴4,x=∴1 (4,2 P∵1(4,2P在双曲线上,∴21 42,2k=⨯=∴22 .yx=【小问2详解】解:联立方程组得,15222y xyx⎧=-+⎪⎪⎨⎪=⎪⎩解得,111 2x y =⎧⎨=⎩,22412xy=⎧⎪⎨=⎪⎩∴(1,2),k根据函数图象可得,反比例函数图象直线上方时,有01x <<或4x >,∴当21y y >时,求x 的取值范围为01x <<或4x >,【小问3详解】解:作点K 关于x 轴的对称点K ',连接KK '交x 轴于点M ,则K '(1,-2),OM =1, 连接PK '交x 轴于点C ,连接KC ,则PC +KC 的值最小,设直线PK '的解析式为,y mx n =+ 把1(4,(1,2)2P K '-代入得,2142m n m n +=-⎧⎪⎨+=⎪⎩解得,56176m n ⎧=⎪⎪⎨⎪=-⎪⎩∴直线PK '的解析式为517,66y x =- 当0y =时,106657x -=,解得,751x =, ∴17(,0)5C ∴175OC = ∴17121,55MC OC OM =-=-= 178555AC OA OC =-=-= 514AM OA OM =-=-=,∴PKC AKM KMC PAC S S S S ∆∆∆∆=--1112181422225252=⨯⨯-⨯⨯-⨯⨯ 122455=-- 65= 【点睛】本题主要考查了反比例函数与一次函数的综合,正确作出辅助线是解答本题的关在键.26. 我们可以通过面积运算的方法,得到等腰三角形底边上的任意一点到两腰的距离之和与一腰上的高之间的数量关系,并利用这个关系解决相关问题.(1)如图一,在等腰ABC 中,AB AC =,BC 边上有一点D ,过点D 作DE AB ⊥于E ,DF AC ⊥于F ,过点C 作CG AB ⊥于G .利用面积证明:DE DF CG +=.(2)如图二,将矩形ABCD 沿着EF 折叠,使点A 与点C 重合,点B 落在B ′处,点G 为折痕EF 上一点,过点G 作GM FC ⊥于M ,GN BC ⊥于N .若8BC =,3BE =,求GM GN +的长.(3)如图三,在四边形ABCD 中,E 为线段BC 上的一点,EA AB ⊥,ED CD ⊥,连接BD ,且AB AE CD DE=,BC =,3CD =,6BD =,求ED EA +的长. 【答案】(1)证明见解析(2)4(3【解析】【分析】(1)根据题意,利用等面积法ABC ABD ACD S S S ∆∆∆=+,根据等腰ABC 中,AB AC =,即可得到结论;(2)根据题中条件,利用折叠性质得到AFE CFE ∠=∠,结合矩形ABCD 中AD BC ∥得到AFE FEC ∠=∠,从而有CFE FEC ∠=∠,从而确定EFC ∆是等腰三角形,从而利用(1)中的结论得到=GM GN FH +,结合勾股定理及矩形性质即可得到结论;(3)延长BA CD 、交于F ,连接EF ,过点B 作BG FC ⊥于G ,根据AB AE CD DE =,EA AB ⊥,ED CD ⊥,得到ABC ∆是等腰三角形,从而由(1)知ED EA BG +=,在Rt BCG ∆中,BG ==,在Rt BDG ∆中,6BD =,BG ==BG ==求解得1x =,从而得到结论.【小问1详解】证明:连接AD ,如图所示:在等腰ABC 中,AB AC =,BC 边上有一点D ,过点D 作DE AB ⊥于E ,DF AC ⊥于F ,过点C 作CG AB ⊥于G , ∴由ABC ABD ACD S S S ∆∆∆=+得111222AB CG AB ED AC FD ⋅=⋅+⋅, ∴DE DF CG +=;【小问2详解】解:连接CG ,过点F 作FH BC ⊥于H ,如图所示:根据折叠可知AFE CFE ∠=∠,在矩形ABCD 中,AD BC ∥,则AFE FEC ∠=∠,CFE FEC ∴∠=∠,即EFC ∆等腰三角形,是在等腰EFC ∆中,FC EC =,EF 边上有一点G ,过点G 作GM FC ⊥于M ,GN BC ⊥于N ,过点F 作FH BC ⊥于H ,由(1)可得=GM GN FH +,在Rt ABE ∆中,90B ∠=︒,3,835BE AE EC BC BE ===-=-=,则4AB ===,在四边形ABHF 中,90B BAF FHB ∠=∠=∠=︒,则四边形ABHF 为矩形, 4FH AB ∴==,即4GM GN FH AB +===;【小问3详解】解:延长BA CD 、交于F ,连接EF ,过点B 作BG FC ⊥于G ,在四边形ABCD 中,E 为线段BC 上的一点,EA AB ⊥,ED CD ⊥,则90BAE CDE ∠=∠=︒,又 AB AE CD DE=, ∴ABE DCE ∆∆ ,ABE C ∴∠=∠,即ABC ∆是等腰三角形,∴由(1)可得ED EA BG +=,设=GD x ,90EDC BGC ∠=∠=︒ ,BC =,3CD =,在Rt BCG ∆中,BG ==,在Rt BDG ∆中,6BD =,BG ==,∴BG ==1x =,BG ∴==ED EA BG +==【点睛】本题考查几何综合,涉及到等腰三角形的判定与性质、等面积求线段关系、折叠的性质、勾股定理求线段长、相似三角形的判定与性质等知识点,读懂题意,掌握(1)中的证明过程与结论并运用到其他情境中是解决问题的关键.27. 如图所示,在O 的内接AMN 中,90MAN ∠=︒,2AM AN =,作AB MN ⊥于点P ,交O 于另一点B ,C 是¼AM 上的一个动点(不与A ,M 重合),射线MC 交线段BA 的延长线于点D ,分别连接AC 和BC ,BC 交MN 于点E .(1)求证:CMA CBD △∽△.(2)若10MN =, MCNC =,求BC 的长. (3)在点C 运动过程中,当3tan 4MDB ∠=时,求ME NE 的值. 【答案】(1)证明见解析(2)(3)32【解析】【分析】(1)利用圆周角定理得到∠CMA =∠ABC ,再利用两角分别相等即可证明相似; (2)连接OC ,先证明MN 是直径,再求出AP 和NP 的长,接着证明COE BPE △∽△,利用相似三角形的性质求出OE 和PE ,再利用勾股定理求解即可; (3)先过C 点作CG ⊥MN ,垂足为G ,连接CN ,设出34GM x CG x ==,,再利用三角函数和勾股定理分别表示出PB 和PG ,最后利用相似三角形的性质表示出EG ,然后表示出ME 和NE ,算出比值即可.【小问1详解】解:∵AB ⊥MN ,∴∠APM =90°,∴∠D +∠DMP =90°,又∵∠DMP +∠NAC =180°,∠MAN =90°, ∴∠DMP +∠CAM =90°,∴∠CAM =∠D ,∵∠CMA =∠ABC ,∴CMA CBD △∽△.【小问2详解】连接OC ,∵90MAN ∠=︒,∴MN 是直径,∵10MN =,∴OM =ON =OC =5,∵2AM AN =,且222A M A N M N +=,∴AN AM == ∵1122AMN S AM AN MN AP =⋅=⋅△, ∴4AP =,∴4BP AP ==,∴2NP ==,∴523OP =-=,∵ MCNC =, ∴OC ⊥MN ,∴∠COE =90°,∵AB ⊥MN ,∴∠BPE =90°,∴∠BPE =∠COE ,又∵∠BEP =∠CEO ,∴COE BPE △∽△ ∴CO OE CE BP PE BE==, 即54OE CE PE BE == 由3OE PE OP +==,∴5433OE PE ==,,∴CE ===,BE ===∴BC =+=【小问3详解】过C 点作CG ⊥MN ,垂足为G ,连接CN , ∵MN 是直径,∴∠MCN =90°,∴∠CNM +∠DMP =90°,∵∠D +∠DMP =90°,∴∠D =∠CNM , ∵3tan 4MDB ∠=, ∴3tan 4CNM ∠=, 设34GM x CG x ==,,∴5CM x =, ∴203x CN =, ∴163x NG =,∴253x NM = ∴256x OM ON ==, ∵2AM AN =,且222A M A N M N +=,∴AN x =,AM x =, ∵1122AMN S AM AN MN AP =⋅=⋅△, ∴103AP x PB ==, ∴53NP x =, ∴16511333PG x x x =-=, ∵∠CGE =∠BPE =90°,∠CEG =∠BEP , ∴CGE BPE △∽△, ∴CG GE CE BP PE BE==, 即4103x GE CE PE BE x == ∴2GE x =,53PE x =∴5ME x =,103x NE =, ∴:3:2ME NE =, ∴ME NE 值为32. 的【点睛】本题考查了圆的相关知识、相似三角形的判定与性质、三角函数、勾股定理等知识,涉及到了动点问题,解题关键是构造相似三角形,正确表示出各线段并找出它们的关系,本题综合性较强,属于压轴题.28. 如图,抛物线2y ax bx c =++交y 轴于点()0,4A -,并经过点()6,0C ,过点A 作AB y ⊥轴交抛物线于点B ,抛物线的对称轴为直线2x =,D 点的坐标为()4,0,连接AD ,BC ,BD .点E 从A 点出发,以每秒个单位长度的速度沿着射线AD 运动,设点E 的运动时间为m 秒,过点E 作EF AB ⊥于F ,以EF 为对角线作正方形EGFH .(1)求抛物线的解析式;(2)当点G 随着E 点运动到达BC 上时,求此时m 的值和点G 的坐标;(3)在运动的过程中,是否存在以B ,G ,C 和平面内的另一点为顶点的四边形是矩形,如果存在,直接写出点G 的坐标,如果不存在,请说明理由.【答案】(1)214433y x x =--(2)165m =,2412,55G ⎛⎫- ⎪⎝⎭ (3)368,55⎛⎫- ⎪⎝⎭或(3,-3)1216,55⎛⎫- ⎪⎝⎭或426,55⎛⎫- ⎪⎝⎭ 【解析】【分析】(1)利用待定系数法求解析式即可;(2)求出直线BC 解析式,通过△EGF 为等腰直角三角形表示出G 点坐标,将G 点代入BC 解析式即可求得m 的值,从而求得G 点坐标;(3)将矩形转化为直角三角形,当△BGC 是直角三角形时,当△BCG 为直角三角形时,当△CBG 为直角三角形时,分情况讨论分别列出等式求得m 的值,即可求得G 点坐标.【小问1详解】将点A (0,-4)、C (6,0)代入解析式2y ax bx c =++中,以及直线对称轴2x =,可得4036622c a b c b a ⎧⎪-=⎪=++⎨⎪⎪-=⎩, 解得13434a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩, ∴抛物线的解析式为214433y x x =--; 【小问2详解】∵A (0,-4),D ()4,0,∴△AOD 为等腰直角三角形,∵AB y ⊥轴交抛物线于点B ,∴B (4,-4),设直线BC 解析式为y =kx +b ,将B (4,-4),C (6,0)代入解析式得, 4406k b k b -=+⎧⎨=+⎩,解得212k b =⎧⎨=-⎩, ∴直线BC 解析式为y =2x -12,由题意可得AE =,△ADB 为等腰直角三角形,∴AF EF AE m ===, ∵四边形EGFH 正方形,∴△EGF 为等腰直角三角形, ∴11,422G m m m ⎛⎫+-+ ⎪⎝⎭, 点G 随着E 点运动到达BC 上时,满足直线BC 解析式y =2x -12, ∴11421222m m m ⎛⎫-+=+- ⎪⎝⎭, ∴165m =,此时2412,55G ⎛⎫- ⎪⎝⎭; 【小问3详解】B (4,-4),C (6,0),11,422G m m m ⎛⎫+-+ ⎪⎝⎭, ∴()()222640420BC =-++=,22222313144442222BG m m m m ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,222223131604642222CG m m m m ⎛⎫⎛⎫⎛⎫⎛⎫=-++-=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 要使以B ,G ,C 和平面内的另一点为顶点的四边形是矩形,需满足:当△BGC 是直角三角形时,222BG CG BC +=, 22223131464202222m m m m ⎛⎫⎛⎫⎛⎫⎛⎫-++-+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 解得,1245m =,22m =, 此时G 368,55⎛⎫- ⎪⎝⎭或(3,-3); 当△BCG 为直角三角形时,222BC CG BG +=,22223131206442222m m m m ⎛⎫⎛⎫⎛⎫⎛⎫+-+-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 为解得,285m =, 此时G 426,55⎛⎫- ⎪⎝⎭; 当△CBG 为直角三角形时,222BC BG CG +=,22223131204642222m m m m ⎛⎫⎛⎫⎛⎫⎛⎫+-+=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 解得,85m =, 此时G 1216,55⎛⎫- ⎪⎝⎭; 综上所述:点G 坐标为368,55⎛⎫-⎪⎝⎭或(3,-3)1216,55⎛⎫- ⎪⎝⎭或426,55⎛⎫- ⎪⎝⎭. 【点睛】本题是二次函数的综合题,考查了待定系数法求解析式、等腰直角三角形的性质和判定,动点运动问题,存在矩形问题,利用数形结合,注意分情况讨论是解题的关键。

2023年黑龙江省绥化市中考数学真题(解析)

2023年黑龙江省绥化市中考数学真题(解析)

二〇二三年绥化市初中毕业学业考试数学试题一、单选题1.【答案】C【解析】解:A 选项,是轴对称图形,不是中心对称图形,故A 选项不合题意;B 选项,是轴对称图形,不是中心对称图形,故B 选项不符合题意;C 选项,既是轴对称图形又是中心对称图形,故C 选项合题意;D 选项,不是轴对称图形,是中心对称图形,故D 选项不合题意.故选:C .2.【答案】D【解析】解:052-+516=+=,故选:D .3.【答案】B【解析】根据题意,该几何体的左视图为:,故选B .4.【答案】A【解析】解:90.000000001110-=⨯.故选:A .5.【答案】D【解析】解:A 选项,333()pq p q =--,故该选项不正确,不符合题意;B 选项,43222x x x x x ⋅+⋅=,故该选项不正确,不符合题意;C 5=,故该选项不正确,不符合题意;D 选项,()326a a =,故该选项正确,符合题意;故选:D .6.【答案】C【解析】解:依题意,190345∠+︒=∠+︒,∵125∠=︒,∴370∠=︒,故选:C .7.【答案】D【解析】解:A 选项,若方差22s s >乙甲,则乙组数据的波动较小,故该选项不正确,不符合题意;B 选项,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,故该选项不正确,不符合题意;C 选项,三角形三条中线的交点叫做三角形的重心,故该选项不正确,不符合题意;D 选项,角的内部到角的两边的距离相等的点在角的平分线上,故该选项正确,符合题意;故选:D .8.【答案】B【解析】解:A 选项,该组数据的样本容量是1224%50÷=,故该选项不正确,不符合题意;B 选项,8090x ≤<的人数为:5041212715----=,41525+<,4151225++>,该组数据的中位数落在90~100这一组,故该选项正确,符合题意;C 选项,90~100这组数据的组中值是95,故该选项不正确,不符合题意;D 选项,110~120这组数据对应的扇形统计图的圆心角度数为736050.450⨯︒=︒,故该选项不正确,不符合题意;故选:B .9.【答案】C【解析】设()3,B m ,∵点B ,C 的横坐标都是3,2BC =,AC 平行于x 轴,点D 在AC 上,且其横坐标为1,∴()()3,2,1,2C m D m ++,∴32m m =+,解得1m =,∴()3,1B ,∴313k =⨯=,故选C .10.【答案】B【解析】解:设乙车单独运送这批货物需x 天,由题意列方程11111424x ⎛⎫++= ⎪⎝⎭,故选:B .11.【答案】A【解析】解:如图所示,连接BD ,过点B 作BE AD ⊥于点E ,当04t <<时,M 在AB 上,菱形ABCD 中,60A ∠=︒,4AB =,∴AB AD =,则ABD △是等边三角形,∴122AE ED AD ===,BE ==∵2,AM x AN x ==,∴2AM ABAN AE==,又A A ∠=∠∴AMN ABE ∽∴90ANM AEB ∠=∠=︒∴MN ==,∴2122y x x ==当48t ≤<时,M 在BC 上,∴1122y AN BE x =⨯=⨯=,综上所述,04t <<时的函数图象是开口向上的抛物线的一部分,当48t ≤<时,函数图象是直线的一部分,故选:A .12.【答案】D【解析】∵四边形ABCD 是正方形,∴90BAD ADE ∠=∠=︒,AB AD =∵BFAE⊥∴90ABF BAF DAE ∠=︒-∠=∠∴cos cos ABF EAD ∠=∠即BF ADAB AE=,又AB AD =,∴2AB BF AE =⋅,故①正确;设正方形的边长为a ,∵点E 为边CD 的中点,∴2a DE =,∴1tan tans 2ABF EAD ∠=∠=,在Rt ABE △中,AB a ===,∴55AF a =在Rt ADE △中,52AE ==∴55352510EF AE AF a =-=-=,∵AB DE ∥∴GAB GED ∽∴2AG ABGE DE==∴1536GE AE a ==∴25615FG AE AF GE a a a a =--=--=∴53522515aAF FG ==∴:2:3BGF BAF S S =△△,故②正确;∵AB a =,∴22222BD AB AD a =+=,如图所示,过点H 分别作,BF AE 的垂线,垂足分别为,M N,又∵BF AE ⊥,∴四边形FMHN 是矩形,∵FH 是BFG ∠的角平分线,∴HM HN =,∴四边形FMHN 是正方形,∴FN HM HN ==∵25252,515BF AF a FG a ===∴13MH FG BM BF ==设MH b =,则34BF BM FM BM MH b b b =+=+=+=在Rt BMH中,BH ==,∵5BF a =∴2545a b =解得:510b a =∴52102BH a a ==,∴22222B a D BD HD a a =-⋅⨯=,故④正确.故选:D .二、填空题13.【答案】()()x y x z +-【解析】解:2x xy xz yz +--=()()()()x x y z x y x y x z +-+=+-,故答案为:()()x y x z +-.14.【答案】5x ≥-且0x ≠##0x ≠且5x ≥-【解析】∵式子5x x有意义,∴50x +≥且0x ≠,∴5x ≥-且0x ≠,故答案为:5x ≥-且0x ≠.15.【答案】12##0.5【解析】解:列表如下,1234111 1=1213142221=212=232142=333 1=3 2313=344441=42 2=43414=共有16种等可能结果,符合题意的有8种,∴第二次抽取卡片上的数字能够整除第一次抽取卡片上的数字的概率是81162=,故答案为:12.16.【答案】23-【解析】解:∵一元二次方程256x x x +=+,即2460x x --=,的两根为1x 与2x ,∴121246x x x x +==-,,∴1211+x x 12124263x x x x +===--,故答案为:23-.17.【答案】12x -##12x-+【解析】解:2222142442x x x x x x x x x+--⎛⎫-÷⎪--+-⎝⎭()()()()()2221242x x x x x x x x x +----=⨯--()()2222442x x x x x x x x ---+=⨯--12x =-;故答案为:12x -.18.【答案】22π3cm 3⎛⎫-⎪⎝⎭【解析】解:如图所示,连接,OA OC ,设,AB CO 交于点D∵将 AB 沿弦AB 翻折,使点C 与圆心O 重合,∴AC AO =,OC AB ⊥又OA OC =∴OA OC AC ==,∴AOC 是等边三角形,∴60AOC ∠=︒,1OD CD ==,∴AD ==,∴阴影部分面积)226012π22πcm 36023AOC AOC S S =-=⨯-⨯= 扇形故答案为:22πcm 3⎛-⎝.19.【答案】(62,2)a b --【解析】解:如图所示,过点,C C '分别作x 轴的垂线,CD C D ''垂足分别为,D D ',∵ABC 与AB C ''△的相似比为12∶,点A 是位似中心,(2,0)A ∴2AD AD '=∵(,)C a b ,∴2,AD a CD b =-=,∴24,2A D a C D b '''=-=,∴()224,0D a '-+∴C '(62,2)a b --故答案为:(62,2)a b --.20.【答案】3+##3【解析】解:∵E 为高BD 上的动点.∴1302CBE ABC ∠=∠=︒∵将CE 绕点C 顺时针旋转60︒得到CF .ABC 是边长为6的等边三角形,∴,60,CE CF ECF BCA BC AC =∠=∠=︒=∴CBE CAF ≌∴30CAF CBE ∠=∠=︒,∴F 点在射线AF 上运动,如图所示,作点C 关于AF 的对称点C ',连接DC ',设CC '交AF 于点O ,则=90AOC ∠︒在Rt AOC 中,30CAO ∠=︒,则132CO AC ==,则当,,D F C '三点共线时,FC FD +取得最小值,即FC FD F C F D CD ''''+=+=∵6CC AC '==,ACO C CD '∠=∠,CO CD =∴ACO C CD ' ≌∴90C DC AOC '∠=∠=︒在C DC ' 中,C D '===∴CDF 周长的最小值为3CD FC CD CD DC '++=+=+故答案为:3+21.【答案】22n n -##22n n -+【解析】解:依题意,()1231,5,9,14143n a a a a n n ===⋅⋅⋅=+-=-,,∴123n a a a a ++++= ()21432122n n n n n n +-==-=-,故答案为:22n n -.22.【答案】44+-【解析】解:如图所示,过点A 作AM BC ⊥于点M ,∵等腰ABC ,120BAC ∠=︒,2AB =.∴30ABC ACB ∠=∠=︒,∴112AM AB ==,BM CM ===∴BC =,如图所示,当ABC 以点B 为旋转中心逆时针旋转45︒,过点B 作BEA B '⊥交A D '于点E ,∵120BAC ∠=︒,∴60DA B '∠=︒,30A EB '∠=︒,在Rt A BE ' 中,24A E A B ''==,BE ==∵等腰ABC ,120BAC ∠=︒,2AB =.∴30ABC ACB ∠=∠=︒,∵ABC 以点B 为旋转中心逆时针旋转45︒,∴45ABA '∠=︒,∴180********DBE ∠=︒-︒-︒-︒=︒,1804530105A BD '∠=︒-︒-︒=︒在A BD ' 中,1801806010515D DA B A BD ∠=︒-∠-∠=︒-︒-︒=''︒,∴D EBD ∠=∠,∴EB ED ==,∴4A D A E DE ''=+=+如图所示,当ABC 以点B 为旋转中心顺时针旋转45︒,过点D 作DF BC '⊥交BC '于点F ,在BFD △中,45BDF CBC ∠'=∠=︒,∴DF BF=在Rt DC F ' 中,30C '∠=︒∴3'3DF FC =∴BC BF =+=∴3DF BF ==-∴26DC DF '==-∴624A D C D A C ''''=-=-=-,综上所述,A D '的长度为4-或4+,故答案为:4-或4+.三、解答题23.【答案】(1)见解析(2)75EDF ∠=︒或105︒【解析】(1)解:如图所示,①连接PO ,分别以点,P O 为圆心,大于12PO 的长为半径画弧,两弧交于点,M N 两点,作直线MN 交OP 于点A ,②以点A 为圆心,OA 为半径画圆,与O 交于,E F 两点,作直线,PE PF ,则直线,PE PF 即为所求;(2)如图所示,点D 在O 上(点D 不与E ,F 两点重合),且30EPF ∠=︒,∵,PE PF 是O 的切线,∴90PEO PFO ∠=∠=︒,∴360909030150EOF ∠=︒-︒-︒-︒=︒,当点D 在优弧 EF 上时,1752EDF EOF ∠=∠=︒,当点D 在劣弧 EF上时,18075105EDF ∠=︒-︒=︒,∴75EDF ∠=︒或105︒.24.【答案】(1)河两岸之间的距离是20+米(2)5tan 2CPE ∠=【解析】(1)解:如图所示,过点C 作CM EF ⊥于点M ,设CM a =米,∵30CBE ∠=︒∴3tan tan 303CM CBM PB ∠==︒=,∴MB =,在Rt MCD △中,tan tan 451CM CDM MD∠==︒=,∴MD MC a ==∴40BD MB MD a =-=-=解得:20a =答:河两岸之间的距离是20米;(2)解:如图所示,依题意,4012)52PB BD DP =+=+=+,∴((20528MP MB PB =-=+=+,在Rt CMP △中,5tan2CM CPM MP ∠==,∴5tan 2CPE ∠=.25.【答案】(1)每辆A 型车、B 型车坐满后各载客40人、55人(2)共有4种租车方案,租8辆A 型车,2辆B 型车最省钱(3)在甲乙两车第一次相遇后,当3t =小时或113小时时,两车相距25千米【解析】(1)解:设每辆A 型车、B 型车坐满后各载客x 人、y 人,由题意得5231034340x y x y +=⎧⎨+=⎩解得4055x y =⎧⎨=⎩答:每辆A 型车、B 型车坐满后各载客40人、55人.(2)设租用A 型车m 辆,则租用B 型车(10)m -辆,由题意得()()500600105500405510420m m m m ⎧+-≤⎪⎨+-≥⎪⎩解得:2583m ≤≤m 取正整数,∴5m =,6,7,8∴共有4种租车方案设总租金为w 元,则500600(10)1006000w m m m =+-=-+ 1000-<w ∴随着m 的增大而减小∴8m =时,w 最小∴租8辆A 型车,2辆B 型车最省钱.(3)设s kt =甲,1s k t b =+乙.由题意可知,甲车的函数图象经过(4,300);乙车的函数图象经过(0.5,0),(3.5,300)两点.∴75s t =甲,10050s t =-乙25s s -=乙甲,即100507525t t --=解得3t =或3007525t -=解得113t =所以,在甲乙两车第一次相遇后,当3t =小时或113小时时,两车相距25千米.26.【答案】(1)见解析(2)y =(或2(416x y x -=+)(3)1023【解析】(1)证明:∵四边形ABCD 为矩形,∴AD BF ∥,∴D DCF ∠=∠,∵G 为CD 中点,∴DG CG =,在ADG △和△FCG 中D GCF DG CG AGD FGC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴(ASA)ADG FCG △≌△;(2)∵四边形ABCD 为矩形,∴90ABC ∠=︒,∵CE AF ⊥,∴90CEF ABC ∠=︒=∠,∵F F ∠=∠,∴CEF ABF △∽△,∴CE CF AB AF=,∵4AB =,BF x =,∴在Rt ABF 中,AF ==,∵CE y =,∴4y =∴y =2(416x y x -=+);(3)过点E 作EN BF ⊥于点N ,∵四边形ABCD 为矩形,且3AD =,∴3AD BC ==,∵4AB =,1CF =,∴AB BF =,∴ABF △为等腰直角三角形,∴45CFE BAF ∠=∠=︒,∵CE AF ⊥,∴CEF △为等腰直角三角形,∴45ECF ∠=︒,∵EN CF ^,∴EN 平分CF ,∴12CN NF NE ===,在Rt BNE 中,∵222BE BN EN =+,∴2BE ==,∵45ECF BAF ︒∠=∠=,∴135BAM BCE ∠=∠=︒,∵BM BE ⊥,∴90MBA ABE ∠+∠=︒,∵90ABE EBC ∠+∠=︒,∴MBA EBC ∠=∠,∴BAM BCE △∽△,∴43BM BA BE BC ==,43522=,∴1023BM =.27.【答案】(1)见解析(2)见解析(3)215【解析】(1) ABC ∠和AMC ∠是 AC 所对的圆周角,∴ABC AMC Ð=Ð,AHM CHB Ð=Ð,∴AMH CBH ,∴AH MH CH BH=,∴MH CH AH BH ⋅=⋅.(2)连接OC ,交AB 于点F ,MC 与ND 为一组平行弦,即:MC ND ∥,∴OND OMC Ð=Ð, OM OC =,∴OMC OCM ∠=∠, 90OND AHM∠+∠=︒,∴90OCM AHM OCM CHB Ð+Ð=Ð+Ð=°,∴90HFC ∠=︒,∴OC AB ⊥,∴OC 是AB 的垂直平分线,∴ =AC BC.(3)连接DM 、DG ,过点D 作DE MN ⊥,垂足为E ,设点G 的对称点G ',连接G D ¢、G N ',DG DG '=,G ND GND ¢Ð=Ð,∴ 'DM DG = ,∴DG DM ¢=,∴DG DM =,∴DGM 是等腰三角形,DE MN ⊥,∴GE ME =, DN CM ∥,∴CMN DNM Ð=Ð,MN 为直径,∴90MDN ∠=︒,∴90MDE EDN ∠+∠=︒,DE MN ⊥,∴90DEN ∠=︒,∴90DNM EDN Ð+Ð=°,∴3sin sin sin 5EDM DNM CMN Ð=Ð=Ð=,在Rt MND △中,15MN =,∴3sin 5MD DNM MN Ð==,∴3155MD =,∴9MD =,在Rt MED 中,3sin 5ME EDM MDÐ==,∴395ME =∴275ME =,∴2721215255NG MN MG MN ME =-=-=-´=∴215NG =故答案为:215.28.【答案】(1)211462y x x =++,36y x =+(2)满足条件的E 、F 两点存在,1(8,2)E -,2(4,2)E -,3(4,4)E -(3)当133m =时,12CD PD +的最大值为24【解析】(1)解:把(6,0)A -,(2,0)B -,(0,6)C 代入21y ax bx c =++得36604206a b c a b c c -+=⎧⎪-+=⎨⎪=⎩解得1246a b c ⎧=⎪⎪=⎨⎪=⎪⎩∴211462y x x =++把(2,0)B -代入6y kx =+得3k =∴36y x =+(2)满足条件的E 、F 两点存在,1(8,2)E -,2(4,2)E -,3(4,4)E -解:①当BC 为正方形的边长时,分别过B 点C 点作12E E BC ⊥,12F F BC ⊥,使12E B E B BC ==,12CF CF BC ==,连接11E F 、22E F .过点1E 作11E H x ⊥轴于1H .∵1111,90BE CB BOC E H B E BC =∠=∠=︒=∠,又111190BE H E BH CBO ∠=︒-∠=∠,∴11(AAS)BE H CBO △≌△,∴112E H BO ==,16H B OC ==∴1(8,2)E -同理可得,2(4,2)E -②以BC 为正方形的对角线时,过BC 的中点G 作33EF BC ⊥,使33E F 与BC 互相平分且相等,则四边形33E BF C 为正方形,过点3E 作3E N y ⊥轴于点N ,过点B 作3BM E N ⊥于点M∵3333,90CE BE CNE E MB =∠=∠=︒,又33390BE M CE N E CN∠=︒-∠=∠∴33(AAS)CE N E BM △≌△∴3CN E M =,3BM E N=∵BC =∴3E G BG ==∴3E B =在3Rt E NC △中,22233E C CN E N =+∴222(6)CN CN =+-解得2CN =或4当4CN =时,3(2,2)E ,此时点E 在点F 右侧故舍去;当2CN =时,3(4,4)E -.综上所述:1(8,2)E -,2(4,2)E -,3(4,4)E -(3)∵211462y x x =++向右平移8个单位长度得到抛物线()()22184862y x x =-+-+当20y =,即()()21848602x x -+-+=解得:122,6x x ==∴(2,0)M ,(6,0)N ∵2y 过M ,N ,C 三点∴221462y x x =-+在直线NC 下方的抛物线2y 上任取一点P ,作PH x ⊥轴交NC 于点H ,过点H 作HG y ⊥轴于点.G∵(6,0)N ,(0,6)C ∴ON OC=∴CON 是等腰直角三角形∵45CHG ∠=︒,90GHP ∠=︒∴45PHD ∠=︒又PD CN⊥∴HPD 是等腰直角三角形∴22HD DP HP ==∵点P 在抛物线2y 上,且横坐标为m∴CG GH m==∴2CH m=∵6CN y x =-+∴(,6)H m m -+∴2211646322HP m m m m m ⎛⎫=-+--+=-+ ⎪⎝⎭∴222123232242HD DP m m m ⎛⎫==-+=-+ ⎪⎝⎭∴211332322222242CD PD CH HD PD CH PD m m m ⎛⎫+=++=+=+-+ ⎪ ⎪⎝⎭2321316928324m ⎛⎫=--+ ⎪⎝⎭∴当133m =时,12CD PD +的最大值为24.。

精品解析:2024年黑龙江省绥化市中考数学试题(解析版)

精品解析:2024年黑龙江省绥化市中考数学试题(解析版)

的 心,将这个矩形按相似比 1 缩小,则顶点 B 在第一象限对应点的坐标是( 3

4
A. (9, 4)
B. (4,9)
C.
1,
3 2
D.
1,
2 3
【答案】D
【解析】
【分析】本题考查了位似图形的性质,根据题意 B 的坐标乘以 1 ,即可求解. 3
( ) 【详解】解:依题意, B 3, 2 ,以原点 O 为位似中心,将这个矩形按相似比 1 缩小,则顶点 B 在第一象
成.
故选:A.
4. 若式子 2m − 3 有意义,则 m 的取值范围是( )
A. m 2 3
【答案】C
B. m − 3 2
C. m 3 2
D. m − 2 3
【解析】
【分析】本题考查了二次根式有意义的条件,根据题意可得 2m − 3 0 ,即可求解.
【详解】解:∵式子 2m − 3 有意义,
1
A. 5 个
B. 6 个
C. 7 个
D. 8 个
【答案】A
【解析】
【分析】此题主考查了三视图,由主视图易得这个几何体共有 2 层,由俯视图可得第一层立方体的个数,
由主视图和左视图可得第二层立方体的个数,相加即可.
【详解】解:由三视图易得最底层有 3 个正方体,第二层有 2 个正方体,那么共有 3 + 2 = 5 个正方体组

AE
=
1 2
86
=
24

5
5
故选:A.
12. 二次函数 y = ax2 + bx + c (a 0) 的部分图象如图所示,对称轴为直线 x=− 1,则下列结论中:
① b 0 ② am2 + bm a − b (m 为任意实数) ③ 3a + c 1 c

黑龙江省绥化市2023年中考数学试卷((附参考答案))

黑龙江省绥化市2023年中考数学试卷((附参考答案))

黑龙江省绥化市2023年中考数学试卷一、单项选择题(本题共12个小题,每小题3分,共36分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.计算的结果是()A.-3B.7C.-4D.63.如图是一个正方体,被切去一角,则其左视图是()A.B.C.D.4.纳米是非常小的长度单位,,把0.000000001用科学记数法表示为()A.B.C.D.5.下列计算中,结果正确的是()A.B.C.D.6.将一副三角板按下图所示摆放在一组平行线内,,,则的度数为()A.55°B.65°C.70°D.75°7.下列命题中叙述正确的是()A.若方差,则甲组数据的波动较小B.直线外一点到这条直线的垂线段,叫做点到直线的距离C.三角形三条中线的交点叫做三角形的内心D.角的内部到角的两边的距离相等的点在角的平分线上8.绥化市举办了2023年半程马拉松比赛,赛后随机抽取了部分参赛者的成绩(单位:分钟),并制作了如下的参赛者成绩组别表、扇形统计图和频数分布直方图.则下列说法正确的是()组别参赛者成绩ABCDEA.该组数据的样本容量是50人B.该组数据的中位数落在90~100这一组C.90~100这组数据的组中值是96D.110~120这组数据对应的扇形统计图的圆心角度数为51°9.在平面直角坐标系中,点A在y轴的正半轴上,平行于x轴,点B,C的横坐标都是3,,点D在上,且其横坐标为1,若反比例函数()的图象经过点B,D,则k的值是()A.1B.2C.3D.10.某运输公司,运送一批货物,甲车每天运送货物总量的.在甲车运送1天货物后,公司增派乙车运送货物,两车又共同运送货物天,运完全部货物.求乙车单独运送这批货物需多少天?设乙车单独运送这批货物需x天,由题意列方程,正确的是()A.B.C.D.11.如图,在菱形中,,,动点M,N同时从A点出发,点M以每秒2个单位长度沿折线A-B-C向终点C运动;点N以每秒1个单位长度沿线段向终点D运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为x秒,的面积为y个平方单位,则下列正确表示y 与x函数关系的图象是()A.B.C.D.12.如图,在正方形中,点E为边的中点,连接,过点B作于点F,连接交于点G,平分交于点H.则下列结论中,正确的个数为()①②③当时,A.0个B.1个C.2个D.3个二、填空题(本题共10个小题,每小题3分,共30分)13.因式分解:.14.若式子有意义,则x的取值范围是.15.在4张完全相同的卡片上,分别标出1,2,3,4,从中随机抽取1张后,放回再混合在一起.再随机抽取一张,那么第二次抽取卡片上的数字能够整除第一次抽取卡片上的数字的概率是. 16.已知一元二次方程的两根为与,则的值为.17.化简:.18.如图,的半径为2,为的弦,点C为上的一点,将沿弦翻折,使点C与圆心O重合,则阴影部分的面积为.(结果保留π与根号)19.如图,在平面直角坐标系中,与的相似比为1∶2,点A是位似中心,已知点,点,.则点的坐标为.(结果用含a,b的式子表示)20.如图,是边长为6的等边三角形,点E为高上的动点.连接,将绕点C顺时针旋转60°得到.连接,,,则周长的最小值是.21.在求的值时,发现:,,从而得到.按此方法可解决下面问题.图(1)有1个三角形,记作;分别连接这个三角形三边中点得到图(2),有5个三角形,记作;再分别连接图(2)中间的小三角形三边中点得到图(3),有9个三角形,记作;按此方法继续下去,则.(结果用含n的代数式表示)22.已知等腰,,.现将以点B为旋转中心旋转45°,得到,延长交直线于点D.则的长度为.三、解答题(本题共6个小题,共54分)23.已知:点P是外一点.(1)尺规作图:如图,过点P作出的两条切线,,切点分别为点E、点F.(保留作图痕迹,不要求写作法和证明)(2)在(1)的条件下,若点D在上(点D不与E,F两点重合),且.求的度数.24.如图,直线和为河的两岸,且,为了测量河两岸之间的距离,某同学在河岸的B点测得,从B点沿河岸的方向走40米到达D点,测得.(1)求河两岸之间的距离是多少米?(结果保留根号)(2)若从D点继续沿的方向走米到达P点.求的值.25.某校组织师生参加夏令营活动,现准备租用A、B两型客车(每种型号的客车至少租用一辆).A型车每辆租金500元,B型车每辆租金600元.若5辆A型和2辆B型车坐满后共载客310人;3辆A型和4辆B型车坐满后共载客340人.(1)每辆A型车、B型车坐满后各载客多少人?(2)若该校计划租用A型和B型两种客车共10辆,总租金不高于5500元,并将全校420人载至目的地.该校有几种租车方案?哪种租车方案最省钱?(3)在这次活动中,学校除租用A、B两型客车外,又派出甲、乙两辆器材运输车.已知从学校到夏令营目的地的路程为300千米,甲车从学校出发0.5小时后,乙车才从学校出发,却比甲车早0.5小时到达目的地.下图是两车离开学校的路程s(千米)与甲车行驶的时间t(小时)之间的函数图象.根据图象信息,求甲乙两车第一次相遇后,t为何值时两车相距25千米.26.已知:四边形为矩形,,,点F是延长线上的一个动点(点F不与点C 重合).连接交于点G.(1)如图一,当点G为的中点时,求证:.(2)如图二,过点C作,垂足为E.连接,设,.求y关于x的函数关系式.(3)如图三,在(2)的条件下,过点B作,交的延长线于点M.当时,求线段的长.27.如图,为的直径,且,与为圆内的一组平行弦,弦交于点H.点A 在上,点B在上,.(1)求证:.(2)求证:.(3)在中,沿弦所在的直线作劣弧的轴对称图形,使其交直径于点G.若,求的长.28.如图,抛物线的图象经过,,三点,且一次函数的图象经过点B.(1)求抛物线和一次函数的解析式.(2)点E,F为平面内两点,若以E、F、B、C为顶点的四边形是正方形,且点E在点F的左侧.这样的E,F两点是否存在?如果存在,请直接写出所有满足条件的点E的坐标:如果不存在,请说明理由.(3)将抛物线的图象向右平移8个单位长度得到抛物线,此抛物线的图象与x轴交于M,N两点(M点在N点左侧).点P是抛物线上的一个动点且在直线下方.已知点P的横坐标为m.过点P作于点D.求m为何值时,有最大值,最大值是多少?答案1.【答案】C2.【答案】D3.【答案】B4.【答案】A5.【答案】D6.【答案】C7.【答案】D8.【答案】B9.【答案】C10.【答案】B11.【答案】A12.【答案】D13.【答案】14.【答案】且15.【答案】16.【答案】17.【答案】18.【答案】19.【答案】20.【答案】21.【答案】22.【答案】或23.【答案】(1)作法:如图所示①连接,分别以点P,O为圆心,大于长为半径画弧,两弧交于M,N两点作直线交于点A.②以点A为圆心,以为半径画弧(或画圆)与圆O交于E,F两点.作直线,、即为所求.(2)解:∵PE、PF分别为切线,∴∠PEO=∠PFO=90°,∴∠EOF=360°-∠PEO-∠PFO-∠EPF=150°,∴∠EDF=∠EOF=75°或∠EDF=180°-75°=105°.24.【答案】(1)解:过C作CH⊥EF于点H,∵tan∠CBH=,∴HB=CH.∵∠CDH=45°,∴CH=DH.∵BH-DH=BD=40,∴CH-CH=40,解得CH=+20,∴河两岸之间的距离是(+20)m.(2)解:∵HP=HD-PD=+20-(+12)=+8,∴tan∠CPE===.25.【答案】(1)设每辆A型车、B型车坐满后各载客x人、y人,由题意得解得答:每辆A型车、B型车坐满后各载客40人、55人.(2)设租用A型车m辆,则租用B型车辆,由题意得解得:∵m取正整数,∴,6,7,8∴共有4种租车方案设总租金为w元,则∵∴w随着m的增大而减小∴时,w最小∴租8辆A型车,2辆B型车最省钱.(3)设,.由题意可知,甲车经过;乙车经过,两点.∴,,即解得或解得所以,在甲乙两车第一次相遇后,当小时或小时,两车相距25千米. 26.【答案】(1)证明:∵四边形为矩形∴∴∵G为中点∴在和中∴(2)∵四边形为矩形∴∵∴∵∴∴∵,∴在中,∵∴∴(3)过点E作于点N∵四边形为矩形,且∴∵,∴∴为等腰直角三角形∴∵∴为等腰直角三角形∴∵∴平分∴在中,∵∴∵∴∵∴∵∴∴∴∴∴27.【答案】(1)证明:∵和是所对的圆周角∴∵∴∴∴(2)连接,交于点F∵与为一组平行弦(也可写成)∴∵∴∵∴∠∴∴∴(3)解:连接DM、DG,过D作DE⊥MN,垂足为E,设点G的对称点G′,连接G′D、G′N,∵DG=DG′,∠G′ND=∠GND,DG′=DM,弧DM=弧DG′,∴DG=DM,∴△DGM为等腰三角形.∵DE⊥MN,∴GE=ME.∵DN∥CM,∴∠CMN=∠DNM.∵MN为直径,∴∠MDN=90°,∴∠MDE+∠EDN=90°.∵DE⊥MN,∴∠DEN=90°,∴∠DNM+∠EDN=90°,∴sin∠EDM=sin∠DNM=sin∠CMN=.∵MN=15,∴sin∠DNM=,∴MD=9.∵sin∠EDM==,∴,∴ME=,∴NG=MN-MG=MN-2ME=.28.【答案】(1)解:把,,代入得解得∴把代入得∴(2)解:①当BC为正方形的边长时,分别过B、C作E1E2⊥BC,F1F2⊥BC,使E1B=E2B=BC,CF1=CF2=BC,连接E1F1、E2F2,过E1作E1H1⊥x轴于点H1,则△BE1H1≌△CBO(AAS),∴E1H1=OB=2,H1B=OC=6,∴E1(-8,2).同理可得E2(4,-2).②以BC为正方形的对角线时,过BC的重点G作E3F3⊥BC,使E3F3与BC互相平分且相等,则四边形E3BF3C为正方形,过E3作E3N⊥y轴于点N,过B作BM⊥E3N于点M,∴△CE3N≌△E3BM(AAS),∴CN=E3M,BM=E3N.∵BC=,∴E3G=BG=,∴E3B=.∵E3C2=CN2+E3N2,∴()2=CN2+(6-CN)2,解得CN=2或4.当CN=4时,E3(2,2),此时点E在点F右侧,舍去;当CN=2时,E3(-4,4),综上可得:E1(-8,2),E2(4,-2),E3(-4,4).(3)∵向右平移8个单位长度得到抛物线∴,∵过M,N,C三点∴在直线下方的抛物线上任取一点P,作轴交于点H,过点H作轴于点G.∵,∴∴是等腰直角三角形∵,∴又∴是等腰直角三角形∴∵点P在抛物线上,且横坐标为m∴∴∵∴∴∴∴∴当时,的最大值为.。

黑龙江省绥化市中数学真题试卷(解析版)

黑龙江省绥化市中数学真题试卷(解析版)

黑龙江省绥化市中数学真题试卷(解析版)一、填空题(每题3分,满分33分)1、2010年10月31日,上海世博会闭幕.累计参观者突破7308万人次,创造了世博会历史上新的纪录.用科学记数法表示为人次.(结果保留两个有效数字)年级:七年级考点:科学记数法与有效数字.题型:填空题.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1 048 576有7位,所以可以确定n=7-1=6.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.解:7308万=7.308×107≈7.3×107.故答案为:7.3×107.点评:本题考查了科学记数法和有效数字,用科学记数法表示的数的有效数字的方法:有效数字只和a有关,和n无关.2、函数中,自变量x取值范围是.年级:八年级考点:函数自变量的取值范围.题型:填空题.分析:根据二次根式的性质和分式的意义,被开方数≥0,分母≠0,可以求出x的范围.解:根据题意得:x+2≥0且x-3≠0,解得:x≥-2且x≠3.点评:函数自变量的取值范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3、如图,点B、F、C、E在同一条直线上,点A、D在直线BE的两侧,AB∥DE,BF=CE,请添加一个适当的条件:,使得AC=DF.年级:八年级考点:全等三角形的判定与性质.题型:开放型.分析:要使AC=DF,则必须满足△ABC≌△DEF,已知AB∥DE,BF=CE,则可得到∠B=∠E,BC=EF,从而添加AB=DE即可利用SAS判定△ABC≌△DEF.解:添加:AC=DF∵AB∥DE,BF=CE,∴∠B=∠E,BC=EF,∵AB=DE,∴△ABC≌△DEF,∴AC=DF.故答案为:AC=DF.点评:此题主要考查学生对全等三角形的判定与性质的综合运用能力.4、因式分解:-3x2+6xy-3y2= .年级:七年级考点:提公因式法与公式法的综合运用.题型:常规题型.分析:根根据分解因式的方法,首负先提负,放进括号里的各项要变号,在提取公因式3,括号里的剩下3项,考虑完全平方公式分解.解:-3x2+6xy-3y2=-(3x2-6xy+3y2)=-3(x2-2xy+y2)=-3(x-y)2,故答案为:-3(x-y)2.点评:此题主要考查了提公因式法与公式法分解因式的综合运用,注意符号问题,分解时一定要分解彻底.5、中国象棋红方棋子按兵种不同分布如下:1个帅,5个兵,“士、象、马、车、炮”各两个,将所有棋子反面朝上放在棋盘中,任取一个不是士、象、帅的概率 .年级:七年级考点:概率公式.题型:计算题.分析:计算出所有棋子数,再找出不是士、象、帅的棋子个数,根据概率公式解答即可.解:∵共有1个帅,5个兵,“士、象、马、车、炮”各两个,∴棋子总个数为16个,又∵不是士、象、帅的棋子共有11个,∴P= .故答案为:.点评:此题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.6、将一个半径为6cm,母线长为15cm的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是度.年级:九年级考点:圆锥的计算.题型:分析:根据圆锥的侧面积公式得出圆锥侧面积,再利用扇形面积求出圆心角的度数.解:∵将一个半径为6cm,母线长为15cm的圆锥形纸筒沿一条母线剪开并展平,∴圆锥侧面积公式为:S=πrl=π×6×15=90πcm 2,∴扇形面积为90π= ,解得:n=144,∴侧面展开图的圆心角是144度.故答案为:144.点评:此题主要考查了圆锥的侧面积公式应用以及与展开图扇形面积关系,求出圆锥侧面积是解决问题的关键.7、一元二次方程a2-4a-7=0的解为 .年级:八年级考点:解一元二次方程,公式法.题型:常规题型.分析:用公式法直接求解即可.解:a===2± ,∴a1=2+ ,a2=2- ,故答案为a1=2+ ,a2=2- .点评:本题考查了用公式法解一元二次方程的一般步骤为:①把方程化成一般形式,进而确定a,b,c的值(注意符号);②求出b2-4ac的值(若b2-4ac<0,方程无实数根);③在b2-4ac≥0的前提下,把a、b、c的值代入公式进行计算求出方程的根.注意:用公式法解一元二次方程的前提条件有两个:①a≠0;②b2-4ac≥0.8、如图,A、B、C、D是⊙O上的四个点,AB=AC,AD交BC于点E,AE=3,ED=4,则AB的长为.年级:九年级考点:相似三角形的判定与性质;圆周角定理;相交弦定理.题型:计算题.分析:可证明△ABE∽△ADB,则= ,则AB2=AD•AE,由AE=3,ED=4,即可求得AB.解:∵AB=AC,∴∠ABE=∠ADB,∴△ABE∽△ADB,则= ,即AB2=AD•AE,∵AE=3,ED=4,∴AB= = = .点评:本题考查了相似三角形的判定和性质以及圆周角定理以及相交线定理,是基础知识要熟练掌握.9、某班级为筹备运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有种购买方案.年级:七年级下考点:二元一次方程的应用.题型:应用题.分析:设甲中运动服买了x套,乙种买了y套,根据,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下可列出方程,且根据x,y必需为整数可求出解.解:设甲中运动服买了x套,乙种买了y套,20x+35y=365x=当y=3时,x=13当y=7时,y=6.所以有两种方案.故答案为:2.点评:本题考查理解题意的能力,关键是根据题意列出二元一次方程然后根据解为整数确定值从而得出结果.10、已知三角形相邻两边长分别为20cm和30cm,第三边上的高为10cm,则此三角形的面积为.年级:八年级考点:勾股定理.题型:分析:本题考虑两种情况,一种为锐角三角形,一种是钝角三角形,然后根据勾股定理求得第三边,从而求得三角形面积.解:图一图二由题意作图则设AB=20cm,AC=30cm,AD=10cm有两种情况:一种:在直角三角形ABD中利用勾股定理BD= = cm同理解CD=20 cm则三角形面积= =(100 )cm2二种:在直角三角形ABD中,BD= cm在直角三角形ACD中,CD= cm则BC= cm所以三角形面积为cm2点评:本题考查了勾股定理,两次运用勾股定理求出第三边,从两种情况来求第三边长,则再求三角形面积.11、如图,△ABC是边长为1的等边三角形.取BC边中点E,作ED∥AB,EF∥AC,得到四边形EDAF,它的面积记作S1;取BE中点E1,作E1D1∥FB,E1F1∥EF,得到四边形E1D1FF1,它的面积记作S2.照此规律作下去,则S2011= .年级:九年级考点:相似多边形的性质;等边三角形的性质;三角形中位线定理.题型:规律型.分析:先根据△ABC是等边三角形可求出△ABC的高,再根据三角形中位线定理可求出S1的值,进而可得出S2的值,找出规律即可得出S2011的值.解:∵△ABC是边长为1的等边三角形,∴△ABC的高=AB•s in∠A=1× = ,∵DF、EF是△ABC的中位线,∴AF= ,∴S1= × × = ;同理可得,S2= × ;…∴S n= ()n-1;∴S2011= • (表示为• 亦可).故答案为:S2011= • (表示为• 亦可).点评:本题考查的是相似多边形的性质,涉及到等边三角形的性质、锐角三角函数的定义、特殊角的三角函数值及三角形中位线定理,熟知以上知识是解答此题的关键.二、单项选择题(每题3分,满分27分)12、下列各式:①a0=1;②a2•a3=a5;③2-2=- ;④-(3-5)+(-2)4÷8×(-1)=0;⑤x2+x2=2x2,其中正确的是()A、①②③B、①③⑤C、②③④D、②④⑤年级:七年级考点:负整数指数幂;有理数的混合运算;合并同类项;同底数幂的乘法;零指数幂.题型:计算题.分析:分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可.解:①当a=0时不成立,故本小题错误;②符合同底数幂的乘法法则,故本小题正确;③2-2= ,故本小题错误;④-(3-5)+(-2)4÷8×(-1)=0符合有理数混合运算的法则,故本小题正确;⑤x2+x2=2x2,符合合并同类项的法则,本小题正确.故选D.点评:本题考查的是0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则,熟知以上知识是解答此题的关键.13、下列图形中既是轴对称图形又是中心对称图形的是()A、B、C、D、年级:八年级考点:中心对称图形;轴对称图形.题型:常规题型.分析:根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选B.点评:本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.14、向最大容量为60升的热水器内注水,每分钟注水10升,注水2分钟后停止注水1分钟,然后继续注水,直至注满.则能反映注水量与注水时间函数关系的图象是()A、B、C、D、年级:八年级考点:函数的图象.题型:计算题.分析:注水需要60÷10=6分钟,注水2分钟后停止注水1分钟,共经历6+1=7分钟,按自变量分为0-2-3-7三段,画出图象.解:按照注水的过程分为,注水2分钟,停1分钟,再注水5分钟.故选D.点评:本题考查利用函数的图象解决实际问题.正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.15、某工厂为了选拔1名车工参加直径为5㎜精密零件的加工技术比赛,随机抽取甲、乙两名车工加工的5个零件,现测得的结果如下表,平均数依次为x甲、x乙,方差依次为s甲2、s乙2,则下列关系中完全正确的是()甲 5.05 5.02 5 4.96 4.97 乙 5 5.01 5 4.97 5.02A.x甲<x乙,s甲2<s乙2 B.x甲=x乙,s甲2<s乙2C.x甲=x乙,s甲2>s乙2 D.x甲>x乙,s甲2>s乙2年级:八年级考点:方差;算术平均数.题型:应用题.分析:先计算出平均数后,再根据方差的计算公式计算,再比较.解:甲的平均数=(5.05+5.02+5+4.96+4.97)÷5=5,乙的平均数=(5+5.01+5+4.97+5.02)÷5=5,故有x甲=x乙,S2甲= [(5.05-5)2+(5.02-5)2+(5-5)2+(4.96-5)2+(4.97-5)2]= ,S2乙= [(5-5)2+(5.01-5)2+(5-5)2+(4.97-5)2+(5.02-5)2]= ;故有S2甲>S2乙.故选C.点评:本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1- )2+(x2- )2+…+(x n- )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,难度适中.16、下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是()A、B、C、D、年级:八年级考点:由三视图判断几何体;简单组合体的三视图.题型:分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解:从俯视图可以看出直观图的各部分的个数,可得出左视图前面有2个,中间有3个,后面有1个,即可得出左视图的形状.故选A.点评:此题主要考查了三视图的概念.根据俯视图得出每一组小正方体的个数是解决问题的关键.17、若A(x1,y1),B(x2,y2),C(x3,y3)是反比例函数y= 图象上的点,且x1<x2<0<x3,则y1、y2、y3的大小关系正确的是()A、y3>y1>y2B、y1>y2>y3C、y2>y1>y3D、y3>y2>y1年级:九年级考点:反比例函数图象上点的坐标特征.题型:分析:根据反比例函数图象上点的特征,xy=3,所以得到x1•y1=3,x2•y2=3,x3•y3=3,再根据x1<x2<0<x3,即可判断y1、y2、y3的大小关系.解:∵A(x1,y1),B(x2,y2),C(x3,y3)是反比例函数y= 图象上的点,∴x1•y1=3,x2•y2=3,x3•y3=3,∵x3>0,∴y3>0,∵x1<x2<0,∴0>y1>y2,∴y3>y1>y2.故选A.点评:此题主要考查了反比例函数图象上点的特征,凡是在反比例函数图象上的点,横纵坐标的乘积是一个定值=k.18、分式方程= 有增根,则m的值为()A、0和3B、1C、1和-2D、3年级:七年级下考点:分式方程的增根;解一元一次方程.题型:计算题.分析:根据分式方程有增根,得出x-1=0,x+2=0,求出即可.解:∵分式方程= 有增根,∴x-1=0,x+2=0,∴x=1,x=-2.两边同时乘以(x-1)(x+2),原方程可化为x(x+2)-(x-1)(x+2)=m,整理得,m=x+2,当x=1时,m=1+2=3;当x=-2时,m=-2+2=0.故选A.点评:本题主要考查对分式方程的增根,解一元一次方程等知识点的理解和掌握,理解分式方程的增根的意义是解此题的关键.19、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①b2-4ac>0 ②a>0 ③b>0 ④c>0 ⑤9a+3b+c<0,则其中结论正确的个数是()A、2个B、3个C、4个D、5个年级:九年级考点:二次函数图象与系数的关系.题型:计算题.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.解:①根据图示知,二次函数与x轴有两个交点,所以△=b2-4ac>0;故本选项正确;②根据图示知,该函数图象的开口向上,∴a>0;故本选项正确;③又对称轴x=- =1,∴<0,∴b<0;故本选项错误;④该函数图象交与y轴的负半轴,∴c<0;故本选项错误;⑤根据抛物线的对称轴方程可知:(-1,0)关于对称轴的对称点是(3,0);当x=-1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故本选项正确.所以①②⑤三项正确.故选B.点评:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换.20、如图,在Rt△ABC中,AB=CB,BO⊥AC,把△ABC折叠,使AB落在AC上,点B与AC上的点E重合,展开后,折痕AD交BO于点F,连接DE、EF.下列结论:①tan∠ADB=2;②图中有4对全等三角形;③若将△DEF沿EF折叠,则点D不一定落在AC上;④BD=BF;⑤S四边形DFOE=S△AOF,上述结论中正确的个数是()年级:九年级考点:翻折变换(折叠问题);全等三角形的判定与性质;锐角三角函数的定义.题型:几何综合题.分析:根据折叠的知识,锐角正切值的定义,全等三角形的判定,面积的计算判断所给选项是否正确即可.解:①由折叠可得BD=DE,而DC>DE,∴DC>BD,∴tan∠ADB≠2,故①错误;②图中的全等三角形有△ABF≌△AEF,△ABD≌△AED,△FBD≌△FED,△AOB≌△COB共4对,故②正确;③∵∠AEF=∠DEF=45°,∴将△DEF沿EF折叠,可得点D一定在AC上,故③错误;④易得∠BFD=∠BDF=67.5°,∴BD=BF,故④正确;⑤连接CF,∵△AOF和△COF等底同高,∴S△AOF=S△COF,∵∠AEF=∠ACD=45°,∴EF∥CD,∴S△EFD=S△EFC,∴S四边形DFOE=S△COF,∴S四边形DFOE=S△AOF,故⑤正确;正确的有3个,故选C.点评:综合考查了有折叠得到的相关问题;注意由对称也可得到一对三角形全等;用到的知识点为:三角形的中线把三角形分成面积相等的2部分;两条平行线间的距离相等.三、解答题(满分60分)21、先化简,再求值:(1- )÷ ,其中a=sin60°.年级:七年级,九年级考点:分式的化简求值;特殊角的三角函数值.题型:分析:先通分,然后进行四则运算,最后将a=sin60°= 代入即可求得答案.解:原式=(- )• = • =a+1把a=sin60°= 代入原式= =点评:本题主要考查了分式的化简求值,解答此题的关键是把分式化到最简,然后代值计算.22、如图,每个小方格都是边长为1个单位长度的小正方形.(1)将△ABC向右平移3个单位长度,画出平移后的△A1B1C1.(2)将△ABC绕点O旋转180°,画出旋转后的△A2B2C2.(3)画出一条直线将△AC1A2的面积分成相等的两部分.年级:七年级考点:作图-旋转变换;作图-平移变换.题型:分析:(1)分别将对应点A,B,C向右平移3个单位长度,即可得出图形;(2)分别将对应点A,B,C绕点O旋转180°,即可得出图形;(3)经过点O连接OC 1,即可平分△AC1A2的面积.解:(1)如图所示,平移正确给;(2)如图所示旋转正确给;(3)面积等分正确给(答案不唯一).点评:此题主要考查了图形的平移以及旋转和等分三角形的面积,根据已知正确平移和旋转对应点是平移或旋转图形的关键.23、已知:二次函数y= x2+bx+c,其图象对称轴为直线x=1,且经过点(2,- ).(1)求此二次函数的解析式.(2)设该图象与x轴交于B、C两点(B点在C点的左侧),请在此二次函数x轴下方的图象上确定一点E,使△EBC的面积最大,并求出最大面积.注:二次函数y=ax2+bx+c(a≠0)的对称轴是直线x=- .年级:九年级考点:二次函数综合题.题型:分析:(1)利用待定系数法将直线x=1,且经过点(2,- )代入二次函数解析式,求二次函数解析式即可;(2)利用二次函数与x轴相交即y=0,求出即可,再利用E点在x轴下方,且E为顶点坐标时△EBC面积最大,求出即可.解:(1)由已知条件得,解得b=- ,c=- ,∴此二次函数的解析式为y= x2- x- ;(2)∵x2- x- =0,∴x1=-1,x2=3,∴B(-1,0),C(3,0),∴BC=4,∵E点在x轴下方,且△EBC面积最大,∴E点是抛物线的顶点,其坐标为(1,-3),∴△EBC的面积= ×4×3=6.点评:此题主要考查了待定系数法求二次函数解析式以及求二次函数顶点坐标进而得出三角形面积等知识,根据题意得出E为顶点坐标时△EBC面积最大是解决问题的关键.24、为增强学生体质,教育行政部门规定学生每天在校参加户外体育活动的平均时间不少于1小时.某区为了解学生参加户外体育活动的情况,对部分学生参加户外体育活动的时间进行了抽样调查,并将调查结果绘制成如下的统计图表(不完整).请你根据图中提供的信息解答下列问题:(1)求a、b的值.(2)求表示参加户外体育活动时间为0.5小时的扇形圆心角的度数.(3)该区0.8万名学生参加户外体育活动时间达标的约有多少人?年级:七年级,八年级考点:扇形统计图;用样本估计总体;统计表.题型:图表型.分析:分析:(1)根据时间为1.5小时的人数及所占的比例可求出总人数,从而可求出a 和b的值.(2)根据0.5小时的人数,结合(1)即可得出答案.(3)先计算出达标率,然后根据频数=总人数×频率即可得出答案.解::(1)总人数=40÷20%=200人,∴a=200×40%=80,b=1-20%-40%-30%=10%;(2)×100%×360°=108°;(3)80+40+200×10%=140,达标率= ×100%,总人数= ×100%×8000=5600.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25、某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲、乙两厂的印刷费用y(千元)与证书数量x(千个)的函数关系图象分别如图中甲、乙所示.(1)请你直接写出甲厂的制版费及y甲与x的函数解析式,并求出其证书印刷单价.(2)当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元?(3)如果甲厂想把8千个证书的印制工作承揽下来,在不降低制版费的前提下,每个证书最少降低多少元?年级:八年级考点:一次函数的应用.题型:分析:(1)结合图象便可看出y是关于x的一次函数,从图中可以观察出甲厂的制版费为1千元,一次函数的斜率为0.5即为证书的单价;(2)分别求出甲乙两车的费用y关于证书个数x的函数,将x=8分别代入两个函数,可得出选择乙厂课节省500元;(3)根据实际情况甲厂只有降价500元才能将印制工作承揽下来,这样每个证书要降价0.0625元.解:(1)制版费1千元,y甲= x+1,证书单价0.5元.(2)把x=6代入y甲= x+1中得y=4当x≥2时由图象可设y乙与x的函数关系式为y乙=kx+b,由已知得2k+b=36k+b=4解得得y乙=当x=8时,y甲= ×8+1=5,y乙= ×8+ =5- =0.5(千元)即,当印制8千张证书时,选择乙厂,节省费用500元.(3)设甲厂每个证书的印刷费用应降低a元8000a=500所以a=0.0625答:甲厂每个证书印刷费最少降低0.0625元.点评:本题主要考查了一次函数和一元一次不等式的实际应用,是各地中考的热点,同学们在平时练习时要加强训练,属于中档题.26、在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,如图(1),易证EG=CG且EG⊥CG.(1)将△BEF绕点B逆时针旋转90°,如图(2),则线段EG和CG有怎样的数量关系和位置关系?请直接写出你的猜想.(2)将△BEF绕点B逆时针旋转180°,如图(3),则线段EG和CG又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.年级:八年级考点:旋转的性质;全等三角形的判定与性质;正方形的性质.题型:分析:从图(1)中寻找证明结论的思路:延长FE交DC延长线于M,连MG.构造出△GFE ≌△GMC.易得结论;在图(2)、(3)中借鉴此解法证明.解:(1) EG=CG,EG⊥CG.(2)EG=CG,EG⊥CG.证明:延长FE交DC延长线于M,连MG.∵∠AEM=90°,∠EBC=90°,∠BCM=90°,∴四边形BEMC是矩形.∴BE=CM,∠EMC=90°,又∵BE=EF,∴EF=CM.∵∠EMC=90°,FG=DG,∴MG= FD=FG.∵BC=EM,BC=CD,∴EM=CD.∵EF=CM,∴FM=DM,∴∠F=45°.又FG=DG,∠CMG= ∠EMC=45°,∴∠F=∠GMC.∴△GFE≌△GMC.∴EG=CG,∠FGE=∠MGC.∵∠FMC=90°,MF=MD,FG=DG,∴MG⊥FD,∴∠FGE+∠EGM=90°,∴∠MGC+∠EGM=90°,即∠EGC=90°,∴EG⊥CG.点评:此题综合考查了旋转的性质及全等三角形的判断和性质,如何构造全等的三角形是难点,因此难度较大.27、建华小区准备新建50个停车位,以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位需0.5万元;新建3个地上停车位和2个地下停车位需1.1万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)若该小区预计投资金额超过10万元而不超过11万元,则共有几种建造方案?(3)已知每个地上停车位月租金100元,每个地下停车位月租金300元.在(2)的条件下,新建停车位全部租出.若该小区将第一个月租金收入中的3600元用于旧车位的维修,其余收入继续兴建新车位,恰好用完,请直接写出该小区选择的是哪种建造方案?年级:八年级考点:一元一次不等式组的应用;二元一次方程组的应用.题型:分析:(1)设新建一个地上停车位需x万元,新建一个地下停车位需y万元,根据已知新建1个地上停车位和1个地下停车位需0.5万元;新建3个地上停车位和2个地下停车位需1.1万元,可列出方程组求解.(2)设新建m个地上停车位,根据小区预计投资金额超过10万元而不超过11万元,可列出不等式求解.(3根据第一个月租金收入中的3600元用于旧车位的维修,其余收入继续兴建新车位,恰好用完,可写出方案.解:(1)设新建一个地上停车位需x万元,新建一个地下停车位需y万元,由题意得,解得,答:新建一个地上停车位需0.1万元,新建一个地下停车位需0.4万元;(4分)﹙2﹚设新建m个地上停车位,则10<0.1m+0.4(50-m)≤11,解得30≤m<,因为m为整数,所以m=30或m=31或m=32或m=33,对应的50-m=20或50-m=19或50-m=18或50-m=17,所以,有四种建造方案.(4分)﹙3﹚建造方案是:建造32个地上停车位,18个地下停车位.(2分)点评:本题考查理解题意的能力,根据建造地上车位和地下车位个数的不同花费的钱数不同做为等量关系列出方程求解,根据投入的资金列出不等量关系,根据该小区将第一个月租金收入中的3600元用于旧车位的维修,其余收入继续兴建新车位,恰好用完,找到方案.28、已知直线y= x+4 与x轴、y轴分别交于A、B两点,∠ABC=60°,BC与x轴交于点C.(1)试确定直线BC的解析式.(2)若动点P从A点出发沿AC向点C运动(不与A、C重合),同时动点Q从C点出发沿CBA向点A运动(不与C、A重合),动点P的运动速度是每秒1个单位长度,动点Q的运动速度是每秒2个单位长度.设△APQ的面积为S,P点的运动时间为t秒,求S与t的函数关系式,并写出自变量的取值范围.(3)在(2)的条件下,当△APQ的面积最大时,y轴上有一点M,平面内是否存在一点N,使以A、Q、M、N为顶点的四边形为菱形?若存在,请直接写出N点的坐标;若不存在,请说明理由.年级:八年级考点:一次函数综合题.题型:存在性问题分析:(1)由已知得A点坐标,通过OA,OB长度关系,求得角BAO为60度,即能求得点C坐标,设直线BC代入BC两点即求得.(2)当P点在AO之间运动时,作QH⊥x轴.再求得QH,从而求得三角形APQ的面积.(3)由(2)所求可知,是存在的,写出点的坐标.解:(1)由已知得A点坐标(-4﹐0),B点坐标(0﹐4 ﹚,∵OA=4OB=4 ,∴∠BAO=60°,∵∠ABC=60°,∴△ABC是等边三角形,∵OC=OA=4,∴C点坐标﹙4,0﹚,设直线BC解析式为y=kx﹢b,,∴,∴直线BC的解析式为y=- ;﹙2﹚当P点在AO之间运动时,作QH⊥x轴.∵,∴,∴QH= t∴S△APQ= AP•QH= t• t= t2﹙0<t≤4﹚,(2分)同理可得S△APQ= t•﹙8 ﹚=- ﹙4≤t<8﹚;(2分)(3)存在,(4,0),(-4,8)(-4,-8)(-4,).(4分)点评:本题考查了一次函数的运用,考查了一次函数与直线交点坐标,从而求得AB的长度,由△ABC是等边三角形,从而求得.。

2021年黑龙江省绥化市中考数学真题试卷(原卷+解析版)

2021年黑龙江省绥化市中考数学真题试卷(原卷+解析版)

二○二一年绥化市中考数学试题(原卷+解析)二○二一年绥化市中考数学试题一、单项选择题(本题共12个小题,每小题3分,共36分)请在答题卡上用铅笔将你的选项所对应的大写字母涂黑1. 现实世界中,对称无处不在.在美术字中,有些汉字也具有对称性.下列汉字是轴对称图形的是( )A. B. C. D.2. 据国家卫健委统计,截至6月2日,我国接种新冠疫苗已超过704000000剂次.把704000000这个数用科学记数法表示为( )A. B. C. D.3. 如图是由7个相同小正方体组合而成的几何体.这个几何体的左视图是( )A. B. C. D.4.在实数范围内有意义,则的取值范围是( ) A. B. 且 C. 且 D.5. 定义一种新的运算:如果.则有,那么的值是( )A. B. 5 C. D. 6. 下列命题是假命题的是( )A. 任意一个三角形中,三角形两边的差小于第三边B. 三角形的中位线平行于三角形的第三边,并且等于第三边的一半C. 如果一个角的两边分别平行于另一个角的两边,那么这两个角一定相等D. 一组对边平行且相等的四边形是平行四边形7. 下列运算正确的是()A. B.的2B 77.0410⨯97.0410⨯90.70410⨯87.0410⨯x –1x >1x ≥-0x ≠1x >-0x ≠0x ≠0a ≠2||a b a ab b -=++-▲1()22-▲3-34-32()257a a =448x x x ⋅=3=±=8. 已知一个多边形内角和是外角和的4倍,则这个多边形是( )A. 八边形B. 九边形C. 十边形D. 十二边形9. 近些年来,移动支付已成为人们的主要支付方式之一.某企业为了解员工某月两种移动支付方式的使用情况,从企业2000名员工中随机抽取了200人,发现样本中两种支付方式都不使用的有10人,样本中仅使用种支付方式和仅使用种支付方式的员工支付金额(元)分布情况如下表: 支付金额(元)仅使用36人 18人 6人 仅使用20人 28人 2人下面有四个推断:①根据样本数据估计,企业2000名员工中,同时使用两种支付方式的为800人;②本次调查抽取样本容量为200人;③样本中仅使用种支付方式员工,该月支付金额的中位数一定不超过1000元;④样本中仅使用种支付方式的员工,该月支付金额的众数一定为1500元.其中正确的是( )A. ①③B. ③④C. ①②D. ②④10. 根据市场需求,某药厂要加速生产一批药品,现在平均每天生产药品比原计划平均每天多生产500箱,现在生产6000箱药品所需时间与原计划生产4500箱药品所需时间相同,那么原计划平均每天生产多少箱药品?设原计划平均每天可生产箱药品,则下面所列方程正确的是( )A. B. C. D. 11. 已知在中,,.点为边上的动点,点为边上的动点,则线段的最小值是( )的的,A B A B 、A B a a 01000a <≤10002000a <≤2000a >A B ,A B A B x 60004500500x x =+60004500500x x =-60004500500x x =-60004500500x x =+Rt ACB V 90,75C ABC ∠=︒∠=︒5AB =E AC F AB FE EB +A. B. C. D.12. 如图所示,在矩形纸片中,,点分别是矩形的边上的动点,将该纸片沿直线折叠.使点落在矩形边上,对应点记为点,点落在处,连接与交于点.则下列结论成立的是( )①;②当点与点重合时; ③的面积的取值范围是; ④当时,.A. ①③B. ③④C. ②③D. ②④二、填空题(本题共10个小题,每小题3分,共30分)请在答题卡上把你的答案写在相对应的题号后的指定区域内13. 在单词(数学)中任意选择一个字母恰好是字母“”的概率是________.14. 在实数范围内分解因式:_________.15. 一条弧所对的圆心角为135°弧长等于半径为5cm 的圆的周长的3倍,则这条弧的半径为__________cm .16. 当时,代数式的值是____. 17. 某学校计划为“建党百年,铭记党史”演讲比赛购买奖品.已知购买2个种奖品和4个种奖品共需100元;购买5个种奖品和2个种奖品共需130元.学校准备购买两种奖品共20个,且种奖品的数量不小于种奖品数量的,则在购买方案中最少费用是_____元. 52ABCD 3,6AB BC ==E F 、AD BC 、EF B AD G A M ,EF BG BE EF 、、BG N BN AB =G D EF =GNF △S 9742S ≤≤52CF =MEG S =V mathematics t 22ab a -=3x =+22319()369x x x x x x x x+---÷--+A B A B ,A B A B 2518. 已知是一元二次方程的两个根,则__________. 19. 边长为的正六边形,它的外接圆与内切圆半径的比值是_______.20. 如图,在平面直角坐标系中,为坐标原点,垂直于轴,以为对称轴作的轴对称图形,对称轴与线段相交于点,点的对应点恰好落在的双曲线上.点的对应点分别是点.若点为的中点,且,则的值为____.21. 在边长为4正方形中,连接对角线,点是正方形边上或对角线上的一点,若,则______.22. 下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形…,依此规律,则第个图形中三角形个数是_______.三、解答题(本题共7个小题,共54分)请在答题卡上把你的答案写在相对应的题号后的指定区域内23. (1)如图,已知为边上一点,请用尺规作图的方法在边上求作一点.使.(保留作图痕迹,不写作法)的,m n 2320x x --=11m n+=4cm O MN x MN ODE V MN DE F D B (0,0)k y k x x=≠<O E 、C A 、A OE 1AEF S =△k ABCD AC BD 、P 3PB PC =PC =n ,ABC P V AB AC E AE EP AC +=(2)在上图中,如果,则的周长是_______.24. 如图所示,在网格中,每个小正方形的边长均为1个单位长度,把小正方形的顶点叫做格点,为平面直角坐标系的原点,矩形的4个顶点均在格点上,连接对角线.(1)在平面直角坐标系内,以原点为位似中心,把缩小,作出它的位似图形,并且使所作的位似图形与的相似比等于; (2)将以为旋转中心,逆时针旋转,得到,作出,并求出线段旋转过程中所形成扇形的周长.25. 一种可折叠的医疗器械放置在水平地面上,这种医疗器械的侧面结构如图实线所示,底座为,点在同一条直线上,测得,,其中一段支撑杆,另一段支撑杆,求支撑杆上的点到水平地面的距离是多少?(用四舍五入法对结果取整数,参考数据)6cm,3cm AC AP ==APE V cm O OABC OB O OAB V OAB V 12OAB V O90︒11OA B V 11OA B V OB ABC V B C D 、、90,60,32cm ACB ABC AB ∠=︒∠=︒=75BDE ∠=︒84cm CD =70cm DE =E EF sin150.26,cos150.97,tan15 1.732︒≈︒≈︒≈≈26. 小刚和小亮两人沿着直线跑道都从甲地出发,沿着同一方向到达乙地,甲乙两地之间的距离是720米,先到乙地的人原地休息,已知小刚先从甲地出发4秒后,小亮从甲地出发,两人均保持匀速前行.第一次相遇后,保持原速跑一段时间,小刚突然加速,速度比原来增加了2米/秒,并保持这一速度跑到乙地(小刚加速过程忽略不计).小刚与小亮两人的距离(米)与小亮出发时间(秒)之间的函数图象,如图所示.根据所给信息解决以下问题.(1)_______,______;(2)求和所在直线的解析式;(3)直接写出为何值时,两人相距30米.27. 如图,在中,,以为直径的与相交于点,垂足为.S t m =n =CD EF t ABC V AB AC =AB O e BC ,D DE AC ⊥E(1)求证:是的切线;(2)若弦垂直于,垂足为的半径; (3)在(2)的条件下,当时,求线段的长.28. 如图所示,四边形为正方形,在中,的延长线与的延长线交于点,点在同一条直线上.(1)求证:;DE O e MN AB 1,,4AG G MN AB ==O e 36BAC ∠=︒CE ABCD V ECH 90,,ECH CE CH HE ∠=︒=CD F D B H 、、CDE CBH V V ≌(2)当时,求的值; (3)当时,求值.29. 如图,已知抛物线与轴交于点,点,(点在点的左边),与轴交于点,点为抛物线的顶点,连接.直线经过点,且与轴交于点.(1)求抛物线的解析式;(2)点是抛物线上的一点,当是以为腰的等腰三角形时,求点的坐标;(3)点为线段上的一点,点为线段上的一点,连接,并延长与线段交于点(点在第一象限).当且时,求出点的坐标.的15HB HD =FD FC 3,4HB HG ==sin CFE ∠25(0)y ax bx a =++≠x ()5,0A -()10B ,A B y C D BD 1522y x =--A y E N V BDN DN N F AE G OA FG FG BD H H 3EFG BAE ∠=∠2HG FG =F二○二一年绥化市中考数学试题一、单项选择题(本题共12个小题,每小题3分,共36分)请在答题卡上用铅笔将你的选项所对应的大写字母涂黑1. 现实世界中,对称无处不在.在美术字中,有些汉字也具有对称性.下列汉字是轴对称图形的是( )A.B. C. D.【答案】A【解析】【分析】直接利用轴对称图形的定义得出答案.【详解】解:A 、“美”是轴对称图形,故本选项符合题意;B 、“丽”不是轴对称图形,故本选项不合题意;C 、“绥”不是轴对称图形,故本选项不合题意;D 、“化”不是轴对称图形,故本选项不合题意.故选:A .【点睛】此题主要考查了轴对称图形的概念,属于基础题,熟练掌握对称图形的概念即可求解. 2. 据国家卫健委统计,截至6月2日,我国接种新冠疫苗已超过704000000剂次.把704000000这个数用科学记数法表示为( )A.B. C. D. 【答案】D【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】704000000=7.04×108,故选:D .【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3. 如图是由7个相同的小正方体组合而成的几何体.这个几何体的左视图是( )2B 77.0410⨯97.0410⨯90.70410⨯87.0410⨯A. B. C. D.【答案】B 【解析】【分析】观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可. 【详解】从左边看,从左往右小正方形的个数依次为:3,1,1.故选B .【点睛】本题主要考查了几何体的三种视图和学生的空间想象能力,正确把握观察方向是解题关键.4.在实数范围内有意义,则的取值范围是( )A. B. 且C. 且D.【答案】C 【解析】在实数范围内有意义,必须保证根号下为非负数,分母不能为零,零指数幂的底数也不能为零,满足上述条件即可.在实数范围内有意义,必须同时满足下列条件:,,综上:且, 故选:C .【点睛】本题主要考查分式有意义的条件,二次根式有意义的条件,零指数幂有意义的条件,当上述式子同时出现则必须同时满足.5. 定义一种新的运算:如果.则有,那么的值是( )x –1x >1x ≥-0x ≠1x >-0x ≠0x ≠10x +≥0≠0x ≠1x >-0x ≠0a ≠2||a b a ab b -=++-▲1()22-▲A. B. 5C. D.【答案】B 【解析】【分析】根据题意列出算式,求解即可 【详解】.故选B .【点睛】本题考查了新定义运算、负指数幂的运算,绝对值的计算,解决本题的关键是牢记公式与定义,本题虽属于基础题,但其计算中容易出现符号错误,因此应加强符号运算意识,提高运算能力与技巧等. 6. 下列命题是假命题的是( )A. 任意一个三角形中,三角形两边的差小于第三边B. 三角形的中位线平行于三角形的第三边,并且等于第三边的一半C. 如果一个角的两边分别平行于另一个角的两边,那么这两个角一定相等D. 一组对边平行且相等的四边形是平行四边形 【答案】C 【解析】【分析】根据三角形两边之差小于第三边、中位线定理、平行四边形的判定方法依次即可求解. 【详解】解:选项A :三角形两边之差小于第三边,故选项A 正确,不符合题意; 选项B :三角形的中位线平行且等于第三边的一半,故选项B 正确,不符合题意;选项C :一个角的两边分别平行另一个角的两边,则这两个角相等或互补,故选项C 不正确,是假命题,符合题意;选项D :一组对边平行且相等的四边形是平行四边形,故选项D 正确,不符合题意; 故选:C .【点睛】本题考查了三角形中位线定理,三角形三边之间的关系,平行四边形的判定等知识点,熟练掌握各个基本定理和性质是解决本类题的关键. 7. 下列运算正确的是( ) A.B.的3-34-322||a b a ab b -=++- ▲2111(2=()()2|2|222-∴--+-⨯+-▲412=-+=5()257a a =448x x x ⋅=3=±=【答案】B 【解析】【分析】根据幂的乘方,同底数幂的乘法,算术平方根,以及实数的运算法则逐一判断. 【详解】A 、(a 5)2=a 10,故A 错, B 、x 4⋅x 4=x 8,故B 正确, C,故C 错, D=-3- ,故D 错,故选:B【点睛】本题考查了算术平方根,实数的运算,同底数幂的乘法,以及幂的乘方,熟悉并灵活运用以上性质是解题的关键.8. 已知一个多边形内角和是外角和的4倍,则这个多边形是( ) A. 八边形 B. 九边形C. 十边形D. 十二边形【答案】C 【解析】【分析】设这个多边形的边数为n ,然后根据内角和与外角和公式列方程求解即可. 【详解】设这个多边形的边数为n , 则(n -2)×180°=4×360°, 解得:n =10, 故选C.【点睛】本题主要考查多边形的内角和定理及多边形的外角和定理,熟练掌握多边形内角和定理是解答本题的关键.n 变形的内角和为:(n -2) ×180°, n 变形的外角和为:360°;然后根据等量关系列出方程求解. 9. 近些年来,移动支付已成为人们的主要支付方式之一.某企业为了解员工某月两种移动支付方式的使用情况,从企业2000名员工中随机抽取了200人,发现样本中两种支付方式都不使用的有10人,样本中仅使用种支付方式和仅使用种支付方式的员工支付金额(元)分布情况如下表:支付金额(元)仅使用 36人 18人 6人 仅使用20人28人2人下面有四个推断:3=,A B A B 、A B a a 01000a <≤10002000a <≤2000a >A B①根据样本数据估计,企业2000名员工中,同时使用两种支付方式的为800人; ②本次调查抽取的样本容量为200人;③样本中仅使用种支付方式的员工,该月支付金额的中位数一定不超过1000元; ④样本中仅使用种支付方式的员工,该月支付金额的众数一定为1500元. 其中正确的是( ) A. ①③ B. ③④C. ①②D. ②④【答案】A 【解析】【分析】①用样本估计总体的思想; ②根据表可以直接算出样本容量; ③利用中位数的定义可以直接判断; ④根据众数的定义可以直接判断. 【详解】解:根据题目中的条件知:①从企业2000名员工中随机抽取了200人,同时使用两种支付方式的人为:(人), 样本中同时使用两种支付方式的比例为:, 企业2000名员工中,同时使用两种支付方式的为:(人), 故①正确;②本次调查抽取的样本容量为200; 故②错误;③样本中仅使用种支付方式的员工共有:60人,其中支付金额在之间的有,36人,超过了仅使用种支付方式的员工数的一半,由中位数的定义知:中位数一定不超过1000元, 故③是正确;④样本中仅使用种支付方式的员工,从表中知月支付金额在之间的最多,但不能判断众数一定为1500元, 故④错误; 综上:①③正确, 故选:A .【点睛】本题考查了概率公式、运用样本估计总体的思想、中位数和众数的定义,解题的关键是:熟练掌,A B A B ,A B 20010(362018+28+6+2)=80--++∴,A B 8022005=∴,A B 220008005⨯=A 01000a <≤A B 10002000a <≤握公式及相关的定义,根据图表信息解答.10. 根据市场需求,某药厂要加速生产一批药品,现在平均每天生产药品比原计划平均每天多生产500箱,现在生产6000箱药品所需时间与原计划生产4500箱药品所需时间相同,那么原计划平均每天生产多少箱药品?设原计划平均每天可生产箱药品,则下面所列方程正确的是( )A.B.C.D.【答案】D 【解析】【分析】设原计划平均每天可生产箱药品,则实际每天生产箱药品,再根据“生产6000箱药品所需时间与原计划生产4500箱药品所需时间相同”建立方程求解即可.【详解】解:设原计划平均每天可生产箱药品,则实际每天生产箱药品,原计划生产4500箱所需要的时间为:, 现在生产6000箱所需要的时间为:,由题意得:;故选:D .【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.11. 已知在中,,.点为边上的动点,点为边上的动点,则线段的最小值是( )B.【答案】B 【解析】x 60004500500x x =+60004500500x x=-60004500500x x =-60004500500x x=+x (500)x +x (500)x +4500x 6000500x +60004500500x x=+Rt ACB V 90,75C ABC ∠=︒∠=︒5AB =E AC F AB FE EB +52【分析】作点F 关于直线AB 的对称点F’,如下图所示,此时EF+EB = EF’+EB ,再由点到直线的距离垂线段长度最短求解即可.【详解】解:作点F 关于直线AB 的对称点F’,连接AF’,如下图所示:由对称性可知,EF=EF’, 此时EF+EB= EF’+EB ,由“点到直线的距离垂线段长度最小”可知,当BF’⊥AF’时,EF +EB 有最小值BF 0,此时E 位于上图中的E 0位置, 由对称性知,∠CAF 0=∠BAC =90°-75°=15°, ∴∠BAF 0=30°,由直角三角形中,30°所对直角边等于斜边的一半可知, BF 0=AB =, 故选:B .【点睛】本题考查了30°角所对直角边等于斜边的一半,垂线段最短求线段最值等,本题的核心思路是作点F 关于AC 的对称点,将EF 线段转移,再由点到直线的距离最短求解.12. 如图所示,在矩形纸片中,,点分别是矩形的边上的动点,将该纸片沿直线折叠.使点落在矩形边上,对应点记为点,点落在处,连接与交于点.则下列结论成立的是( )①;②当点与点重合时;③的面积的取值范围是; 1215522⨯=ABCD 3,6AB BC ==E F 、AD BC 、EF B AD G A M ,EF BG BE EF 、、BG N BN AB =G D EF =GNF △S 9742S ≤≤④当时,.A. ①③B. ③④C. ②③D. ②④【答案】D 【解析】【分析】①根据题意可知四边形BFGE 为菱形,所以EF ⊥BG 且BN=GN ,若BN=AB ,则BG=2AB=6,又因为点E 是AD 边上的动点,所以3<BG<.从而判断①不正确; ②如图,过点E 作EH ⊥BC 于点H ,再利用勾股定理求解即可; ③当点E 与点A 重合时,的面积有最小值,当点G 与点D 重合时的面积有最大值.故<<. ④因为,则EG=BF=6-=.根据勾股定理可得,从而可求出△MEG的面积.【详解】解:①根据题意可知四边形BFGE 为菱形, ∴EF ⊥BG 且BN=GN , 若BN=AB ,则BG=2AB=6, 又∵点E 是AD 边上的动点, ∴3<BG<. 故①错误;②如图,过点E 作EH ⊥BC 于点H ,则EH=AB=3, Rt △ABE 中即在52CF =MEG S =V GNF △S 94GNF △S 451694S 451652CF =5272=()222AE AB AD AE +=-()22236AE AE +=-解得:AE=, ∴BF=DE=6-=.∴HF=-=.在Rt △EFH 中; 故②正确;③当点E 与点A 重合时,如图所示,的面积有最小值= =,当点G 与点D 重合时的面积有最大值==.故<<.故③错误.④因为,则EG=BF=6-=.根据勾股定理可得, ∴故④正确. 故选D .94941541549432EF =GNF △S 113344ABFG S =⨯⨯正方形94GNF △S 11153444BFG S =⨯⨯菱形E 451694S 451652CF =5272=132MEG S ==△【点睛】本题考查了矩形的性质和判定,菱形的判定与性质,勾股定理,翻折的性质等知识,掌握相关知识找到临界点是解题的关键.二、填空题(本题共10个小题,每小题3分,共30分)请在答题卡上把你的答案写在相对应的题号后的指定区域内13. 在单词(数学)中任意选择一个字母恰好是字母“”的概率是________. 【答案】【解析】【分析】直接由概率公式求解即可.【详解】解:单词中共有11个字母, 其中t 出现 了2次,故任意选择一个字母恰好是字母“”的概率为:. 故答案为:. 【点睛】本题主要考查运用概率公式求概率,根据已知条件找出总的情况数和符合条件的情况数是解题关键.14. 在实数范围内分解因式:_________. 【答案】. 【解析】【分析】利用平方差公式分解因式得出即可. 【详解】解: ==故答案为:.【点睛】此题主要考查了利用平方差公式分解因式,熟练应用平方差公式是解题关键.15. 一条弧所对的圆心角为135°弧长等于半径为5cm 的圆的周长的3倍,则这条弧的半径为__________cm .【答案】40mathematics t 211mathematics t 21121122ab a-=(a b b -22()()a b a b a b -=+-22ab a -2(2)a b -(a b b -(a b b +22()()a b a b a b -=+-【解析】【分析】设出弧所在圆的半径,由于弧长等于半径为5cm 的圆的周长的3倍,所以根据原题所给出的等量关系,列出方程,解方程即可. 【详解】解:设弧所在圆的半径为r , 由题意得,,解得,r=40cm . 16. 当时,代数式的值是____. 【答案】 【解析】【分析】先根据分式的加减乘除运算法则化简,然后再代入x 求值即可. 【详解】解:由题意可知: 原式,当时,原式,故答案为:. 【点睛】本题考查了分式的加减乘除混合运算,属于基础题,运算过程中细心即可求解.17. 某学校计划为“建党百年,铭记党史”演讲比赛购买奖品.已知购买2个种奖品和4个种奖品共需100元;购买5个种奖品和2个种奖品共需130元.学校准备购买两种奖品共20个,且种135253180rππ⨯⨯=⨯⨯3x =+22319()369x x x x x x x x+---÷--+12021231()9(33)x x x xx x x ⎡⎤+-=-⨯⎢--⎣⎦-22(3)(3)((1)(3))93x x x x xx x x x x ⎡⎤+--=-⨯⎢⎥--⎣⎦-()222993x x x xx x x --+=⨯--2(3)99x xx x x =⨯---21(3)x =-3x =+12021==12021A B A B ,A B A奖品的数量不小于种奖品数量的,则在购买方案中最少费用是_____元. 【答案】330【解析】 【分析】设A 种奖品的单价为x 元,B 种奖品的单价为y 元,根据“购买2个A 种奖品和4个种奖品共需100元;购买5个A 种奖品和2个种奖品共需130元”,即可得出关于A ,B 的二元一次方程组,在设购买A 种奖品m 个,则购买B 种奖品(20-m )个,根据购买A 种奖品的数量不少于B 种奖品数量的,即可得出关于m 的一元一次不等式,再结合费用总量列出一次函数,根据一次函数性质得出结果.【详解】解:设A 种奖品的单价为x 元,B 种奖品的单价为y 元, 依题意,得:, 解得: ∴A 种奖品的单价为20元,B 种奖品的单价为15元.设购买A 种奖品m 个,则购买B 种奖品 个,根据题意得到不等式:m ≥(20-m ),解得:m ≥, ∴≤m ≤20, 设总费用为W ,根据题意得:W =20m +15(20-m )=5m +300,∵k =5>0,∴W 随m 的减小而减小,∴当m =6时,W 有最小值,∴W =5×6+300=330元则在购买方案中最少费用是330元.故答案为:330.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:找准等量关系,正确列出二元一次方程组;根据各数量之间的关系,正确列出一元一次不等式与一次函数.18. 已知是一元二次方程的两个根,则__________. B 25B B 252410052130x y x y +=⎧⎨+=⎩2015x y =⎧⎨=⎩(20)m -25407407,m n 2320x x --=11m n+=【答案】 【解析】 【分析】运用一元二次方程根与系数的关系求解即可.【详解】解: ∵是一元二次方程的两个根,根据根与系数的关系得:,,∴, 故答案为:. 【点睛】本题主要考查一元二次方程根与系数的关系,熟知是解题关键. 19. 边长为的正六边形,它的外接圆与内切圆半径的比值是_______.【解析】【分析】依题意作出图形,找出直角三角形,它的外接圆与内切圆半径为直角三角形的两条边,根据三角函数值即可求出.【详解】如图:正六边形中,过作 中,, 它的外接圆与内切圆半径的比值是.32-,m n 2320x x --=3b m n a +=-=2cmn a==-211=3m n m n mn +-+=32-1212a x c x a x x b +=-=g ,4cm AOB O ,BO AB ⊥1=(62)1801206CAB ∠-⨯︒=︒Rt ABO V 1=602OAB CAB ∠=∠︒301∴∠=︒1cos 1AO BO ===∠【点睛】本题考查了正多边形的外接圆和内切圆的相关知识,对称性,特殊角的锐角三角函数,依题意作出图形是解决本题的关键.20. 如图,在平面直角坐标系中,为坐标原点,垂直于轴,以为对称轴作的轴对称图形,对称轴与线段相交于点,点的对应点恰好落在的双曲线上.点的对应点分别是点.若点为的中点,且,则的值为____.【答案】【解析】【分析】先利用轴对称和中点的定义,确定EG 和EO 之间的关系,再利用平行线分线段成比例定理及推论,得到FG 和OD 之间的关系,设EG =x ,FG =y ,用它们表示出D 点坐标,接着得到B 点坐标,利用,得到,再利用反比例函数的定义,计算出B 点横纵坐标的积,即为所求k 的值.【详解】解:如图所示,由轴对称的性质可知:GE =GA ,CG =OG ,BC =OD ,∵点为的中点,∴AE =OA ,∴, ∵MN ∥y 轴, ∴, ∴,∵,∴, O MN x MN ODE V MN DE F D B (0,0)k y k x x=≠<O E 、C A 、A OE 1AEF S =△k 24-1AEF S =△1xy =A OE 1244EG EG EG OE AE EG ===14FG EG OD EO ===4OD FG 1AEF S =△112AE FG ⋅=∴, ∴,设EG =x ,FG =y ,则OG =3x ,OD =4y ,∴,因为D 点和B 点关于MN 对称,∴∵,∴∴,∵点恰好落在的双曲线上, ∴,故答案为:.【点睛】本题考查了轴对称的性质、中点的定义、平行线分线段成比例定理的推论、反比例函数的定义等内容,解决本题的关键是牢记相关定义与性质,能根据题意在图形中找到对应关系,能挖掘图形中的隐含信息等,本题蕴含了数形结合的思想方法等.21. 在边长为4的正方形中,连接对角线,点是正方形边上或对角线上的一点,若,则______.【答案】1【解析】【分析】按P 在正方形的边上和对角线上分别画出图形,再逐个求解即可.【详解】解:∵PB =3PC , 1212EG FG ⨯⋅=1EG FG ⋅=()0,4D y ()6,4B x y -1EG FG ⋅=1xy =6424x y -⋅=-B (0,0)k y k x x=≠<24k =-24-ABCD AC BD 、P 3PB PC =PC =∴P 点不可能位于边AB 上,接下来分类讨论:情况一:当P 点位于正方形边BC 上时,如下图1所示:∵PB =3PC ,∴PC=BC =1; 情况二:当P 位于正方形边CD 上时,如下图2所示:设PC =x ,则BP =3PC =3x ,在Rt △BPC 中,由勾股定理可知:4²+x ²=(3x )²,解得x (负值舍去),∴PC ;情况三:当P 位于正方形边AD 上时,如下图3所示:设AP =x ,则DP =4-x ,Rt △ABP 中,BP ²=AP ²+AB ²=x ²+16,Rt △CPD 中,CP ²=PD ²+CD ²=(4-x )²+16=x²-8x +32,14∵BP =3PC ,∴x ²+16=9(x ²-8x +32),整理得到:x ²-9x +34=0,此方程无解,故P 点不可能位于边AD 上;情况四:P 点位于对角线BD 上时,过P 点作PH ⊥BC 于H 点,如下图所示:设PC =x ,则BP =3PC =3x ,∵∠DBC =45°,∴△BPH 为等腰直角三角形,其三边之比为∴BH=PH,CH =BC-BH =, 在Rt△PHC 中,由勾股定理可知:PC ²=PH ²+CH ²,∴, 整理得:,此方程无解,故P 点不可能在对角线BD 上;情况五:P 点位于对角线AC 上时,过P 点作PH ⊥BC 于H 点,如下图所示:设PC,则BP =3PC =,∵∠PCB =45°,∴△PCH 为等腰直角三角形,其三边之比为,1:1:x 4x -222)(4)x x =+-2240x -+=∴PH =CH =,BH =BC-CH =4-x ,在Rt △PHB 中,由勾股定理可知:PB ²=PH ²+BH ²,∴,整理得:,解得:负值舍去), ∴; 综上所述,. 【点睛】本题考查了正方形的性质,勾股定理的应用及分类讨论的思想,本题中由于P 点的位置未定,故需要分多种情况讨论.22. 下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形…,依此规律,则第个图形中三角形个数是_______.【答案】【解析】【分析】此题只需分成上下两部分即可找到其中规律,上方的规律为(n -1),下方规律为n 2,结合两部分即可得出答案.【详解】解:将题意中图形分为上下两部分,则上半部规律为:0、1、2、3、4……n -1,下半部规律为:12、22、32、42……n 2,∴上下两部分统一规律:.故答案为:.【点睛】本题主要考查的图形的变化规律,解题的关键是将图形分为上下两部分分别研究.为x 222)(4)x x =+-2220x x +-=x PC 1PC =n 21n n +-21n n +-21n n +-三、解答题(本题共7个小题,共54分)请在答题卡上把你的答案写在相对应的题号后的指定区域内23. (1)如图,已知为边上一点,请用尺规作图的方法在边上求作一点.使.(保留作图痕迹,不写作法)(2)在上图中,如果,则的周长是_______.【答案】(1)见解析;(2)9.【解析】【分析】(1)直接根据垂直平分线-尺规作图方法作图即可;(2)根据(1)中可知,即可求得的周长.【详解】(1)作法:如图所示,①连接(用虚线),②作的垂直平分线交于,③标出点即为所求,(2)∵,∴,∴的周长=9.【点睛】本题主要考查垂直平分线的做法-尺规作图,熟知垂直平分线的性质是解题的关键.24. 如图所示,在网格中,每个小正方形的边长均为1个单位长度,把小正方形的顶点叫做格点,为平面直角坐标系的原点,矩形的4个顶点均在格点上,连接对角线.,ABC P V AB AC E AE EP AC +=6cm,3cm AC AP ==APE V cm AE EP AC +=APE V PC PC AC E E PE CE =AE EP AC +=APE V 36AP AE PE AP AC ++=+=+=O OABC OB。

2019-2020学年黑龙江省绥化市七年级第二学期期末经典数学试题含解析

2019-2020学年黑龙江省绥化市七年级第二学期期末经典数学试题含解析

2019-2020学年黑龙江省绥化市七年级第二学期期末经典数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每题只有一个答案正确)1.下列调查中,调查方式不合理的是()A.用抽样调查了解建昌县中学生每周完成家庭作业所用的时间B.用抽样调查了解神舟十号零部件合格情况C.用全面调查了解某班学生对6月5日是“世界环境日”的知晓情况D.用全面调查了解乘坐高铁的旅客是否携带危险品情况【答案】B【解析】【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.由此即可解答.【详解】选项A,用抽样调查了解建昌县中学生每周完成家庭作业所用的时间,调查方式合理;选项B,用抽样调查了解神舟十号零部件合格情况,调查方式不合理;选项C,用全面调查了解某班学生对6月5日是“世界环境日”的知晓情况,调查方式合理;选项D,用全面调查了解乘坐高铁的旅客是否携带危险品情况,调查方式合理.故选B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.若,则的值为()A.2 B.C.D.3【答案】B【解析】根据已知等式,利用非负数的性质列出方程组,求出方程组的解得到x与y的值,即可确定出的值. 【详解】解:①-②得:把代入①得:则故选B.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.在正整数范围内,方程x+4y=12的解有()A.0 组B.1 组C.3 组D.2组【答案】D【解析】【分析】分别令y=1、2、3,然后求出x的值,即可得解.【详解】当y=1时,x+4×1=12,解得x=8;当y=2时,x+4×2=12,解得x=4;当y=3时,x+4×3=12,解得x=0(不是正整数,舍去).所以,方程x+4y=12的解有共2组。

绥化数学中考统计与概率试题归纳与分析.docx

绥化数学中考统计与概率试题归纳与分析.docx

绥化数学中考统计与概率试题归纳与分析1、 一个不透明的口袋中,装有红球6个,白球9个,黑球3个,这些球除颜色不同外没有任何区别,丙从中任意摸出一个球,要使摸到黑的概率为| ,需要往这个口袋再放入 同种黑球 ____________________ 个.2、 在英语句子“wish you success!”(祝你成功!)中任选一个字母,这个字母为"s”的概率是 ______3、 中田象棋红方棋子按兵种不同分布如下:1个帅.5个兵.“士、象、马、车,炮”各两个.将所有棋子反面朝上放在棋盘中,任取一个不是士,彖,帅的概率是 ______________ .• •4、 有一个正十二而体,12个面上分别写有1〜12这12个整数,投掷这个正十二而体一次,向上一而的数字是3的倍数或4的倍数的概率是 ___________ ・5^已知5个正数d|, a 3, a A ,色的平均数是G ,且> a 2 >ci 3> a A > a 5,则数据a v a 2,a 4, @的平均数和中位数是()7、“一方有难,八方支援”,当青海玉树发生地震后,全国人民积极开展捐款款物献爱心活根据表中所提供的信息,这50名同学捐款金额的众数是()A. 15B. 30C. 5()D. 208、为了解某地区30万电视观众对新闻、动画、娱乐三类节目的喜爱情况,根据老年人、成 年人、青少年各年龄段实际人口的比例3: 5: 2,随机抽取一定数量的观众进行调查,得到 如下统计图.B.仏卄5 色 + °3C. ClyD.鶴彳+①26 26 26、一组数据 4, 5, 6, 7, 7, 8的屮位数和众数分别是A. 7, 7B. 7, 6.5C. 5.5, 7D. 6.5, 7 )(1)上面所用的调查方法是 ______________ (填“全面调查”或“抽样调查”); (2)写出折线统计图中A 、B 所代表的值;A : ___________________ : B: ____________________________ (3)求该地区喜爱娱乐类节目的成年人的人数.(1) 请将表一和图一中的空缺部分补充完整.(2) 竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图二(没有弃权票,每名学生只能推荐一个),请计算每人的得票数.(3)若每票计1分,系里将笔试、口试、得票三项测试得分按4:3:3 的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判 断谁能当选.10、某工厂为了选拔1名车工参加直径为5mm 精密零件的加工技木比赛.随机抽取甲,乙 两名车工加工的5个零体.现测得的结果如下表.平均数依次为石,匚,方差依次为S ;, S ;,则下列关系中完全正确的是()ABC笔试8595 90 口试8085竞选人新闻别用了两种方式进行了统计, 表一 ■ 笔试□ 口试9、4 B, C 三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分 分数/分 图一A.切<兀乙,B.兀卩二兀乙,S:vS:C.州严兀乙,S:>S;D.切>兀乙,11、为增强学生体质,教育行政部门规定学生每天在校参加户外体育活动的平均时间不少于1小时.某区为了解学生参加户外体育活动的情况.对部分学生参加户外体育活动的时问进行了抽样调查,并将调查结果绘制成如下的统计图表(不完整).请你根据图中提供的信息解答下列问题;(1)求a, b的值.(2)求表示参加户外体育活动吋间为0.5小吋的扇形圆心角的度数.(3)该区0.8万名学生参加户外体育活动时间达标的约有多少人?12、(本小题满分7分).某区对参加2010年屮考的5000名初屮毕业生进行了一次视力抽样调查,绘制出频分布表和频数分布直方图的一部分.请根据图表信息冋答下列问题:(1) _______________________________ 在频数分布表屮,a的值为, b的值为,并将频数分布直方图补充完整;(2)甲同学说“我的视力情况是此次抽样调查所得数据的屮位数”,问甲同学的视力情况应在什么范围内?(3)若视力在4. 9以上(含4.9)均属正常,则视力正常的人数占被统计人数的百分比是_________ ,并根据上述信息估计全区初中毕业生中视力正常的学生有多少人?觇力频数{人)换率4,0“4・ 3200J4.3WH4. 6400.24 6Cx<€ 9700354£W«5・ 2a0.35,注<5・510b(每粼竝据含址小值.不含盘大值)。

2023年黑龙江省绥化市中考数学真题(精品解析)【可编辑可打印】

2023年黑龙江省绥化市中考数学真题(精品解析)【可编辑可打印】
C、既是轴对称图形又是中心对称图形, 故 C 选项合题意; D、不是轴对称图形,是中心对称图形, 故 D 选项不合题意. 故选: C.
【点睛】本题主要考查了轴对称图形和中心对称图形,解题的关键在于能够熟练掌握轴对称图形和 中心对称图形的定义.
2
2. 计算 -5 + 20 的结果是( )
A. -3
B. 7
7
7. 下列命题中叙述正确的是( ) A. 若方差s2甲> s2乙 ,则甲组数据的波动较小 B. 直线外一点到这条直线的垂线段,叫做点到直线的距离 C. 三角形三条中线的交点叫做三角形的内心
D. 角的内部到角的两边的距离相等的点在角的平分线上 【答案】D
【解析】
【分析】根据方差的意义, 点到直线的距离, 三角形的重心的定义,角平分线的性质,逐项分析判断 即可求解. 【详解】解: A. 若方差s甲2 > s2乙 ,则乙组数据的波动较小,故该选项不正确,不符合题意; B. 直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,故该选项不正确,不符合题意; C. 三角形三条中线的交点叫做三角形的重心,故该选项不正确, 不符合题意; D. 角的内部到角的两边的距离相等的点在角的平分线上,故该选项正确,符合题意; 故选: D. 【点睛】本题考查了方差的意义,点到直线的距离,三角形的重心的定义,角平分线的性质,熟练 掌握以上知识是解题的关键.
位数的定义,即可判断 B 选项,根据组中值为
= 95 ,即可判断 C 选项, 根据110 ~ 120 的占比乘
以 360° ,即可判断 D 选项.
【详解】解: A 、 该组数据的样本容量是12 ¸ 24% = 50 ,故该选项不正确,不符合题意; B 、80 £ x < 90 的人数为: 50 - 4 - 12 - 12 - 7 = 15 ,4 +15 < 25,4 +15 +12 > 25 , 该组数据的中位数落在90 ~ 100 这一组,故该选项正确,符合题意; C、 90 ~ 100 这组数据的组中值是95 ,故该选项不正确,不符合题意; D 、 110 ~ 120 这组数据对应的扇形统计图的圆心角度数为 ´ 360° = 50.4° ,故该选项不正确,不符合题

2023年黑龙江省绥化市(初三学业水平考试)数学中考真题试卷含详解

2023年黑龙江省绥化市(初三学业水平考试)数学中考真题试卷含详解

二〇二三年绥化市初中毕业学业考试数学试卷考生注意:1.考试时间120分钟2.本试卷共三道大题,28个小题3.所有答案都必须写在答题卡上所对应的题号后的指定区域内一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2.计算052-+的结果是()A.3- B.7C.4- D.63.如图是一个正方体,被切去一角,则其左视图是()A. B. C. D.4.纳米是非常小的长度单位,1nm 0.000000001m =,把0.000000001用科学记数法表示为()A.9110-⨯ B.8110-⨯ C.8110⨯ D.9110⨯5.下列计算中,结果正确的是()A.333()pq p q -= B.3228x x x x x ⋅+⋅= C.5=± D.()326a a =6.将一副三角板按下图所示摆放在一组平行线内,125∠=︒,230∠=︒,则3∠的度数为()A.55︒B.65︒C.70︒D.75︒7.下列命题中叙述正确的是()A.若方差22s s >乙甲,则甲组数据的波动较小B.直线外一点到这条直线的垂线段,叫做点到直线的距离C.三角形三条中线的交点叫做三角形的内心D.角的内部到角的两边的距离相等的点在角的平分线上8.绥化市举办了2023年半程马拉松比赛,赛后随机抽取了部分参赛者的成绩(单位:分钟),并制作了如下的参赛者成绩组别表、扇形统计图和频数分布直方图.则下列说法正确的是()组别参赛者成绩A7080x≤<B8090x≤<C90100x≤<D100110x≤<E110120x≤<A.该组数据的样本容量是50人B.该组数据的中位数落在90~100这一组C.90~100这组数据的组中值是96D.110~120这组数据对应的扇形统计图的圆心角度数为51︒9.在平面直角坐标系中,点A在y轴的正半轴上,AC平行于x轴,点B,C的横坐标都是3,2BC=,点D在AC上,且其横坐标为1,若反比例函数kyx=(0x>)的图像经过点B,D,则k的值是()A.1B.2C.3D.3210.某运输公司,运送一批货物,甲车每天运送货物总量的14.在甲车运送1天货物后,公司增派乙车运送货物,两车又共同运送货物12天,运完全部货物.求乙车单独运送这批货物需多少天?设乙车单独运送这批货物需x 天,由题意列方程,正确的是()A.11142x += B.11111424x ⎛⎫++= ⎪⎝⎭C.1111142x⎛⎫++= ⎪⎝⎭ D.11111442x⎛⎫++= ⎪⎝⎭11.如图,在菱形ABCD 中,60A ∠=︒,4AB =,动点M ,N 同时从A 点出发,点M 以每秒2个单位长度沿折线A B C --向终点C 运动;点N 以每秒1个单位长度沿线段AD 向终点D 运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为x 秒,AMN 的面积为y 个平方单位,则下列正确表示y 与x 函数关系的图象是()A. B. C. D.12.如图,在正方形ABCD 中,点E 为边CD 的中点,连接AE ,过点B 作BF AE ⊥于点F ,连接BD 交AE 于点G ,FH 平分BFG ∠交BD 于点H .则下列结论中,正确的个数为()①2AB BF AE =⋅;②:2:3BGF BAF S S =△△;③当AB a =时,22BD BD HD a -⋅=A.0个B.1个C.2个D.3个二、填空题13.因式分解:2x xy xz yz +--=_______.14.若式子5x x有意义,则x 的取值范围是_______.15.在4张完全相同的卡片上,分别标出1,2,3,4,从中随机抽取1张后,放回再混合在一起.再随机抽取一张,那么第二次抽取卡片上的数字能够整除第一次抽取卡片上的数字的概率是_________.16.已知一元二次方程256x x x +=+的两根为1x 与2x ,则1211+x x 的值为_______.17.化简:2222142442x x x x x x x x x +--⎛⎫-÷=⎪--+-⎝⎭_______.18.如图,O 的半径为2cm ,AB 为O 的弦,点C 为 AB 上的一点,将 AB 沿弦AB 翻折,使点C 与圆心O 重合,则阴影部分的面积为_______.(结果保留π与根号)19.如图,在平面直角坐标系中,ABC 与AB C ''△的相似比为12∶,点A 是位似中心,已知点(2,0)A ,点(,)C a b ,90C ∠=︒.则点C '的坐标为_______.(结果用含a ,b的式子表示)20.如图,ABC 是边长为6的等边三角形,点E 为高BD 上的动点.连接CE ,将CE 绕点C 顺时针旋转60︒得到CF .连接AF,EF ,DF ,则CDF 周长的最小值是______.21.在求123100++++ 的值时,发现:1100101+=,299101+= ,从而得到123100++++= 101505050⨯=.按此方法可解决下面问题.图(1)有1个三角形,记作11a =;分别连接这个三角形三边中点得到图(2),有5个三角形,记作25a =;再分别连接图(2)中间的小三角形三边中点得到图(3),有9个三角形,记作39a =;按此方法继续下去,则123n a a a a ++++= _______.(结果用含n 的代数式表示)22.已知等腰ABC ,120A ∠=︒,2AB =.现将ABC 以点B 为旋转中心旋转45︒,得到A BC ''△,延长C A ''交直线BC 于点D .则A D '的长度为_______.三、解答题23.已知:点P 是O 外一点.(1)尺规作图:如图,过点P 作出O 的两条切线PE ,PF ,切点分别为点E 、点F .(保留作图痕迹,不要求写作法和证明)(2)在(1)的条件下,若点D 在O 上(点D 不与E ,F 两点重合),且30EPF ∠=︒.求EDF ∠的度数.24.如图,直线MN 和EF 为河的两岸,且MN EF ∥,为了测量河两岸之间的距离,某同学在河岸FE 的B 点测得30CBE ∠=︒,从B 点沿河岸FE 的方向走40米到达D 点,测得45CDE ∠=︒.(1)求河两岸之间的距离是多少米?(结果保留根号)(2)若从D 点继续沿DE 的方向走12)+米到达P 点.求tan CPE ∠的值.25.某校组织师生参加夏令营活动,现准备租用A 、B 两型客车(每种型号的客车至少租用一辆).A 型车每辆租金500元,B 型车每辆租金600元.若5辆A 型和2辆B 型车坐满后共载客310人;3辆A 型和4辆B 型车坐满后共载客340人.(1)每辆A 型车、B 型车坐满后各载客多少人?(2)若该校计划租用A 型和B 型两种客车共10辆,总租金不高于5500元,并将全校420人载至目的地.该校有几种租车方案?哪种租车方案最省钱?(3)在这次活动中,学校除租用A 、B 两型客车外,又派出甲、乙两辆器材运输车.已知从学校到夏令营目的地的路程为300千米,甲车从学校出发0.5小时后,乙车才从学校出发,却比甲车早0.5小时到达目的地.下图是两车离开学校的路程s (千米)与甲车行驶的时间t (小时)之间的函数图象.根据图象信息,求甲乙两车第一次相遇后,t 为何值时两车相距25千米.26.已知:四边形ABCD 为矩形,4AB =,3AD =,点F 是BC 延长线上的一个动点(点F 不与点C 重合).连接AF 交CD 于点G .(1)如图一,当点G 为CD 的中点时,求证:ADG FCG ≅△△.(2)如图二,过点C 作CE AF ⊥,垂足为E .连接BE ,设BF x =,CE y =.求y 关于x 的函数关系式.(3)如图三,在(2)的条件下,过点B 作BM BE ⊥,交FA 的延长线于点M .当1CF =时,求线段BM 的长.27.如图,MN 为⊙O 的直径,且15MN =,MC 与ND 为圆内的一组平行弦,弦AB 交MC 于点H .点A 在¼MC上,点B 在»NC上,90OND AHM ∠+∠=︒.(1)求证:MH CH AH BH ⋅=⋅.(2)求证: AC BC=.(3)在⊙O 中,沿弦ND 所在的直线作劣弧 ND 的轴对称图形,使其交直径MN 于点G .若3sin 5CMN ∠=,求NG 的长.28.如图,抛物线21y ax bx c =++的图象经过(6,0)A -,(2,0)B -,(0,6)C 三点,且一次函数6y kx =+的图象经过点B .(1)求抛物线和一次函数的解析式.(2)点E ,F 为平面内两点,若以E 、F 、B 、C 为顶点的四边形是正方形,且点E 在点F 的左侧.这样的E ,F 两点是否存在?如果存在,请直接写出所有满足条件的点E 的坐标:如果不存在,请说明理由.(3)将抛物线21y ax bx c =++的图象向右平移8个单位长度得到抛物线2y ,此抛物线的图象与x 轴交于M ,N两点(M 点在N 点左侧).点P 是抛物线2y 上的一个动点且在直线NC 下方.已知点P 的横坐标为m .过点P 作PD NC ⊥于点D .求m 为何值时,12CD PD +有最大值,最大值是多少?二〇二三年绥化市初中毕业学业考试数学试卷一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】C【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A、是轴对称图形,不是中心对称图形,故A选项不合题意;B、是轴对称图形,不是中心对称图形,故B选项不符合题意;C、既是轴对称图形又是中心对称图形,故C选项合题意;D、不是轴对称图形,是中心对称图形,故D选项不合题意.故选:C.【点睛】本题主要考查了轴对称图形和中心对称图形,解题的关键在于能够熟练掌握轴对称图形和中心对称图形的定义.2.计算052-+的结果是()A.3-B.7C.4-D.6【答案】D【分析】根据求一个数的绝对值,零指数幂进行计算即可求解.【详解】解:052-+516=+=,故选:D.【点睛】本题考查了求一个数的绝对值,零指数幂,熟练掌握求一个数的绝对值,零指数幂是解题的关键.3.如图是一个正方体,被切去一角,则其左视图是()A. B. C. D.【答案】B【分析】根据左视图的意义判断即可.【详解】根据题意,该几何体的左视图为:,故选B .【点睛】本题考查了三视图的画法,熟练掌握三视图的空间意义是解题的关键.4.纳米是非常小的长度单位,1nm 0.000000001m =,把0.000000001用科学记数法表示为()A.9110-⨯B.8110-⨯ C.8110⨯ D.9110⨯【答案】A【分析】用科学记数法表示绝对值较小的数,一般形式为10n a -⨯,其中110a ≤<,n 为整数.【详解】解:90.000000001110-=⨯.故选:A .【点睛】此题主要考查了用科学记数法表示绝对值较小的数,一般形式为10n a -⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定,确定a 与n 的值是解题的关键.5.下列计算中,结果正确的是()A.333()pq p q -=B.3228x x x x x ⋅+⋅=C.5=± D.()326a a =【答案】D【分析】根据积的乘方与幂的乘方运算,同底数幂的乘法、合并同类项,算术平方根,进行计算即可求解.【详解】解:A.333()pq p q =--,故该选项不正确,不符合题意;B.43222x x x x x ⋅+⋅=,故该选项不正确,不符合题意;C.5=,故该选项不正确,不符合题意;D.()326a a =,故该选项正确,符合题意;故选:D .【点睛】本题考查了积的乘方与幂的乘方运算,同底数幂的乘法、合并同类项,算术平方根,熟练掌握以上运算法则是解题的关键.6.将一副三角板按下图所示摆放在一组平行线内,125∠=︒,230∠=︒,则3∠的度数为()A.55︒B.65︒C.70︒D.75︒【答案】C【分析】根据两直线平行内错角相等即可求解.【详解】解:依题意,190345∠+︒=∠+︒,∵125∠=︒,∴370∠=︒,故选:C .【点睛】本题考查了平行线的性质,熟练掌握两直线平行内错角相等是解题的关键.7.下列命题中叙述正确的是()A.若方差22s s >乙甲,则甲组数据的波动较小B.直线外一点到这条直线的垂线段,叫做点到直线的距离C.三角形三条中线的交点叫做三角形的内心D.角的内部到角的两边的距离相等的点在角的平分线上【答案】D【分析】根据方差的意义,点到直线的距离,三角形的重心的定义,角平分线的性质,逐项分析判断即可求解.【详解】解:A.若方差22s s >乙甲,则乙组数据的波动较小,故该选项不正确,不符合题意;B.直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,故该选项不正确,不符合题意;C.三角形三条中线的交点叫做三角形的重心,故该选项不正确,不符合题意;D.角的内部到角的两边的距离相等的点在角的平分线上,故该选项正确,符合题意;故选:D .【点睛】本题考查了方差的意义,点到直线的距离,三角形的重心的定义,角平分线的性质,熟练掌握以上知识是解题的关键.8.绥化市举办了2023年半程马拉松比赛,赛后随机抽取了部分参赛者的成绩(单位:分钟),并制作了如下的参赛者成绩组别表、扇形统计图和频数分布直方图.则下列说法正确的是()组别参赛者成绩A 7080x ≤<B 8090x ≤<C 90100x ≤<D 100110x ≤<E110120x ≤<A.该组数据的样本容量是50人B.该组数据的中位数落在90~100这一组C.90~100这组数据的组中值是96D.110~120这组数据对应的扇形统计图的圆心角度数为51︒【答案】B【分析】根据C 组的人数除以占比求得样本的容量,结合统计图求得8090x ≤<的人数为15,进而根据中位数的定义,即可判断B 选项,根据组中值为901002+=95,即可判断C 选项,根据110~120的占比乘以360︒,即可判断D 选项.【详解】解:A 、该组数据的样本容量是1224%50÷=,故该选项不正确,不符合题意;B 、8090x ≤<的人数为:5041212715----=,41525+<,4151225++>,该组数据的中位数落在90~100这一组,故该选项正确,符合题意;C 、90~100这组数据的组中值是95,故该选项不正确,不符合题意;D 、110~120这组数据对应的扇形统计图的圆心角度数为736050.450⨯︒=︒,故该选项不正确,不符合题意;故选:B .【点睛】本题考查了样本的容量,条形统计图与扇形统计图信息关联,中位数的定义,求扇形统计图的圆心角的度数,求频数分布直方图组中值,从统计图表中获取信息是解题的关键.9.在平面直角坐标系中,点A 在y 轴的正半轴上,AC 平行于x 轴,点B ,C 的横坐标都是3,2BC =,点D 在AC上,且其横坐标为1,若反比例函数ky x=(0x >)的图像经过点B ,D ,则k 的值是()A.1B.2C.3D.32【答案】C【分析】设()3,B m ,则()()3,2,1,2C m D m ++根据反比例函数的性质,列出等式计算即可.【详解】设()3,B m ,∵点B ,C 的横坐标都是3,2BC =,AC 平行于x 轴,点D 在AC 上,且其横坐标为1,∴()()3,2,1,2C m D m ++,∴32m m =+,解得1m =,∴()3,1B ,∴313k =⨯=,故选C .【点睛】本题考查了反比例函数解析式的确定,熟练掌握k的意义,反比例函数的性质是解题的关键.10.某运输公司,运送一批货物,甲车每天运送货物总量的14.在甲车运送1天货物后,公司增派乙车运送货物,两车又共同运送货物12天,运完全部货物.求乙车单独运送这批货物需多少天?设乙车单独运送这批货物需x 天,由题意列方程,正确的是()A.11142x += B.11111424x ⎛⎫++= ⎪⎝⎭C.1111142x⎛⎫++= ⎪⎝⎭ D.11111442x⎛⎫++= ⎪⎝⎭【答案】B【分析】设乙车单独运送这批货物需x 天,由题意列出分式方程即可求解.【详解】解:设乙车单独运送这批货物需x 天,由题意列方程11111424x ⎛⎫++= ⎪⎝⎭,故选:B .【点睛】本题考查了列分式方程,根据题意找到等量关系列出方程是解题的关键.11.如图,在菱形ABCD 中,60A ∠=︒,4AB =,动点M ,N 同时从A 点出发,点M 以每秒2个单位长度沿折线A B C --向终点C 运动;点N 以每秒1个单位长度沿线段AD 向终点D 运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为x 秒,AMN 的面积为y 个平方单位,则下列正确表示y 与x 函数关系的图象是()A. B. C. D.【答案】A【分析】连接BD ,过点B 作BE AD ⊥于点E ,根据已知条件得出ABD △是等边三角形,进而证明AMN ABE ∽得出90ANM AEB ∠=∠=︒,当04t <<时,M 在AB 上,当48t ≤<时,M 在BC 上,根据三角形的面积公式得到函数关系式,【详解】解:如图所示,连接BD ,过点B 作BE AD ⊥于点E ,当04t <<时,M 在AB 上,菱形ABCD 中,60A ∠=︒,4AB =,∴AB AD =,则ABD △是等边三角形,∴122AE ED AD ===,BE ==∵2,AM x AN x ==,∴2AM ABAN AE==,又A A ∠=∠∴AMN ABE ∽∴90ANM AEB ∠=∠=︒∴MN ==,∴2122y x x ==当48t ≤<时,M 在BC 上,∴1122y AN BE x =⨯=⨯=,综上所述,04t <<时的函数图象是开口向上的抛物线的一部分,当48t ≤<时,函数图象是直线的一部分,故选:A .【点睛】本题考查了动点问题的函数图象,二次函数图象的性质,一次函数图象的性质,菱形的性质,勾股定理,等边三角形的性质与判定,相似三角形的性质与判定,熟练掌握以上知识是解题的关键.12.如图,在正方形ABCD 中,点E 为边CD 的中点,连接AE ,过点B 作BF AE ⊥于点F ,连接BD 交AE 于点G ,FH 平分BFG ∠交BD 于点H .则下列结论中,正确的个数为()①2AB BF AE =⋅;②:2:3BGF BAF S S =△△;③当AB a =时,22BD BD HD a -⋅=A.0个 B.1个C.2个D.3个【答案】D【分析】①根据题意可得90ABF BAF DAE ∠=︒-∠=∠,则cos cos ABF EAD ∠=∠,即BF ADAB AE=,又AB AD =,即可判断①;②设正方形的边长为a ,根据勾股定理求得AF ,证明GAB GED ∽,根据相似三角形的性质求得GE ,进而求得FG ,即可判断②;过点H 分别作,BF AE 的垂线,垂足分别为,M N ,根据②的结论求得BH ,勾股定理求得BD ,即可判断③.【详解】∵四边形ABCD 是正方形,∴90BAD ADE ∠=∠=︒,AB AD =∵BF AE⊥∴90ABF BAF DAE ∠=︒-∠=∠∴cos cos ABF EAD ∠=∠即BF ADAB AE=,又AB AD =,∴2AB BF AE =⋅,故①正确;设正方形的边长为a ,∵点E 为边CD 的中点,∴2a DE =,∴1tan tans 2ABF EAD ∠=∠=,在Rt ABE △中,AB a ===,∴5AF a =在Rt ADE △中,2AE ==∴55352510EF AE AF a =-=-=,∵AB DE ∥∴GAB GED ∽∴2AG ABGE DE==∴136GE AE a ==∴25615FG AE AF GE a a a a =--=--=∴322515AF FG ==∴:2:3BGF BAF S S =△△,故②正确;∵AB a =,∴22222BD AB AD a =+=,如图所示,过点H 分别作,BF AE 的垂线,垂足分别为,M N,又∵BF AE ⊥,∴四边形FMHN 是矩形,∵FH 是BFG ∠的角平分线,∴HM HN =,∴四边形FMHN 是正方形,∴FN HM HN ==∵25252,515BF AF a FG a ===∴13MH FG BM BF ==设MH b =,则34BF BM FM BM MH b b b =+=+=+=在Rt BMH中,BH ==,∵5BF a =∴45a b =解得:10b a =∴52102BH a a ==,∴222222B a D BD HD a a =--⋅⨯=,故④正确.故选:D .【点睛】本题考查了解直角三角形,相似三角形的性质与判定,正方形的性质,熟练掌握相似三角形的性质与判定是解题的关键.二、填空题13.因式分解:2x xy xz yz +--=_______.【答案】()()x y x z +-【分析】先分组,然后根据提公因式法,因式分解即可求解.【详解】解:2x xy xz yz +--=()()()()x x y z x y x y x z +-+=+-,故答案为:()()x y x z +-.【点睛】本题考查了因式分解,熟练掌握因式分解的方法是解题的关键.14.若式子5x x有意义,则x 的取值范围是_______.【答案】5x ≥-且0x ≠##0x ≠且5x ≥-【分析】根据分母不为零,二次根式的被开方数是非负数,列出不等式计算即可.【详解】∵式子5x x有意义,∴50x +≥且0x ≠,∴5x ≥-且0x ≠,故答案为:5x ≥-且0x ≠.【点睛】本题考查了分母不为零,二次根式的被开方数是非负数,熟练掌握二次根式和分式有意义的条件是解题的关键.15.在4张完全相同的卡片上,分别标出1,2,3,4,从中随机抽取1张后,放回再混合在一起.再随机抽取一张,那么第二次抽取卡片上的数字能够整除第一次抽取卡片上的数字的概率是_________.【答案】12##0.5【分析】根据题意列表法求概率即可求解.【详解】解:列表如下,1234111 1=1213142221=212=232142=333 1=3 2313=344441=42 2=43414=共有16种等可能结果,符合题意的有8种,∴第二次抽取卡片上的数字能够整除第一次抽取卡片上的数字的概率是81162=,故答案为:12.【点睛】本题考查了列表法求概率,整除,熟练掌握列表法求概率是解题的关键.16.已知一元二次方程256x x x +=+的两根为1x 与2x ,则1211+x x 的值为_______.【答案】23-【分析】根据一元二次方程根与系数的关系得出121246x x x x +==-,,将分式通分,代入即可求解.【详解】解:∵一元二次方程256x x x +=+,即2460x x --=,的两根为1x 与2x ,∴121246x x x x +==-,,∴1211+x x 12124263x x x x +===--,故答案为:23-.【点睛】本题考查了分式的化简求值,一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.17.化简:2222142442x x x x x x x x x +--⎛⎫-÷= ⎪--+-⎝⎭_______.【答案】12x -##12x-+【分析】先根据分式的加减计算括号内的,同时将除法转化为乘法,再根据分式的性质化简即可求解.【详解】解:2222142442x x x x x x x x x+--⎛⎫-÷⎪--+-⎝⎭()()()()()2221242x x x x x x x x x +----=⨯--()()2222442x x x x x x x x ---+=⨯--12x =-;故答案为:12x -.【点睛】本题考查了分式的混合运算,熟练掌握分式的运算法则是解题的关键.18.如图,O 的半径为2cm ,AB 为O 的弦,点C 为 AB 上的一点,将 AB 沿弦AB 翻折,使点C 与圆心O 重合,则阴影部分的面积为_______.(结果保留π与根号)【答案】22π3cm 3⎛⎫-⎪⎝⎭【分析】根据折叠的性质得出AOC 是等边三角形,则60AOC ∠=︒,1OD CD ==,根据阴影部分面积AOC AOC S S =- 扇形即可求解.【详解】解:如图所示,连接,OA OC ,设,AB CO 交于点D∵将 AB 沿弦AB 翻折,使点C 与圆心O 重合,∴AC AO =,OC AB ⊥又OA OC =∴OA OC AC ==,∴AOC 是等边三角形,∴60AOC ∠=︒,1OD CD ==,∴AD ==,∴阴影部分面积)226012π22πcm 36023AOC AOC S S =-=⨯-⨯= 扇形故答案为:22πcm 3⎛-⎝.19.如图,在平面直角坐标系中,ABC 与AB C ''△的相似比为12∶,点A 是位似中心,已知点(2,0)A ,点(,)C a b ,90C ∠=︒.则点C '的坐标为_______.(结果用含a ,b 的式子表示)【答案】(62,2)a b --【分析】过点,C C '分别作x 轴的垂线,CD C D ''垂足分别为,D D ',根据题意得出2AD AD '=,则2,AD a CD b =-=,得出()224,0D a '-+,即可求解.【详解】解:如图所示,过点,C C '分别作x 轴的垂线,CD C D ''垂足分别为,D D ',∵ABC 与AB C ''△的相似比为12∶,点A 是位似中心,(2,0)A ∴2AD AD '=∵(,)C a b ,∴2,AD a CD b =-=,∴24,2A D a C D b '''=-=,∴()224,0D a '-+∴C '(62,2)a b --故答案为:(62,2)a b --.【点睛】本题考查了求位似图形的坐标,熟练掌握位似图形的性质是解题的关键.20.如图,ABC 是边长为6的等边三角形,点E 为高BD 上的动点.连接CE ,将CE 绕点C 顺时针旋转60︒得到CF .连接AF ,EF ,DF ,则CDF 周长的最小值是______.【答案】3+3+【分析】根据题意,证明CBE CAF ≌,进而得出F 点在射线AF 上运动,作点C 关于AF 的对称点C ',连接DC ',设CC '交AF 于点O ,则=90AOC ∠︒,则当,,D F C '三点共线时,FC FD +取得最小值,即FC FD F C F D CD ''''+=+=,进而求得C D ',即可求解.【详解】解:∵E 为高BD 上的动点.∴1302CBE ABC ∠=∠=︒∵将CE 绕点C 顺时针旋转60︒得到CF .ABC 是边长为6的等边三角形,∴,60,CE CF ECF BCA BC AC=∠=∠=︒=∴CBE CAF≌∴30CAF CBE ∠=∠=︒,∴F 点在射线AF 上运动,如图所示,作点C 关于AF 的对称点C ',连接DC ',设CC '交AF 于点O ,则=90AOC ∠︒在Rt AOC 中,30CAO ∠=︒,则132CO AC ==,则当,,D F C '三点共线时,FC FD +取得最小值,即FC FD F C F D CD ''''+=+=∵6CC AC '==,ACO C CD '∠=∠,CO CD=∴ACO C CD' ≌∴90C DC AOC '∠=∠=︒在C DC ' 中,C D '==,∴CDF 周长的最小值为3CD FC CD CD DC '++=+=+故答案为:3+【点睛】本题考查了轴对称求线段和的最值问题,等边三角形的性质与判定,全等三角形的性质与判定,勾股定理,熟练掌握等边三角形的性质与判定以及轴对称的性质是解题的关键.21.在求123100++++ 的值时,发现:1100101+=,299101+= ,从而得到123100++++= 101505050⨯=.按此方法可解决下面问题.图(1)有1个三角形,记作11a =;分别连接这个三角形三边中点得到图(2),有5个三角形,记作25a =;再分别连接图(2)中间的小三角形三边中点得到图(3),有9个三角形,记作39a =;按此方法继续下去,则123n a a a a ++++= _______.(结果用含n 的代数式表示)【答案】22n n -##22n n -+【分析】根据题意得出()14143n a n n =+-=-,进而即可求解.【详解】解:依题意,()1231,5,9,14143n a a a a n n ===⋅⋅⋅=+-=-,,∴123n a a a a ++++= ()21432122n n n n n n +-==-=-,故答案为:22n n -.【点睛】本题考查了图形类规律,找到规律是解题的关键.22.已知等腰ABC ,120A ∠=︒,2AB =.现将ABC 以点B 为旋转中心旋转45︒,得到A BC ''△,延长C A ''交直线BC 于点D .则A D '的长度为_______.【答案】44+-【分析】根据题意,先求得BC =,当ABC 以点B 为旋转中心逆时针旋转45︒,过点B 作BE A B '⊥交A D '于点E ,当ABC 以点B 为旋转中心顺时针旋转45︒,过点D 作DF BC '⊥交BC '于点F ,分别画出图形,根据勾股定理以及旋转的性质即可求解.【详解】解:如图所示,过点A 作AM BC ⊥于点M ,∵等腰ABC ,120BAC ∠=︒,2AB =.∴30ABC ACB ∠=∠=︒,∴112AM AB ==,BM CM ===∴BC =,如图所示,当ABC 以点B 为旋转中心逆时针旋转45︒,过点B 作BE A B '⊥交A D '于点E ,∵120BAC ∠=︒,∴60DA B '∠=︒,30A EB '∠=︒,在Rt A BE ' 中,24A E A B ''==,BE ==∵等腰ABC ,120BAC ∠=︒,2AB =.∴30ABC ACB ∠=∠=︒,∵ABC 以点B 为旋转中心逆时针旋转45︒,∴45ABA '∠=︒,∴180********DBE ∠=︒-︒-︒-︒=︒,1804530105A BD '∠=︒-︒-︒=︒在A BD ' 中,1801806010515D DA B A BD ∠=︒-∠-∠=︒-︒-︒=''︒,∴D EBD ∠=∠,∴EB ED ==∴4A D A E DE ''=+=+如图所示,当ABC 以点B 为旋转中心顺时针旋转45︒,过点D 作DF BC '⊥交BC '于点F ,在BFD △中,45BDF CBC ∠'=∠=︒,∴DF BF=在Rt DC F ' 中,30C '∠=︒∴3'3DF FC =∴33BC BF BF =+=∴33DF BF ==∴2623DC DF '==-∴63243A D C D A C ''''=-=-=-,综上所述,A D '的长度为423-或43+,故答案为:423-或43+.【点睛】本题考查了旋转的性质,勾股定理,含30度角的直角三角形的性质,熟练掌握旋转的性质,分类讨论是解题的关键.三、解答题23.已知:点P 是O 外一点.(1)尺规作图:如图,过点P 作出O 的两条切线PE ,PF ,切点分别为点E 、点F .(保留作图痕迹,不要求写作法和证明)(2)在(1)的条件下,若点D 在O 上(点D 不与E ,F 两点重合),且30EPF ∠=︒.求EDF ∠的度数.【答案】(1)见解析(2)75EDF ∠=︒或105︒【分析】(1)①连接PO ,分别以点,P O 为圆心,大于12PO 的长为半径画圆,两圆交于点,M N 两点,作直线MN交OP 于点A ,②以点A 为圆心,OA 为半径画圆,与O 交于,E F 两点,作直线,PE PF ,(2)根据切线的性质得出90PEO PFO ∠=∠=︒,根据四边形内角和得出150EOF ∠=︒,进而根据圆周角定理以及圆内接四边形对角互补即可求解.【小问1详解】解:如图所示,①连接PO ,分别以点,P O 为圆心,大于12PO 的长为半径画弧,两弧交于点,M N 两点,作直线MN 交OP 于点A ,②以点A 为圆心,OA 为半径画圆,与O 交于,E F 两点,作直线,PE PF ,则直线,PE PF 即为所求;【小问2详解】如图所示,点D 在O 上(点D 不与E ,F 两点重合),且30EPF ∠=︒,∵,PE PF 是O 的切线,∴90PEO PFO ∠=∠=︒,∴360909030150EOF ∠=︒-︒-︒-︒=︒,当点D 在优弧 EF 上时,1752EDF EOF ∠=∠=︒,当点D 在劣弧 EF上时,18075105EDF ∠=︒-︒=︒,∴75EDF ∠=︒或105︒.【点睛】本题考查了切线的性质与判定,直径所对的圆周角是直角,圆内接四边形对角互补,圆周角定理,熟练掌握以上知识是解题的关键.24.如图,直线MN 和EF 为河的两岸,且MN EF ∥,为了测量河两岸之间的距离,某同学在河岸FE 的B 点测得30CBE ∠=︒,从B 点沿河岸FE 的方向走40米到达D 点,测得45CDE ∠=︒.(1)求河两岸之间的距离是多少米?(结果保留根号)(2)若从D 点继续沿DE 的方向走312)+米到达P 点.求tan CPE ∠的值.【答案】(1)河两岸之间的距离是20320米(2)5tan 2CPE ∠=【分析】(1)过点C 作CM EF ⊥于点M ,设CM a =米,在Rt MCB △中,3MB a =,在Rt MCD △中,MD MC a ==,根据40BD =,建立方程,解方程即可求解;(2)根据题意求得MP 的长,进而根据正切的定义,即可求解.【小问1详解】解:如图所示,过点C 作CM EF ⊥于点M ,设CM a =米,∵30CBE ∠=︒∴3tan tan 303CM CBM PB ∠==︒=,∴3MB a =,在Rt MCD △中,tan tan 451CM CDM MD∠==︒=,∴MD MC a ==∴340BD MB MD a a =-=-=解得:320a =答:河两岸之间的距离是20320米;【小问2详解】解:如图所示,依题意,40(12312)523PB BD DP =+=+=+,∴((32035212383MP MB PB =-=++=+在Rt CMP △中,2035tan 2883CM CPM MP ∠===+,∴5tan 2CPE ∠=.【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数关系是解题的关键.25.某校组织师生参加夏令营活动,现准备租用A 、B 两型客车(每种型号的客车至少租用一辆).A 型车每辆租金500元,B 型车每辆租金600元.若5辆A 型和2辆B 型车坐满后共载客310人;3辆A 型和4辆B 型车坐满后共载客340人.(1)每辆A 型车、B 型车坐满后各载客多少人?(2)若该校计划租用A 型和B 型两种客车共10辆,总租金不高于5500元,并将全校420人载至目的地.该校有几种租车方案?哪种租车方案最省钱?(3)在这次活动中,学校除租用A 、B 两型客车外,又派出甲、乙两辆器材运输车.已知从学校到夏令营目的地的路程为300千米,甲车从学校出发0.5小时后,乙车才从学校出发,却比甲车早0.5小时到达目的地.下图是两车离开学校的路程s (千米)与甲车行驶的时间t (小时)之间的函数图象.根据图象信息,求甲乙两车第一次相遇后,t 为何值时两车相距25千米.【答案】(1)每辆A 型车、B 型车坐满后各载客40人、55人(2)共有4种租车方案,租8辆A 型车,2辆B 型车最省钱(3)在甲乙两车第一次相遇后,当3t =小时或113小时时,两车相距25千米【分析】(1)设每辆A 型车、B 型车坐满后各载客x 人、y 人,由题意列出二元一次方程组,解方程组即可求解;(2)设租用A 型车m 辆,则租用B 型车(10)m -辆,由题意列出一元一次不等式组,解不等式组,求整数解即可得出m 的值,设总租金为w 元,根据一次函数的性质即可求解;(3)设s kt =甲,1s k t b =+乙,由题意可知,甲车的函数图像经过(4,300);乙车的函数图像经过(0.5,0),(3.5,300)两点.求出函数解析式,进而即可求解.【小问1详解】解:设每辆A 型车、B 型车坐满后各载客x 人、y 人,由题意得5231034340x y x y +=⎧⎨+=⎩解得4055x y =⎧⎨=⎩答:每辆A 型车、B 型车坐满后各载客40人、55人.【小问2详解】设租用A 型车m 辆,则租用B 型车(10)m -辆,由题意得()()500600105500405510420m m m m ⎧+-≤⎪⎨+-≥⎪⎩解得:2583m ≤≤m 取正整数,∴5m =,6,7,8∴共有4种租车方案设总租金为w 元,则500600(10)1006000w m m m =+-=-+ 1000-<w ∴随着m 的增大而减小∴8m =时,w 最小∴租8辆A 型车,2辆B 型车最省钱.【小问3详解】设s kt =甲,1s k t b =+乙.由题意可知,甲车的函数图象经过(4,300);乙车的函数图象经过(0.5,0),(3.5,300)两点.∴75s t =甲,10050s t =-乙25s s -=乙甲,即100507525t t --=解得3t =。

黑龙江省绥化市2023年中考数学试卷((附参考答案))

黑龙江省绥化市2023年中考数学试卷((附参考答案))

黑龙江省绥化市2023年中考数学试卷一、单项选择题(本题共12个小题,每小题3分,共36分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.计算的结果是()A.-3B.7C.-4D.63.如图是一个正方体,被切去一角,则其左视图是()A.B.C.D.4.纳米是非常小的长度单位,,把0.000000001用科学记数法表示为()A.B.C.D.5.下列计算中,结果正确的是()A.B.C.D.6.将一副三角板按下图所示摆放在一组平行线内,,,则的度数为()A.55°B.65°C.70°D.75°7.下列命题中叙述正确的是()A.若方差,则甲组数据的波动较小B.直线外一点到这条直线的垂线段,叫做点到直线的距离C.三角形三条中线的交点叫做三角形的内心D.角的内部到角的两边的距离相等的点在角的平分线上8.绥化市举办了2023年半程马拉松比赛,赛后随机抽取了部分参赛者的成绩(单位:分钟),并制作了如下的参赛者成绩组别表、扇形统计图和频数分布直方图.则下列说法正确的是()组别参赛者成绩ABCDEA.该组数据的样本容量是50人B.该组数据的中位数落在90~100这一组C.90~100这组数据的组中值是96D.110~120这组数据对应的扇形统计图的圆心角度数为51°9.在平面直角坐标系中,点A在y轴的正半轴上,平行于x轴,点B,C的横坐标都是3,,点D在上,且其横坐标为1,若反比例函数()的图象经过点B,D,则k的值是()A.1B.2C.3D.10.某运输公司,运送一批货物,甲车每天运送货物总量的.在甲车运送1天货物后,公司增派乙车运送货物,两车又共同运送货物天,运完全部货物.求乙车单独运送这批货物需多少天?设乙车单独运送这批货物需x天,由题意列方程,正确的是()A.B.C.D.11.如图,在菱形中,,,动点M,N同时从A点出发,点M以每秒2个单位长度沿折线A-B-C向终点C运动;点N以每秒1个单位长度沿线段向终点D运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为x秒,的面积为y个平方单位,则下列正确表示y 与x函数关系的图象是()A.B.C.D.12.如图,在正方形中,点E为边的中点,连接,过点B作于点F,连接交于点G,平分交于点H.则下列结论中,正确的个数为()①②③当时,A.0个B.1个C.2个D.3个二、填空题(本题共10个小题,每小题3分,共30分)13.因式分解:.14.若式子有意义,则x的取值范围是.15.在4张完全相同的卡片上,分别标出1,2,3,4,从中随机抽取1张后,放回再混合在一起.再随机抽取一张,那么第二次抽取卡片上的数字能够整除第一次抽取卡片上的数字的概率是. 16.已知一元二次方程的两根为与,则的值为.17.化简:.18.如图,的半径为2,为的弦,点C为上的一点,将沿弦翻折,使点C与圆心O重合,则阴影部分的面积为.(结果保留π与根号)19.如图,在平面直角坐标系中,与的相似比为1∶2,点A是位似中心,已知点,点,.则点的坐标为.(结果用含a,b的式子表示)20.如图,是边长为6的等边三角形,点E为高上的动点.连接,将绕点C顺时针旋转60°得到.连接,,,则周长的最小值是.21.在求的值时,发现:,,从而得到.按此方法可解决下面问题.图(1)有1个三角形,记作;分别连接这个三角形三边中点得到图(2),有5个三角形,记作;再分别连接图(2)中间的小三角形三边中点得到图(3),有9个三角形,记作;按此方法继续下去,则.(结果用含n的代数式表示)22.已知等腰,,.现将以点B为旋转中心旋转45°,得到,延长交直线于点D.则的长度为.三、解答题(本题共6个小题,共54分)23.已知:点P是外一点.(1)尺规作图:如图,过点P作出的两条切线,,切点分别为点E、点F.(保留作图痕迹,不要求写作法和证明)(2)在(1)的条件下,若点D在上(点D不与E,F两点重合),且.求的度数.24.如图,直线和为河的两岸,且,为了测量河两岸之间的距离,某同学在河岸的B点测得,从B点沿河岸的方向走40米到达D点,测得.(1)求河两岸之间的距离是多少米?(结果保留根号)(2)若从D点继续沿的方向走米到达P点.求的值.25.某校组织师生参加夏令营活动,现准备租用A、B两型客车(每种型号的客车至少租用一辆).A型车每辆租金500元,B型车每辆租金600元.若5辆A型和2辆B型车坐满后共载客310人;3辆A型和4辆B型车坐满后共载客340人.(1)每辆A型车、B型车坐满后各载客多少人?(2)若该校计划租用A型和B型两种客车共10辆,总租金不高于5500元,并将全校420人载至目的地.该校有几种租车方案?哪种租车方案最省钱?(3)在这次活动中,学校除租用A、B两型客车外,又派出甲、乙两辆器材运输车.已知从学校到夏令营目的地的路程为300千米,甲车从学校出发0.5小时后,乙车才从学校出发,却比甲车早0.5小时到达目的地.下图是两车离开学校的路程s(千米)与甲车行驶的时间t(小时)之间的函数图象.根据图象信息,求甲乙两车第一次相遇后,t为何值时两车相距25千米.26.已知:四边形为矩形,,,点F是延长线上的一个动点(点F不与点C 重合).连接交于点G.(1)如图一,当点G为的中点时,求证:.(2)如图二,过点C作,垂足为E.连接,设,.求y关于x的函数关系式.(3)如图三,在(2)的条件下,过点B作,交的延长线于点M.当时,求线段的长.27.如图,为的直径,且,与为圆内的一组平行弦,弦交于点H.点A 在上,点B在上,.(1)求证:.(2)求证:.(3)在中,沿弦所在的直线作劣弧的轴对称图形,使其交直径于点G.若,求的长.28.如图,抛物线的图象经过,,三点,且一次函数的图象经过点B.(1)求抛物线和一次函数的解析式.(2)点E,F为平面内两点,若以E、F、B、C为顶点的四边形是正方形,且点E在点F的左侧.这样的E,F两点是否存在?如果存在,请直接写出所有满足条件的点E的坐标:如果不存在,请说明理由.(3)将抛物线的图象向右平移8个单位长度得到抛物线,此抛物线的图象与x轴交于M,N两点(M点在N点左侧).点P是抛物线上的一个动点且在直线下方.已知点P的横坐标为m.过点P作于点D.求m为何值时,有最大值,最大值是多少?答案1.【答案】C2.【答案】D3.【答案】B4.【答案】A5.【答案】D6.【答案】C7.【答案】D8.【答案】B9.【答案】C10.【答案】B11.【答案】A12.【答案】D13.【答案】14.【答案】且15.【答案】16.【答案】17.【答案】18.【答案】19.【答案】20.【答案】21.【答案】22.【答案】或23.【答案】(1)作法:如图所示①连接,分别以点P,O为圆心,大于长为半径画弧,两弧交于M,N两点作直线交于点A.②以点A为圆心,以为半径画弧(或画圆)与圆O交于E,F两点.作直线,、即为所求.(2)解:∵PE、PF分别为切线,∴∠PEO=∠PFO=90°,∴∠EOF=360°-∠PEO-∠PFO-∠EPF=150°,∴∠EDF=∠EOF=75°或∠EDF=180°-75°=105°.24.【答案】(1)解:过C作CH⊥EF于点H,∵tan∠CBH=,∴HB=CH.∵∠CDH=45°,∴CH=DH.∵BH-DH=BD=40,∴CH-CH=40,解得CH=+20,∴河两岸之间的距离是(+20)m.(2)解:∵HP=HD-PD=+20-(+12)=+8,∴tan∠CPE===.25.【答案】(1)设每辆A型车、B型车坐满后各载客x人、y人,由题意得解得答:每辆A型车、B型车坐满后各载客40人、55人.(2)设租用A型车m辆,则租用B型车辆,由题意得解得:∵m取正整数,∴,6,7,8∴共有4种租车方案设总租金为w元,则∵∴w随着m的增大而减小∴时,w最小∴租8辆A型车,2辆B型车最省钱.(3)设,.由题意可知,甲车经过;乙车经过,两点.∴,,即解得或解得所以,在甲乙两车第一次相遇后,当小时或小时,两车相距25千米. 26.【答案】(1)证明:∵四边形为矩形∴∴∵G为中点∴在和中∴(2)∵四边形为矩形∴∵∴∵∴∴∵,∴在中,∵∴∴(3)过点E作于点N∵四边形为矩形,且∴∵,∴∴为等腰直角三角形∴∵∴为等腰直角三角形∴∵∴平分∴在中,∵∴∵∴∵∴∵∴∴∴∴∴27.【答案】(1)证明:∵和是所对的圆周角∴∵∴∴∴(2)连接,交于点F∵与为一组平行弦(也可写成)∴∵∴∵∴∠∴∴∴(3)解:连接DM、DG,过D作DE⊥MN,垂足为E,设点G的对称点G′,连接G′D、G′N,∵DG=DG′,∠G′ND=∠GND,DG′=DM,弧DM=弧DG′,∴DG=DM,∴△DGM为等腰三角形.∵DE⊥MN,∴GE=ME.∵DN∥CM,∴∠CMN=∠DNM.∵MN为直径,∴∠MDN=90°,∴∠MDE+∠EDN=90°.∵DE⊥MN,∴∠DEN=90°,∴∠DNM+∠EDN=90°,∴sin∠EDM=sin∠DNM=sin∠CMN=.∵MN=15,∴sin∠DNM=,∴MD=9.∵sin∠EDM==,∴,∴ME=,∴NG=MN-MG=MN-2ME=.28.【答案】(1)解:把,,代入得解得∴把代入得∴(2)解:①当BC为正方形的边长时,分别过B、C作E1E2⊥BC,F1F2⊥BC,使E1B=E2B=BC,CF1=CF2=BC,连接E1F1、E2F2,过E1作E1H1⊥x轴于点H1,则△BE1H1≌△CBO(AAS),∴E1H1=OB=2,H1B=OC=6,∴E1(-8,2).同理可得E2(4,-2).②以BC为正方形的对角线时,过BC的重点G作E3F3⊥BC,使E3F3与BC互相平分且相等,则四边形E3BF3C为正方形,过E3作E3N⊥y轴于点N,过B作BM⊥E3N于点M,∴△CE3N≌△E3BM(AAS),∴CN=E3M,BM=E3N.∵BC=,∴E3G=BG=,∴E3B=.∵E3C2=CN2+E3N2,∴()2=CN2+(6-CN)2,解得CN=2或4.当CN=4时,E3(2,2),此时点E在点F右侧,舍去;当CN=2时,E3(-4,4),综上可得:E1(-8,2),E2(4,-2),E3(-4,4).(3)∵向右平移8个单位长度得到抛物线∴,∵过M,N,C三点∴在直线下方的抛物线上任取一点P,作轴交于点H,过点H作轴于点G.∵,∴∴是等腰直角三角形∵,∴又∴是等腰直角三角形∴∵点P在抛物线上,且横坐标为m∴∴∵∴∴∴∴∴当时,的最大值为.。

绥化市八年级数学下册第五单元《数据的分析》测试卷(包含答案解析)

绥化市八年级数学下册第五单元《数据的分析》测试卷(包含答案解析)

一、选择题1.已知5个数1a 、2a 、3a 、4a 、5a 的平均数是a ,则数据11a +、22a +、33a +、44a +、55a +的平均数为( )A .aB .3a +C .56a D .15a +2.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是( ) A .众数是5 B .中位数是5C .平均数是6D .方差是3.63.将一组数据中的每一个数减去50后,所得新的一组数据的平均数是2,则原来那组数据的平均数是( ) A .50B .52C .48D .24.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是( ) A .甲的成绩比乙的成绩稳定 B .乙的成绩比甲的成绩稳定 C .甲、乙两人的成绩一样稳定 D .无法确定甲、乙的成绩谁更稳定 5.如果将所给定的数据组中的每个数都减去一个非零常数,那么该数组的 ( )A .平均数改变,方差不变B .平均数改变,方差改变C .平均数不变,方差改变D .平均数不变,方差不变6.甲、乙两班举行电脑汉字输入比赛,参赛学生每分输入汉字的个数统计结果如下表:某同学分析上表后得到如下结论: ①甲、乙两班学生平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分输入汉字个数150≥为优秀) ③甲班成绩的波动比乙班大. 上述结论中正确的是( ) A .①②③ B .①② C .①③ D .②③7.方差计算公式()()()()()2222221476787117675s ⎡⎤=-+-+-+-+-⎣⎦中,数字5和7分别表示( ) A .数据个数、平均数 B .方差、偏差 C .众数、中位数D .数据个数、中位数8.如图是根据我市某天七个整点时的气温绘制成的统计图,则下列说法正确的是()A.这组数据的众数是14B.这组数据的中位数是31C.这组数据的标准差是4D.这组是数据的极差是99.甲、乙两人各射击次,甲所中的环数是,,,,,,且甲所中的环数的平均数是,众数是;乙所中的环数的平均数是,方差是4.根据以上数据,对甲,乙射击成绩的正确判断是()A.甲射击成绩比乙稳定B.乙射击成绩比甲稳定C.甲,乙射击成绩稳定性相同D.甲、乙射击成绩稳定性无法比较10.某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为()A.40,37B.40,39C.39,40D.40,3811.为了解某校计算机考试情况,抽取了50名学生的计算机考试成绩进行统计,统计结果如表所示,则50名学生计算机考试成绩的众数、中位数分别为()考试分数(分)2016128人数241853A.20,16 B.l6,20 C.20,l2 D.16,l212.甲、乙、丙、丁四位选手各进行了10次射击,射击成绩的平均数和方差如下表:选手甲乙丙丁平均数(环)9.09.09.09.0方差0.25 1.00 2.50 3.00则成绩发挥最不稳定的是( )A.甲B.乙C.丙D.丁二、填空题13.一组数据1,0,2,1的方差S2=_____.14.甲、乙二人在相同情况下,各射靶10次,两人命中环数的平均数都是7,方差2S=2.8,2S乙=1.5,则射击成绩较稳定的是______.(填“甲”或“乙”)甲15.已知一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是_____.16.某组数据的方差计算公式为S2=18[(x1﹣2)2+(x2﹣2)2+…+(x8﹣2)2],则该组数据的样本容量是_____,该组数据的平均数是_____.17.已知一组数据为:5,3,3,6,3则这组数据的方差是______.18.一组数据2、3、5、6、x的平均数正好也是这组数据的中位数,那么正整数x为_____.19.如图所示是某校中学部篮球兴趣小组年龄结构条形统计图,该小组年龄最小为13岁,最大为17岁,根据统计图所提供的数据,该小组组员年龄的中位数为__________岁.20.为调查某班学生每天使用零花钱的情况,张华随机调查了30名同学,结果如下表:每天使用零花钱(单位:元)12345人数25896则这30名同学每天使用的零花钱的中位数是_____元.三、解答题21.为了解某校九年级学生的理化实验操作情况,随机抽查了40名同学实验操作的得分.根据获取的样本数据,制作了如下的条形统计图和扇形统计图.请根据相关信息,解答下列问题:(1)扇形①的圆心角的大小是度;(2)这40个样本数据的众数是_______;中位数是_______.(3)若该校九年级共有320名学生,估计该校理化实验操作得满分的学生人数.22.某学校抽查了某班级某月5天的用电量,数据如下表(单位:度):度数91011天数311(1)求这5天的用电量的平均数; (2)求这5天用电量的众数、中位数;(3)学校共有36个班级,若该月按22天计,试估计该校该月的总用电量.23.已知一组数据x 1,x 2,x 3,…,x n 的平均数为5,求数据x 1+5,x 2+5,x 3+5,…,x n +5的平均数24.在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是________,这组数据的众数为________元; (2)求这组数据的平均数;(3)该校共有600学生参与捐款,请你估计该校学生的捐款总数.25.为增强学生垃圾分类意识,推动垃圾分类进校园.某初中学校组织全校1200名学生参加了“垃圾分类知识竞赛”,为了解学生的答题情况,学校考虑采用简单随机抽样的方法抽取部分学生的成绩进行调查分析. (1)学校设计了以下三种抽样调查方案:方案一:从初一、初二、初三年级中指定部分学生成绩作为样本进行调查分析; 方案二:从初一、初二年级中随机抽取部分男生成绩及在初三年级中随机抽取部分女生成绩进行调查分析;方案三:从三个年级全体学生中随机抽取部分学生成绩进行调查分析.其中抽取的样本具有代表性的方案是__________.(填“方案一”、“方案二”或“方案三”) (2)学校根据样本数据,绘制成下表(90分及以上为“优秀”,60分及以上为“及格”): 样本容量 平均分 及格率 优秀率 最高分 最低分 10093.5100%70%10080分数段统计(学生成绩记为x ) 分数段080x ≤< 8085x ≤< 8590x ≤< 9095x ≤< 95100x ≤≤频数 0 5 25 30 40请结合表中信息解答下列问题:①估计该校1200名学生竞赛成绩的中位数落在哪个分数段内; ②估计该校1200名学生中达到“优秀”的学生总人数.26.为了解学生的课外阅读情况,李老师随机调查了一部分学生,得到了他们上周双休日课外阅读时间(记为t ,单位:h )的一组样本数据,其部分条形图和扇形图如下: (1)请补全条形图和扇形图;(2)试确定这组样本数据的中位数和众数; (3)估计全班学生上周双休日的平均课外阅读时间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据数据11a +、22a +、33a +、44a +、55a +比数据1a 、2a 、3a 、4a 、5a 的和多15,可得数据11a +、22a +、33a +、44a +、55a +的平均数比a 多3,据此求解即可 【详解】解:a+()()24512345132+4+51+3+-+a a a a a a a a a a ++++++++⎡⎤⎣⎦ ÷5 =a+[1+2+3+4+5] ÷5 =a+15÷5 =a+3 故选:B 【点睛】此题主要考察了算术平均数的含义和求法,解题关键是判断出:数据11a +、22a +、33a +、44a +、55a +比数据1a 、2a 、3a 、4a 、5a 的平均数多3.2.D解析:D 【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可. 【详解】A 、数据中5出现2次,所以众数为5,此选项正确;B 、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C 、平均数为(7+5+3+5+10)÷5=6,此选项正确;D 、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误; 故选D . 【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.3.B解析:B 【详解】解:由题意知,新的一组数据的平均数=1n[(1x ﹣50)+(2x ﹣50+…+(n x ﹣50)]= 1n[(12x x ++…+n x )﹣50n]=2, ∴1n(12x x ++…+n x )﹣50=2, ∴1n(12x x ++…+n x )=52, 即原来的一组数据的平均数为52. 故选B .4.B解析:B 【分析】根据方差的意义求解可得. 【详解】∵乙的成绩方差<甲成绩的方差, ∴乙的成绩比甲的成绩稳定, 故选B. 【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.5.A解析:A 【解析】试题分析:根据平均数、方差的计算公式即可判断. 由题意得该数组的平均数改变,方差不变,故选A. 考点:本题考查的是平均数,方差点评:数学公式的计算与应用是初中数学学习中的一个基本能力,此类问题往往考查学生对数学公式的理解能力,难度不大.6.A解析:A 【分析】平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小. 【详解】从表中可知,平均字数都是135,①正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,②正确;甲班的方差大于乙班的,又说明甲班的波动情况大,所以③也正确. ①②③都正确. 故选:A . 【点睛】此题考查平均数,中位数,方差的意义.解题关键在于掌握平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.7.A解析:A 【分析】根据方差的计算公式可直接得出结果. 【详解】()()()()()2222221476787117675s ⎡⎤=-+-+-+-+-⎣⎦∴5是数据的个数,7是平均数, 故选:A 【点睛】本题考查方差的定义.熟记方差公式是解题的关键. 8.D解析:D 【解析】 【分析】根据中位数,众数、极差、标准差的定义即可判断. 【详解】解:七个整点时数据为:22,22,23,26,28,30,31 所以中位数为26,众数为22,平均数为:22+22+23+26+28+3032167+= ;极差是31-22=9,标准差是:()()()()()()()222222222-26+22-26+23-26+26-26+28-26+30-26+31-2686=77故D 正确, 故选:D 【点睛】此题考查中位数,众数、极差、标准差的定义,解题关键在于看懂图中数据9.B解析:B 【解析】 【分析】要判断甲,乙射击成绩的稳定性就是要比较两人成绩的方差的大小,关键是求甲的方差.甲的这组数中的众数是8就说明a ,b ,c 中至少有两个是8,而平均数是6,则可以得到a ,b ,c 三个数其中一个是2,另两个数是8,求得则甲的方差,再进行比较得出结果. 【详解】∵这组数中的众数是8, ∴a ,b ,c 中至少有两个是8, ∵平均数是6,∴a ,b ,c 三个数其中一个是2, ∴(4+1+1+4+4+16)=5,∵5>4,∴乙射击成绩比甲稳定. 故选:B . 【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.10.B解析:B 【分析】根据众数和中位数的概念求解可得. 【详解】将数据重新排列为37,37,38,39,40,40,40所以这组数据的众数为40,中位数为39,故选B.【点睛】本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.11.A解析:A【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:在这一组数据中20是出现次数最多的,故众数是20;将这组数据从大到小的顺序排列后,处于中间位置的数是16,16,那么这组数据的中位数16.故选:A.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是一组数据中出现次数最多的数.12.D解析:D【解析】【分析】根据方差的定义,方差越小数据越稳定,反之波动越大.【详解】由表可知:丁的方差最大,这四个人中,发挥最不稳定的是丁故选:D【点睛】本题考查方差的意义,熟知方差越小数据越稳定,反之波动越大是解题关键.二、填空题13.05【分析】利用方差的计算公式计算即可【详解】解:则故答案为05【点睛】本题考查的是方差的计算掌握方差的计算公式是解题的关键解析:0.5 【分析】利用方差的计算公式计算即可. 【详解】 解:1x (1021)14=+++=, 则222221(11)(01)(21)(11)0.54S ⎡⎤=-+-+-+-=⎣⎦, 故答案为0.5. 【点睛】本题考查的是方差的计算,掌握方差的计算公式()()()2222121n S x x x x x x n ⎡⎤=-+-+⋯+-⎣⎦是解题的关键. 14.乙【解析】【分析】直接利用方差的意义方差越小越稳定进而分析得出答案【详解】∵方差=1515<28∴射击成绩较稳定的是:乙故答案为:乙【点睛】此题主要考查了方差正确把握方差的意义是解题关键解析:乙 【解析】 【分析】直接利用方差的意义,方差越小越稳定,进而分析得出答案. 【详解】∵方差222.8,S S =甲乙=1.5,1.5<2.8,∴射击成绩较稳定的是:乙. 故答案为:乙. 【点睛】此题主要考查了方差,正确把握方差的意义是解题关键.15.4【解析】【分析】平均数的计算方法是求出所有数据的和然后除以数据的总个数先求数据x1x2x3x4x5的和然后再用平均数的定义求新数据的平均数【详解】一组数据x1x2x3x4x5的平均数是2有15(x解析:4 【解析】 【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.先求数据x 1,x 2,x 3,x 4,x 5的和,然后再用平均数的定义求新数据的平均数. 【详解】一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,有(x 1+x 2+x 3+x 4+x 5)=2,那么另一组数据3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数是(3x 1-2+3x 2-2+3x 3-2+3x 4-2+3x 5-2)=4.故答案是:4.【点睛】 考查的是样本平均数的求法及运用,解题关键是记熟公式:. 16.82【分析】样本方差S2=(x1-)2+(x2-)2+…+(xn-)2其中n 是这个样本的容量是样本的平均数利用此公式直接求解【详解】由于S2=(x1-2)2+(x2-2)2+…+(x8-2)2所以该解析:8 2【分析】样本方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中n 是这个样本的容量,x 是样本的平均数.利用此公式直接求解. 【详解】由于S 2=18[(x 1-2)2+(x 2-2)2+…+(x 8-2)2], 所以该组数据的样本容量是8,该组数据的平均数是2.故答案为8,2.【点睛】此题考查方差的有关计算,解答此题的关键是熟练记住公式:S 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]中各个字母所代表的含义.17.【解析】【分析】先求出平均数再根据方差的公式计算即可【详解】这组数据的平均数是:则这组数据的方差是;故答案为【点睛】此题考查了方差:一般地设n 个数据的平均数为则方差它反映了一组数据的波动大小方差越大 解析:1.6【解析】【分析】先求出平均数,再根据方差的公式计算即可.【详解】这组数据的平均数是:()5336354++++÷=, 则这组数据的方差是(22221S [(54)3(34)64) 1.65⎤=-+⨯-+-=⎦; 故答案为1.6.【点睛】此题考查了方差:一般地设n 个数据,1x ,2x ,n x ⋯的平均数为x ,则方差(222212n 1S [(x x)(x x)x x)n ⎤=-+-+⋯+-⎦,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18.-149【分析】根据平均数的计算公式先表示出这组数据的平均数再根据中位数的定义进行讨论即可得出答案【详解】∵数据2356x的平均数是=∴当x=-1时这组数据的平均数是3中位数也是3;当x=4时这组数解析:-1、4、9【分析】根据平均数的计算公式先表示出这组数据的平均数,再根据中位数的定义进行讨论,即可得出答案.【详解】∵数据2、3、5、6、x的平均数是23565x++++=165x+,∴当x=-1时,这组数据的平均数是3,中位数也是3;当x=4时,这组数据的平均数是4,中位数也是4;当x=9时,这组数据的平均数是5,中位数也是5;∴x=-1,4或9;故答案为-1,4或9.【点睛】此题考查了中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.19.155【解析】【分析】将该小组年龄按照从小到大顺序排列找出中位数即可【详解】根据题意排列得:131314141415151515161616161617171717则该小组组员年龄的中位数为(15+解析:15.5【解析】【分析】将该小组年龄按照从小到大顺序排列,找出中位数即可.【详解】根据题意排列得:13,13,14,14,14,15,15,15,15,16,16,16,16,16,17,17,17,17,则该小组组员年龄的中位数为12(15+16)=15.5岁,故答案为15.5【点睛】此题考查了条形统计图,以及中位数,弄清中位数的计算方法是解本题的关键.20.35【解析】分析:利用众数的定义可以确定众数在第三组由于张华随机调查了20名同学根据表格数据可以知道中位数是按从小到大排序第15个与第16个数的平均数详解:∵4出现了9次它的次数最多∴众数为4∵张华解析:3.5【解析】分析: 利用众数的定义可以确定众数在第三组,由于张华随机调查了20名同学,根据表格数据可以知道中位数是按从小到大排序,第15个与第16个数的平均数. 详解: ∵4出现了9次,它的次数最多,∴众数为4.∵张华随机调查了30名同学,∴根据表格数据可以知道中位数=(3+4)÷2=3.5,即中位数为3.5.故答案为:3.5.点睛: 本题属于基础题,考查了确定一组数据的中位数和众数的能力.要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.三、解答题21.(1)36;(2)9; 8;(3)估计该校理化实验操作得满分的学生人数是56人.【分析】(1)用360°乘以①所占的百分比,计算即可得解;(2)众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数分别解答; (3)用九年级总人数乘以满分的人数所占的份数计算即可得解.【详解】(1)360°×(1-15%-27.5%-30%-17.5%)=360°×10%=36°;故答案为:36;(2)∵9出现了12次,次数最多,∴众数是9;∵将40个数字按从小到大排列,中间的两个数都是8,∴中位数是8882+=, 故答案为:9,8; (3)32017.5%56⨯=(人),估计该校理化实验操作得满分的学生人数是56人.【点睛】本题考查条形统计图、扇形统计图、众数与中位数的意义、用样本估计总体.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(1)9.6度;(2)9度;9度;(3)7603.2度.【分析】(1)用加权平均数的计算方法计算平均用电量即可;(2)分别利用众数、中位数及极差的定义求解即可;(3)用班级数乘以日平均用电量乘以天数即可求得总用电量.【详解】(1)平均用电量为:(9×3+10×1+11×1)÷5=9.6度;(2)9度出现了3次,最多,故众数为9度;第3天的用电量是9度,故中位数为9度;(3)总用电量为22×9.6×36=7603.2度.23.10【分析】本题首先将1x ,2x ,3x ,…,n x 的和表示出来,继而将其求和值代入目标式子中求解本题.【详解】∵1x ,2x ,3x ,…,n x 的平均数为5,∴1235n x x x x n +++⋅⋅⋅+=,∴15x +,25x +,35x +,…,5n x +的平均数为:[]1231231155(5)(5)(5)(5)(5)10n n n n x x x x x x x x n n n n +⨯++++++⋅⋅⋅++=⨯+++⋅⋅⋅++==.【点睛】本题考查平均数,解题关键在于理解其概念,其次注意计算精度.24.(1)30,10;(2)平均数为12元;(3)学生的捐款总数为7200元.【分析】(1)由题意得出本次调查的样本容量是6118530+++=,由众数的定义即可得出结果;(2)由加权平均数公式即可得出结果;(3)由总人数乘以平均数即可得出答案.【详解】(1)本次调查的样本容量是6118530+++=,这组数据的众数为10元;故答案为30,10;(2)这组数据的平均数为6511108155201230⨯+⨯+⨯+⨯=(元); (3)估计该校学生的捐款总数为600127200⨯=(元).【点睛】此题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.本题也考查了平均数、中位数、众数的定义以及利用样本估计总体的思想.25.(1)方案三;(2)①该校1200名学生竞赛成绩的中位数落在9095x ≤<分数段内;②该校1200名学生中达到“优秀”的学生总人数为840人【分析】(1)抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的.(2)①根据中位数的定义,即可求出这次竞赛成绩的中位数所落的分数段;②用优秀率乘以该校共有的学生数,即可求出答案.【详解】解:(1)要调查学生的答题情况,需要考虑样本具有广泛性与代表性,就是抽取的样本必须是随机的,则抽取的样本具有代表性的方案是方案三.答案是:方案三;(2)①∵由表可知样本共有100名学生,∴这次竞赛成绩的中位数是第50和51个数的平均数,∴这次竞赛成绩的中位数落在落在9095x ≤<分数段内;∴该校1200名学生竞赛成绩的中位数落在9095x ≤<分数段内;②由题意得:120070%840⨯=(人).∴该校1200名学生中达到“优秀”的学生总人数为840人.【点睛】解决此题,需要能从统计表中获取必要的信息,根据题意列出算式是本题的关键,用到的知识点是抽样的可靠性,中位数的定义,用样本估计总体等.26.(1)详见解析;(2)中位数是3(h ),众数是4(h );(3)全班学生上周双休日的平均课外阅读时间为3.36h .【分析】(1)由条形统计图知:读1小时的人数为3人,在扇形统计图中占的比例为12%,则总调查人数可求出.这样可分别求出读2小时的人数,读3小时的人数,以及读4小时的人数占的比例,再计算其在扇形统计图中的圆心角.最后求出读5小时的人数占的比例和读5小时的人数;(2)根据中位数和众数的定义解答.(3)根据平均数的定义计算即可.【详解】解:(1)由条形统计图知,读1小时的人数为3人,在扇形统计图中占的比例为12%, ∴总调查人数=3÷12%=25人,∴读2小时的人数=25×16%=4人,读3小时的人数=25×24%=6人,读4小时的人数占的比例=7÷25=28%,在扇形统计图中的圆心角=360°×28%=100.8°,读5小时的人数占的比例=1﹣28%﹣24%﹣16%﹣12%﹣8%=12%,读5小时的人数=25×12%=3人.(2)中位数是3(h),众数是4(h);(3)1×12%+2×16%+3×24%+4×28%+5×12%+6×8%=3.36(h).估计全班学生上周双休日的平均课外阅读时间为3.36h.【点睛】本题考查了条形统计图和扇形统计图以及从统计图中获取信息的能力.解题时要掌握平均数、中位数、众数的概念和求法.。

【学生卷】绥化市八年级数学下册第二十章《数据的分析》基础卷(含答案)

【学生卷】绥化市八年级数学下册第二十章《数据的分析》基础卷(含答案)

一、选择题1.为评估一种农作物的种植效果,选了8块地作试验田,这8块地的亩产量(单位:kg )分别为1x ,2x ,…,8x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A .1x ,2x ,…,8x 的平均数B .1x ,2x ,…,8x 的方差C .1x ,2x ,…,8x 的中位数D .1x ,2x ,…,8x 的众数2.某校以“我和我的祖国”为主题的演讲比赛中,共有10位评委分别给出某选手的原始评分,在评定该选手成绩时,则从10个原始评分中去掉1个最高分和1个最低分,得到8个有效评分. 8个有效评分与10个原始评分相比,不变的是 ( ) A .平均数B .极差C .中位数D .方差3.八年级某班五个合作学习小组人数如下:5,7,6,x ,7.已知这组数据的平均数是6,则x 的值为( ) A .7B .6C .5D .44.甲、乙、丙、丁四位同学五次数学测验成绩统计如右表所示,如果从这四位同学中,选出一位同学参加数学竞赛,那么应选___________去.A .甲B .乙C .丙D .丁5.给出下列命题:①三角形的三条高相交于一点;②如果一组数据中有一个数据变动,那么它的平均数、众数、中位数都随之变动; ③如果不等式()33m x m ->-的解集为1x <,那么3m <;④如果三角形的一个外角等于与它相邻的一个内角则这个三角形是直角三角形; 其中正确的命题有( ) A .1个B .2个C .3个D .4个6.某次知识竞赛中,两组学生成绩如下表,通过计算可知两组的方差为S 2甲172=,S 2乙256=,下列说法:①两组的平均数相同;②甲组学生成绩比乙组学生成绩稳定; ③甲组成绩的众数>乙组成绩的众数;④两组成绩的中位数均是80,但成绩≥80的人数甲比乙组多,从中位数来看,甲组成绩总体比乙组好;⑤成绩高于或等于90分的人数乙组比甲组多,高分段乙组成绩比甲组好.其中正确的有()个A.2 B.3 C.4 D.57.下列说法正确的是()A.为了解我国中学生课外阅读的情况,应采取全面调查的方式B.一组数据1、2、5、5、5、3、3的中位数和众数都是5C.若甲组数据的方差是003,乙组数据的方差是0.1,则甲组数据比乙组数据稳定D.抛掷一枚硬币100次,一定有50次“正面朝上”8.如图是根据我市某天七个整点时的气温绘制成的统计图,则下列说法正确的是()A.这组数据的众数是14B.这组数据的中位数是31C.这组数据的标准差是4D.这组是数据的极差是99.小明、小华两名射箭运动员在某次测试中各射箭10次,两人的平均成绩均为7.5环,如图做出了表示平均数的直线和10次射箭成绩的折线图.S1,S2分别表示小明、小华两名运动员这次测试成绩的方差,则有()A.S1<S2B.S1>S2C.S1=S2D.S1≥S210.八(1)班45名同学一天的生活费用统计如下表:生活费(元)1015202530学生人数3915126(人)A.15B.20C.21D.2511.甲、乙两人各射击6次,甲所中的环数是8,5,5,a,b,c,且甲所中的环数的平均数是6,众数是8;乙所中的环数的平均数是6,方差是4.根据以上数据,对甲,乙射击成绩的正确判断是()A.甲射击成绩比乙稳定B.乙射击成绩比甲稳定C.甲,乙射击成绩稳定性相同D.甲、乙射击成绩稳定性无法比较12.某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82.下列关于这组数据的描述不正确的是()A.众数是108 B.中位数是105C.平均数是101 D.方差是9313.一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):组员甲乙丙丁戊平均成绩众数得分8177808280则被遮盖的两个数据依次是()A.80,80B.81,80C.80,2D.81,214.某校八年级(1)班全体学生进行了第一次体育中考模拟测试,成绩统计如下表:成绩(分) 24 25 26 27 28 29 30人数(人) 65 5 8 7 7 4根据上表中的信息判断,下列结论中错误的是( )A.该班一共有42名同学B.该班学生这次考试成绩的众数是8C.该班学生这次考试成绩的平均数是27D.该班学生这次考试成绩的中位数是27分15.甲、乙两位射击运动员参加射击训练,各射击20次,成绩如下表所示:设甲、乙两位运动员射击成绩的方差分别为S 2甲和S2乙,则下列说法正确的是( )A.S2甲<S2乙B.S 2甲=S2乙C.S 2甲>S2乙D.无法比较S 2甲和S2乙的大小二、填空题16.北京市7月某日10个区县的最高气温如表(单位:C):34343234323431333234区县大兴通州平谷顺义怀柔门头沟延庆昌平密云房山最高气温则这 10 个区县该日最高气温的众数是__________,中位数是__________. 17.商店某天销售了11件衬衫,其领口尺寸统计如下表: 领口尺寸(单位:cm ) 38 39 40 41 42 件数14312则这11件衬衫领口尺寸的中位数是________cm .18.已知一组数据a ,b ,c 的方差为2,那么数据a +3,b +3,c +3的方差是_____. 19.烹饪大赛的菜品的评价按味道、外形、色泽三个方面进行评价(评价的满分均为100分),三个方面的重要性之比依次为7:2:1.某位厨师的菜所得的分数依次为92分、88分、80分,那么这位厨师的最后得分是_______________. 20.数据-1,2,0,1,-2的方差是____.21.甲、乙两人参加某网站的招聘测试,测试由网页制作和语言两个项目组成,他们各自的成绩(百分制)如下表所示: 应聘者 网页制作 语言 甲 80 70 乙7080该网站根据成绩在两人之间录用了甲,则本次招聘测试中权重较大的是_____项目. 22.有一组数据:1,3,5,3,若再添加一个数,所得的新一组数据与原数据的中位数,众数,平均数都没有发生变化,则添加的数为____.23.小明用S 2=110[(x 1﹣3)2+(x 2﹣3)2+…+(x 10﹣3)2]计算一组数据的方差,那么x 1+x 2+x 3+…+x 10=______.24.为了增强青少年的防毒拒毒意识,学校举办了一次“禁毒教育”演讲比赛,其中某位选手的演讲内容、语言表达、演讲技巧这三项得分分别为90分,80分,85分,若依次按50%,30%,20%的比例确定成绩,则该选手的最后得分是__________分. 25.已知一组数据为:5,3,3,6,3则这组数据的方差是______.26.如图所示是某校中学部篮球兴趣小组年龄结构条形统计图,该小组年龄最小为13岁,最大为17岁,根据统计图所提供的数据,该小组组员年龄的中位数为__________岁.三、解答题27.为了解某校九年级学生的理化实验操作情况,随机抽查了40名同学实验操作的得分.根据获取的样本数据,制作了如下的条形统计图和扇形统计图.请根据相关信息,解答下列问题:(1)扇形①的圆心角的大小是度;(2)这40个样本数据的众数是_______;中位数是_______.(3)若该校九年级共有320名学生,估计该校理化实验操作得满分的学生人数.28.“绿水青山就是金山银山”,北京市民积极参与义务植树活动.小武同学为了了解自己小区300户家庭在2018年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵):1 123 2 3 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6(1)对以上数据进行整理、描述和分析:①绘制如下的统计图,请补充完整;②求这30户家庭2018年4月份义务植树数量的平均数是和中位数分别是多少?(2)“互联网+全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有多少户?29.学校开展的“书香校园”活动受到同学们的广泛关注,为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计图表.学生借阅图书的次数统计表:借阅图书的次0次1次2次3次4次及以上数人数713a103请你根据统计图表中的信息,解答下列问题:(1)a=,b=;(2)该调查统计数据的中位数是,众数是;(3)若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书4次及以上的人数.30.2020年拟继续举办丽水市中学生汉字听写、诗词诵写大赛.经过初赛、复赛,选出了两个代表队参加市内7月份的决赛.两个队各选出的5名选手的复赛成绩如图所示.(1)根据图示补全下表;平均数(分)中位数(分)众数(分)A队8385B队95(2)结合两队成绩的平均数和中位数,分析哪个队的复赛成绩较好;(3)计算两队成绩的方差,并判断哪一个代表队选手成绩较为稳定.。

黑龙江绥化市八年级数学下册第二十章《数据的分析》经典练习题(培优专题)

黑龙江绥化市八年级数学下册第二十章《数据的分析》经典练习题(培优专题)

一、选择题1.为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:那么关于这10户居民月用电量(单位:度),下列说法错误的是( ) A .中位数是55B .众数是60C .平均数是54D .方差是292.八年级某班五个合作学习小组人数如下:5,7,6,x ,7.已知这组数据的平均数是6,则x 的值为( ) A .7B .6C .5D .43.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲 乙 丙 丁 平均数(环) 9.14 9.15 9.14 9.15 方差6.66.86.76.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( ) A .甲B .乙C .丙D .丁4.下面说法正确的个数有( )(1)二元一次方程组的两个方程的所有解,叫做二元一次方程组的解; (2)如果a b >,则ac bc >;(3)三角形的外角等于与它不相邻的两个内角的和; (4)多边形内角和等于360︒; (5)一组数据1,2,3,4,5的众数是0 A .0个B .1个C .2个D .3个5.某地区汉字听写大赛中,10名学生得分情况如下表: 分数 50 85 90 95 人数3421那么这10名学生所得分数的中位数和众数分别是( ) A .85和85B .85.5和85C .85和82.5D .85.5和806.某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选()A.丁B.丙C.乙D.甲7.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.50分B.82分C.84分D.86分8.已知数据x,4,0,3,-1的平均数是1,那么它的众数是()A.4 B.0 C.3 D.-19.如表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:要从中选择一名成绩好又发挥稳定的运动员参加决赛,最合适的是()A.甲B.乙C.丙D.丁10.若a、b、c这三个数的平均数为2,方差为S2,则a+2,b+2,c+2的平均数和方差分别是()A.2,S2B.4,S2C.2,S2+2 D.4,S2+411.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是()A.9.7m,9.9m B.9.7m,9.8m C.9.8m,9.7m D.9.8m,9.9m 12.某公司全体职工的月工资如下:月工资(元)18000120008000600040002500200015001200人数1(总经理)2(副总经理)34102022126的普通员工最关注的数据是()A.中位数和众数B.平均数和众数C.平均数和中位数D.平均数和极差13.某校八年级(1)班全体学生进行了第一次体育中考模拟测试,成绩统计如下表:成绩(分) 24 25 26 27 28 29 30人数(人) 65 5 8 7 7 4根据上表中的信息判断,下列结论中错误的是( )A.该班一共有42名同学B.该班学生这次考试成绩的众数是8C.该班学生这次考试成绩的平均数是27D.该班学生这次考试成绩的中位数是27分14.某班体育委员记录了第一小组七位同学定点投篮(每人投10次)的情况,投进篮筐的个数为6,9,5,3,4,8,4,这组数据的众数是()A.3 B.4 C.5 D.815.某中学九年级二班的8名女同学在一次仰卧起坐测试中的成绩如下(单位:个),135 138142144140147145145;则这组数据的中位数、平均数分别是()A.142,142 B.143,142 C.143,143 D.144,143二、填空题16.将一组数据中的每一数减去40后,所得新的一组数据的平均数是2,则原来那组数据的平均数_______________.17.北京市7月某日10个区县的最高气温如表(单位:C):34343234323431333234区县大兴通州平谷顺义怀柔门头沟延庆昌平密云房山最高气温则这 10 个区县该日最高气温的众数是__________,中位数是__________.18.小明这学期第一次数学考试得了72分,第二次数学考试得了86分,为了达到三次考试的平均成绩不少于80分的目标,他第三次数学考试至少得____分.19.据统计,某车间10名员工的日平均生产零件个数为8个,方差为2.5个2,引入新技术后,每名员工每天都比原先多生产1个零件,则现在日平均生产零件个数为______个,方差为______个2.20.数据﹣2、﹣1、0、1、2的方差是_____.21.在一次数学测验中,甲组4名同学的平均成绩是70分,乙组6名同学的平均成绩是80分,则这10名同学的平均成绩是______________.22.一组数据1,2,3,x ,5的平均数是3,则该组数据的方差是_____.23.某组数据的方差计算公式为S 2=18[(x 1﹣2)2+(x 2﹣2)2+…+(x 8﹣2)2],则该组数据的样本容量是_____,该组数据的平均数是_____.24.一组数据1、2、3、4、5的方差为21S ,另一组数据6、7、8、9、10的方差为22S ,那么21S ______22(S 填“>”、“=”或“<”).25.已知一组数据的方差s 2=14[(x 1﹣6)2+(x 2﹣6)2+(x 3﹣6)2+(x 4﹣6)2],那么这组数据的总和为_____.26.已知5个数据的平均数是7,另外还有3个数据的平均数是k , 则这 8个数据的平均数是_______(用关于 k 的代数式表示).参考答案三、解答题27.学校广播站要招聘一名播音员,考查形象、知识面、普通话三个项目(每个项目按百分制计分).若按形象占10%,知识面占40%,普通话占50%计算加权平均数,作为最后评定的总成绩.李颖和张明两位同学的各项成绩如表所示:(2)若张明同学要在总成绩上超过李颖同学,求x 的范围.28.在全民读书月活动中,某校随机抽样调查了一部分学生本学期计划购买课外书的费用情况,根据图中的相关信息,解答下面问题;(1)这次调查获取的样本容量是________;(2)由统计图可知,这次调查获取的样本数据的众数是________;中位数是________;(3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.29.2020年拟继续举办丽水市中学生汉字听写、诗词诵写大赛.经过初赛、复赛,选出了两个代表队参加市内7月份的决赛.两个队各选出的5名选手的复赛成绩如图所示.(1)根据图示补全下表;平均数(分)中位数(分)众数(分)A队8385B队95(2)结合两队成绩的平均数和中位数,分析哪个队的复赛成绩较好;(3)计算两队成绩的方差,并判断哪一个代表队选手成绩较为稳定.30.某中学七、八年级各选10名同学参加“创全国文明城市”知识竞赛,计分10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或9分以上为优秀,这次竞赛后,七、八年级两支代表队成绩分布的条形统计图和成绩分析表如下,其中七年级代表队得6分、10分选手人数分别为a,b.队列平均分中位数方差合格率优秀率七年级 6.7m 3.4190%n八年级7.17.5 1.6980%10%(1)根据图表中的数据,求a,b的值.(2)直接写出表中的m= ,n=.(3)你是八年级学生,请你给出两条支持八年级队成绩好的理由.。

绥化市初中数学二次函数经典测试题附解析

绥化市初中数学二次函数经典测试题附解析

绥化市初中数学二次函数经典测试题附解析一、选择题1.已知二次函数y =ax 2+bx +c (a >0)经过点M (﹣1,2)和点N (1,﹣2),则下列说法错误的是( )A .a +c =0B .无论a 取何值,此二次函数图象与x 轴必有两个交点,且函数图象截x 轴所得的线段长度必大于2C .当函数在x <110时,y 随x 的增大而减小 D .当﹣1<m <n <0时,m +n <2a 【答案】C【解析】【分析】根据二次函数的图象和性质对各项进行判断即可.【详解】解:∵函数经过点M (﹣1,2)和点N (1,﹣2),∴a ﹣b +c =2,a +b +c =﹣2,∴a +c =0,b =﹣2,∴A 正确;∵c =﹣a ,b =﹣2,∴y =ax 2﹣2x ﹣a ,∴△=4+4a 2>0,∴无论a 为何值,函数图象与x 轴必有两个交点,∵x 1+x 2=2a,x 1x 2=﹣1,∴|x 1﹣x 2|=>2, ∴B 正确;二次函数y =ax 2+bx +c (a >0)的对称轴x =﹣2b a =1a , 当a >0时,不能判定x <110时,y 随x 的增大而减小; ∴C 错误;∵﹣1<m <n <0,a >0,∴m +n <0,2a >0, ∴m +n <2a;∴D 正确,故选:C .【点睛】本题考查了二次函数的问题,掌握二次函数的图象和性质是解题的关键.2.如图是抛物线y =ax 2+bx +c (a ≠0)的部分图象,其顶点坐标为(1,m ),且与x 铀的一个交点在点(3,0)和(4,0)之间,则下列结论:①abc >0;②a ﹣b +c >0;③b 2=4a (c ﹣m );④一元二次方程ax 2+bx +c =m +1有两个不相等的实数根,其中正确结论的个数是( )A .1B .2C .3D .4【答案】C【解析】【分析】 根据抛物线的开口方向和与坐标轴的交点及对称轴可判别a ,b ,c 的正负;根据抛物线的对称轴位置可判别在x 轴上另一个交点;根据抛物线与直线y=m 的交点可判定方程的解.【详解】∵函数的图象开口向上,与y 轴交于负半轴∴a>0,c<0∵抛物线的对称轴为直线x=-2b a=1 ∴b<0∴abc >0;①正确;∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间.∴当x=-1时,y<0,即a-b+c<0,所以②不正确;∵抛物线的顶点坐标为(1,m ), ∴244ac b a =m , ∴b 2=4ac-4am=4a (c-m ),所以③正确;∵抛物线与直线y=m 有一个公共点,∴一元二次方程ax 2+bx+c=m+1有两个不相等的实数根,所以④正确.故选:C .【点睛】考核知识点:抛物线与一元二次方程.理解二次函数性质,弄清抛物线与一元二次方程的关系是关键.3.如图是抛物线y=ax 2+bx+c (a≠0)的部分图象,其顶点是(1,n ),且与x 的一个交点在点(3,0)和(4,0)之间,则下列结论:①a -b+c >0;②3a+b=0;③b 2=4a (c-n );④一元二次方程ax 2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是( )A .1B .2C .3D .4【答案】C【解析】【分析】 利用抛物线的对称性得到抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间,则当x=-1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=-2b a=1,即b=-2a ,则可对②进行判断;利用抛物线的顶点的纵坐标为n 得到244ac b a-=n ,则可对③进行判断;由于抛物线与直线y=n 有一个公共点,则抛物线与直线y=n-1有2个公共点,于是可对④进行判断.【详解】∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间.∴当x=-1时,y >0,即a-b+c >0,所以①正确;∵抛物线的对称轴为直线x=-2b a=1,即b=-2a , ∴3a+b=3a-2a=a ,所以②错误;∵抛物线的顶点坐标为(1,n ), ∴244ac b a-=n , ∴b 2=4ac-4an=4a (c-n ),所以③正确;∴抛物线与直线y=n-1有2个公共点,∴一元二次方程ax 2+bx+c=n-1有两个不相等的实数根,所以④正确.故选C .【点睛】本题考查了二次函数图像与系数的关系,熟练掌握二次函数性质是解题的关键.4.如图是抛物线y =ax 2+bx +c (a ≠0)的部分图象,其顶点坐标为(1,n ),且与x 轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①4a ﹣2b +c >0;②3a +b >0;③b 2=4a (c ﹣n );④一元二次方程ax 2+bx +c =n ﹣1有两个互异实根.其中正确结论的个数是( )A .1个B .2个C .3个D .4个【答案】B【解析】【分析】 根据二次函数图象和性质,开口向下,可得a<0,对称轴x=1,利用顶点坐标,图象与x 轴的交点情况,对照选项逐一分析即可.【详解】①∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x =1,∴抛物线与x 轴的另一个交点在点(﹣2,0)和(﹣1,0)之间,∴当x =﹣2时,y <0,即4a ﹣2b +c <0,所以①不符合题意;②∵抛物线的对称轴为直线x =﹣2b a=1,即b =﹣2a , ∴3a +b =3a ﹣2a =a <0,所以②不符合题意;③∵抛物线的顶点坐标为(1,n ), ∴244ac b a=n , ∴b 2=4ac ﹣4an =4a (c ﹣n ),所以③符合题意;④∵抛物线与直线y =n 有一个公共点,∴抛物线与直线y =n ﹣1有2个公共点,∴一元二次方程ax 2+bx +c =n ﹣1有两个不相等的实数根,所以④符合题意.【点睛】本题考查了二次函数的图象和性质的应用,二次函数开口方向,对称轴,交点位置,二次函数与一次函数图象结合判定方程根的个数,掌握二次函数的图象和性质是解题的关键.5.已知在平面直角坐标系中,有两个二次函数()()39m x x y =++及()()26y n x x =--图象,将二次函数()()39m x x y =++的图象按下列哪一种平移方式平移后,会使得此两个函数图象的对称轴重叠( )A .向左平移2个单位长度B .向右平移2个单位长度C .向左平移10个单位长度D .向右平移10个单位长度【答案】D【解析】【分析】将二次函数解析式展开,结合二次函数的性质找出两二次函数的对称轴,二者做差后即可得出平移方向及距离.【详解】解:∵y =m (x +3)(x +9)=mx 2+12mx +27m ,y =n (x -2)(x -6)=nx 2-8nx +12n ,∴二次函数y =m (x +3)(x +9)的对称轴为直线x =-6,二次函数y =n (x -2)(x -6)的对称轴为直线x =4,∵4-(-6)=10,∴将二次函数y =m (x +3)(x +9)的图形向右平移10个单位长度,两图象的对称轴重叠.故选:D .【点睛】本题考查了二次函数图象与几何变换以及二次函数的性质,根据二次函数的性质找出两个二次函数的对称轴是解题的关键.6.四位同学在研究函数2y x bx c =++(,b c 是常数)时,甲发现当1x =时,函数有最小值;乙发现1-是方程20x bx c ++=的一个根;丙发现函数的最小值为3;丁发现当2x =时,4y =,已知这四位同学中只有一位发现的结论是错误的,则该同学是( ) A .甲 B .乙 C .丙 D .丁【解析】【分析】利用假设法逐一分析,分别求出二次函数的解析式,再判断与假设是否矛盾即可得出结论.【详解】解:A .假设甲同学的结论错误,则乙、丙、丁的结论都正确由乙、丁同学的结论可得01442b c b c =-+⎧⎨=++⎩解得:1323b c ⎧=⎪⎪⎨⎪=-⎪⎩∴二次函数的解析式为:221212533636⎛⎫=+-=+ ⎪⎝⎭-y x x x ∴当x=16-时,y 的最小值为2536-,与丙的结论矛盾,故假设不成立,故本选项不符合题意; B .假设乙同学的结论错误,则甲、丙、丁的结论都正确由甲、丙的结论可得二次函数解析式为()213y x =-+当x=2时,解得y=4,当x=-1时,y=7≠0∴此时符合假设条件,故本选项符合题意;C . 假设丙同学的结论错误,则甲、乙、丁的结论都正确由甲乙的结论可得 1201b b c⎧-=⎪⎨⎪=-+⎩ 解得:23b c =-⎧⎨=-⎩∴223y x x =--当x=2时,解得:y=-3,与丁的结论矛盾,故假设不成立,故本选项不符合题意; D . 假设丁同学的结论错误,则甲、乙、丙的结论都正确由甲、丙的结论可得二次函数解析式为()213y x =-+当x=-1时,解得y=7≠0,与乙的结论矛盾,故假设不成立,故本选项不符合题意. 故选B .【点睛】此题考查的是利用待定系数法求二次函数解析式,利用假设法求出b 、c 的值是解决此题的关键.7.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( )A .13x =-,21x =-B .11x =,23x =C .11x =-,23x =D .13x =-,21x =【答案】C【解析】【分析】【详解】∵二次函数22y ax ax c =-+的图象经过点(﹣1,0),∴方程220ax ax c -+=一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数22y ax ax c =-+的图象与x 轴的另一个交点为:(3,0),∴方程220ax ax c -+=的解为:11x =-,23x =. 故选C .考点:抛物线与x 轴的交点.8.如图,抛物线2y ax bx c =++ 与x 轴交于点A (﹣1,0),顶点坐标(1,n ),与y 轴的交点在(0,3),(0,4)之间(包含端点),则下列结论:①abc >0;②3a +b <0;③﹣43≤a ≤﹣1;④a +b ≥am 2+bm (m 为任意实数);⑤一元二次方程2ax bx c n ++= 有两个不相等的实数根,其中正确的有( )A .2个B .3个C .4个D .5个【答案】B【解析】 解:∵抛物线开口向下,∴a <0,∵顶点坐标(1,n ),∴对称轴为直线x =1,∴2b a - =1,∴b =﹣2a >0,∵与y 轴的交点在(0,3),(0,4)之间(包含端点),∴3≤c ≤4,∴abc <0,故①错误;3a +b =3a +(﹣2a )=a <0,故②正确;∵与x 轴交于点A (﹣1,0),∴a ﹣b +c =0,∴a ﹣(﹣2a )+c =0,∴c =﹣3a ,∴3≤﹣3a ≤4,∴﹣43≤a ≤﹣1,故③正确;∵顶点坐标为(1,n ),∴当x =1时,函数有最大值n ,∴a +b +c ≥am 2+bm +c ,∴a +b ≥am 2+bm ,故④正确;一元二次方程2ax bx c n ++=有两个相等的实数根x 1=x 2=1,故⑤错误.综上所述,结论正确的是②③④共3个.故选B .点睛:本题考查了抛物线与x 轴的交点,二次函数的性质,主要利用了二次函数的开口方向,对称轴,最值问题,以及二次函数图象上点的坐标特征,关键在于根据顶点横坐标表示出a 、b 的关系.9.抛物线y =ax 2+bx+c 的顶点为(﹣1,3),与x 轴的交点A 在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论,其中正确结论的个数为( )①若点P(﹣3,m),Q(3,n)在抛物线上,则m <n ;②c =a+3;③a+b+c <0;④方程ax 2+bx+c =3有两个相等的实数根.A .1个B .2个C .3个D .4个【答案】C【解析】 试题分析:由抛物线与x 轴有两个交点,可知b 2-4ac >0,所以①错误;由抛物线的顶点为D (-1,2),可知抛物线的对称轴为直线x=-1,然后由抛物线与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,可知抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间,因此当x=1时,y <0,即a+b+c <0,所以②正确;由抛物线的顶点为D (-1,2),可知a-b+c=2,然后由抛物线的对称轴为直线x=2b a-=-1,可得b=2a ,因此a-2a+c=2,即c-a=2,所以③正确;由于当x=-1时,二次函数有最大值为2,即只有x=-1时,ax 2+bx+c=2,因此方程ax2+bx+c-2=0有两个相等的实数根,所以④正确.故选C .考点:二次函数的图像与性质10.已知二次函数223(0)y ax ax a a =--≠,关于此函数的图象及性质,下列结论中不一定成立的是( )A .该图象的顶点坐标为()1,4a -B .该图象与x 轴的交点为()()1,0,3,0-C .若该图象经过点()2,5-,则一定经过点()4,5D .当1x >时,y 随x 的增大而增大【答案】D【解析】【分析】根据二次函数的图象与性质即可求出答案.【详解】解:y=a (x 2-2x-3)=a (x-3)(x+1)令y=0,∴x=3或x=-1, ∴抛物线与x 轴的交点坐标为(3,0)与(-1,0),故B 成立;∴抛物线的对称轴为:x=1,令x=1代入y=ax 2-2ax-3a ,∴y=a-2a-3a=-4a ,∴顶点坐标为(1,-4a ),故A 成立;由于点(-2,5)与(4,5)关于直线x=1对称,∴若该图象经过点(-2,5),则一定经过点(4,5),故C 成立;当x >1,a >0时,y 随着x 的增大而增大,当x >1,a <0时,y 随着x 的增大而减少,故D 不一定成立;故选:D .【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.11.若用“*”表示一种运算规则,我们规定:a *b =ab ﹣a +b ,如:3*2=3×2﹣3+2=5.以下说法中错误的是( )A .不等式(﹣2)*(3﹣x )<2的解集是x <3B .函数y =(x +2)*x 的图象与x 轴有两个交点C .在实数范围内,无论a 取何值,代数式a *(a +1)的值总为正数D .方程(x ﹣2)*3=5的解是x =5【答案】D【解析】【分析】根据题目中所给的运算法则列出不等式,解不等式即可判定选项A ;根据题目中所给的运算法则求得函数解析式,由此即可判定选项B ;根据题目中所给的运算法则可得a *(a +1)=a (a +1)﹣a +(a +1)=a 2+a +1=(a +12)2+34>0,由此即可判定选项C ;根据题目中所给的运算法则列出方程,解方程即可判定选项D.【详解】∵a *b =ab ﹣a +b ,∴(﹣2)*(3﹣x )=(﹣2)×(3﹣x )﹣(﹣2)+(3﹣x )=x ﹣1,∵(﹣2)*(3﹣x )<2,∴x ﹣1<2,解得x <3,故选项A 正确;∵y =(x +2)*x =(x +2)x ﹣(x +2)+x =x 2+2x ﹣2,∴当y =0时,x 2+2x ﹣2=0,解得,x 1=﹣1+3,x 2=﹣1﹣3,故选项B 正确; ∵a *(a +1)=a (a +1)﹣a +(a +1)=a 2+a +1=(a +12)2+34>0, ∴在实数范围内,无论a 取何值,代数式a *(a +1)的值总为正数,故选项C 正确; ∵(x ﹣2)*3=5,∴(x ﹣2)×3﹣(x ﹣2)+3=5,解得,x =3,故选项D 错误;故选D .【点睛】本题是阅读理解题,根据题目中所给的运算法则得到相应的运算式子是解决问题的关键.12.在同一平面直角坐标系中,函数y=ax 2+bx 与y=bx+a 的图象可能是( )A .B .C .D .【答案】C【解析】试题解析:A 、对于直线y=bx+a 来说,由图象可以判断,a >0,b >0;而对于抛物线y=ax 2+bx 来说,对称轴x=﹣2b a<0,应在y 轴的左侧,故不合题意,图形错误. B 、对于直线y=bx+a 来说,由图象可以判断,a <0,b <0;而对于抛物线y=ax 2+bx 来说,图象应开口向下,故不合题意,图形错误.C 、对于直线y=bx+a 来说,由图象可以判断,a <0,b >0;而对于抛物线y=ax 2+bx 来说,图象开口向下,对称轴x=﹣2b a位于y 轴的右侧,故符合题意, D 、对于直线y=bx+a 来说,由图象可以判断,a >0,b >0;而对于抛物线y=ax 2+bx 来说,图象开口向下,a <0,故不合题意,图形错误.故选C .考点:二次函数的图象;一次函数的图象.13.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( ) A . B . C . D .【答案】C【解析】【分析】根据a 、b 的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.【详解】当a >0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A 、D 不正确;由B 、C 中二次函数的图象可知,对称轴x=-2b a>0,且a >0,则b <0, 但B 中,一次函数a >0,b >0,排除B .故选C .14.抛物线2y ax bx c =++(,,a b c 是常数),0a >,顶点坐标为1(,)2m .给出下列结论:①若点1(,)n y 与点23(2)2n y -,在该抛物线上,当12n <时,则12y y <;②关于x 的一元二次方程210ax bx c m -+-+=无实数解,那么( )A .①正确,②正确B .①正确,②错误C .①错误,②正确D .①错误,②错误【答案】A【解析】【分析】①根据二次函数的增减性进行判断便可;②先把顶点坐标代入抛物线的解析式,求得m ,再把m 代入一元二次方程ax 2-bx+c-m+1=0的根的判别式中计算,判断其正负便可判断正误.【详解】解:①∵顶点坐标为1,2m ⎛⎫ ⎪⎝⎭,12n < ∴点(n ,y 1)关于抛物线的对称轴x=12的对称点为(1-n ,y 1), ∴点(1-n ,y 1)与2322n y ⎛⎫- ⎪⎝⎭,在该抛物线的对称轴的右侧图像上, 31(1)2022n n n ⎛⎫---=-< ⎪⎝⎭Q 3122n n ∴-<- ∵a >0,∴当x >12时,y 随x 的增大而增大, ∴y 1<y 2,故此小题结论正确; ②把1,2m ⎛⎫ ⎪⎝⎭代入y=ax 2+bx+c 中,得1142m a b c =++, ∴一元二次方程ax 2-bx+c-m+1=0中, △=b 2-4ac+4am-4a 2211444()4042b ac a a b c a a b a ⎛⎫=-+++-=+-< ⎪⎝⎭ ∴一元二次方程ax 2-bx+c-m+1=0无实数解,故此小题正确;故选A .【点睛】本题主要考查了二次函数图象与二次函数的系数的关系,第①小题,关键是通过抛物线的对称性把两点坐标变换到对称轴的一边来,再通过二次函数的增减性进行比较,第②小题关键是判断一元二次方程根的判别式的正负.15.已知二次函数2()y x h =-- (h 为常数),当自变量x 的值满足25x ≤≤时,与其对应的函数值y 的最大值为-1,则h 的值为( )A .3或6B .1或6C .1或3D .4或6【答案】B【解析】分析:分h <2、2≤h≤5和h >5三种情况考虑:当h <2时,根据二次函数的性质可得出关于h 的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h >5时,根据二次函数的性质可得出关于h 的一元二次方程,解之即可得出结论.综上即可得出结论.详解:如图,当h<2时,有-(2-h)2=-1,解得:h1=1,h2=3(舍去);当2≤h≤5时,y=-(x-h)2的最大值为0,不符合题意;当h>5时,有-(5-h)2=-1,解得:h3=4(舍去),h4=6.综上所述:h的值为1或6.故选B.点睛:本题考查了二次函数的最值以及二次函数的性质,分h<2、2≤h≤5和h>5三种情况求出h值是解题的关键.16.在函数2yx=,3y x=+,2y x=的图象中,是中心对称图形,且对称中心是原点的图象共有()A.0个B.1个C.2个D.3个【答案】B【解析】【分析】根据中心对称图形的定义与函数的图象即可求解.【详解】y=x+3的图象是中心对称图形,但对称中心不是原点;y=x2图象不是中心对称图形;只有函数2yx=符合条件.故选:B.【点睛】本题考查函数的图象性质与中心对称图形的性质,熟练掌握相关知识是解题的关键.17.在同一直角坐标系中,反比例函数图像与二次函数图像的交点的个数至少有() A.0B.1C.2D.3【答案】B【解析】【分析】根据二次函数和反比例函数的图象位置,画出图象,直接判断交点个数.【详解】若二次函数的图象在第三、四象限,开口向下,顶点在原点,y轴是对称轴;反比例函数的图象在第一,三象限,故两个函数的交点只有一个,在第三象限.同理,若二次函数的图象在第三、四象限,开口向下,顶点在原点,y 轴是对称轴;反比例函数的图象在第二,四象限,故两个函数的交点只有一个,在第四象限.故答案为:B .【点睛】本题考查了二次函数和反比例函数的图象问题,掌握二次函数和反比例函数的图象性质是解题的关键.18.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于(-1,0),(3,0)两点,则下列说法:①abc <0;②a -b +c =0;③2a +b =0;④2a +c >0;⑤若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)为抛物线上三点,且-1<x 1<x 2<1,x 3>3,则y 2<y 1<y 3,其中正确的结论是( )A .①⑤B .②④C .②③④D .②③⑤【答案】D【解析】【分析】①abc <0,由图象知c <0,a 、b 异号,所以,①错误;②a -b+c=0,当x=-1时,y=a-b+c=0,正确;③2a+b=0,函数对称轴x=-2b a=1,故正确;④2a+c >0,由②、③知:3a+c=0,而-a <0,∴2a+c <0,故错误;⑤若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)为抛物线上三点,且-1<x 1<x 2<1,x 3>3,则y 2<y 1<y 3,把A 、B 、C 坐标大致在图上标出,可知正确.【详解】解:①abc <0,由图象知c <0,a 、b 异号,所以,①错误;②a -b+c=0,当x=-1时,y=a-b+c=0,正确;③2a+b=0,函数对称轴x=-2b a=1,故正确; ④2a+c >0,由②、③知:3a+c=0,而-a <0,∴2a+c <0,故错误;⑤若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)为抛物线上三点,且-1<x 1<x 2<1,x 3>3,则y 2<y 1<y 3,把A 、B 、C 坐标大致在图上标出,可知正确;故选D .【点睛】考查图象与二次函数系数之间的关系,要会求对称轴、x=±1等特殊点y 的值.19.已知二次函数y =ax 2+bx+c (a≠0)的图象如图,分析下列四个结论:①abc <0;②b 2﹣4ac >0;③3a+c >0;④(a+c )2<b 2,其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】B【解析】 试题解析:①由开口向下,可得0,a <又由抛物线与y 轴交于正半轴,可得0c >,再根据对称轴在y 轴左侧,得到b 与a 同号,则可得0,0b abc ,故①错误;②由抛物线与x 轴有两个交点,可得240b ac ->, 故②正确;③当2x =-时,0,y < 即420a b c -+< (1)当1x =时,0y <,即0a b c ++< (2)(1)+(2)×2得,630a c +<,即20a c +<,又因为0,a <所以()230a a c a c ,++=+< 故③错误;④因为1x =时,0y a b c =++<,1x =-时,0y a b c =-+>所以()()0a b c a b c ++-+<即()()22()0,a c b a c b a c b ⎡⎤⎡⎤+++-=+-<⎣⎦⎣⎦ 所以22().a c b +<故④正确,综上可知,正确的结论有2个.故选B .20.如图所示,二次函数y=ax 2+bx+c (a≠0)的图象经过点(﹣1,2),且与x 轴交点的横坐标分别为x 1、x 2,其中﹣2<x 1<﹣1,0<x 2<1.下列结论:①4a ﹣2b+c <0;②2a ﹣b <0;③abc <0;④b 2+8a <4ac .其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 首先根据抛物线的开口方向可得到a <0,抛物线交y 轴于正半轴,则c >0,而抛物线与x 轴的交点中,﹣2<x 1<﹣1、0<x 2<1说明抛物线的对称轴在﹣1~0之间,即x =﹣2b a>﹣1,可根据这些条件以及函数图象上一些特殊点的坐标来进行判断【详解】 由图知:抛物线的开口向下,则a <0;抛物线的对称轴x=﹣2b a>﹣1,且c >0; ①由图可得:当x=﹣2时,y <0,即4a ﹣2b+c <0,故①正确; ②已知x=﹣2b a>﹣1,且a <0,所以2a ﹣b <0,故②正确; ③抛物线对称轴位于y 轴的左侧,则a 、b 同号,又c >0,故abc >0,所以③不正确;④由于抛物线的对称轴大于﹣1,所以抛物线的顶点纵坐标应该大于2,即:244ac b a ->2,由于a <0,所以4ac ﹣b2<8a ,即b 2+8a >4ac ,故④正确;因此正确的结论是①②④.故选:C .【点睛】本题主要考查对二次函数图象与系数的关系,抛物线与x轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,能根据图象确定与系数有关的式子的正负是解此题的关键.。

黑龙江省绥化市2022届初一下期末经典数学试题含解析

黑龙江省绥化市2022届初一下期末经典数学试题含解析

黑龙江省绥化市2022届初一下期末经典数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(每题只有一个答案正确)1.不等式的2(x﹣1)<x解集在数轴上表示如下,正确的是()A.B.C.D.【答案】D【解析】【分析】根据不等式性质解不等式,再表示解集.【详解】解:去括号得,1x﹣1<x,移项、合并同类项得,x<1.在数轴上表示为:.故选:D.【点睛】考核知识点:解不等式、再数轴表示解集.解不等式是关键.2.某红外线遥控器发出的红外线波长为0.000 000 94m,用科学记数法表示这个数是()A.7⨯m D.8⨯m9.4109.410-9.410-⨯m C.8⨯m B.79.410【答案】A【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定0.000 000 94=9.4×10-1.故选A.3.下列实数中,最小的数是A.B.0 C.1 D.【答案】A【解析】【分析】根据各项数字的大小排列顺序,找出最小的数即可.【详解】由题意得:,最小的数为:.故选A.【点睛】本题考查了实数大小的比较,解题的关键是理解正数大于0,0大于负数的知识.4.已知32xy=⎧⎨=-⎩是二元一次方程3x﹣my=5的一组解,则m的值为()A.﹣2 B.2 C.﹣12D.12【答案】A【解析】【分析】根据方程的解满足方程,可得关于m的方程,根据解方程,可得答案.【详解】解:由题意,得9+2m=5,解得m=−2,故选A.【点睛】本题考查二元一次方程的解,解题的关键是代入要细心.5.不等式2x31+≥的解集在数轴上表示为A. B. C. D.【答案】C【解析】分析:解不等式2x312x132x2x1+≥⇒≥-⇒≥-⇒≥-不等式的解集在数轴上表示的方法:>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.因此不等式x1≥-在数轴上表示正确的是C.故选C.6.一个多边形的每一个外角都等于72°,则这个多边形的内角和等于()A.360°B.540°C.720°D.900°【答案】B【解析】【分析】先利用360°÷72°求出多边形的边数,再根据多边形的内角和公式(n-2)•180°计算即可求解.【详解】360°÷72°=5,∴(5-2)•180°=540°.故选B.【点睛】本题主要考查了正多边形的外角与边数的关系,求出多边形的边数是解题的关键.7.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.000105m,该数值用科学记数法表示为()A.B.C.D.【答案】C【解析】【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000105 .故选:C.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为,其中,为由原数左边起第一个不为零的数字前面的0的个数所决定.8.若点A(a+1,b﹣2)在第二象限,则点B(﹣a,1﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】分析:直接利用第二象限横纵坐标的关系得出a,b的符号,进而得出答案.详解:∵点A(a+1,b-2)在第二象限,∴a+1<0,b-2>0,解得:a<-1,b>2,则-a>1,1-b<-1,故点B(-a,1-b)在第四象限.故选D.点睛:此题主要考查了点的坐标,正确记忆各象限内点的坐标符号是解题关键.9.如图,将△ABC绕点C按顺时针方向旋转90°得到△EDC.若点A、D、E在同一条直线上,,则ADC的大小为( )A.60°B.5°C.70°D.75°【答案】C【解析】【分析】由旋转的性质可得AC=CE,∠ACE=90°,∠ACB=∠DCE=25°,由等腰三角形的性质可得∠E=∠CAE=45°,由三角形的外角性质可求∠ADC的大小.【详解】∵将△ABC绕点C按顺时针旋转90°得到△EDC,∴AC=CE,∠ACE=90°,∠ACB=∠DCE=25°∴∠E=∠CAE=45°∴∠ADC=∠E+∠DCE=70°故选C.【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键.10.下列不等式变形正确的是()A.由得B.由得C.由得D.由a>b得a-2<b-2【答案】C【解析】【分析】根据不等式的基本性质判断即可.【详解】解:A选项,当时,,当时,,故A错误;B选项,不等式两边同乘以同一个不为零的负数,不等号方向改变,所以,故B错误;C选项,不等式两边同乘以,不等号方向改变,故C正确;D选项,不等式两边同时减去同一个整式,不等号方向不变,所以a-2>b-2,故D错误.故选:C【点睛】本题考查了不等式的基本性质,灵活应用不等式的基本性质进行不等式的变形是解题的关键.不等式的基本性质:①不等式两边同时加上或减去同一个整式,不等号方向不变;②不等式两边同乘以同一个不为零的正数,不等号方向不变;③不等式两边同乘以同一个不为零的负数,不等号方向改变.二、填空题11.计算:(3)2017•(﹣13)2017=_______.【答案】-1【解析】【分析】根据积的乘方公式逆运算即可求解. 【详解】(3)2017•(﹣13)2017=[3×(﹣13)] 2017=(﹣1)2017=-1【点睛】此题主要考查幂的运算,解题的关键是熟知积的乘方公式.12.书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元,一律按原价打九折;③一次性购书超过200元,一律按原价打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是_________.【答案】248元或296元【解析】【分析】设小丽第一次购书的原价为x元,则第二次购书的原价为3x元,分x≤1003、1003<x≤2003、2003<x≤100及x>100四种情况,找出关于x的一元一次方程,解之即可得出结论.【详解】设小丽第一次购书的原价为x元,则第二次购书的原价为3x元,根据题意得:当3x≤100,即x≤1003时,x+3x=229.4,解得:x=57.35(舍去);当100<3x≤200,即1003<x≤2003时,x+0.9×3x=229.4,解得:x=62,∴x+3x=248;当3x>200且x≤100,即2003<x≤100时,x+0.7×3x=229.4,解得:x=74,∴x+3x=296;当x>100时,0.9x+0.7×3x=229.4,解得:x≈76.47(舍去).答:小丽这两次购书原价的总和是248元或296元.故填:248元或296元.【点睛】本题考查了一元一次方程的应用,分x≤1003、1003<x≤2003、2003<x≤100及x>100四种情况,列出关于x的一元一次方程是解题的关键.13.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(a+2b)、宽为(a+b)的大长方形,则共需要这三类卡片_____张.【答案】6【解析】【分析】先列出算式,关键多项式乘以多项式法则求出结果,即可得出答案.【详解】解:长方形的面积为(a+2b)(a+b)=a2+ab+2ab+2b2=a2+3ab+2b2,1+3+2=6,故答案为:6【点睛】本题考查了多项式乘以多项式法则,能灵活运用法则进行化简是解此题的关键.14.将一条两边沿互相平行的纸带按如图折叠,设∠1=40°,则∠α的度数是___.【答案】70°【解析】【分析】先标注各个点以及角,由平行线的性质可知∠ABC=∠1,由折叠的性质可知∠CBD+∠ABD=180°,列方程求解.【详解】作图如下,由平行线的性质,得∠ABC=∠1=40°,由折叠的性质,得∠CBD+∠ABD=180°,即α+α+∠ABC=180°,2α+40°=180°,解得α=70°.故答案为:70°.【点睛】本题考查翻折变换(折叠问题),解题的关键是掌握平行线的性质和折叠的性质.15.在一不透明的口袋中有4个为红球,3个绿球,2个白球,它们除颜色不同外完全一样,现从中任摸一球,恰为红球的概率为__________.【答案】4 9【解析】【分析】先求出袋子中球的总个数及红球的个数,再根据概率公式解答即可.【详解】袋子中球的总数为4+3+2=9,而红球有4个,则从中任摸一球,恰为红球的概率为49. 故答案为:49. 【点睛】 此题考查概率公式,解题关键在于掌握公式运算法则.16.已知(2019﹣x )(2017﹣x )=2018,则(2019﹣x )2+(2017﹣x )2=_____.【答案】1.【解析】【分析】根据完全平方公式对等式进行变形,再进行计算,即可得到答案.【详解】(2019﹣x )2+(2017﹣x )2=[(2019﹣x )﹣(2017﹣x )]2+2(2019﹣x )(2017﹣x )=22+2×2018=1,故答案为1.【点睛】本题考查完全平方公式,解题的关键是掌握完全平方公式的结构特征.17.在平面直角坐标系中,(2,0)A ,(6,4)D ,将线段AD 平移到BC ,使(0,6)B -(其中点A 的对应点为点B ),则点C 的坐标为________.【答案】()4,2-【解析】【分析】由点A 及其对应点B 的坐标得出平移方向和距离,据此可得点C 的坐标.【详解】解:(1)由点A (2,0)的对应点B (0,-6)知先向左平移2个单位、再向下平移6个单位, ∴点D (6,4)的对应点C 的坐标为(4,-2),故答案为:(4,-2).【点睛】本题主要考查坐标与图形的变化-平移,用到的知识点为:点的平移,左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.三、解答题18.(1)请在横线上填写适当的内容,完成下面的解答过程:如图①,如果∠ABE+∠BED+∠CDE=360°,试说明AB∥CD.理由:过点E作EF∥AB所以∠ABE+∠BEF=°()又因为∠ABE+∠BED+∠CDE=360°所以∠FED+∠CDE=°所以EF∥.又因为EF∥AB,所以AB∥CD.(2)如图②,如果AB∥CD,试说明∠BED=∠B+∠D.(3)如图③,如果AB∥CD,∠BEC=α,BF平分∠ABE,CF平分∠DCE,则∠BFC的度数是(用含α的代数式表示).【答案】(1)180,两直线平行,同旁内角互补,180,CD;(2)见解析;(3)180°﹣12α.【解析】【分析】(1)先判断出∠FED+∠CDE=180°得出EF∥CD,即可得出结论;(2)先判断出∠BEH=∠B,再判断出EH∥CD,得出∠DEH=∠D,即可的得出结论;(3)先判断出∠ABE+∠DCE=360°-α,进而判断出∠ABF+∠DCF=180°-12α,借助(2)的结论即可得出结论.【详解】解:(1)过点E作EF∥AB∴∠ABE+∠BEF=180°(两直线平行,同旁内角互补)∵∠ABE+∠BED+∠CDE=360°∴∠FED+∠CDE=180°∴EF∥CD∵EF∥AB∴AB∥CD;故答案为:180,两直线平行,同旁内角互补,180,CD;(2)如图2,过点E作EH∥AB,∴∠BEH=∠B,∵EH∥AB,AB∥CD,∴EH∥CD,∴∠DEH=∠D,∴∠BED=∠BEH+∠DEH=∠B+∠D;(3)如图3,过点E作EG∥AB,∴∠ABE+∠BEG=180°,∵EG∥AB,CD∥AB,∴EG∥CD,∴∠DCE+∠CEG=180°∴∠ABE+∠BEG+∠CEG+∠DCE=360°,∴∠ABE+∠BEC+∠DCE=360°,∴∠ABE+∠DCE=360°﹣∠BEC,∵∠BEC=α,∴∠ABE+∠CCE=360°﹣α,∵BF,CF分别平分∠ABE,∠DCE,∴∠ABE=2∠ABF,∠DCF=2∠ECF,∴∠ABF+∠DCF=180°﹣12α,过点F作作FH∥AB,同(2)的方法得,∠BFC=∠ABF+∠DCF=180°﹣12α,故答案为:180°﹣12α.【点睛】此题主要考查了平行线的性质和判定,角平分线的意义,正确作出辅助线是解本题的关键.19.学校6名教师和234名学生集体外出活动,准备租用45座大车或30座小车.若租用1辆大车2辆小车共需租车费1000元;若租用2辆大车一辆小车共需租车费1100元.(1)求大、小车每辆的租车费各是多少元?(2)若每辆车上至少要有一名教师,且总租车费用不超过2300元,求最省钱的租车方案.【答案】(1)大车每辆的租车费是400元、小车每辆的租车费是300元;(2)最省钱的租车方案是:4辆大车,2辆小车【解析】【分析】(1)设大车每辆的租车费是x元、小车每辆的租车费是y元.根据题意:“租用1辆大车2辆小车共需租车费1000元”;“租用2辆大车一辆小车共需租车费1100元”;列出方程组,求解即可;(2)根据汽车总数不能小于234645+(取整为6)辆,即可求出共需租汽车的辆数;设租用大车m辆,则租车费用Q(单位:元)是m的函数,由题意得出400m+300(6-m)≤2300,得出取值范围,分析得出即可.【详解】解:(1)设大车每辆的租车费是x元、小车每辆的租车费是y元.可得方程组x2y10002x y1100+=⎧+=⎨⎩,解得{x400y300==.答:大车每辆的租车费是400元、小车每辆的租车费是300元;(2)由每辆汽车上至少要有1名老师,汽车总数不能大于6辆;又要保证240名师生有车坐,汽车总数不能小于234645+(取整为6)辆,综合起来可知汽车总数为6辆.设租用m辆大型车,则租车费用Q(单位:元)是m的函数,即Q=400m+300(6-m);化简为:Q=100m+1800,依题意有:100m+1800≤2300,∴m≤5,又要保证240名师生有车坐,45m+30(6-m)≥240,解得m≥4,所以有两种租车方案,方案一:4辆大车,2辆小车;方案二:5辆大车,1辆小车.∵Q随m增加而增加,∴当m=4时,Q 最少为2200元.故最省钱的租车方案是:4辆大车,2辆小车.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用和理解题意的能力,关键是根据题目所提供的等量关系和不等量关系,列出方程组和不等式求解.20.如图,在平面直角坐标系中有三个点()()()0,12,03,2A B C --、、,(),P a b 是ABC ∆的边AC 上一点,ABC ∆经平移后得到111A B C ∆,点P 的对应点为()14,2P a b -+.(1)画出平移后的111A B C ∆,写出点111A B C 、、的坐标;(2)ABC ∆的面积为_________________;(3)若点(),0Q m 是x 轴上一动点,11B C Q ∆的面积为s ,求s 与m 之间的关系式(用含m 的式子表示s )【答案】(1)见解析;(2)52;(3)当1m >-时,1s m =+,当1m <-时,1s m =-- 【解析】【分析】 (1)利用P 点和P 1点的坐标特征确定平移的方向和距离,然后根据此平移规律写出点A 1、B 1、C 1的坐标,最后描点即可;(2)用一个矩形的面积分别减去三个三角形的面积去计算△ABC 的面积;(3)利用三角形面积公式得到s=12•2•|m+1|,然后分类讨论去绝对值即可. 【详解】解:(1)如图,△A 1B 1C 1为所作;点A 1、B 1、C 1的坐标分别为(-4,1),(-2,2),(-1,0);(2)△ABC的面积=2×3-12×1×2-12×2×1-12×1×3=52;故答案为:52;(3)s=12•2•|m+1|,当m>-1时,s=m+1;当m<-1时,s=-1-m.【点睛】本题考查作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.21.一个长方形养鸡场的长边靠墙,墙长14米,其他三边用篱笆围城,现有长为35米的篱笆,爸爸的设计方案是长比宽多5米;妈妈的设计方案是长比宽多2米,你认为谁的设计合理,为什么?并说出设计合理的养鸡场面积.【答案】妈妈的设计方案合理,143平方米【解析】【分析】设篱笆的长为x米,宽为y米,分别根据各自方案中长宽的关系及篱笆总长,列出二元一次方程组,再根据墙长14米判定设计是否合理.【详解】解:妈妈的设计方案合理.理由如下:设篱笆的长为x米,宽为y米①按爸爸的设计方案,则有5235x yx y-=⎧⎨+=⎩,解得1510xy=⎧⎨=⎩,15米14>米,不合理②按妈妈的设计方案,则有2235x y x y -=⎧⎨+=⎩,解得1311x y =⎧⎨=⎩,13米14<米,合理 此时养鸡场的面积为()13132143⨯-=(平方米).【点睛】此题考查了二元一次方程组的应用,找准等量关系列出二元一方程租是解题关键.22.完成下面的证明:如图,点,,D E F 分别是三角形ABC 的边BC,CA,AB 上的点,DE BA ∕∕,FDE A ∠=∠.求证:DF CA ∕∕.证明:∵DE AB ∕∕ (已知)∴BFD ∠= ( )∵FDE A ∠=∠ (已知)∴A ∠= (等量代换)∴DF CA ∕∕ ( ).【答案】详见解析【解析】【分析】根据平行线的性质,得到∠BFD=∠EDF ,再根据平行线的判定,即可得出DF ∥CA .【详解】证明:∵DE AB ∕∕ (已知)∴BFD ∠= FDE ∠ ( 两直线平行,内错角相等 )∵FDE A ∠=∠ (已知)∴A ∠= BFD ∠∴DF CA ∕∕( 同位角相等,两直线平行 ).【点睛】本题主要考查了平行线的性质与判定的运用,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.23.先阅读下面的材料,然后回答问题:方程1122x x +=+的解为12x =,212x =; 方程1133x x +=+的解为13x =,213x =; 方程1144x x +=+的解为14x =,214x =; … (1)观察上述方程的解,猜想关于x 的方程1155x x +=+的解是___; (2)根据上面的规律,猜想关于x 的方程11x a x a +=+的解是___; (3)猜想关于x 的方程x−1112x =的解并验证你的结论; (4)在解方程:21013y y y ++=+时,可将方程变形转化为(2)的形式求解,按要求写出你的变形求解过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绥化市初中数学数据分析经典测试题附解析一、选择题1.对于两组数据A ,B ,如果s A 2>s B 2,且A B x x =,则( ) A .这两组数据的波动相同 B .数据B 的波动小一些 C .它们的平均水平不相同 D .数据A 的波动小一些【答案】B 【解析】试题解析:方差越小,波动越小.22,A B s s >Q数据B 的波动小一些. 故选B.点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.2.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:那么20名学生决赛成绩的众数和中位数分别是( ) A .85,90 B .85,87.5C .90,85D .95,90【答案】B 【解析】试题解析:85分的有8人,人数最多,故众数为85分; 处于中间位置的数为第10、11两个数, 为85分,90分,中位数为87.5分. 故选B .考点:1.众数;2.中位数3.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①22s s >甲乙;②22s s <甲乙;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定.由统计图可知正确的结论是( )A.①③B.①④C.②③D.②④【答案】C【解析】【分析】从折线图中得出甲乙的射击成绩,再利用方差的公式计算,即可得出答案.【详解】由图中知,甲的成绩为7,7,8,9,8,9,10,9,9,9,乙的成绩为8,9,7,8,10,7,9,10,7,10,x甲=(7+7+8+9+8+9+10+9+9+9)÷10=8.5,x乙=(8+9+7+8+10+7+9+10+7+10)÷10=8.5,甲的方差S甲2=[2×(7-8.5)2+2×(8-8.5)2+(10-8.5)2+5×(9-8.5)2]÷10=0.85,乙的方差S乙2=[3×(7-8.5)2+2×(8-8.5)2+2×(9-8.5)2+3×(10-8.5)2]÷10=1.45,∴S2甲<S2乙,∴甲的射击成绩比乙稳定;故选:C.【点睛】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4.小明参加射击比赛,10次射击的成绩如表:若小明再射击2次,分别命中7环、9环,与前10次相比,小明12次射击的成绩()A.平均数变大,方差不变B.平均数不变,方差不变C.平均数不变,方差变大D.平均数不变,方差变小【答案】D【解析】【分析】首先利用计算出前10次射击的平均数,再计算出方差,然后计算出再射击2次后的平均数和方差,进而可得答案.【详解】前10次平均数:(6×3+7×1+8×2+9×1+10×3)÷10=8,方差:S2=110[(6﹣8)2×3+(7﹣8)2+(8﹣8)2×2+(9﹣8)2+3×(10﹣8)2]=2.6,再射击2次后的平均数::(6×3+7×1+8×2+9×1+10×3+7+9)÷12=8,方差:S2=112[(6﹣8)2×3+(7﹣8)2×2+(8﹣8)2×2+(9﹣8)2×2+3×(10﹣8)2]=73,平均数不变,方差变小,故选:D.【点睛】此题主要考查了方差和平均数,关键是掌握方差计算公式:S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2].5.回忆位中数和众数的概念;6.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示:则这15运动员的成绩的众数和中位数分别为()A.1.75,1.70 B.1.75,1.65 C.1.80,1.70 D.1.80,1.65【答案】A【解析】【分析】7.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试,因此计算其他39人的平均分为90分,方差239s .后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变【答案】B【解析】【分析】根据平均数,方差的定义计算即可.【详解】解:∵小亮的成绩和其他39人的平均数相同,都是90分,∴该班40人的测试成绩的平均分为90分,方差变小,故选:B.【点睛】本题考查方差,算术平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.8.样本数据3,a,4,b,8的平均数是5,众数是3,则这组数据的中位数是()A.2 B.3 C.4 D.8【答案】C【解析】【分析】+=,由众数是3知a、b中一个数据为3、另一个数据为先根据平均数为5得出a b107,再根据中位数的定义求解可得.【详解】解:Q数据3,a,4,b,8的平均数是5,∴++++=,即a b10+=,3a4b825又众数是3,∴、b中一个数据为3、另一个数据为7,a则数据从小到大为3、3、4、7、8,∴这组数据的中位数为4,故选C.【点睛】此题考查了平均数、众数和中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数.9.某校四个绿化小组一天植树的棵数如下:10,x,10,8,已知这组数据的众数与平均数相等,则这组数据的中位数是( )A.8 B.9 C.10 D.12【答案】C【解析】【分析】根据这组数据的众数与平均数相等,可知这组数据的众数(因10出现了2次)与平均数都是10;再根据平均数是10,可求出这四个数的和是40,进而求出x的数值;然后把这四个数据按照从大到小的顺序排列,由于是偶数个数据,则中间两个数的平均数就是中位数.【详解】当x=8时,有两个众数,而平均数只有一个,不合题意舍去.当众数为10,根据题意得(10+10+x+8)÷4=10,解得x=12,将这组数据按从小到大的顺序排列为8,10,10,12,处于中间位置的是10,10,所以这组数据的中位数是(10+10)÷2=10.故选C.【点睛】本题为统计题,考查平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.10.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定【答案】B【解析】【分析】根据方差的意义求解可得.【详解】∵乙的成绩方差<甲成绩的方差,∴乙的成绩比甲的成绩稳定,故选B.【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.11.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5【答案】A【解析】试题分析:根据众数和中位数的定义求解可得.解:由表可知25出现次数最多,故众数为25;12个数据的中位数为第6、7个数据的平均数,故中位数为25252+=25, 故选:A .12.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为( ) A .1.70,1.75 B .1.70,1.70C .1.65,1.75D .1.65,1.70【答案】A 【解析】分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.详解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m ,故中位数为1.70;跳高成绩为1.75m 的人数最多,故跳高成绩的众数为1.75; 故选A .点睛:本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.13.为了迎接2022年的冬奥会,中小学都积极开展冰上运动,小乙和小丁进行500米短道速滑比赛,他们的五次成绩(单位:秒)如表所示:1 2 3 4 5 小乙 45 63 55 52 60 小丁5153585657设两人的五次成绩的平均数依次为x 乙,x 丁,成绩的方差一次为2S 乙,2S 丁,则下列判断中正确的是( )A .22,x x S S =<乙丁乙丁B .22,x x S S =>乙丁乙丁 C .22,x x S S >>乙丁乙丁D .22,x x S S <<乙丁乙丁【答案】B【解析】 【分析】根据平均数的计算公式先求出甲和乙的平均数,再根据方差的意义即可得出答案. 【详解】x 乙45635552605++++==55,则215S =⨯乙 [(45﹣55)2+(63﹣55)2+(55﹣55)2+(52﹣55)2+(60﹣55)2]=39.6, x 丁51535856575++++==55,则215S =⨯丁 [(51﹣55)2+(53﹣55)2+(58﹣55)2+(56﹣55)2+(57﹣55)2]=6.8, 所以x 乙x =丁,22S S >乙丁,故选:B . 【点睛】本题考查方差的定义与意义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是( ) A .平均数 B .中位数C .众数D .方差【答案】D 【解析】 【详解】解:A .原来数据的平均数是2,添加数字2后平均数仍为2,故A 与要求不符; B .原来数据的中位数是2,添加数字2后中位数仍为2,故B 与要求不符; C .原来数据的众数是2,添加数字2后众数仍为2,故C 与要求不符;D .原来数据的方差=222(12)2(22)(32)4-+⨯-+-=12,添加数字2后的方差=222(12)3(22)(32)5-+⨯-+-=25, 故方差发生了变化. 故选D .15.某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下表所示:则该班学生一周读书时间..的中位数和众数分别是( )A.9,8 B.9,9 C.9.5,9 D.9.5,8【答案】A【解析】【分析】根据中位数和众数的定义进行解答即可.【详解】由表格,得该班学生一周读书时间的中位数和众数分别是9,8.【点睛】本题主要考查了中位数和众数,掌握中位数和众数的定义及求法是解答的关键.16.数据2、5、6、0、6、1、8的中位数是()A.8 B.6 C.5 D.0【答案】C【解析】【分析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.【详解】将数据从小到大排列为:0,1,2,5,6,6,8∵这组数据的个数是奇数∴最中间的那个数是中位数即中位数为5故选C.【点睛】此题考查了平均数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.17.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的()A.平均数B.方差C.众数D.中位数【答案】B【解析】【分析】平均数、众数、中位数反映的是数据的集中趋势,方差反映的是数据的离散程度,方差越大,说明这组数据越不稳定,方差越小,说明这组数据越稳定.【详解】解:由于方差能反映数据的稳定性,故需要比较这两名同学5次短跑训练成绩的方差.故选B.【点睛】考核知识点:均数、众数、中位数、方差的意义.18.一组数据0、-1、3、2、1的极差是()A.4 B.3 C.2 D.1【答案】A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.19.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:比赛成绩/分9.59.69.79.89.9参赛队个数98643则这30个参赛队决赛成绩的中位数和众数分别是()A.9.7,9.5 B.9.7,9.9 C.9.6,9.5 D.9.6,9.6【答案】C【解析】【分析】根据众数和中位数的定义求解可得.【详解】解:由表知,众数为9.5分,中位数为=9.6(分),故选:C.【点睛】考查了众数和中位数的定义,一组数据中出现次数最多的数据叫做众数;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.20.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和众数分别是()A.中位数31,众数是22 B.中位数是22,众数是31C.中位数是26,众数是22 D.中位数是22,众数是26【答案】C【解析】【分析】根据中位数,众数的定义即可判断.【详解】七个整点时数据为:22,22,23,26,28,30,31所以中位数为26,众数为22故选:C.【点睛】此题考查中位数,众数的定义,解题关键在于看懂图中数据。

相关文档
最新文档