经典等差数列性质练习题目含答案详解
等差数列练习题及答案详解.docx
等差数列练习题及答案详解等差数列一、选择题1、等差数列a n中,A. 12B. 48S10120,那么a1a10()24 C.36 D.2、已知等差数列a n,a n2n19 ,那么这个数列的前n项和 s n()A. 有最小值且是整数B. 有最小值且是分数C. 有最大值且是整数D. 有最大值且是分数3、已知等差数列a n的公差d1, a2a4a10080,2那么 S100A.80B.120 C.135D.160.4、已知等差数列a n中,a2a5a9 a1260,那么 S13 A.390B. 195C.180D.120 5、从前180个正偶数的和中减去前180 个正奇数的和,其差为()A. 0B. 90C. 180D. 3606、等差数列a n的前m项的和为30,前2m项的和为100,则它的前3m 项的和为()A. 130B. 170C. 210D. 2607、在等差数列a n中,a2 6 , a8 6 ,若数列a n的前 n 项和为 S n,则()A. S4S5B. S4S5C. S6S5D. S6S58、一个等差数列前3项和为34,后3项和为146,所有项和为 390 ,则这个数列的项数为()A. 13B.12C.11D.109、已知某数列前n项之和n3为,且前n个偶数项的和为 n2 ( 4n 3) ,则前 n 个奇数项的和为()A.D.3n 2 ( n 1)B.n2(4n 3)C.3n2 1n 3210若一个凸多边形的内角度数成等差数列,最小角为 100°,最大角为 140°,这个凸多边形的边比为()A.6B.8C.10D.12一.选择题( 10×5 分)题12345678910号答案二.填空题1、等差数列a n中,若a6a3a8,则s922 、等差数列a n中,若S n3n2n.,则公差d.3、在小于100的正整数中,被3除余2的数的和是.4 、已知等差数列{ a n}的公差是正整数,且a3a712, a4a64 ,则前10项的和S10=5、一个等差数列共有10 项,其中奇数项的和为25,偶数项的和为 15,则这个数列的第 6 项是2*6 、两个等差数列a n 和b n 的前n项和分别为S n 和S n7n 3,则a8.Tn ,若T n n 3b8三.解答题1、在等差数列a n中,a40.8 , a11 2.2 ,求a 51a52L a80.2、等差数列a n的前n和S n,已知a312,S12 >0,S 13 <0,①求公差 d 的取范;②S1 , S2,L, S12中哪一个最大?并明理由.3、己知{ a n}等差数列,a12, a23,若在每相两之插入三个数,使它和原数列的数构成一个新的等差数列,求:(1)原数列的第 12 是新数列的第几?(2)新数列的第 29 是原数列的第几?4、等差数列{ a n}的前n的和S n ,且 S 4 =-62,S 6 =-75,求:(1){ a n}的通公式 a n及前n的和 Sn;(2)|a 1 |+|a 2 |+|a 3 |+⋯⋯ +|a 14 |.5、某渔业公司年初用98 万元购买一艘捕鱼船,第一年各种费用 12 万元,以后每年都增加 4 万元,每年捕鱼收益 50 万元,(Ⅰ)问第几年开始获利?(Ⅱ)若干年后,有两种处理方案:( 1)年平均获利最大时, 以 26 万元出售该 渔船;( 2)总纯收入获利最大时,以 8 万元出售该渔船 .问哪种方案合算 .参考答案一、选择题1-5 B A C B C 6-10 C B A B A二、填空题1、 02、63、16504、-105、36、6三.解答题1、 an0.2n , a51a 52a 80 393.S 1212 (a 1 a 12 ) 6( a 6 a 7 ) 0a 6 a 7 2a 1 11d2、 ①∵26d 0 S1313(a 1 a 13 ) 13ga 70 a 7 0, ∴a 1a 12d 12224 a 6 a 7 0 a 6 024 a n 是 减数列 ,解得 ,d3, ②由a 7 0a 7, 又∵d3 ∴77∴S 1 , S 2 ,L , S 12 中 S 6 最大 .3、解: 新数列b n , 则 b 1 a 1 2,b 51即 3=2+4d ,∴ d4a 2 3,根据b n b 1 (n 1) d, 有b 5 b 1 4d,1 n 7 ,∴b n2 ( n 1)44又Q a n a 1 (n 1) 1n 1(4 n 3) 7,∴ a n b 4 n 34即原数列的第 n 新数列的第 4n -3 .( 1 )当 n=12 , 4n -3=4×12-3=45,故原数列的第 12 新数列的第 45 ;( 2 )由 4n -3=29,得 n=8 ,故新数列的第 29 是原数列的第 8 。
等差数列练习题(有答案)
一、等差数列选择题1.设等差数列{}n a 、{}n b 的前n 项和分别是n S 、n T .若237n n S n T n =+,则63a b 的值为( ) A .511B .38C .1D .22.数列{}n a 是项数为偶数的等差数列,它的奇数项的和是24,偶数项的和为30,若它的末项比首项大212,则该数列的项数是( ) A .8B .4C .12D .163.等差数列{}n a 中,22a =,公差2d =,则10S =( ) A .200B .100C .90D .804.中国古代数学著作《九章算术》中有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问次一尺各重几何?” 意思是:“现有一根金锤,长五尺,一头粗一头细.在粗的一端截下一尺,重四斤;在细的一端截下一尺,重二斤.问依次每一尺各重几斤?”根据已知条件,若金箠由粗到细是均匀变化的,中间三尺的重量为( ) A .3斤B .6斤C .9斤D .12斤5.设等差数列{}n a 的前n 项和为n S ,公差1d =,且6210S S ,则34a a +=( )A .2B .3C .4D .56.已知等差数列{a n }的前n 项和为S n ,则下列判断错误的是( ) A .S 5,S 10-S 5,S 15-S 10必成等差数列 B .S 2,S 4-S 2,S 6-S 4必成等差数列 C .S 5,S 10,S 15+S 10有可能是等差数列D .S 2,S 4+S 2,S 6+S 4必成等差数列7.已知等差数列{}n a 的前n 项和为n S ,且110a =,56S S ≥,下列四个命题:①公差d 的最大值为2-;②70S <;③记n S 的最大值为M ,则M 的最大值为30;④20192020a a >.其真命题的个数是( ) A .4个B .3个C .2个D .1个 8.等差数列{}n a 的前n 项和为n S ,若12a =,315S =,则8a =( ) A .11B .12C .23D .249.已知各项不为0的等差数列{}n a 满足26780a a a -+=,数列{}n b 是等比数列,且77b a =,则3810b b b =( )A .1B .8C .4D .210.已知等差数列{}n a 中,5470,0a a a >+<,则{}n a 的前n 项和n S 的最大值为( ) A .4SB .5SC . 6SD . 7S11.在函数()y f x =的图像上有点列{},n n x y ,若数列{}n x 是等比数列,数列{}n y 是等差数列,则函数()y f x =的解析式可能是( ) A .3(4)f x x =+B .2()4f x x =C .3()4xf x ⎛⎫= ⎪⎝⎭D .4()log f x x =12.已知数列{}n a 的前项和221n S n =+,n *∈N ,则5a =( )A .20B .17C .18D .1913.在等差数列{}n a 的中,若131,5a a ==,则5a 等于( ) A .25B .11C .10D .914.设等差数列{}n a 的前n 和为n S ,若()*111,m m a a a m m N +-<<->∈,则必有( )A .0m S <且10m S +>B .0m S >且10m S +>C .0m S <且10m S +<D .0m S >且10m S +<15.设等差数列{}n a 的前n 项和为n S ,若718a a a -<<-,则必定有( ) A .70S >,且80S < B .70S <,且80S > C .70S >,且80S >D .70S <,且80S <16.已知数列{}n a 是公差不为零且各项均为正数的无穷等差数列,其前n 项和为n S .若p m n q <<<且()*,,,p q m n p q m n N +=+∈,则下列判断正确的是( )A .22p p S p a =⋅B .p q m n a a a a >C .1111p q m n a a a a +<+D .1111p q m nS S S S +>+ 17.记n S 为等差数列{}n a 的前n 项和,若542S S =,248a a +=,则5a 等于( ) A .6B .7C .8D .1018.已知等差数列{}n a 的前n 项和为n S ,且310179a a a ++=,则19S =( ) A .51B .57C .54D .7219.数学著作《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),问物几何?”现将1到2020共2020个整数中,同时满足“三三数之剩二,五五数之剩三”的数按从小到大的顺序排成一列,构成数列{},n a 则该数列共有( ) A .132项B .133项C .134项D .135项20.设a ,0b ≠,数列{}n a 的前n 项和(21)[(2)22]n nn S a b n =---⨯+,*n N ∈,则存在数列{}n b 和{}n c 使得( )A .n n n a b c =+,其中{}n b 和{}n c 都为等比数列B .n n n a b c =+,其中{}n b 为等差数列,{}n c 为等比数列C .·n n n a b c =,其中{}n b 和{}n c 都为等比数列D .·n n n a b c =,其中{}n b 为等差数列,{}n c 为等比数列 二、多选题21.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足140(2)n n n a S S n -+=≥,114a =,则下列说法错误的是( ) A .数列{}n a 的前n 项和为4n S n = B .数列{}n a 的通项公式为14(1)n a n n =+C .数列{}n a 为递增数列D .数列1n S ⎧⎫⎨⎬⎩⎭为递增数列 22.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足11140(2),4n n n a S S n a -+=≥=,则下列说法正确的是( ) A .数列{}n a 的前n 项和为1S 4n n= B .数列{}n a 的通项公式为14(1)n a n n =+C .数列{}n a 为递增数列D .数列1{}nS 为递增数列 23.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,若612S S =,则下列结论中正确的有( ) A .1:17:2a d =-B .180S =C .当0d >时,6140a a +>D .当0d <时,614a a >24.已知数列{}n a 满足112a =-,111n na a +=-,则下列各数是{}n a 的项的有( )A .2-B .23C .32D .325.等差数列{}n a 是递增数列,公差为d ,前n 项和为n S ,满足753a a =,下列选项正确的是( ) A .0d <B .10a <C .当5n =时n S 最小D .0n S >时n 的最小值为826.设{}n a 是等差数列,n S 是其前n 项的和,且56S S <,678S S S =>,则下列结论正确的是( ) A .0d > B .70a =C .95S S >D .6S 与7S 均为n S 的最大值27.(多选题)在数列{}n a 中,若221n n a a p --=,(2n ≥,*n N ∈,p 为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( )A .若{}n a 是等差数列,则{}2n a 是等方差数列B .(){}1n-是等方差数列C .若{}n a 是等方差数列,则{}kn a (*k N ∈,k 为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列28.设{}n a 是等差数列,n S 是其前n 项和,且56678,S S S S S <=>,则下列结论正确的是( ) A .0d < B .70a =C .95S S >D .67n S S S 与均为的最大值29.下面是关于公差0d >的等差数列{}n a 的四个命题,其中的真命题为( ). A .数列{}n a 是递增数列 B .数列{}n na 是递增数列 C .数列{}na n是递增数列 D .数列{}3n a nd +是递增数列30.公差为d 的等差数列{}n a ,其前n 项和为n S ,110S >,120S <,下列说法正确的有( ) A .0d <B .70a >C .{}n S 中5S 最大D .49a a <【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.C 【分析】令22n S n λ=,()37n T n n λ=+,求出n a ,n b ,进而求出6a ,3b ,则63a b 可得.【详解】令22n S n λ=,()37n T n n λ=+,可得当2n ≥时,()()221221221n n n a S S n n n λλλ-=-=--=-,()()()()137134232n n n b T T n n n n n λλλ-=-=+--+=+,当1n =,()11112,3710a S b T λλλ====+=,符合()221n a n λ=-,()232n b n λ=+故622a λ=,322b λ=,故631a b =. 【点睛】由n S 求n a 时,11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,注意验证a 1是否包含在后面a n 的公式中,若不符合要单独列出,一般已知条件含a n 与S n 的关系的数列题均可考虑上述公式求解. 2.A 【分析】设项数为2n ,由题意可得()21212n d -⋅=,及6S S nd -==奇偶可求解. 【详解】设等差数列{}n a 的项数为2n , 末项比首项大212, ()212121;2n a a n d ∴-=-⋅=① 24S =奇,30S =偶,30246S S nd ∴-=-==奇偶②.由①②,可得32d =,4n =, 即项数是8, 故选:A. 3.C 【分析】先求得1a ,然后求得10S . 【详解】依题意120a a d =-=,所以101104545290S a d =+=⨯=. 故选:C 4.C 【分析】根据题意转化成等差数列问题,再根据等差数列下标的性质求234a a a ++. 【详解】由题意可知金锤每尺的重量成等差数列,设细的一端的重量为1a ,粗的一端的重量为5a ,可知12a =,54a =,根据等差数列的性质可知1533263a a a a +==⇒=, 中间三尺为234339a a a a ++==. 故选:C 【点睛】本题考查数列新文化,等差数列的性质,重点考查理解题意,属于基础题型. 5.B 【分析】根据等差数列的性质,由题中条件,可直接得出结果. 【详解】因为n S 为等差数列{}n a 的前n 项和,公差1d =,6210S S ,所以()()6543434343222410a a a a a d a d a a a a +++=+++++=++=, 解得343a a +=. 故选:B. 6.D 【分析】根据等差数列的性质,可判定A 、B 正确;当首项与公差均为0时,可判定C 正确;当首项为1与公差1时,可判定D 错误. 【详解】由题意,数列{}n a 为等差数列,n S 为前n 项和,根据等差数列的性质,可得而51051510,,S S S S S --,和24264,,S S S S S --构成等差数列,所以,所以A ,B 正确;当首项与公差均为0时,5101510,,S S S S +是等差数列,所以C 正确;当首项为1与公差1时,此时2426102,31,86S S S S S =+=+=,此时24264,,S S S S S ++不构成等差数列,所以D 错误. 故选:D. 7.B 【分析】设公差为d ,利用等差数列的前n 项和公式,56S S ≥,得2d ≤-,由前n 项和公式,得728S ≤,同时可得n S 的最大值,2d =-,5n =或6n =时取得,结合递减数列判断D . 【详解】设公差为d ,由已知110a =,56S S ≥,得5101061015d d ⨯+≥⨯+,所以2d ≤-,A 正确;所以7710217022128S d =⨯+≤-⨯=,B 错误;1(1)10(1)0n a a n d n d =+-=+-≥,解得101n d≤-+,11100n a a nd nd +=+=+≤,解得10n d≥-, 所以10101n d d-≤≤-+,当2d =-时,56n ≤≤, 当5n =时,有最大值,此时51010(2)30M =⨯+⨯-=,当6n =时,有最大值,此时61015(2)30M =⨯+⨯-=,C 正确. 又该数列为递减数列,所以20192020a a >,D 正确. 故选:B . 【点睛】关键点点睛:本题考查等差数列的前n 项和,掌握等差数列的前n 和公式与性质是解题关键.等差数列前n 项和n S 的最大值除可利用二次函数性质求解外还可由10n n a a +≥⎧⎨≤⎩求得.8.C 【分析】由题设求得等差数列{}n a 的公差d ,即可求得结果. 【详解】32153S a ==,25a ∴=, 12a =,∴公差213d a a =-=, 81727323a a d ∴=+=+⨯=,故选:C. 9.B 【分析】根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】因为各项不为0的等差数列{}n a 满足26780a a a -+=,所以27720a a -=,解得72a =或70a =(舍);又数列{}n b 是等比数列,且772b a ==,所以33810371178b b b b b b b ===.故选:B. 10.B 【分析】根据已知条件判断0n a >时对应的n 的范围,由此求得n S 的最大值. 【详解】依题意556475600000a a a a a a a d >⎧>⎧⎪⇒<⎨⎨+=+<⎩⎪<⎩,所以015n a n >⇒≤≤, 所以{}n a 的前n 项和n S 的最大值为5S . 11.D 【分析】把点列代入函数解析式,根据{x n }是等比数列,可知1n nx x +为常数进而可求得1n n y y +-的结果为一个与n 无关的常数,可判断出{y n }是等差数列. 【详解】对于A ,函数3(4)f x x =+上的点列{x n ,y n },有y n =43n x +,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=()()()()114343441n n n n n x x x x x q +++-+=-=-这是一个与n 有关的数,故{y n }不是等差数列;对于B ,函数2()4f x x =上的点列{x n ,y n },有y n =24n x ,由于{x n }是等比数列,所以1n nx x +为常数,因此1n n y y +-=()222214441n n n x x x q +-=-这是一个与n 有关的数,故{y n }不是等差数列;对于C ,函数3()4xf x ⎛⎫= ⎪⎝⎭上的点列{x n ,y n },有y n =3()4n x ,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=133()()44n nx x +-=33()()144n q x ⎡⎤-⎢⎥⎣⎦,这是一个与n 有关的数,故{y n }不是等差数列;对于D ,函数4()log f x x =上的点列{x n ,y n },有y n =4log n x,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=114444log log log log n n n nx x x x q ++-==为常数,故{y n }是等差数列;故选:D . 【点睛】 方法点睛:判断数列是不是等差数列的方法:定义法,等差中项法. 12.C【分析】根据题中条件,由554a S S =-,即可得出结果. 【详解】因为数列{}n a 的前项和2*21,n S n n N =+∈, 所以22554(251)(241)18a S S =-=⨯+-⨯+=. 故选:C . 13.D 【分析】利用等差数列的性质直接求解. 【详解】 因为131,5a a ==,315529a a a a =+∴=,故选:D . 14.D 【分析】由等差数列前n 项和公式即可得解. 【详解】由题意,1110,0m m a a a a ++>+<, 所以1()02m m m a a S +=>,111(1)()02m m m a a S ++++=<. 故选:D. 15.A 【分析】根据已知条件,结合等差数列前n 项和公式,即可容易判断. 【详解】依题意,有170a a +>,180a a +< 则()177702a a S +⋅=>()()188188402a a S a a +⋅==+<故选:A . 16.D 【分析】利用等差数列的求和公式可判断A 选项的正误;利用作差法结合等差数列的通项公式可判断B 选项的正误;利用p q m n a a a a <结合不等式的基本性质可判断C 选项的正误;利用等差数列的求和公式结合不等式的基本性质可判断D 选项的正误. 【详解】对于A 选项,由于()()1221222p pp p p p a a Sp a a pa ++==+≠,故选项A 错误;对于B 选项,由于m p q n -=-,则()()p q m n m n m n a a a a a p m d a q n d a a ⋅-⋅=+-⋅+--⋅⎡⎤⎡⎤⎣⎦⎣⎦()()()()()22m n m n m n a q n d a q n d a a q n a a d q n d =--⋅+--=----⎡⎤⎡⎤⎣⎦⎣⎦()()()2220q n n m d q n d =-----<,故选项B 错误;对于C 选项,由于1111p q m n m n p q p q p q m n m na a a a a a a a a a a a a a a a ++++==>=+⋅⋅⋅,故选项C 错误; 对于D 选项,设0x q n m p =-=->,则()()()20pq mn m x n x mn x n m x -=-+-=---<,从而pq mn <,由于222222p q m n p q pq m n mn +=+⇔++=++,故2222p q m n +>+.()()()()()()111111p q pq p q mn m n m n --=-++<-++=--,故()()22221122p q m n p q p q m n m nS S p q a d m n a d S S +--+--+=++>++=+.()()()()()221111112112224p q p p q q pq p q pq p q S S pa d qa d pqa a d d--+---⎡⎤⎡⎤⋅=+⋅+=++⎢⎥⎢⎥⎣⎦⎣⎦()()()221121124mn m n mn p q mna a d d+---<++()()()221121124m n mn m n mn m n mna a d d S S +---<++=,由此1111p q m n p q p q m n m nS S S S S S S S S S S S +++=>=+,故选项D 正确. 故选:D. 【点睛】关键点点睛:本题考查等差数列中不等式关系的判断,在解题过程中充分利用基本量来表示n a 、n S ,并结合作差法、不等式的基本性质来进行判断. 17.D 【分析】由等差数列的通项公式及前n 项和公式求出1a 和d ,即可求得5a . 【详解】解:设数列{}n a 的首项为1a ,公差为d , 则由542S S =,248a a +=,得:111154435242238a d a d a d a d ⨯⨯⎛⎫+=+ ⎪⎝⎭+++=⎧⎪⎨⎪⎩,即{1132024a d a d +-+=, 解得:{123a d =-=,51424310a a d ∴=+=-+⨯=.故选:D. 18.B 【分析】根据等差数列的性质求出103a =,再由求和公式得出答案. 【详解】317102a a a += 1039a ∴=,即103a =()1191019191921935722a a a S +⨯∴===⨯=故选:B 19.D 【分析】由题意抽象出数列是等差数列,再根据通项公式计算项数. 【详解】被3除余2且被5除余3的数构成首项为8,公差为15的等差数列,记为{}n a ,则()8151157n a n n =+-=-,令1572020n a n =-≤,解得:213515n ≤, 所以该数列的项数共有135项. 故选:D 【点睛】关键点点睛:本题以数学文化为背景,考查等差数列,本题的关键是读懂题意,并能抽象出等差数列. 20.D 【分析】由题设求出数列{}n a 的通项公式,再根据等差数列与等比数列的通项公式的特征,逐项判断,即可得出正确选项. 【详解】 解:(21)[(2)22](2)2(2)n n n n S a b n a b bn a b =---⨯+=+-⋅-+,∴当1n =时,有110S a a ==≠;当2n ≥时,有11()2n n n n a S S a bn b --=-=-+⋅,又当1n =时,01()2a a b b a =-+⋅=也适合上式,1()2n n a a bn b -∴=-+⋅,令n b a b bn =+-,12n n c -=,则数列{}n b 为等差数列,{}n c 为等比数列,故n n n a b c =,其中数列{}n b 为等差数列,{}n c 为等比数列;故C 错,D 正确;因为11()22n n n a a b bn --+=-⋅⋅,0b ≠,所以{}12n bn -⋅即不是等差数列,也不是等比数列,故AB 错. 故选:D. 【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解,考查学生的计算能力.二、多选题21.ABC 【分析】数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),114a =,可得:1140n n n n S S S S ---+=,化为:1114n n S S --=,利用等差数列的通项公式可得1nS ,n S ,2n ≥时,()()111144141n n n a S S n n n n -=-=-=---,进而求出n a . 【详解】数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),114a =, ∴1140n n n n S S S S ---+=,化为:1114n n S S --=, ∴数列1n S ⎧⎫⎨⎬⎩⎭是等差数列,公差为4, ∴()14414n n n S =+-=,可得14n S n=, ∴2n ≥时,()()111144141n n n a S S n n n n -=-=-=---,∴()1(1)41(2)41n n a n n n ⎧=⎪⎪=⎨⎪-≥-⎪⎩,对选项逐一进行分析可得,A ,B ,C 三个选项错误,D 选项正确. 故选:ABC. 【点睛】本题考查数列递推式,解题关键是将已知递推式变形为1114n n S S --=,进而求得其它性质,考查逻辑思维能力和运算能力,属于常考题 22.AD 【分析】先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求S n ,最后根据和项与通项关系得n a . 【详解】11140(2),40n n n n n n n a S S n S S S S ---+=≥∴-+= 11104n n n S S S -≠∴-= 因此数列1{}n S 为以114S =为首项,4为公差的等差数列,也是递增数列,即D 正确; 所以1144(1)44n n n n S S n=+-=∴=,即A 正确; 当2n ≥时111144(1)4(1)n n n a S S n n n n -=-=-=--- 所以1,141,24(1)n n a n n n ⎧=⎪⎪=⎨⎪-≥-⎪⎩,即B ,C 不正确;故选:AD 【点睛】本题考查由和项求通项、等差数列定义与通项公式以及数列单调性,考查基本分析论证与求解能力,属中档题. 23.ABC 【分析】因为{}n a 是等差数列,由612S S =可得9100a a +=,利用通项转化为1a 和d 即可判断选项A ;利用前n 项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质961014a d a a d a =++=+即可判断选项C ;由0d <可得6140a a d +=<且60a >,140a <即可判断选项D ,进而得出正确选项.【详解】因为{}n a 是等差数列,前n 项和为n S ,由612S S =得:1267891011120S S a a a a a a -=+++++=,即()91030a a +=,即9100a a +=,对于选项A :由9100a a +=得12170a d +=,可得1:17:2a d =-,故选项A 正确; 对于选项B :()()118910181818022a a a a S ++===,故选项B 正确;对于选项C :911691014a a a a a a d d =+=++=+,若0d >,则6140a a d +=>,故选项C 正确;对于选项D :当0d <时,6140a a d +=<,则614a a <-,因为0d <,所以60a >,140a <,所以614a a <,故选项D 不正确, 故选:ABC 【点睛】关键点点睛:本题的关键点是由612S S =得出9100a a +=,熟记等差数列的前n 项和公式和通项公式,灵活运用等差数列的性质即可. 24.BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】因为数列{}n a 满足112a =-,111n na a +=-,212131()2a ∴==--;32131a a ==-; 4131112a a a ==-=-; ∴数列{}n a 是周期为3的数列,且前3项为12-,23,3; 故选:BD . 【点睛】本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题. 25.BD 【分析】由题意可知0d >,由已知条件753a a =可得出13a d =-,可判断出AB 选项的正误,求出n S 关于d 的表达式,利用二次函数的基本性质以及二次不等式可判断出CD 选项的正误. 【详解】由于等差数列{}n a 是递增数列,则0d >,A 选项错误;753a a =,则()11634a d a d +=+,可得130a d =-<,B 选项正确;()()()22171117493222224n n n d n n d n n d S na nd n d -⎡⎤--⎛⎫=+=-+==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当3n =或4时,n S 最小,C 选项错误; 令0n S >,可得270n n ->,解得0n <或7n >.n N *∈,所以,满足0n S >时n 的最小值为8,D 选项正确.故选:BD. 26.BD 【分析】设等差数列{}n a 的公差为d ,依次分析选项即可求解. 【详解】根据题意,设等差数列{}n a 的公差为d ,依次分析选项:{}n a 是等差数列,若67S S =,则7670S S a -==,故B 正确;又由56S S <得6560S S a -=>,则有760d a a =-<,故A 错误; 而C 选项,95S S >,即67890a a a a +++>,可得()7820a a +>, 又由70a =且0d <,则80a <,必有780a a +<,显然C 选项是错误的. ∵56S S <,678S S S =>,∴6S 与7S 均为n S 的最大值,故D 正确; 故选:BD. 【点睛】本题考查了等差数列以及前n 项和的性质,需熟记公式,属于基础题. 27.BCD 【分析】根据定义以及举特殊数列来判断各选项中结论的正误. 【详解】对于A 选项,取n a n =,则()()()422444221111n n a a n n n n n n +⎡⎤⎡⎤-=+-=+-⋅++⎣⎦⎣⎦()()221221n n n =+++不是常数,则{}2n a 不是等方差数列,A 选项中的结论错误;对于B 选项,()()22111110n n+⎡⎤⎡⎤---=-=⎣⎦⎣⎦为常数,则(){}1n-是等方差数列,B 选项中的结论正确;对于C 选项,若{}n a 是等方差数列,则存在常数p R ∈,使得221n n a a p +-=,则数列{}2na 为等差数列,所以()221kn k n a a kp +-=,则数列{}kn a (*k N ∈,k 为常数)也是等方差数列,C 选项中的结论正确;对于D 选项,若数列{}n a 为等差数列,设其公差为d ,则存在m R ∈,使得n a dn m =+,则()()()()2221112222n n n n n n a a a a a a d dn m d d n m d d +++-=-+=++=++,由于数列{}n a 也为等方差数列,所以,存在实数p ,使得221n n a a p +-=,则()222d n m d d p ++=对任意的n *∈N 恒成立,则()2202d m d d p ⎧=⎪⎨+=⎪⎩,得0p d ==,此时,数列{}n a 为常数列,D 选项正确.故选BCD. 【点睛】本题考查数列中的新定义,解题时要充分利用题中的定义进行判断,也可以结合特殊数列来判断命题不成立,考查逻辑推理能力,属于中等题. 28.ABD 【分析】由1n n n S S a --=()2n ≥,判断6780,0,0a a a >=<,再依次判断选项. 【详解】因为5665600S S S S a <⇒->⇒>,677670S S S S a =⇒-==,788780S S S S a >⇒-=<,所以数列{}n a 是递减数列,故0d <,AB 正确;()9567897820S S a a a a a a -=+++=+<,所以95S S <,故C 不正确;由以上可知数列{}n a 是单调递减数列,因为6780,0,0a a a >=<可知,67n S S S 与均为的最大值,故D 正确. 故选:ABD 【点睛】本题考查等差数列的前n 项和的最值,重点考查等差数列的性质,属于基础题型. 29.AD 【分析】根据等差数列的性质,对四个选项逐一判断,即可得正确选项. 【详解】0d >,10n n a a d +-=> ,所以{}n a 是递增数列,故①正确,()()2111n na n a n d dn a d n =+-=+-⎡⎤⎣⎦,当12d a n d -<时,数列{}n na 不是递增数列,故②不正确,1n a a d d n n -=+,当10a d -<时,{}n a n不是递增数列,故③不正确, 134n a nd nd a d +=+-,因为0d >,所以{}3n a nd +是递增数列,故④正确,故选:AD 【点睛】本题主要考查了等差数列的性质,属于基础题. 30.AD 【分析】先根据题意得1110a a +>,1120a a +<,再结合等差数列的性质得60a >,70a <,0d <,{}n S 中6S 最大,49a a <-,即:49a a <.进而得答案.【详解】解:根据等差数列前n 项和公式得:()111111102a a S +=>,()112121202a a S +=< 所以1110a a +>,1120a a +<, 由于11162a a a +=,11267a a a a +=+, 所以60a >,760a a <-<, 所以0d <,{}n S 中6S 最大, 由于11267490a a a a a a +=+=+<, 所以49a a <-,即:49a a <. 故AD 正确,BC 错误. 故选:AD. 【点睛】本题考查等差数列的前n 项和公式与等差数列的性质,是中档题.。
等差数列题目100道
等差数列题目100道一、基础概念类题目1. 已知数列{a_n}满足a_{n + 1}-a_n = 3,a_1 = 2,求数列{a_n}的通项公式。
- 解析:因为a_{n + 1}-a_n = d = 3(d为公差),a_1 = 2。
根据等差数列通项公式a_n=a_1+(n - 1)d,可得a_n=2+(n - 1)×3=3n - 1。
2. 在等差数列{a_n}中,a_3 = 7,a_5 = 11,求a_{10}。
- 解析:首先求公差d,d=frac{a_{5}-a_{3}}{5 - 3}=(11 - 7)/(2)=2。
由a_3=a_1+(3 - 1)d,即7=a_1 + 2×2,解得a_1 = 3。
那么a_{10}=a_1+(10 -1)d=3+9×2 = 21。
3. 若数列{a_n}为等差数列,且a_2=5,a_6 = 17,求其公差d。
- 解析:根据等差数列通项公式a_n=a_m+(n - m)d,则a_6=a_2+(6 - 2)d,即17 = 5+4d,解得d = 3。
4. 已知等差数列{a_n}的首项a_1=-1,公差d = 2,求该数列的前n项和S_n的公式。
- 解析:根据等差数列前n项和公式S_n=na_1+(n(n - 1))/(2)d,将a_1=-1,d = 2代入可得S_n=-n+(n(n - 1))/(2)×2=n^2 - 2n。
5. 在等差数列{a_n}中,a_1 = 1,a_{10}=19,求S_{10}。
- 解析:根据等差数列前n项和公式S_n=(n(a_1 + a_n))/(2),这里n = 10,a_1 = 1,a_{10}=19,则S_{10}=(10×(1 + 19))/(2)=100。
二、性质应用类题目6. 在等差数列{a_n}中,若a_3+a_8+a_{13}=12,求a_8的值。
- 解析:因为在等差数列中,若m,n,p,q∈ N^+,m + n=p+q,则a_m + a_n=a_p + a_q。
等差数列的性质同步练习题(含答案)
等差数列的性质同步练习题二班级 姓名( )1.已知等差数列{a n }中,a 1+a 4+a 7=39,a 2+a 5+a 8=33,则a 3+a 6+a 9等于 A .30 B .27 C .24 D .21 ( )2.已知在等差数列{a n }中,a 1<0,S 25=S 45,若S n 最小,则n 为 A .25 B .35 C .36 D .45( )3.设{a n }是等差数列,公差为d ,S n 是其前n 项和,且S 5<S 6, S 6=S 7>S 8.下列结论错误的是 A .d <0 B .a 7=0 C .S 9>S 5D .S 6和S 7为S n 最大值 ( )4.在等差数列{a n }中,已知a 1+a 2+…+a 50=200,a 51+a 52+…+a 100=2700,则a 1等于 A .-20B .-2021 C .-2121 D .-22( )5.已知数列{}n a 的通项公式350n a n =-,则其前n 项和n S 的最小值是 A .-784 B .-392 C .-389 D .-368 ( )6.公差不为0的等差数列{}n a 中,236,,a a a 依次成等比数列,则公比等于 A .12. B .13. C .2. D .3. ( ) 7.等差数列{}n a 中,共有21n +项,其中13218n a a a ++++=,2427n a a a +++=,则n 的值是A .3.B . 5.C . 7.D .9( )8.数列{}n a 的前n 项和是n S ,如果*32 ()n n S a n N =+∈,则这个数列一定是A .等比数列.B .等差数列.C .除去第一项后是等比数列.D .除去第一项后是等差数列. ( )9.设{a n }是公差为–2的等差数列,如果1479750a a a a +++=.那么36999a a a a +++=A .–182B .–78C .–148D .–82( )10.已知函数 22()()()n n f n n n ⎧⎪=⎨-⎪⎩当为奇数时当为偶数时 且 )1()(++=n f n f a n , 则=+⋯+++100321a a a aA .100 B.-100C.2100D.11012-( )11.数列{}n a 满足211=++n n a a (N n ∈且1≥n ),12=a ,n s 是{}n a 的前n 次和,则21S 为 A 、29 B 、211C 、6D 、10 ( )12.一个正整数数表如下(表中下一行中的数的个数是上一行中数的个数的2倍): 1 2 3 4 5 6 7…………… 则第8行中的第5个数是A 、68B 、132C 、133D 、260( ) 13.等差数列}{n a 的公差,0<d 且21121a a =,则数列}{n a 的前n 项和n S 取得最大值时的项数n 是( ) A .5B .6C .5或6D .6或714.等差数列{}n a 中,35710133()2()24a a a a a ++++=,则此数列前13项和是_____26_____.15.已知等差数列{a n }的公差d =21,且前100项和S 100 = 145,那么a 1 + a 3 + a 5 +…+a 99 = 60 . 16.等差数列{a n }中,若a 3+a 5=a 7-a 3=24,则a 2=___0___. 17.一个等差数列的前12项的和为354,前12项中,偶数项和与奇数项和之比为32∶27,则公差d 等于__5 _. 18.设等差数列{a n }共有3n 项,它的前2n 项和为100,后2n 项和是200,则该数列的中间n 项和等于 75 .19.已知f (x +1)=x 2-4,等差数列{a n }中,a 1=f (x -1), a 2=-23,a 3=f (x ).(1)求x 值;(2)求a 2+a 5+a 8+…+a 26的值. 【解】 (1)∵f (x -1)=(x -1-1)2-4=(x -2)2-4 ∴f (x )=(x -1)2-4,∴a 1=(x -2)2-4,a 3=(x -1)2-4 又a 1+a 3=2a 2,解得x =0或x =3.(2)∵a 1、a 2、a 3分别为0、-23、-3或-3、-23、0 ∴a n =-23(n -1)或a n =23(n -3)①当a n =-23(n -1)时,a 2+a 5+…+a 26=29(a 2+a 26)=3512-②当a n =23(n -3)时,a 2+a 5+…+a 26=29(a 2+a 26)=2297.20.已知函数f (x)=-x 3+ax 在(0,1)上是增函数.(1) 求实数a 的取值集合A ;(2) 当a 取A 中最小值时,定义数列{a n }满足:2a n +1=f (a n ),且a 1=b ∈(0,1)(b 为常数),试比较a n +1与a n的大小; (3) 在(2)的条件下,问是否存在正实数c .使0<a n +c a n -c<2对一切n ∈N *恒成立?(1)f'(x)=3x 2+a >0,对x ∈(0,1)恒成立,求出a ≥3.………………4分 (2)当a =3时,由题意:a n +1=-12a 3n +32a n ,且a 1=b ∈(0,1)以下用数学归纳法证明:a n ∈(0,1),对n ∈N *恒成立.①当n =1时,a 1=b ∈(0,1)成立;………………………………………………6分②假设n =k 时,a k ∈(0,1)成立,那么当n =k +1时, a k +1=12a k 3+32a k ,由①知g(x)=12(-x 3+3x)在(0,1)上单调递增,∴g(0)<g(a k )<g(1) 即0<a k +1<1, 由①②知对一切n ∈N *都有a n ∈(0,1) 而a n +1-a n =-12a n 3+32a n -a n =12a n (1-a n 2)>0 ∴a n +1>a n …………………………………10分(3)存在正实数c ,使0<a n +c a n -c <2恒成立,令y =x +c x -c =1+2cx -c ,在(c ,+∞)上是减数,∴a n +c a n -c 随着a n 增大,而小, 又{a n }为递增数列,所以要使0<a n +ca n -c<2恒成立, 只须⎩⎪⎨⎪⎧a 1-c >0 a 1+c a 1-c<2 ∴0<c <a 13,即0<c <b 3 ……… 14分21.已知数列{a n }中,a 1>0, 且a n +1=23na +, (Ⅰ)试求a 1的值,使得数列{a n }是一个常数数列; (Ⅱ)试求a 1的取值范围,使得a n +1>a n 对任何自然数n 都成立;(Ⅲ)若a 1 = 2,设b n = | a n +1-a n | (n = 1,2,3,…),并以S n 表示数列{b n }的前n 项的和,求证:S n <12. 【思路分析】:解:(Ⅰ)欲使数列{a n }是一个常数数列,则a n +1=23na += a n ……………………2’ 又依a 1>0,可得a n >0并解出:a n =23,即a 1 = a n =23……………………4’ (Ⅱ)研究a n +1-a n =23n a +-231-+n a =⎪⎪⎭⎫ ⎝⎛+++---2323211n n n n a a a a (n ≥2) 注意到⎪⎪⎭⎫ ⎝⎛+++-232321n n a a >0因此,可以得出:a n +1-a n ,a n -a n -1,a n -1-a n -2,…,a 2-a 1有相同的符号……………7’ 要使a n +1>a n 对任意自然数都成立,只须a 2-a 1>0即可.由1123a a -+>0,解得:0<a 1<23………………9’ (Ⅲ)用与(Ⅱ)中相同的方法,可得 当a 1>23时,a n +1<a n 对任何自然数n 都成立. 因此当a 1=2时,a n +1-a n <0 ……………………………………………10’∴ S n = b 1+b 2+…b n =|a 2-a 1| + |a 3-a 2| +…+ |a n +1-a n |=a 1-a 2+a 2-a 3+…+a n -a n +1 =a 1-a n +1=2-a n +1 ………………………………………………………13’又:a n +2=231++n a < a n +1,可解得a n +1>23, 故S n <2-23=21………………………………………14’。
等差数列经典试题(含答案)百度文库
设等差数列的公差为d.由 得, ,整理得, .
又 ,所以 ,因此 ,
所以 最大.
故选:B.
2.B
【分析】
根据等差数列的性质,由题中条件,可直接得出结果.
【详解】
因为 为等差数列 的前 项和,公差 , ,
所以 ,
解得 .
故选:B.
3.C
【分析】
利用等差数列性质当 时 及前 项和公式得解
【详解】
一、等差数列选择题
1.在等差数列 中, , ,则 中最大的是()
A. B. C. D.
2.设等差数列 的前 项和为 ,公差 ,且 ,则 ()
A.2B.3C.4D.5
3.设等差数列 的前 项和为 ,且 ,则 ()
A.45B.50C.60D.80
4.已知 为等差数列 的前 项和, , ,则 ()
A. B. C. D.
是等差数列, , ,
故选:C
【点睛】
本题考查等差数列性质及前 项和公式,属于基础题
4.B
【分析】
根据条件列出关于首项和公差的方程组,求解出首项和公差,则等差数列 的通项公式可求.
【详解】
因为 , ,所以 ,
所以 ,所以 ,
故选:B.
5.D
【分析】
根据等差数列的性质,可判定A、B正确;当首项与公差均为0时,可判定C正确;当首项为1与公差1时,可判定D错误.
解得 ,
所以 .
故选:B
19.B
【分析】
由等差数列的性质可得 ,则 可得答案.
【详解】
等差数列 中,
故选:B
20.C
【分析】
由等差数列前 项和公式以及等差数列的性质可求得 ,再由等差数列的公式即可求得公差.
等差数列的性质练习 含答案
时间:45分钟满分:100分课堂训练1.若一个数列的通项公式是a n=k·n+b(其中b,k为常数),则下列说法中正确的是( )A.数列{a n}一定不是等差数列B.数列{a n}是以k为公差的等差数列C.数列{a n}是以b为公差的等差数列D.数列{a n}不一定是等差数列【答案】B【解析】a n+1-a n=k(n+1)+b-kn-b=k.2.等差数列中,若a3+a4+a5+a6+a7+a8+a9=420,则a2+a10等于( )A.100 B.120C.140 D.160【答案】B【解析】∵a3+a4+a5+a6+a7+a8+a9=7a6=420,则a6=60,∴a2+a10=2a6=2×60=120.3.在等差数列{a n}中,a15=33,a25=66,则a35=________.【答案】99【解析】a15,a25,a35成等差数列,∴a35=2a25-a15=99.4.已知单调递增的等差数列{a n}的前三项之和为21,前三项之积为231,求数列{a n}的通项公式.【分析】关键是求出数列{a n}的首项和公差.【解析】由于数列为等差数列,因此可设等差数列的前三项为a -d ,a ,a +d ,于是可得⎩⎪⎨⎪⎧a -d +a +a +d =21,a -d a a +d =231,即⎩⎪⎨⎪⎧3a =21,a a 2-d2=231,即⎩⎪⎨⎪⎧a =7,d 2=16,由于数列为单调递增数列,因此d =4,a 1=3,从而{a n }的通项公式为a n =4n -1.【规律方法】 此解法恰到好处地设定等差数列的项,为我们的解题带来了极大的方便,特别是大大降低了运算量.一般来说,已知三个数成等差数列时,可设成:a -d ,a ,a +d ,四个数成等差数列时,可设成:a -3d ,a -d ,a +d ,a +3d ,其余依此类推,如五个可设成:a -2d ,a -d ,a ,a +d ,a +2d .课后作业一、选择题(每小题5分,共40分)1.在等差数列{a n }中,a 5=3,a 9=5,则a 7=( ) A .4 B .-4 C .7 D .1【答案】 A【解析】 由题意知a 7为a 5,a 9的等差中项,故a 7=12(a 5+a 9)=12×(3+5)=4.2.在等差数列{a n }中,若a 3+a 5+a 7+a 9+a 11=100,则3a 9-a 13的值为( )A .20B .30C .40D .50 【答案】 C【解析】 ∵a 3+a 11=a 5+a 9=2a 7,∴a 3+a 5+a 7+a 9+a 11=5a 7=100, ∴a 7=20.∴3a 9-a 13=3(a 7+2d )-(a 7+6d )=2a 7=40.3.在等差数列{a n }中,a 1+a 4+a 7=39,a 2+a 5+a 8=33,则a 3+a 6+a 9的值为( )A .30B .27C .24D .21【答案】 B【解析】 方法一:由等差数列的性质知,a 1+a 4+a 7,a 2+a 5+a 8,a 3+a 6+a 9成等差数列,所以(a 1+a 4+a 7)+(a 3+a 6+a 9)=2(a 2+a 5+a 8),则a 3+a 6+a 9=2×33-39=27. 方法二:(a 2+a 5+a 8)-(a 1+a 4+a 7) =3d (d 为数列{a n }的公差),则d =-2,a 3+a 6+a 9=(a 2+a 5+a 8)+3d =33-6=27.4.把100个面包分给5个人,使每个人所得成等差数列,且使较大的三份之和的 17是较小的两份之和,问最小的1份是( )【答案】 C【解析】 设这5份为a -2d ,a -d ,a ,a +d ,a +2d , 由已知得a =20,且17(a +a +d +a +2d )=a -2d +a -d ,∴d =556,∴a -2d =53. 5.等差数列{a n }的公差d <0,且a 2a 4=12,a 1+a 5=8,则其通项公式为( )A .a n =2n -2B .a n =2n +4C .a n =-2n +12D .a n =-2n +10【答案】 D【解析】 由等差数列的性质得a 2+a 4=a 1+a 5=8. 又a 2a 4=12,所以a 2,a 4为方程x 2-8x +12=0的两根,解得⎩⎪⎨⎪⎧a 2=2,a 4=6或⎩⎪⎨⎪⎧a 2=6,a 4=2.当a 2=2,a 4=6时,d =a 4-a 24-2=2>0(舍去), 当a 2=6,a 4=2时,d =a 4-a 24-2=-2.所以数列的通项公式为a n =a 2+(n -2)d =6+(n -2)×(-2)=-2n +10.即a n =-2n +10.6.设{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37等于( )A .0B .37C .100D .-37【答案】 C【解析】 设{a n },{b n }的公差分别是d 1,d 2,∴(a n +1+b n +1)-(a n+b n )=(a n +1-a n )+(b n +1-b n )=d 1+d 2,∴{a n +b n }为等差数列. 又∵a 1+b 1=a 2+b 2=100, ∴a 37+b 37=100. 故正确答案为C.7.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是( )A .-2B .-3C .-4D .-5【答案】 C【解析】 设该数列的公差为d ,则由题设条件知:a 6=a 1+5d >0,a 7=a 1+6d <0.又∵a 1=23,∴⎩⎪⎨⎪⎧d >-235,d <-236,即-235<d <-236.又∵d 是整数,∴d =-4,故选C.8.已知数列{a n }、{b n }都是公差为1的等差数列,其首项分别为a 1、b 1,且a 1+b 1=5,a 1,b 1∈N +.设c n =ab n (n ∈N +),则数列{c n }的前10项和等于( )A .55B .70C .85D .100【答案】 C【解析】 由题c n =ab n (n ∈N +),则数列{c n }的前10项和等于ab 1+ab 2+…+ab 10=ab 1+ab 1+1+…+ab 1+9.∵ab 1=a 1+(b 1-1)=4,∴ab 1+ab 1+1+…+ab 1+9=4+5+…+13=85. 二、填空题(每小题10分,共20分)9.已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20=________.【答案】1【解析】∵a1+a3+a5=105,即3a3=105,∴a3=35,同理a4=33,∴d=a4-a3=-2,∴a20=a4+(20-4)d=1.10.等差数列{a n}中,a1+a4+a10+a16+a19=150,则a18-2a14=________.【答案】-30【解析】由a1+a4+a10+a16+a19=5a10=150,得a10=30,a18-2a14=(a10+8d)-2(a10+4d)=-a10=-30.三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.(1)已知数列{a n}为等差数列,若a1-a5+a9-a13+a17=117,求a3+a15.(2)在等差数列{a n}中,已知a2+a5+a8=9,a3a5a7=-21,求数列{a n}的通项公式.【解析】(1)方法一:∵数列{a n}是等差数列,∴设数列{a n}的首项为a1,公差为d,则由题意得a1-(a1+4d)+(a1+8d)-(a1+12d)+(a1+16d)=117,∴a1+8d=117.从而a3+a15=(a1+2d)+(a1+14d)=2(a1+8d)=234.方法二:由等差数列的性质知,a1+a17=a5+a13=a3+a15=2a9.∵a1-a5+a9-a13+a17=117,∴a9=117,∴a3+a15=2a9=234.(2)∵a2+a5+a8=9,a3a5a7=-21,a2+a8=a3+a7=2a5,∴a5=3,∴a3+a7=2a5=6,a3a7=-7,解得a3=-1,a7=7或a3=7,a7=-1.又a7=a3+4d,∴当a3=-1,a7=7时,可得d=2;当a3=7,a7=-1时,可得d=-2.根据a n=a3+(n-3)d,可得当a3=-1,d=2时,a n=2n-7;当a3=7,d=-2时,a n=-2n+13.12.已知无穷等差数列{a n}中,首项a1=3,公差d=-5,依次取出序号能被4除余3的项组成数列{b n}.(1)求b1和b2;(2)求{b n}的通项公式;(3){b n}中的第503项是{a n}的第几项?【解析】数列{b n}是数列{a n}的一个子数列,其序号构成以3为首项,4为公差的等差数列,由于{a n}是等差数列,则{b n}也是等差数列.(1)∵a1=3,d=-5,∴a n=3+(n-1)(-5)=8-5n.数列{a n}中序号能被4除余3的项是{a n}中的第3项,第7项,第11项,…,∴b1=a3=-7,b2=a7=-27.(2)设{a n}中的第m项是{b n}的第n项,即b n=a m,则m=3+4(n-1)=4n-1,∴b n=a m=a4n-1=8-5(4n-1)=13-20n.即{b n}的通项公式为b n=13-20n.(3)b503=13-20×503=-10 047,设它是{a n}中的第m项,则-10 047=8-5m,则m=2 011,即{b n}中的第503项是{a n}中的第2 011项.。
等差数列练习题及答案
等差数列练习题及答案等差数列练习题及答案数学作为一门基础学科,无论在学校还是在社会生活中都扮演着重要的角色。
其中,等差数列是数学中的一个重要概念,也是我们常见的数学问题之一。
本文将为大家提供一些等差数列的练习题及答案,以帮助大家更好地理解和掌握这个概念。
练习题一:已知等差数列的首项为3,公差为5,求第10项的值。
解答一:根据等差数列的性质,第n项的值可以通过公式an = a1 + (n-1)d来计算。
其中,an表示第n项的值,a1表示首项的值,d表示公差。
代入已知条件,可得第10项的值为a10 = 3 + (10-1)5 = 3 + 45 = 48。
练习题二:已知等差数列的前n项和为Sn = 2n^2 + n,求该等差数列的公差。
解答二:根据等差数列的性质,前n项和可以通过公式Sn = n/2(a1 + an)来计算。
代入已知条件,可得2n^2 + n = n/2(a1 + a1 + (n-1)d)。
化简后得到2n^2 + n = n/2(2a1 + (n-1)d)。
进一步化简可得4n^2 + 2n = n(2a1 + (n-1)d)。
由于等差数列的前n项和是一个关于n的二次函数,所以4n^2 + 2n = n(2a1 + (n-1)d)也是一个关于n的二次函数。
两个二次函数相等,意味着它们的系数相等。
根据系数相等的条件,可得4 = 2a1 + (n-1)d,即2a1 + (n-1)d = 4。
由此可得公差d = (4 - 2a1)/(n-1)。
练习题三:已知等差数列的前n项和为Sn = 3n^2 + 2n,求该等差数列的首项。
解答三:根据等差数列的性质,前n项和可以通过公式Sn = n/2(a1 + an)来计算。
代入已知条件,可得3n^2 + 2n = n/2(a1 + a1 + (n-1)d)。
化简后得到3n^2 + 2n = n/2(2a1 + (n-1)d)。
进一步化简可得6n^2 + 4n =n(2a1 + (n-1)d)。
等差数列典型例题及详细解答
1.等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母__d __表示. 2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d . 3.等差中项 如果A =a +b2,那么A 叫做a 与b 的等差中项.4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. 5.等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =n a 1+a n2或S n =na 1+n n -12d .6.等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n .数列{a n }是等差数列⇔S n =An 2+Bn (A 、B 为常数). 7.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最__大__值;若a 1<0,d >0,则S n 存在最__小__值. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( × )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( √ ) (3)等差数列{a n }的单调性是由公差d 决定的.( √ )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( × ) (5)数列{a n }满足a n +1-a n =n ,则数列{a n }是等差数列.( × )(6)已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列.( √ )1.(2015·重庆)在等差数列{a n }中,若a 2=4,a 4=2,则a 6等于( ) A .-1 B .0 C .1 D .6 答案 B解析 由等差数列的性质,得a 6=2a 4-a 2=2×2-4=0,选B.2.(2014·福建)等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8 B .10 C .12 D .14 答案 C解析 由题意知a 1=2,由S 3=3a 1+3×22×d =12,解得d =2,所以a 6=a 1+5d =2+5×2=12,故选C.3.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11等于( ) A .58 B .88 C .143 D .176 答案 B 解析 S 11=11a 1+a 112=11a 4+a 82=88.4.设数列{a n }是等差数列,若a 3+a 4+a 5=12,则a 1+a 2+…+a 7等于( ) A .14 B .21 C .28 D .35 答案 C解析 ∵a 3+a 4+a 5=3a 4=12,∴a 4=4, ∴a 1+a 2+…+a 7=7a 4=28.5.(2014·北京)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 答案 8解析 因为数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,所以a 8>0.又a 7+a 10=a 8+a 9<0,所以a 9<0.故当n =8时,其前n 项和最大.题型一 等差数列基本量的运算例1 (1)在数列{a n }中,若a 1=-2,且对任意的n ∈N *有2a n +1=1+2a n ,则数列{a n }前10项的和为( ) A .2 B .10(2)已知在等差数列{a n }中,a 2=7,a 4=15,则前10项和S 10等于( ) A .100 B .210 C .380 D .400答案 (1)C (2)B解析 (1)由2a n +1=1+2a n 得a n +1-a n =12,所以数列{a n }是首项为-2,公差为12的等差数列,所以S 10=10×(-2)+10×10-12×12=52.(2)因为a 2=7,a 4=15,所以d =4,a 1=3, 故S 10=10×3+12×10×9×4=210.思维升华 (1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.(1)(2015·课标全国Ⅱ)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5等于( )A .5B .7C .9D .11(2)已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是( )B .1C .2D .3 答案 (1)A (2)C解析 (1)∵{a n }为等差数列,∴a 1+a 5=2a 3, ∴a 1+a 3+a 5=3a 3=3,得a 3=1, ∴S 5=5a 1+a 52=5a 3=5.故选A.(2)∵S n =n a 1+a n2,∴S n n =a 1+a n 2,又S 33-S 22=1,得a 1+a 32-a 1+a 22=1,即a 3-a 2=2,∴数列{a n }的公差为2.题型二 等差数列的判定与证明例2 已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由. (1)证明 因为a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1(n ∈N *),所以b n +1-b n =1a n +1-1-1a n -1=12-1a n-1-1a n -1=a n a n -1-1a n -1=1. 又b 1=1a 1-1=-52. 所以数列{b n }是以-52为首项,1为公差的等差数列.(2)解 由(1)知b n =n -72,则a n =1+1b n =1+22n -7.设f (x )=1+22x -7,则f (x )在区间(-∞,72)和(72,+∞)上为减函数.所以当n =3时,a n 取得最小值-1,当n =4时,a n 取得最大值3. 引申探究例2中,若条件变为a 1=35,na n +1=(n +1)a n +n (n +1),探求数列{a n }的通项公式.解 由已知可得a n +1n +1=a nn+1, 即a n +1n +1-a n n =1,又a 1=35, ∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列,∴a n n =35+(n -1)·1=n -25, ∴a n =n 2-25n .思维升华 等差数列的四个判定方法(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数.(2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2后,可递推得出a n +2-a n +1=a n +1-a n =a n -a n -1=a n -1-a n -2=…=a 2-a 1,根据定义得出数列{a n }为等差数列.(3)通项公式法:得出a n =pn +q 后,得a n +1-a n =p 对任意正整数n 恒成立,根据定义判定数列{a n }为等差数列.(4)前n 项和公式法:得出S n =An 2+Bn 后,根据S n ,a n 的关系,得出a n ,再使用定义法证明数列{a n }为等差数列.(1)若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是( )A .公差为3的等差数列B .公差为4的等差数列C .公差为6的等差数列D .公差为9的等差数列(2)在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为( )A .a n =1nB .a n =2n +1C .a n =2n +2D .a n =3n答案 (1)C (2)A解析 (1)∵a 2n -1+2a 2n -(a 2n -3+2a 2n -2) =(a 2n -1-a 2n -3)+2(a 2n -a 2n -2) =2+2×2=6,∴{a 2n -1+2a 2n }是公差为6的等差数列. (2)由已知式2a n +1=1a n +1a n +2可得1a n +1-1a n =1a n +2-1a n +1,知{1a n }是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n=n ,即a n =1n.题型三 等差数列的性质及应用命题点1 等差数列的性质例3 (1)(2015·广东)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________. (2)已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 答案 (1)10 (2)60解析 (1)因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25,即a 5=5,a 2+a 8=2a 5=10.(2)∵S 10,S 20-S 10,S 30-S 20成等差数列,且S 10=10,S 20=30,S 20-S 10=20, ∴S 30-30=10+2×10=30,∴S 30=60. 命题点2 等差数列前n 项和的最值例4 在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值. 解 ∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d ,∴d =-53.方法一 由a n =20+(n -1)×⎝ ⎛⎭⎪⎫-53=-53n +653. 得a 13=0.即当n ≤12时,a n >0,当n ≥14时,a n <0. ∴当n =12或13时,S n 取得最大值,且最大值为S 12=S 13=12×20+12×112×⎝ ⎛⎭⎪⎫-53=130.方法二 S n =20n +n n -12·⎝ ⎛⎭⎪⎫-53=-56n 2+1256n=-56⎝ ⎛⎭⎪⎫n -2522+3 12524.∵n ∈N *,∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130. 方法三 由S 10=S 15得a 11+a 12+a 13+a 14+a 15=0. ∴5a 13=0,即a 13=0.∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130. 引申探究例4中,若条件“a 1=20”改为a 1=-20,其他条件不变,求当n 取何值时,S n 取得最小值,并求出最小值.解 由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0, ∴a 13=0.又a 1=-20,∴a 12<0,a 14>0, ∴当n =12或13时,S n 取得最小值, 最小值S 12=S 13=13a 1+a 132=-130.思维升华 (1)等差数列的性质:①项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n=d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.②和的性质:在等差数列{a n }中,S n 为其前n 项和,则a .S 2n =n (a 1+a 2n )=…=n (a n +a n +1);b .S 2n -1=(2n -1)a n .(2)求等差数列前n 项和S n 最值的两种方法:①函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解. ②邻项变号法:a .当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值S m ;b .当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值S m .(1)等差数列{a n }的前n 项和为S n ,已知a 5+a 7=4,a 6+a 8=-2,则当S n 取最大值时,n 的值是( ) A .5 B .6 C .7 D .8(2)设数列{a n }是公差d <0的等差数列,S n 为前n 项和,若S 6=5a 1+10d ,则S n 取最大值时,n 的值为( )A .5B .6C .5或6D .11(3)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________. 答案 (1)B (2)C (3)110解析 (1)依题意得2a 6=4,2a 7=-2,a 6=2>0,a 7=-1<0;又数列{a n }是等差数列,因此在该数列中,前6项均为正数,自第7项起以后各项均为负数,于是当S n 取最大值时,n =6,选B.(2)由题意得S 6=6a 1+15d =5a 1+10d ,所以a 6=0,故当n =5或6时,S n 最大,选C. (3)因为等差数列{a n }的首项a 1=20,公差d =-2,代入求和公式得,S n =na 1+n n -12d =20n -n n -12×2=-n 2+21n =-⎝⎛⎭⎪⎫n -2122+⎝ ⎛⎭⎪⎫2122,又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110.6.等差数列的前n 项和及其最值典例 (1)在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 7+a 9)=54,则此数列前10项的和S 10等于( ) A .45 B .60 C .75D .90(2)在等差数列{a n }中,S 10=100,S 100=10,则S 110=________.(3)等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为( ) A .S 4 B .S 5 C .S 6 D .S 7思维点拨 (1)求等差数列前n 项和,可以通过求解基本量a 1,d ,代入前n 项和公式计算,也可以利用等差数列的性质:a 1+a n =a 2+a n -1=…;(2)求等差数列前n 项和的最值,可以将S n 化为关于n 的二次函数,求二次函数的最值,也可以观察等差数列的符号变化趋势,找最后的非负项或非正项. 解析 (1)由题意得a 3+a 8=9, 所以S 10=10a 1+a 102=10a 3+a 82=10×92=45.(2)方法一 设数列{a n }的公差为d ,首项为a 1,则⎩⎪⎨⎪⎧10a 1+10×92d =100,100a 1+100×992d =10,解得⎩⎪⎨⎪⎧a 1=1 099100,d =-1150.所以S 110=110a 1+110×1092d =-110.方法二 因为S 100-S 10=a 11+a 100×902=-90,所以a 11+a 100=-2, 所以S 110=a 1+a 110×1102=a 11+a 100×1102=-110.(3)因为⎩⎪⎨⎪⎧a 4+a 7=a 5+a 6<0,a 5>0,所以⎩⎪⎨⎪⎧a 5>0,a 6<0,所以S n 的最大值为S 5. 答案 (1)A (2)-110 (3)B温馨提醒 (1)利用函数思想求等差数列前n 项和S n 的最值时,要注意到n ∈N *; (2)利用等差数列的性质求S n ,突出了整体思想,减少了运算量.[方法与技巧]1.在解有关等差数列的基本量问题时,可通过列关于a 1,d 的方程组进行求解.2.证明等差数列要用定义;另外还可以用等差中项法,通项公式法,前n 项和公式法判定一个数列是否为等差数列.3.等差数列性质灵活使用,可以大大减少运算量.4.在遇到三个数成等差数列问题时,可设三个数为(1)a ,a +d ,a +2d ;(2)a -d ,a ,a +d ;(3)a -d ,a +d ,a +3d 等,可视具体情况而定. [失误与防范]1.当公差d ≠0时,等差数列的通项公式是n 的一次函数,当公差d =0时,a n 为常数. 2.公差不为0的等差数列的前n 项和公式是n 的二次函数,且常数项为0.若某数列的前n 项和公式是常数项不为0的二次函数,则该数列不是等差数列,它从第二项起成等差数列.v1.0 可编辑可修改A 组 专项基础训练 (时间:35分钟)1.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A .63 B .45 C .36 D .27 答案 B解析 由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列. 即2(S 6-S 3)=S 3+(S 9-S 6), 得到S 9-S 6=2S 6-3S 3=45,故选B.2.(2015·北京)设{a n }是等差数列,下列结论中正确的是( ) A .若a 1+a 2>0,则a 2+a 3>0 B .若a 1+a 3<0,则a 1+a 2<0 C .若0<a 1<a 2,则a 2>a 1a 3 D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0 答案 C解析 设等差数列{a n }的公差为d ,若a 1+a 2>0,a 2+a 3=a 1+d +a 2+d =(a 1+a 2)+2d ,由于d 正负不确定,因而a 2+a 3符号不确定,故选项A 错;若a 1+a 3<0,a 1+a 2=a 1+a 3-d =(a 1+a 3)-d ,由于d 正负不确定,因而a 1+a 2符号不确定,故选项B 错;若0<a 1<a 2,可知a 1>0,d >0,a 2>0,a 3>0,所以a 22-a 1a 3=(a 1+d )2-a 1(a 1+2d )=d 2>0,所以a 2>a 1a 3,故选项C 正确;若a 1<0,则(a 2-a 1)·(a 2-a 3)=d ·(-d )=-d 2≤0,故选项D 错.3.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m 等于( ) A .3 B .4 C .5 D .6答案 C解析 ∵数列{a n }为等差数列,且前n 项和为S n , ∴数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列.∴S m -1m -1+S m +1m +1=2S m m ,即-2m -1+3m +1=0,解得m =5,经检验为原方程的解,故选C.4.数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 10=12,则a 8等于( )A .0B .3C .8D .11答案 B解析 设{b n }的公差为d ,∵b 10-b 3=7d =12-(-2)=14,∴d =2. ∵b 3=-2,∴b 1=b 3-2d =-2-4=-6. ∴b 1+b 2+…+b 7=7b 1+7×62d=7×(-6)+21×2=0.又b 1+b 2+…+b 7=(a 2-a 1)+(a 3-a 2)+…+(a 8-a 7)=a 8-a 1=a 8-3=0, ∴a 8=3.故选B.5.已知数列{a n }满足a n +1=a n -57,且a 1=5,设{a n }的前n 项和为S n ,则使得S n 取得最大值的序号n 的值为( ) A .7 B .8 C .7或8 D .8或9 答案 C解析 由题意可知数列{a n }是首项为5,公差为-57的等差数列,所以a n =5-57(n -1)=40-5n7,该数列前7项是正数项,第8项是0,从第9项开始是负数项,所以S n 取得最大值时,n =7或8,故选C. 6.已知数列{a n }中,a 1=1且1a n +1=1a n +13(n ∈N *),则a 10=________. 答案 14解析 由已知得1a 10=1a 1+(10-1)×13=1+3=4, 故a 10=14.7.已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4,则a n =________. 答案 2n -1解析 设等差数列的公差为d , ∵a 3=a 22-4,∴1+2d =(1+d )2-4, 解得d 2=4,即d =±2.由于该数列为递增数列,故d =2. ∴a n =1+(n -1)×2=2n -1.8.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 答案 130解析 由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130.9.若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2,又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n =2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=12n -12n -1=n -1-n 2n n -1=-12n n -1.当n =1时,a 1=12不适合上式.故a n=⎩⎪⎨⎪⎧12,n =1,-12n n -1,n ≥2.10.等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 最大解 方法一 由S 3=S 11得3a 1+3×22d =11a 1+11×102d ,则d =-213a 1.从而S n =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n =-a 113(n -7)2+4913a 1,又a 1>0,所以-a 113<0.故当n =7时,S n 最大. 方法二 由于S n =an 2+bn 是关于n 的二次函数,由S 3=S 11,可知S n =an 2+bn 的图象关于n =3+112=7对称.由方法一可知a =-a 113<0,故当n =7时,S n 最大. 方法三 由方法一可知,d =-213a 1.要使S n 最大,则有⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎪⎨⎪⎧a 1+n -1⎝ ⎛⎭⎪⎫-213a 1≥0,a 1+n ⎝ ⎛⎭⎪⎫-213a 1≤0,解得≤n ≤,故当n =7时,S n 最大. 方法四 由S 3=S 11,可得2a 1+13d =0, 即(a 1+6d )+(a 1+7d )=0,故a 7+a 8=0,又由a 1>0,S 3=S 11可知d <0, 所以a 7>0,a 8<0,所以当n =7时,S n 最大.B 组 专项能力提升 (时间:20分钟)11.设S n 为等差数列{a n }的前n 项和,(n +1)S n <nS n +1(n ∈N *).若a 8a 7<-1,则( ) A .S n 的最大值是S 8 B .S n 的最小值是S 8 C .S n 的最大值是S 7 D .S n 的最小值是S 7答案 D解析 由条件得S n n <S n +1n +1,即n a 1+a n 2n <n +1a 1+a n +12n +1,所以a n <a n +1,所以等差数列{a n }为递增数列.又a 8a 7<-1,所以a 8>0,a 7<0,即数列{a n }前7项均小于0,第8项大于零,所以S n 的最小值为S 7,故选D.12.设等差数列{a n }的前n 项和为S n ,若a 1=-3,a k +1=32,S k =-12,则正整数k =________.答案 13解析 S k +1=S k +a k +1=-12+32=-212,又S k +1=k +1a 1+a k +12=k +1⎝⎛⎭⎪⎫-3+322=-212,解得k =13.13.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________.答案1941解析 ∵{a n },{b n }为等差数列, ∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6. ∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941, ∴a 6b 6=1941. 14.已知数列{a n }是首项为a ,公差为1的等差数列,b n =1+a n a n,若对任意的n ∈N *,都有b n ≥b 8成立,则实数a 的取值范围为________. 答案 (-8,-7)解析 依题意得b n =1+1a n,对任意的n ∈N *,都有b n ≥b 8,即数列{b n }的最小项是第8项,于是有1a n ≥1a 8.又数列{a n }是公差为1的等差数列,因此有⎩⎪⎨⎪⎧a 8<0,a 9>0,即⎩⎪⎨⎪⎧a +7<0,a +8>0,由此解得-8<a <-7,即实数a 的取值范围是(-8,-7).15.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22. (1)求通项a n ; (2)求S n 的最小值;(3)若数列{b n }是等差数列,且b n =S nn +c,求非零常数c .解 (1)因为数列{a n }为等差数列, 所以a 3+a 4=a 2+a 5=22.又a 3·a 4=117, 所以a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,所以a 3<a 4, 所以a 3=9,a 4=13,所以⎩⎪⎨⎪⎧a 1+2d =9,a 1+3d =13,所以⎩⎪⎨⎪⎧a 1=1,d =4.所以通项a n =4n -3. (2)由(1)知a 1=1,d =4, 所以S n =na 1+n n -12×d =2n 2-n =2⎝ ⎛⎭⎪⎫n -142-18.所以当n =1时,S n 最小, 最小值为S 1=a 1=1. (3)由(2)知S n =2n 2-n , 所以b n =S nn +c =2n 2-nn +c,所以b 1=11+c ,b 2=62+c ,b 3=153+c .因为数列{b n }是等差数列, 所以2b 2=b 1+b 3, 即62+c ×2=11+c +153+c, 所以2c 2+c =0,所以c =-12或c =0(舍去),经验证c =-12时,{b n }是等差数列,故c =-12.。
等差数列经典试题(含答案) 百度文库
则公差 ,所以 .
故选:A
2.C
【分析】
先求得 ,然后求得 .
【详解】
依题意 ,所以 .
故选:C
3.B
【分析】
由题意结合 成等比数列,有 即可得 ,进而得到 、 ,即可求 .
【详解】
由题意知: , ,又 成等比数列,
∴ ,解之得 ,
∴ ,则 ,
∴ ,
故选:B
【点睛】
思路点睛:由其中三项成等比数列,利用等比中项性质求项,进而得到等差数列的基本量
(4)已知 与 的关系求通项时,一般可根据 求解.
24.ABC
【分析】
利用数列 满足的递推关系及 ,依次取 代入计算 ,能得到数列 是周期为4的周期数列,得项的所有可能值,判断选项即得结果.
【详解】
数列 满足 , ,依次取 代入计算得,
, , , ,因此继续下去会循环,数列 是周期为4的周期数列,所有可能取值为: .
【详解】
对于A:因为正数,公差不为0,且 ,所以公差 ,
所以 ,即 ,
根据等差数列的性质可得 ,又 ,
所以 , ,故A正确;
对于B:因为 ,则 ,
所以 ,又 ,
所以 ,
所以 , ,
所以使 的最大的n为15,故B正确;
对于C:因为 ,则 ,
,则 ,即 ,
所以则 中 最大,故C错误;
对于D:因为 ,则 ,又 ,
对于 ,若 ,则 , 时, ,因为数列 为等差数列,所以 ,故 正确.
故选:AD
【点睛】
关键点点睛:熟练掌握等差数列的通项公式、前 项和公式是解题关键.
22.无
23.BC
【分析】
根据递推公式,得到 ,令 ,得到 ,可判断A错,B正确;根据求和公式,得到 ,求出 ,可得C正确,D错.
高三等差数列练习题及答案解析
高三等差数列练习题及答案解析在高中数学的学习过程中,等差数列是一个非常重要的概念。
在这篇文章中,我们将提供一些高三等差数列练习题并给出详细的答案解析。
希望这些题目能够帮助学生们更好地理解和掌握等差数列的性质和运算规律。
练习题一:已知等差数列的首项为a,公差为d。
若第7项等于2a+5d,第10项等于8a+11d,则求该等差数列的首项和公差。
解析:设该等差数列的首项为a,公差为d。
根据已知条件,我们可以列出以下方程组:a + 6d = 2a + 5d --(1)a + 9d = 8a + 11d --(2)我们先来解第一个方程:将方程(1)化简,得到:d = a --(3)然后,我们将方程(3)代入方程(2),得到:a + 9(a) = 8a + 11(a)10a = 18a由此可知,a = 0。
将a代入方程(3),得到:d = 0所以该等差数列的首项为0,公差也为0。
练习题二:已知等差数列的前n项和为Sn,公差为d。
若前m项和为Sm,其中m < n,则求从第m+1项到第n项的和。
解析:设从第m+1项到第n项的和为Sn',则根据等差数列的性质,有:Sn' = Sn - Sm练习题三:已知等差数列的前n项和为Sn,公差为d。
若将每一项都乘以-1后得到新的数列,求新数列的前n项和。
解析:设新数列的前n项和为S'n。
根据等差数列的性质,有:S'n = -Sn练习题四:已知等差数列的前n项和为Sn,公差为d。
若将每一项都平方后得到新的数列,求新数列的前n项和。
设新数列的前n项和为S''n。
根据等差数列的性质,有:S''n = a^2 + (a+d)^2 + (a+2d)^2 + ... + (a+(n-1)d)^2我们可以利用平方公式将每一项展开,然后进行简化,得到:S''n = (n/6)(2a^2 + (n-1)d^2 + 4ad(n-1) + 2d^2(n-1)(2n-1))练习题五:已知等差数列的前n项和为Sn,公差为d。
等差数列典型例题及详细解答
(2)求数列{an}中的最大项和最小项,并说明理由.
(1)证明因为an=2- (n≥2,n∈N*),
bn= (n∈N*),
所以bn+1-bn= -
= - = - =1.
又b1= =- .
所以数列{bn}是以- 为首项,1为公差的等差数列.
(2)解由(1)知bn=n- ,
∴ 是以 = 为首项,1为公差的等差数列,
.等差数列典型例题及详细解答
———————————————————————————————— 作者:
———————————————————————————————— 日期:
1.等差数列的定义
一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母__d__表示.
(3)若{an}是等差数列,公差为d,则{a2n}也是等差数列,公差为2d.
(4)若{an},{bn}是等差数列,则{pan+qbn}也是等差数列.
(5)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N*)是公差为md的等差数列.
5.等差数列的前n项和公式
设等差数列{an}的公差为d,其前n项和Sn= 或Sn=na1+ d.
2.(2014·福建)等差数列{an}的前n项和为Sn,若a1=2,S3=12,则a6等于()
A.8B.10C.12D.14
答案C
解析由题意知a1=2,由S3=3a1+ ×d=12,
解得d=2,所以a6=a1+5d=2+5×2=12,故选C.
3.在等差数列{an}中,已知a4+a8=16,则该数列前11项和S11等于()
经典等差数列性质练习题(含答案)
经典等差数列性质练习题(含答案)经典等差数列性质练习题(含答等差数列基础习题选(附有详细解答)一?选择题(共26小题)1.已知等差数列{a n }中,a 3=9,a 9=3,则公差d 的值为()A 吉B 1C 迟D - 12.已知数列{a n }的通项公式是a n =2n+5,则此数列是()A .: 以7为首项,公差为2的等差数列B ?以7为首项,公差为5的等差数列C .1以5为首项,公差为2的等差数列 D ? 不是等差数列3?在等差数列{a n }中, a i =13?a 3=12,若 a n =2,则 n 等于()A 23 ?B 24 C25D26 ?4.等差数列{a n }的前n 项和为S n ,已知S=6, a 4=8,则公差 d=()A 一 1 B2 C3 D 一 25 .两个数1与5的等差中项是()C26?—个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A - 2B - 3C - 4D - 57. (2012?畐建)等差数列{a n}中,a i+a5=10, a4=7,则数列{a n}的公差为()A 1 B2 C3 D4&数列冷」的首项为3,两为等差数列且管讪-%(辰F), 若鮎=-2, b02,则R8=()A0 B8 C3 D 119?已知两个等差数列5, 8, 11,…和3, 7, 11,…都有100项,贝陀们的公共项的个数为()A 25 B24 C20 D 1910?设S为等差数列{a n}的前n项和,若满足a n=a n-i+2(n>2 , 且S3=9,贝V a i=( )A5 B3 C - 1 D 111. (2005?黑龙江)如果数列{a n}是等差数列,则( )A a+a8> a4+a5B a1+a8=a4+a5C a+a s v a4+a5D aQ8=a4a512. (2004?畐建)设S n是等差数列{a n}的前n项和,若C213.(2009?安徽)已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,贝V a?。
等差数列性质习题(含答案)
b=m+n.
所以 am+n=a(m+n)+b=0. 三、解答题
12.已知{an}为等差数列,且 a1+a3+a5=18,a2+a4+a6=24. (1)求 a20 的值; (2)若 bn=3an-41,试判断数列{bn}从哪一项开始大于 0.
22
考点 等差数列的性质
题点 利用等差数列项数的规律解题
解 (1)因为 a1+a3+a5=18,a2+a4+a6=24,所以 a3=6,a4=8,则公差 d=2,所以 a20=
a4=14+32=74,
| | ∴|m-n|=|a1a4-a2a3|=
1×7-3×5 4444
=1
2
二、填空题
9.设{an}是公差为正数的等差数列,若 a1+a2+a3=15,a1a2a3=80,则 a11+a12+a13=________. 考点 等差数列的性质
题点 利用等差数列项数的规律解题
答案 105
题点 利用等差数列项数的规律解题
答案 C
解析 ∵a3+a4+a5+a6+a7 =(a3+a7)+(a4+a6)+a5=5a5=450,∴a5=90. ∴a2+a8=2a5=180. 7.已知数列{an}为等差数列且 a1+a7+a13=4π,则 tan(a2+a12)的值为( )
A. 3 B.± 3 C.- 3 D.- 3 3
考点 等差数列的判定
题点 判断数列是否为等差数列
答案 C
5.在等差数列-5,-31,-2,-1,…中,每相邻两项之间插入一个数,使之组成一个新的
2
2
等差数列,则新数列的通项公式为( )
A.an=3n-23 44
B.an=-5-3(n-1) 2
C.an=-5-3(n-1) D.an=5n2-3n
经典等差数列性质练习题目含答案详解
实用标准文案等差数列基础习题选(附有详细解答)一.选择题(共26小题)1.已知等差数列{a}中,a=9,a=3,则公差d的值为()93nA. B. 1 C. D.﹣12.已知数列{a}的通项公式是a=2n+5,则此数列是()nn A.以7为首项,公差为2的等差数列 B.以7为首项,公差为5的等差数列C.以5为首项,公差为2的等差数列 D.不是等差数列3.在等差数列{a}中,a=13,a=12,若a=2,则n等于()n3n1A. 23 B. 24 C. 25 D. 26 .等差数{的项和,已==,则公d n A.一1 B. 2 C. 3 D.一25.两个数1与5的等差中项是()A. 1 B. 3 C. 2 D.6.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()5.﹣.﹣4 D﹣A.﹣2 B. 3 C) =7,则数列{a}的公差为(=102012?福建)等差数列{a}中,a+a,a7.(n514n4 D.2 C. 3 A. 1 B.),则=(.数列的首项为3,为等差数列且,若,811 3 D. C 0 B. 8 . A.项,则它们的公共项的个数为()3,7,11,…都有100,9.已知两个等差数列5,811,…和19 D.. 24 C. 20 A . 25 B)=9,则a=( =a}的前n项和,若满足a+2(n≥2),且S为等差数列10.设S{a13n﹣nn1n1 ﹣1 D.3 A. 5 B. C.)}是等差数列,则(?11.(2005黑龙江)如果数列{a n D.CB A... =aa a+a a=aa+a+a a+aa+a<a>a+a5451415818845841()项和,若S2004?福建)设是等差数列{a}的前n=.(12nn D.﹣1 C. 21 A . B.等于(,则=99+a+a,=105+a+a为等差数列,}安徽)已知200913.(?{aaaa )20n136254精彩文档.实用标准文案A.﹣1 B. 1 C. 3 D. 714.在等差数列{a}中,a=4,a=12,,那么数列{}的前n项和等于()62nC. DB.. A.15.已知S为等差数列{a}的前n项的和,a+a=4,S=21,则a的值为()72n75n A. 6 B. 7 C. 8 D. 9) +a=15,a=7,则s的值为(16.已知数列{a}为等差数列,a+a651n43D. 35 C. 36 24A. 30 B,则数列{a}的前n?营口)等差数列{a}的公差d<0,且项和S取得最大值时的项数n是201217.(nnn)(B. 6 C. A. 5 5或6 D. 6或718.(2012?辽宁)在等差数列{a}中,已知a+a=16,则该数列前11项和S=()1148n A. 58 B. 88 C. 143 D. 17619.已知数列{a}等差数列,且a+a+a+a+a=10,a+a+a+a+a=20,则a=()416325107n498A.﹣1 B. 0 C. 1 D. 22)k=7,则( 8n,第k项满足4<a<项和20.(理)已知数列{a}的前nS=n﹣knn9 .. 8 D 6 B. 7 C A.2)的值为( =2n﹣17n,则当S取得最小值时nn21.数列a的前项和为S,若S nnnn5 D.或56 C. 4 A. 4或5 B.)﹣4,则S等于(}22.等差数列{a中,a=2n4nn4. C. 8D A. 12 B. 1023.若{a}为等差数列,a=4,a=19,则数列{a}的前10项和为()n3n8A. 230 B. 140 C. 115 D. 95=S()+a.等差数列24{a}中,a=5,则前10项和103n8D. C5 B. 25 . 50 100. A等于(,,的前的等差数列0{a}n项和,且SSS成等比数列,则)是公差不为S25.设4n1n23 . A 1 .C2 .B4.D精彩文档.实用标准文案26.设a=﹣2n+21,则数列{a}从首项到第几项的和最大()nn项第12项 D. 11项 C.第10项或11A .第10项 B.第小题)二.填空题(共4 {a27.如果数列}满足:.= _________ n_________ .(100)= …),且f(1)=2,则f(28.如果f(n+1)=f(n)+1n=1,2,3. _________ 项之和为,则数列{|a}的前n项的和|}的前1029.等差数列{a nna30.已知{a}是一个公差大于0的等差数列,且满足aa=55,+a=16.762n3(Ⅰ)求数列{a}的通项公式:n项和S.}(n为正整数),求数列{b的前n=}(Ⅱ)若数列{a和数列{b}满足等式:a nnnn=n参考答案与试题解析小题)一.选择题(共26) =3,则公差d的值为({a1.已知等差数列}中,a=9,a9n31﹣.. D . B. 1 C A等差数列考:计算题.专题:分析:本题可由题意,构造方程组,解出该方程组即可得到答案.解答:,a=3a{a}中,=9,解:等差数列9n3由等差数列的通项公式,可得.﹣1解得,即等差数列的公差d=D故选本题为等差数列的基本运算,只需构造方程组即可解决,数基础题.点评:),则此数列是(的通项公式是2.已知数列{a}a=2n+5nn的等差数列7以为首项,公差为5B 为首项,公差为.以72的等差数列. A不是等差数列 D的等差数列为首项,公差为以 C . 52 .精彩文档.实用标准文案考点:等差数列.专题:计算题.分析:直接根据数列{a}的通项公式是a=2n+5求出首项,再把相邻两项作差求出公差即可得出结论.nn解答:解:因为a=2n+5,n所以 a=2×1+5=7;1a﹣a=2(n+1)+5﹣(2n+5)=2.nn+1故此数列是以7为首项,公差为2的等差数列.故选A.点评:本题主要考查等差数列的通项公式的应用.如果已知数列的通项公式,可以求出数列中的任意一项.3.在等差数列{a}中,a=13,a=12,若a=2,则n等于()nn13A. 23 B. 24 C. 25 D. 26考点:等差数列.专综合题分析根=1=1利用等差数列的通项公式求的值,然后根据首项和公差写出数列的通项公式让等得到关的方程,求出方程的解即可得的值解答:解:由题意得a=a+2d=12,把a=13代入求得d=﹣,113则a=13﹣(n﹣1)=﹣n+=2,解得n=23n故选A点评:此题考查学生灵活运用等差数列的通项公式化简求值,是一道基础题.4.等差数列{a}的前n项和为S,已知S=6,a=8,则公差d=()4nn3A.一1 B. 2 C. 3 D.一2考点:等差数列.专题:计算题.分析:根据等差数列的前三项之和是6,得到这个数列的第二项是2,这样已知等差数列的;两项,根据等差数列的通项公式,得到数列的公差.解答:解:∵等差数列{a}的前n项和为S,nn S=6,3∴a=2 2∵a=8,4∴8=2+2d∴d=3,故选C.点评:本题考查等差数列的通项,这是一个基础题,解题时注意应用数列的性质,即前三项的和等于第二项的三倍,这样可以简化题目的运算.5.两个数1与5的等差中项是()A. 1 B. 3 C. 2 D.考点:等差数列.专题:计算题.精彩文档.实用标准文案分析:由于a,b的等差中项为,由此可求出1与5的等差中项.解答:=3的等差中项为:5,解:1与故选B.点评:本题考查两个数的等差中项,牢记公式a,b的等差中项为:是解题的关键,属基础题.6.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A.﹣2 B.﹣3 C.﹣4 D.﹣5考点:等差数列.专题:计算题.分析:设等差数列{a}的公差为d,因为数列前六项均为正数,第七项起为负数,所以,结合公差为整数进而求出数列的公差解答:解:设等差数列{a}的公差为d,n所以a=23+5d,a=23+6d,76又因为数列前六项均为正数,第七项起为负数,所以,因为数列是公差为整数的等差数列,所以d=﹣4.故选C.点评:解决此类问题的关键是熟练掌握等差数列的通项公式,并且结合正确的运算.7.(2012?福建)等差数列{a}中,a+a=10,a=7,则数列{a}的公差为()n1n45A. 1 B. 2 C. 3 D. 4考点:等差数列的通项公式.专题:计算题.分析:设数列{a}的公差为d,则由题意可得 2a+4d=10,a+3d=7,由此解得d的值.11n解答:解:设数列{a}的公差为d,则由a+a=10,a=7,可得 2a+4d=10,a+3d=7,解得 d=2,1n1541故选B.点评:本题主要考查等差数列的通项公式的应用,属于基础题.8.数列的首项为3,为等差数列且,若,,则=()A..C 311D. 0 B. 8考点:等差数列的通项公式.专题:计算题.分析:先确定等差数列的通项,再利用,我们可以求得的值.解答:解:∵,,为等差数列,精彩文档.实用标准文案∴∴b=b+(n﹣3)×2=2n﹣8 3n∵ab=a﹣∴188 3的首项为∵数列∴2×8﹣8=a﹣3,8∴a=11.8故选D点评:本题考查等差数列的通项公式的应用,由等差数列的任意两项,我们可以求出数列的通项,是基础题..已知两个等差数1,…1,…都10项,则它们的公共项的个数为A. 25 B. 24 C. 20 D. 19考等差数列的通项公式专计算题分析(法一):根据两个等差数列的相同的项按原来的先后次序组成一个等差数列,且公差为原来两个公差最小公倍数求解(法二)由条件可知两个等差数列的通项公式,可用不定方程的求解方法来求解解答解法一:设两个数列相同的项按原来的前后次序组成的新数列{,=11∵数1,…1,…公差分别{的公d=4=1=11+1=12又1,…1,…的10项分别3039=1230,25.又N∴两个数列2个相同的项故A解法二:1,1,分别{{,=3n+=4{中的项{中的项相同n即3n+2=4m﹣1,∴n= m﹣1.又m、n∈N*,可设m=3r(r∈N*),得n=4r﹣1.根据题意得 1≤3r≤100 1≤4r﹣1≤100 解得≤r≤∵r∈N*从而有25个相同的项故选A点评:解法一利用了等差数列的性质,解法二利用了不定方程的求解方法,对学生的运算能力及逻辑思维能力的要求较高.10.设S为等差数列{a}的前n项和,若满足a=a+2(n≥2),且S=9,则a=()1﹣nnn13n A. 5 B. 3 C.﹣1 D. 1精彩文档.实用标准文案等差数列的通项公式.考点:计算题.专题:分析: a的值.以及前n项和公式求出根据递推公式求出公差为2,再由S=913解答:),n≥2),∴a﹣a=2(=a解:∵a+2(n≥21n﹣1nn﹣n,}的公差是2∴等差数列{a n a=1.S=3a+=9解得,由131故选D.本题考查了等差数列的定义,以及前n项和公式的应用,即根据代入公式进行求解.点评:)}?黑龙江)如果数列{a是等差数列,则( 11.(2005n.D. C. A. B aaa+a a+a<a+a =a=aa+a>a+a a+a5544145581181884等差数列的性质考分析+用通项公式来寻+的关系解答=0解:+﹣++7=2+7﹣2++=B∴故本题主要考查等差数列通项公式,来证明等差数列的性质点评(2004?福建)设是等差数列{a nn D.. 1 )}的前n项和,若=(S12.B ﹣1C. 2A.等差数列的性质.考点:计算题.专题: n项和与某些特殊项之间的关系解题.分析:充分利用等差数列前解答: a,由等差数列的性质可得解:设等差数列{a}的首项为1n,,a+a=2aa+a=2a351195,===1∴= .故选A n 本题主要考查等差数列的性质、等差数列的前项和公式以及等差中项的综合应用,点评: a.(2n﹣1)=n已知等差数列{a}的前项和为S,则有如下关系S n﹣2nn1n)a+a+a=99,则等于( a+aa{a200913.(?安徽)已知}为等差数列,+a=105,204n621357 ..1 C.3 DB﹣ A . 1:考点等差数列的性质.专题:计算题.精彩文档.实用标准文案分析:根据已知条件和等差中项的性质可分别求得a和a的值,进而求得数列的公差,最后利用等差数列的通项43公式求得答案.解答:解:由已知得a+a+a=3a=105,3153a+a+a=3a=99,4462∴a=35,a=33,∴d=a﹣a=﹣2.3443∴a=a+17d=35+(﹣2)×17=1.320故选B点评:本题主要考查了等差数列的性质和等差数列的通项公式的应用.解题的关键是利用等差数列中等差中项的性质求得a和a.4314.在等差数列{a}中,a=4,a=12,,那么数列{}的前n项和等于()62nC. D.. A. B考数列的求和;等差数列的性质专计算题分析求出等差数列的通项,要求的和是一个等差数列与一个等比数列的积构成的数列,利用错位相减法求出列的项的和解答解:∵等差数{中==12∴公差d=;;2)×2=2n﹣+∴a=a(n2n∴;∴的前n项和,=两式相减得=∴B故选精彩文档.实用标准文案点评:求数列的前n项的和,先判断通项的特点,据通项的特点选择合适的求和方法.15.已知S为等差数列{a}的前n项的和,a+a=4,S=21,则a的值为()752nn7A. 6 B. 7 C. 8 D. 9考点:等差数列的性质.专题:计算题.分析:由a+a=4,S=21根据等差数列的性质可得a+a=a+a=4①,根据等差数列的前n项和公式可得,6541372,联立可求d,a,代入等差数列的通项公式可求1解答:解:等差数列{a}中,a+a=4,S=217n52根据等差数列的性质可得a+a=a+a=4①6143根据等差数列的前n项和公式可得,所 +=②﹣①可d=31所以a=9 7故选D点评:本题主要考查了等差数列的前n项和公式及等差数列的性质的综合应用,属于基础试题.16.已知数列{a}为等差数列,a+a+a=15,a=7,则s的值为()6341n5A. 30 B. 35 C. 36 D. 24考等差数列的性质专计算题分析利用等差中项的性质求的值进而利+=+求+的值代入等差数列的求和公式中求得4案.解答:解:a+a+a=3a=15,3351∴a=53∴a+a=a+a=12 4631∴s=×6=366故选C点评:本题主要考查了等差数列的性质.特别是等差中项的性质.17.(2012?营口)等差数列{a}的公差d<0,且,则数列{a}的前n项和S取得最大值时的项数n 是nnn()A. 5 B. 6 C. 5或6 D. 6或7考点:等差数列的前n项和;等差数列的通项公式.专题:计算题.分析:由,知a+a=0.由此能求出数列{a}的前n项和S取得最大值时的项数n.nn111精彩文档.实用标准文案解答:解:由,知a+a=0.111∴a=0,6故选C.点评:本题主要考查等差数列的性质,求和公式.要求学生能够运用性质简化计算.18.(2012?辽宁)在等差数列{a}中,已知a+a=16,则该数列前11项和S=()1184n A. 58 B. 88 C. 143 D. 176考点:等差数列的性质;等差数列的前n项和.专题:计算题.分析:根据等差数列的定义和性质得 a+a=a+a=16,再由S= 运算求得结果.111118解答:=88,,∴S= a中,已知a+a=16,∴+a=a+a=16解:∵在等差数列{a}11114n1884故选B.点评:本题主要考查等差数列的定义和性质,等差数列的前n项和公式的应用,属于中档题.19.已知数列{a}等差数列,且a+a+a+a+a=10,a+a+a+a+a=20,则a=()482913654n710A.﹣1 B. 0 C. 1 D. 2考点:等差数列的通项公式;等差数列的前n项和.专题:计算题.分析:由等差数列得性质可得:5a=10,即a=2.同理可得5a=20,a=4,再由等差中项可知:a=2a ﹣a=0 6566554解答:解:由等差数列得性质可得:a+a=a+a=2a,又a+a+a+a+a=10,9573175193故5a=10,即a=2.同理可得5a=20,a=4.6556再由等差中项可知:a=2a﹣a=0 654故选B点评:本题考查等差数列的性质及等差中项,熟练利用性质是解决问题的关键,属基础题.2) 7,则k=(<,第n项和S=n﹣8nk项满足4<a的前.(理)已知数列20{a}knn9 D 8 .B 6 . 7C. A.项和.等差数列的通项公式;等差数列的前n考点:计算题.:专题分析:的值.k<4<a7,建立不等式,求出项满足,再由第a=a先利用公式求出k knn解答:解:a= n精彩文档.实用标准文案=∵n=1时适合a=2n﹣9,∴a=2n﹣9.nn∵4<a<7,∴4<2k﹣9<7,k∴<k<8,又∵k∈N,∴k=7,+故选B.点评:本题考查数列的通项公式的求法,解题时要注意公式a=的合理运用,属于基础题.n2) S取得最小值时n的值为(,则当的前n项和为S,若S=2n﹣17n21.数列a nnnn5 D.C. 4 4或5 B. 5或6 A.项和考等差数列的计算题专分析取为正整数,即可得看作是关的二次函数,把关系式配方后,又根把数列的项的的值最小值时解答:2﹣,=2n﹣17n=2解:因为S n又n为正整数,所以当n=4时,S取得最小值.n故选C点评:此题考查学生利用函数思想解决实际问题的能力,是一道基础题.22.等差数列{a}中,a=2n﹣4,则S等于()4nn A. 12 B. 10 C. 8 D. 4考点:等差数列的前n项和.专题:计算题.分析:利用等差数列{a}中,a=2n﹣4,先求出a,d,再由等差数列的前n项和公式求S.4nn1解答:解:∵等差数列{a}中,a=2n﹣4,nn∴a=2﹣4=﹣2,1a=4﹣4=0,2d=0﹣(﹣2)=2,∴S=4a+ 14=4×(﹣2)+4×3=4.故选D.点评:本题考查等差数列的前n项和公式的应用,是基础题.解题时要认真审题,注意先由通项公式求出首项和公差,再求前四项和.23.若{a}为等差数列,a=4,a=19,则数列{a}的前10项和为()n38n A. 230 B. 140 C. 115 95.D精彩文档.实用标准文案项和.等差数列的前n考点:综合题.专题:分别利用等差数列的通项公式化简已知的两个等式,得到①和②,联立即可求出首项和公差,然后利用求分析:项的和.项和的公式即可求出数列前10出的首项和公差,根据公差数列的前n 解答:②,=a+7d=19a=a+2d=4①,a解:1381,②﹣①得5d=15 ,解得d=3 ,﹣2d=3代入①求得a=把13=115+×=10×(﹣2)所以S10 C.故选 n项和的公式化简求值,是一道基础题.点评:此题考查学生灵活运用等差数列的通项公式及前中+=,则1项2.等差数{1n10050 D. 5 B.25 C. A.项和;等差数列的性质考等差数列的计算题专分析:运算求得结S= =5根据条件并利用等差数列的定义和性质可得 a+a,代入前10项和10 101果.解答:,=5,∴a+a=5中,解:等差数列{a}a+a103n18项和10S==25,∴前10B.故选点评:,是解题的关键,属于基础+a=5本题主要考查等差数列的定义和性质,以及前n项和公式的应用,求得a101题.)等于( S的前n项和,且S,S,成等比数列,则是公差不为25.设S0的等差数列{a}41nn24 D..2 C. 3 A. 1 B等差数列的前n项和.考点:计算题.专题:2分析:项和的公式分别表nS=SS,然后利用等差数列的前,由S,SS成等比数列,根据等比数列的性质得到422114即可求出公差与首项的关系并解出公差根据公差不为代入即可得到首项和公差的关系式,0,示出各项后,,然后把所求的式子利用等差数列的通项公式化简后,把公差d的关系式代入即可求出比值.d 解答:成等比数列,,解:由S,SS4122+6d(+d ∴(2a)=a4a).111 d=2a0d∵≠,∴.1精彩文档.实用标准文案∴===3.故选C点评:此题考查学生掌握等比数列的性质,灵活运用等差数列的通项公式及前n项和的公式化简求值,是一道综合题.26.设a=﹣2n+21,则数列{a}从首项到第几项的和最大()nn A.第10项 B.第11项 C.第10项或11项 D.第12项考点:等差数列的前n项和;二次函数的性质.专题:转化思想.分析:方法一:由a,令n=1求出数列的首项,利用a﹣a等于一个常数,得到此数列为等差数列,然后根据求1nnn﹣出的首项和公差写出等差数列的前n项和的公式,得到前n项的和与n成二次函数关系,其图象为开口向下的抛物线,n时,项的和有最大值,即可得到正确答案方法二:令a大于等于0,列出关于n的不等式,求出不等式的解集即可得到n的范围,在n的范围中找n出最大的正整数解,从这项以后的各项都为负数,即可得到正确答案.解答:解:方法一:由a=﹣2n+21,得到首项a=﹣2+21=19,a=﹣2(n﹣1)+21=﹣2n+23,11nn ﹣+),∈N>1,n2n+21(﹣)﹣(﹣2n+23)=﹣2,(n﹣则aa=1nn﹣ 2的等差数列,所以此数列是首项为19,公差为﹣2,为开口向下的抛物线,﹣n+20n2则S=19n+?(﹣)=n 最大.=10当n=﹣时,S n所以数列{a}从首项到第10项和最大.n方法二:令a=﹣2n+21≥0,n解得n≤,因为n取正整数,所以n的最大值为10,所以此数列从首项到第10项的和都为正数,从第11项开始为负数,则数列{a}从首项到第10项的和最大.n故选A点评:此题的思路可以先确定此数列为等差数列,根据等差数列的前n项和的公式及二次函数求最值的方法得到n的值;也可以直接令a≥0,求出解集中的最大正整数解,要求学生一题多解.n二.填空题(共4小题)27.如果数列{a}满足:=.n考点:数列递推式;等差数列的通项公式.专题:计算题.分析:根据所给的数列的递推式,看出数列是一个等差数列,根据所给的原来数列的首项看出等差数列的首项,根据等差数列的通项公式写出数列,进一步得到结果.解答:解:∵根据所给的数列的递推式精彩文档.实用标准文案∴数列{}是一个公差是5的等差数列,∵a=3,1=∴,∴数列的通项是∴故答案为:点评:本题看出数列的递推式和数列的通项公式,本题解题的关键是确定数列是一个等差数列,利用等差数列的通项公式写出通项,本题是一个中档题目.28.如果f(n+1)=f(n)+1(n=1,2,3…),且f(1)=2,则f(100)= 101 .考数列递推式;等差数列的通项公式专计算题分析n+=+N=,依次n=,…,总结规律得=n+,由此能求10)解答解:n+=+N==+1=2+1==+1=3+1==+1=4+1==n+10=100+1=10故答案为:101.点评:本题考查数列的递推公式的应用,是基础题.解题时要认真审题,仔细解答.29.等差数列{a}的前n项的和,则数列{|a|}的前10项之和为 58 .nn考点:数列的求和;等差数列的通项公式.专题:计算题.分析:先求出等差数列的前两项,可得通项公式为a=7﹣2n,从而得到n≤3时,|a|=7﹣2n,当n>3时,|a|=nnn2n﹣7.分别求出前3项的和、第4项到第10项的和,相加即得所求.解答:解:由于等差数列{a}的前n项的和,故a=s=5,1n1∴a=s﹣s=8﹣5=3,故公差d=﹣2,故a=5+(n﹣1)(﹣2)=7﹣2n.n122当n≤3时,|a|=7﹣2n,当n>3时,|a|=2n﹣7.nn故前10项之和为 a+a+a﹣a﹣a﹣…﹣a=+=9+49=58,1041235故答案为 58.点评:本题主要考查等差数列的通项公式,前n项和公式及其应用,体现了分类讨论的数学思想,属于中档题.精彩文档.实用标准文案30.已知{a}是一个公差大于0的等差数列,且满足aa=55,a+a=16.762n3(Ⅰ)求数列{a}的通项公式:n=(n为正整数),求数列{b}的前n项和{b(Ⅱ)若数列{a}和数列}满足等式:aS.nnnnn=考点:数列的求和;等差数列的通项公式.专题:计算题.分析:(1)将已知条件aa=55,a+a=16,利用等差数列的通项公式用首项与公差表示,列出方程组,求出首项7632与公差,进一步求出数列{a}的通项公式n(2)将已知等式仿写出一个新等式,两个式子相减求出数列{b}的通项,利用等比数列的前n项和公式求n出数列{b}的前n项和S.nn解答:解(1)解:设等差数列{a} 的公差为d,则依题设d>0a2+a7=1.2+7d=16①=5,得+2)+5=55由①2=17d将其代入②得13)16+3=22259=22=,d=,代入①=1=12=21 所=21n(2)令c=,则有a=c+c+…+c,a=c+c+…+c 1nnnn+12n112﹣两式相减得a﹣a=c,n+1nn+1由(1)得a=1,a﹣a=2 n1n+1∴c=2,c=2(n≥2),nn+1n+1即当n≥2时,b=2又当n=1时,b=2a=2 11n∴b=<BR>n34n+1234n+1﹣++2…+2﹣6,4=+2+2+=2+2+b…+b+b=b于是S+2…=2+2n2n13n+2即S=2﹣6n点评:求一个数列的前n项和应该先求出数列的通项,利用通项的特点,然后选择合适的求和的方法.精彩文档.。
(完整版)等差数列练习题有答案
数列A 、等差数列知识点及例题一、数列由n a 与n S 的关系求n a由n S 求n a 时,要分n=1和n ≥2两种情况讨论,然后验证两种情况可否用统一的解析式表示,若不能,则用分段函数的形式表示为11(1)(2)n n n S n a S S n -=⎧=⎨-≥⎩。
〖例〗根据下列条件,确定数列{}n a 的通项公式。
分析:(1)可用构造等比数列法求解; (2)可转化后利用累乘法求解;(3)将无理问题有理化,而后利用n a 与n S 的关系求解。
解答:(1)(2)……累乘可得,故(3)二、等差数列及其前n 项和 (一)等差数列的判定1、等差数列的判定通常有两种方法:第一种是利用定义,1()(2)n n a a d n --=≥常数,第二种是利用等差中项,即112(2)n n n a a a n +-=+≥。
2、解选择题、填空题时,亦可用通项或前n 项和直接判断。
(1)通项法:若数列{n a }的通项公式为n 的一次函数,即n a =An+B,则{n a }是等差数列;(2)前n 项和法:若数列{n a }的前n 项和n S 是2n S An Bn =+的形式(A ,B 是常数),则{n a }是等差数列。
注:若判断一个数列不是等差数列,则只需说明任意连续三项不是等差数列即可。
〖例〗已知数列{n a }的前n 项和为n S ,且满足111120(2),2n n n n S S S S n a ---+=≥=g (1)求证:{1nS }是等差数列; (2)求n a 的表达式。
分析:(1)1120n n n n S S S S ---+=g →1n S 与11n S -的关系→结论; (2)由1nS 的关系式→n S 的关系式→n a 解答:(1)等式两边同除以1n n S S -g 得11n S --1n S +2=0,即1n S -11n S -=2(n ≥2).∴{1n S }是以11S =11a =2为首项,以2为公差的等差数列。
等差数列典型例题及详细解答
等差数列典型例题及详细解答(总1 3页)-CAL-FENGHAI.-(YICAI)-Company One 1■CAL■本页仅作为文档封面.使用请直接删除1. 等差数列的定义-般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母_g_表示.2. 等差数列的通项公式如果等差数列{拐的首项为*公差为d,那么它的通项公式是a.,= a:+a-l)£・3. 等差中项如果A=~,那么月叫做a与b的等差中项.4. 等差数列的常用性质(1)通项公式的推广:a n=(n—ai) d(n, mWN*).⑵若{<> 为等差数列,且1=m~\~n(k, m、”WN°),则az+a』=ac+am(3)若{%}是等差数列,公差为",贝9 {吐}也是等差数列,公差为竺⑷若{山,⑹是等差数列,贝!」{皿+也}也是等差数列.⑸若&}是等差数列,公差为〃,则必,站”必口,…(匕 4)是公差为迢的等差数列.5. 等差数列的前n项和公式设等差数列{““}的公差为〃,其前“项和S”=^宁或必=“5+巴亍丄〃.6. 等差数列的前”项和公式与函数的关系数列{"”}是等差数列S…=An2+Bn(A. B为常数).7. 等差数列的前”项和的最值在等差数列{“”}中,心0,(1<0,则&存在最大一值:若E<0, d>0,则S“存在最小值. 【思考辨析】判断下而结论是否正确(请在括号中打“ J ”或“ X ” )(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.(X )⑵数列{“”}为等差数列的充要条件是对任意都有2如尸心+如2・(J)(3)等差数列{心}的单调性是由公差〃决定的.(J)(4)数列{“”}为等差数列的充要条件是其通项公式为"的一次函数.(X )⑸数列{"”}满足“,小一"产”,则数列{“”}是等差数列.(X )⑹已知数列{⑷}的通项公式是心=””+/苴中p,彳为常数),贝IJ数列{““}一立是等差数列.(V )1. (2015•重庆)在等差数列{如中,若他=4,心=2,则心等于()A・一 1 B. 0 C・ 1 D・ 6答案B解析由等差数列的性质,得“6二如-"2二2X2 - 4二0 ,选B.2. (2014 •福建)等差数列{血}的前〃项和为几若t/i=2, 53=12,则心等于()5-4 D 5-2 A. 8 B ・ 10 C ・ 12 D ・ 14答案C3X2解析由题意知⑵二2 ,由Sy = 3a\+—^Xd= 12 ,解彳导〃二2,所以“6二⑷+5d 二2 + 5X2二12,故选C ・3. 在等差数列{“”}中,已知心+心=16,则该数列前11项和S H 等于()A. 58 B ・ 88 C ・ 143 D ・ 176答案Blid] + 1 k/4 + “8解析 S|)二 ---- -- 二 ------ 二 8&4. 设数列{“”}是等差数列,若的+如+的=12,则他+卄・・+的等于()A. 14 B ・ 21 C ・ 28 D ・ 35 答案c解析 丁心十"4 +心=3心二12 # 6/4 = 4 ,/. U\ + U2 + ••• + = 7“4 = 2&5・(2014•北京诺等差数列仏}满足⑷+曲+心>0,心+尙()<0,则当n= ______________ 时,仏}的前〃项和最大. 答案8解析 因为数列{"“}是等差数歹I 」,且十"8 + "9 = 3"8 > 0 ,所以“8 > 0.又"7 + "10 = "8十Og < 0 ,所以的< 0.故当H 二8时,其前n 项和最大・例1⑴在数列仏}中,若ai = -2,且对任意的nGN*有2如| = 1+2如 则数列{如}前10项的和为( )(2)已知在等差数列{如中,"2=7,心=15.则前10项和Sg 等于()A. 100B. 210 C ・ 380 D ・ 400答案(1)C (2)B解析⑴由二1十如得⑷+】-如二* , 所以数列{“”}是首项为-2 ,公差为*的等差数列,10X10- 1 1 5所以510= 10X( - 2) + ----------- 5 ----- X 2 = 2・(2)因为 </2 = 7. a 4 = 15 .所以〃二 4,6/1 = 3,故 Sw 二 10X3 十10X9X4 二 210.思维升华(1)等差数列运算问题的一般求法是设出首项E 和公差d .然后由通项公式或前“项和公式转化为方 程(组)求解•(2)等差数列的通项公式及前"项和公式,共涉及五个呈山,m .d.n. S … ,知其中三个就能求另外 两个,体现了方程的思想•跟踪训练1 (1)(2015・课标全国II )设S “是等差数列{“”}的前“项和,若“|+“3+"5=3,则S5等于()A. 5B. 7C. 9D. 11⑵已知等差数列{"”}的前n 项和为S",且满足~y= 1,则数列⑺”}的公差是()A.|B. 1C. 2D. 3答案(1)A (2)C解析 ⑴丁 {如为等差数列「."I 十“5二加3 ,a\ 十 “3 十"5 = 3"3 二 3 ,彳导"3 二 1 f5ai + as/. S5 二—5— - 5“3 二 5 •故选 A. nai + Un 如+。
等差数列练习题(带解析)
等差数列练习题一、单选题(共10题;共0分)1.数列前项和为,,,,若,则=()A. B. C. D.2.在数列中,,则的值为()A.−2B.C.D.3.数列,,,,的第14项是A. B. C. D.4.已知数列的前n项和为,且,则数列的通项公式为A. B. C. D.5.已知数列{a n}满足a1=1,,则254是该数列的()A.第14项B.第12项C.第10项D.第8项6.等比数列{a n}的前n项和为S n,己知S2=3,S4=15,则S3=( )A.7B.-9C.7或-9D.7.等差数列的前项和为,若,则()A. B. C. D.8.《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布585尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺9.将正整数按如图所示的规律排列下去,且用表示位于从上到下第行,从左到右n列的数,比如,若,则有()A. B.C. D.10.世界上最古老的数学著作《莱茵德纸草书》中有一道这样的题目:把磅面包分给个人,使每人所得成等差数列,且使较大的两份之和的是较小的三份之和,则最小的份为()A.磅B.磅C.磅D.磅二、填空题(共10题;共0分)11.观察如图中各多边形图案,每个图案均由若干个全等的正六边形组成,记第个图案中正六边形的个数是.由,,,…,可推出________.12.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作,第2个五角形数记作,第3个五角形数记作,第4个五角形数记作,……,若按此规律继续下去,若,则________.13.某种平面分形图如图所示,一级分形图是由一点出发的三条线段,长度相等,两两夹角为120°;二级分形图是在一级分形图的每条线段末端出发再生成两条长度为原来的线段,且这两条线段与原线段两两夹角为120°,……,依此规律得到n级分形图.则n级分形图中共有________条线段.14.已知圆的有条弦,且任意两条弦都彼此相交,任意三条弦不共点,这条弦将圆分成了个区域,(例如:如图所示,圆的一条弦将圆分成了2(即)个区域,圆的两条弦将圆分成了4(即)个区域,圆的3条弦将圆分成了7(即)个区域),以此类推,那么与之间的递推式关系为:________.15.如图,数表满足:第n行首尾两数均为n;(2)表中递推关系类似杨辉三角,记第n(n>1)行第2个数为a(n).根据表中上下两行数据关系,可以求得当n≥2时,a(n)=________.16.数列由,确定,则________.17.已知数列满足,,,则 ________.18.已知等比数列中,则其前3项的和的取值范围是________.19.(2018•北京)设是等差数列,且a1=3, a2+a5= 36,则的通项公式为________20.数列满足, ,数列的前项和为=________.三、解答题(共4题;共0分)21.已知等差数列的首项,公差,前项和为,.(1)求数列的通项公式;(2)设数列前项和为,求.22.在数列中,,.(1)求证:数列是等差数列;(2)求数列的前n项和.23.在数列中,,,设.(1)证明:数列是等比数列,并求的通项公式;(2)求的前项和.24.设正项数列的前项和为,且满足,,.(1)求数列的通项公式;(2)若正项等比数列满足,,且,数列的前项和为,求证.等差数列练习题答案部分第 1 题:【答案】C【解析】【解答】由题意有:当时,,两式作差可得:,由于,故,即数列的奇数项、偶数项分别构成一个公差为3的等差数列,,据此可得,则数列的通项公式为:,,,加2后能被3整除,则.故答案为:C.【分析】本题利用对n进行分类讨论,再利用S求a的方法求出第k项,从而求出k的值。
等差数列练习题及答案详解
等差数列练习题一、选择题1、等差数列{}n a 中,10120S =,那么110a a +=( )A. 12B. 24C. 36D. 482、已知等差数列{}n a ,219n a n =-,那么这个数列的前n 项和n s ( )A.有最小值且是整数B. 有最小值且是分数C. 有最大值且是整数D. 有最大值且是分数 3、已知等差数列{}n a 的公差12d =,8010042=+++a a a ,那么=100SA .80B .120C .135D .160. 4、已知等差数列{}n a 中,6012952=+++a a a a ,那么=13SA .390B .195C .180D .1205、从前180个正偶数的和中减去前180个正奇数的和,其差为( )A. 0B. 90C. 180D. 360 6、等差数列{}n a 的前m 项的和为30,前2m 项的和为100,则它的前3m 项的和为( )A. 130B. 170C. 210D. 260 7、在等差数列{}n a 中,62-=a ,68=a ,若数列{}n a 的前n 项和为n S ,则( )A.54S S <B.54S S =C. 56S S <D. 56S S =8、一个等差数列前3项和为34,后3项和为146,所有项和为390,则这个数列的项数为( ) A. 13 B. 12 C. 11 D. 10 9、已知某数列前n 项之和3n 为,且前n 个偶数项的和为)34(2+n n ,则前n 个奇数项的和为( )A .)1(32+-n n B .)34(2-n nC .23n - D .321n 10若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边比为( )A .6B .8C .10D .12二.填空题1、等差数列{}n a 中,若638a a a =+,则9s = .2、等差数列{}n a 中,若232n S n n =+,则公差d = .3、在小于100的正整数中,被3除余2的数的和是.4、已知等差数列{}n a 的公差是正整数,且a 4,126473-=+-=⋅a a a ,则前10项的和S 10=5、一个等差数列共有10项,其中奇数项的和为252,偶数项的和为15,则这个数列的第6项是*6、两个等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,若337++=n n T S n n ,则88ab = . 三.解答题1、 在等差数列{}n a 中,40.8a =,11 2.2a =,求515280a a a +++ .2、设等差数列}{n a 的前n项的和为S n ,且S 4 =-62, S 6 =-75,求:(1)}{na 的通项公式a n 及前n项的和S n ; (2)|a 1 |+|a 2 |+|a 3 |+……+|a 14 |.等差数列练习题参考答案一、选择题1-5 B A C B C 6-10 C B A B A 二、填空题1、02、63、16504、-105、36、6三.解答题1、n a n 2.0=,393805251=+++a a a .2、解:设等差数列首项为a 1,公差为d ,依题意得⎩⎨⎧-=+-=+75156626411d a d a 解得:a 1=-20,d=3。
数学等差数列试题答案及解析
数学等差数列试题答案及解析1.(本题满分14分)公差不为0的等差数列中,且成等比数列. (I)求的通项公式;(Ⅱ)设试比较与的大小,并说明理由.【答案】(I)an =n+1(Ⅱ)bn+1>b n【解析】(Ⅰ)设等差数列{an}的公差为d.由已知得注意到d≠0,解得a1=2,d=1.所以an=n+1.(Ⅱ)由(Ⅰ)可知b n =++…+,bn+1=++…+,因为bn+1-b n=+-=->0,所以bn+1>b n.2.(本题满分12分)已知数列为等比数列,其前项和为,已知,且对于任意的有成等差数列;(Ⅰ)求数列的通项公式;(Ⅱ)已知(),求.【答案】(Ⅰ)(Ⅱ)【解析】设公比为,因为成等差数列,所以即解得 2分又,所以, 5分故. 6分(Ⅱ),7分10分. 12分【考点】本题主要考查等差数列、等比数列的基础知识,考查“错位相减法”求和,意在考查考生的运算能力,逻辑思维能力.3.已知数列满足:,则__________.【答案】【解析】由题设知是等差数列,公差为1,所以.【考点】本题考查等差数列基础知识.4.已知等差数列{}的前n项和为Sn,公差d≠0,且S3=9,a1,a3,a7成等比数列.(1)求数列{}的通项公式;(2)设=,求数列{}的前n项和.【答案】(1)an=n+1;(2).【解析】(1),即(a1+2d)2=a1(a1+6d),化简得,d=0(舍去).∴,得a1=2,d=1.∴an =a1+(n-1)d=2+(n-1)=n+1,即an=n+1.(6分)(2)∵bn =2an=2n+1,∴b1=4,.∴{bn}是以4为首项,2为公比的等比数列,∴.(12分)5.已知等差数列{an }的前n项和为Sn,a5=5,S5=15,则数列的前100项和为A.B.C.D.【答案】A【解析】由,得,所以,所以,又,选A.6.在直角坐标平面上有一点列,对一切正整数,点位于函数的图象上,且的横坐标构成以为首项,-为公差的等差数列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列基础习题选(附有详细解答)一.选择题(共26小题)1.已知等差数列{a n}中,a3=9,a9=3,则公差d的值为()A.B.1C.D.﹣12.已知数列{a n}的通项公式是a n=2n+5,则此数列是()A.以7为首项,公差为2的等差数列B.以7为首项,公差为5的等差数列C.以5为首项,公差为2的等差数列D.不是等差数列3.在等差数列{a n}中,a1=13,a3=12,若a n=2,则n等于()A.23 B.24 C.25 D.264.等差数列{a n}的前n项和为S n,已知S3=6,a4=8,则公差d=()A.一1 B.2C.3D.一25.两个数1与5的等差中项是()A.1B.3C.2D.6.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A.﹣2 B.﹣3 C.﹣4 D.﹣57.(2012•福建)等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1B.2C.3D.48.数列的首项为3,为等差数列且,若,,则=()A.0B.8C.3D.119.已知两个等差数列5,8,11,…和3,7,11,…都有100项,则它们的公共项的个数为()A.25 B.24 C.20 D.1910.设S n为等差数列{a n}的前n项和,若满足a n=a n﹣1+2(n≥2),且S3=9,则a1=()A.5B.3C.﹣1 D.111.(2005•黑龙江)如果数列{a n}是等差数列,则()A.a1+a8>a4+a5B.a1+a8=a4+a5C.a1+a8<a4+a5D.a1a8=a4a512.(2004•福建)设S n是等差数列{a n}的前n项和,若=()A.1B.﹣1 C.2D.13.(2009•安徽)已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于()A.﹣1 B.1C.3D.714.在等差数列{a n}中,a2=4,a6=12,,那么数列{}的前n项和等于()A.B.C.D.15.已知S n为等差数列{a n}的前n项的和,a2+a5=4,S7=21,则a7的值为()A.6B.7C.8D.916.已知数列{a n}为等差数列,a1+a3+a5=15,a4=7,则s6的值为()A.30 B.35 C.36 D.2417.(2012•营口)等差数列{a n}的公差d<0,且,则数列{a n}的前n项和S n取得最大值时的项数n 是()A.5B.6C.5或6 D.6或718.(2012•辽宁)在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=()A.58 B.88 C.143 D.17619.已知数列{a n}等差数列,且a1+a3+a5+a7+a9=10,a2+a4+a6+a8+a10=20,则a4=()A.﹣1 B.0C.1D.220.(理)已知数列{a n}的前n项和S n=n2﹣8n,第k项满足4<a k<7,则k=()A.6B.7C.8D.921.数列a n的前n项和为S n,若S n=2n2﹣17n,则当S n取得最小值时n的值为()A.4或5 B.5或6 C.4D.522.等差数列{a n}中,a n=2n﹣4,则S4等于()A.12 B.10 C.8D.423.若{a n}为等差数列,a3=4,a8=19,则数列{a n}的前10项和为()A.230 B.140 C.115 D.9524.等差数列{a n}中,a3+a8=5,则前10项和S10=()A.5B.25 C.50 D.10025.设S n是公差不为0的等差数列{a n}的前n项和,且S1,S2,S4成等比数列,则等于()A.1B.2C.3D.426.设a n=﹣2n+21,则数列{a n}从首项到第几项的和最大()A.第10项B.第11项C.第10项或11项D.第12项二.填空题(共4小题)27.如果数列{a n}满足:= _________ .28.如果f(n+1)=f(n)+1(n=1,2,3…),且f(1)=2,则f(100)= _________ .29.等差数列{a n}的前n项的和,则数列{|a n|}的前10项之和为_________ .30.已知{a n}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16.(Ⅰ)求数列{a n}的通项公式:(Ⅱ)若数列{a n}和数列{b n}满足等式:a n==(n为正整数),求数列{b n}的前n项和S n.参考答案与试题解析一.选择题(共26小题)1.已知等差数列{a n}中,a3=9,a9=3,则公差d的值为()A.B.1C.D.﹣1考点:等差数列.专题:计算题.分析:本题可由题意,构造方程组,解出该方程组即可得到答案.解答:解:等差数列{a n}中,a3=9,a9=3,由等差数列的通项公式,可得解得,即等差数列的公差d=﹣1.故选D点评:本题为等差数列的基本运算,只需构造方程组即可解决,数基础题.2.已知数列{a n}的通项公式是a n=2n+5,则此数列是()A.以7为首项,公差为2的等差数列B.以7为首项,公差为5的等差数列C.以5为首项,公差为2的等差数列D.不是等差数列考点:等差数列.专题:计算题.分析:直接根据数列{a n}的通项公式是a n=2n+5求出首项,再把相邻两项作差求出公差即可得出结论.解答:解:因为a n=2n+5,所以a1=2×1+5=7;a n+1﹣a n=2(n+1)+5﹣(2n+5)=2.故此数列是以7为首项,公差为2的等差数列.故选A.点评:本题主要考查等差数列的通项公式的应用.如果已知数列的通项公式,可以求出数列中的任意一项.3.在等差数列{a n}中,a1=13,a3=12,若a n=2,则n等于()A.23 B.24 C.25 D.26考点:等差数列.专题:综合题.分析:根据a1=13,a3=12,利用等差数列的通项公式求得d的值,然后根据首项和公差写出数列的通项公式,让其等于2得到关于n的方程,求出方程的解即可得到n的值.解答:解:由题意得a3=a1+2d=12,把a1=13代入求得d=﹣,则a n=13﹣(n﹣1)=﹣n+=2,解得n=23故选A点评:此题考查学生灵活运用等差数列的通项公式化简求值,是一道基础题.4.等差数列{a n}的前n项和为S n,已知S3=6,a4=8,则公差d=()A.一1 B.2C.3D.一2考点:等差数列.专题:计算题.分析:根据等差数列的前三项之和是6,得到这个数列的第二项是2,这样已知等差数列的;两项,根据等差数列的通项公式,得到数列的公差.解答:解:∵等差数列{a n}的前n项和为S n,S3=6,∴a2=2∵a4=8,∴8=2+2d∴d=3,故选C.点评:本题考查等差数列的通项,这是一个基础题,解题时注意应用数列的性质,即前三项的和等于第二项的三倍,这样可以简化题目的运算.5.两个数1与5的等差中项是()A.1B.3C.2D.考点:等差数列.专题:计算题.分析:由于a,b的等差中项为,由此可求出1与5的等差中项.解答:解:1与5的等差中项为:=3,故选B.点评:本题考查两个数的等差中项,牢记公式a,b的等差中项为:是解题的关键,属基础题.6.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A.﹣2 B.﹣3 C.﹣4 D.﹣5考点:等差数列.专题:计算题.分析:设等差数列{a n}的公差为d,因为数列前六项均为正数,第七项起为负数,所以,结合公差为整数进而求出数列的公差.解答:解:设等差数列{a n}的公差为d,所以a6=23+5d,a7=23+6d,又因为数列前六项均为正数,第七项起为负数,所以,因为数列是公差为整数的等差数列,所以d=﹣4.故选C.点评:解决此类问题的关键是熟练掌握等差数列的通项公式,并且结合正确的运算.7.(2012•福建)等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1B.2C.3D.4考点:等差数列的通项公式.专题:计算题.分析:设数列{a n}的公差为d,则由题意可得2a1+4d=10,a1+3d=7,由此解得d的值.解答:解:设数列{a n}的公差为d,则由a1+a5=10,a4=7,可得2a1+4d=10,a1+3d=7,解得d=2,故选B.点评:本题主要考查等差数列的通项公式的应用,属于基础题.8.数列的首项为3,为等差数列且,若,,则=()A.0B.8C.3D.11考点:等差数列的通项公式.专题:计算题.分析:先确定等差数列的通项,再利用,我们可以求得的值.解答:解:∵为等差数列,,,∴∴b n=b3+(n﹣3)×2=2n﹣8∵∴b8=a8﹣a1∵数列的首项为3∴2×8﹣8=a8﹣3,∴a8=11.故选D点评:本题考查等差数列的通项公式的应用,由等差数列的任意两项,我们可以求出数列的通项,是基础题.9.已知两个等差数列5,8,11,…和3,7,11,…都有100项,则它们的公共项的个数为()A.25 B.24 C.20 D.19考点:等差数列的通项公式.专题:计算题.分析:(法一):根据两个等差数列的相同的项按原来的先后次序组成一个等差数列,且公差为原来两个公差的最小公倍数求解,(法二)由条件可知两个等差数列的通项公式,可用不定方程的求解方法来求解.解答:解法一:设两个数列相同的项按原来的前后次序组成的新数列为{a n},则a1=11∵数列5,8,11,…与3,7,11,…公差分别为3与4,∴{a n}的公差d=3×4=12,∴a n=11+12(n﹣1)=12n﹣1.又∵5,8,11,…与3,7,11,…的第100项分别是302与399,∴a n=12n﹣1≤302,即n≤25.5.又∵n∈N*,∴两个数列有25个相同的项.故选A解法二:设5,8,11,与3,7,11,分别为{a n}与{b n},则a n=3n+2,b n=4n﹣1.设{a n}中的第n项与{b n}中的第m项相同,即3n+2=4m﹣1,∴n=m﹣1.又m、n∈N*,可设m=3r(r∈N*),得n=4r﹣1.根据题意得1≤3r≤100 1≤4r﹣1≤100 解得≤r≤∵r∈N*从而有25个相同的项故选A点评:解法一利用了等差数列的性质,解法二利用了不定方程的求解方法,对学生的运算能力及逻辑思维能力的要求较高.10.设S n为等差数列{a n}的前n项和,若满足a n=a n﹣1+2(n≥2),且S3=9,则a1=()A.5B.3C.﹣1 D.1考点:等差数列的通项公式.专题:计算题.分析:根据递推公式求出公差为2,再由S3=9以及前n项和公式求出a1的值.解答:解:∵a n=a n﹣1+2(n≥2),∴a n﹣a n﹣1=2(n≥2),∴等差数列{a n}的公差是2,由S3=3a1+=9解得,a1=1.故选D.点评:本题考查了等差数列的定义,以及前n项和公式的应用,即根据代入公式进行求解.11.(2005•黑龙江)如果数列{a n}是等差数列,则()A.a1+a8>a4+a5B.a1+a8=a4+a5C.a1+a8<a4+a5D.a1a8=a4a5考点:等差数列的性质.分析:用通项公式来寻求a1+a8与a4+a5的关系.解答:解:∵a1+a8﹣(a4+a5)=2a1+7d﹣(2a1+7d)=0∴a1+a8=a4+a5∴故选B点评:本题主要考查等差数列通项公式,来证明等差数列的性质.12.(2004•福建)设S n是等差数列{a n}的前n项和,若=()A.1B.﹣1 C.2D.考点:等差数列的性质.专题:计算题.分析:充分利用等差数列前n项和与某些特殊项之间的关系解题.解答:解:设等差数列{a n}的首项为a1,由等差数列的性质可得a1+a9=2a5,a1+a5=2a3,∴====1,故选A.点评:本题主要考查等差数列的性质、等差数列的前n项和公式以及等差中项的综合应用,已知等差数列{a n}的前n项和为S n,则有如下关系S2n﹣1=(2n﹣1)a n.13.(2009•安徽)已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于()A.﹣1 B.1C.3D.7考点:等差数列的性质.专题:计算题.分析:根据已知条件和等差中项的性质可分别求得a3和a4的值,进而求得数列的公差,最后利用等差数列的通项公式求得答案.解答:解:由已知得a1+a3+a5=3a3=105,a2+a4+a6=3a4=99,∴a3=35,a4=33,∴d=a4﹣a3=﹣2.∴a20=a3+17d=35+(﹣2)×17=1.故选B点评:本题主要考查了等差数列的性质和等差数列的通项公式的应用.解题的关键是利用等差数列中等差中项的性质求得a3和a4.14.在等差数列{a n}中,a2=4,a6=12,,那么数列{}的前n项和等于()A.B.C.D.考点:数列的求和;等差数列的性质.分析:求出等差数列的通项,要求的和是一个等差数列与一个等比数列的积构成的数列,利用错位相减法求出数列的前n项的和.解答:解:∵等差数列{a n}中,a2=4,a6=12;∴公差d=;∴a n=a2+(n﹣2)×2=2n;∴;∴的前n项和,=两式相减得=∴故选B点评:求数列的前n项的和,先判断通项的特点,据通项的特点选择合适的求和方法.15.已知S n为等差数列{a n}的前n项的和,a2+a5=4,S7=21,则a7的值为()A.6B.7C.8D.9考点:等差数列的性质.分析:由a2+a5=4,S7=21根据等差数列的性质可得a3+a4=a1+a6=4①,根据等差数列的前n项和公式可得,,联立可求d,a1,代入等差数列的通项公式可求解答:解:等差数列{a n}中,a2+a5=4,S7=21根据等差数列的性质可得a3+a4=a1+a6=4①根据等差数列的前n项和公式可得,所以a1+a7=6②②﹣①可得d=2,a1=﹣3所以a7=9故选D点评:本题主要考查了等差数列的前n项和公式及等差数列的性质的综合应用,属于基础试题.16.已知数列{a n}为等差数列,a1+a3+a5=15,a4=7,则s6的值为()A.30 B.35 C.36 D.24考点:等差数列的性质.专题:计算题.分析:利用等差中项的性质求得a3的值,进而利用a1+a6=a3+a4求得a1+a6的值,代入等差数列的求和公式中求得答案.解答:解:a1+a3+a5=3a3=15,∴a3=5∴a1+a6=a3+a4=12∴s6=×6=36故选C点评:本题主要考查了等差数列的性质.特别是等差中项的性质.17.(2012•营口)等差数列{a n}的公差d<0,且,则数列{a n}的前n项和S n取得最大值时的项数n 是()A.5B.6C.5或6 D.6或7考点:等差数列的前n项和;等差数列的通项公式.专题:计算题.分析:由,知a1+a11=0.由此能求出数列{a n}的前n项和S n取得最大值时的项数n.解答:解:由,知a1+a11=0.∴a6=0,故选C.点评:本题主要考查等差数列的性质,求和公式.要求学生能够运用性质简化计算.18.(2012•辽宁)在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=()A.58 B.88 C.143 D.176考点:等差数列的性质;等差数列的前n项和.专题:计算题.分析:根据等差数列的定义和性质得a1+a11=a4+a8=16,再由S11=运算求得结果.解答:解:∵在等差数列{a n}中,已知a4+a8=16,∴a1+a11=a4+a8=16,∴S11==88,故选B.点评:本题主要考查等差数列的定义和性质,等差数列的前n项和公式的应用,属于中档题.19.已知数列{a n}等差数列,且a1+a3+a5+a7+a9=10,a2+a4+a6+a8+a10=20,则a4=()A.﹣1 B.0C.1D.2考点:等差数列的通项公式;等差数列的前n项和.专题:计算题.分析:由等差数列得性质可得:5a5=10,即a5=2.同理可得5a6=20,a6=4,再由等差中项可知:a4=2a5﹣a6=0 解答:解:由等差数列得性质可得:a1+a9=a3+a7=2a5,又a1+a3+a5+a7+a9=10,故5a5=10,即a5=2.同理可得5a6=20,a6=4.再由等差中项可知:a4=2a5﹣a6=0故选B点评:本题考查等差数列的性质及等差中项,熟练利用性质是解决问题的关键,属基础题.20.(理)已知数列{a n}的前n项和S n=n2﹣8n,第k项满足4<a k<7,则k=()A.6B.7C.8D.9考点:等差数列的通项公式;等差数列的前n项和.专题:计算题.分析:先利用公式an=求出a n,再由第k项满足4<a k<7,建立不等式,求出k的值.解答:解:an==∵n=1时适合a n=2n﹣9,∴a n=2n﹣9.∵4<a k<7,∴4<2k﹣9<7,∴<k<8,又∵k∈N+,∴k=7,故选B.点评:本题考查数列的通项公式的求法,解题时要注意公式an=的合理运用,属于基础题.21.数列a n的前n项和为S n,若S n=2n2﹣17n,则当S n取得最小值时n的值为()A.4或5 B.5或6 C.4D.5考点:等差数列的前n项和.专题:计算题.分析:把数列的前n项的和S n看作是关于n的二次函数,把关系式配方后,又根据n为正整数,即可得到S n取得最小值时n的值.解答:解:因为S n=2n2﹣17n=2﹣,又n为正整数,所以当n=4时,S n取得最小值.故选C点评:此题考查学生利用函数思想解决实际问题的能力,是一道基础题.22.等差数列{a n}中,a n=2n﹣4,则S4等于()A.12 B.10 C.8D.4考点:等差数列的前n项和.专题:计算题.分析:利用等差数列{a n}中,a n=2n﹣4,先求出a1,d,再由等差数列的前n项和公式求S4.解答:解:∵等差数列{a n}中,a n=2n﹣4,∴a1=2﹣4=﹣2,a2=4﹣4=0,d=0﹣(﹣2)=2,∴S4=4a1+=4×(﹣2)+4×3=4.故选D.点评:本题考查等差数列的前n项和公式的应用,是基础题.解题时要认真审题,注意先由通项公式求出首项和公差,再求前四项和.23.若{a n}为等差数列,a3=4,a8=19,则数列{a n}的前10项和为()A.230 B.140 C.115 D.95考点:等差数列的前n项和.专题:综合题.分析:分别利用等差数列的通项公式化简已知的两个等式,得到①和②,联立即可求出首项和公差,然后利用求出的首项和公差,根据公差数列的前n项和的公式即可求出数列前10项的和.解答:解:a3=a1+2d=4①,a8=a1+7d=19②,②﹣①得5d=15,解得d=3,把d=3代入①求得a1=﹣2,所以S10=10×(﹣2)+×3=115故选C.点评:此题考查学生灵活运用等差数列的通项公式及前n项和的公式化简求值,是一道基础题.24.等差数列{a n}中,a3+a8=5,则前10项和S10=()A.5B.25 C.50 D.100考点:等差数列的前n项和;等差数列的性质.专题:计算题.分析:根据条件并利用等差数列的定义和性质可得a1+a10=5,代入前10项和S10 =运算求得结果.解答:解:等差数列{a n}中,a3+a8=5,∴a1+a10=5,∴前10项和S10 ==25,故选B.点评:本题主要考查等差数列的定义和性质,以及前n项和公式的应用,求得a1+a10=5,是解题的关键,属于基础题.25.设S n是公差不为0的等差数列{a n}的前n项和,且S1,S2,S4成等比数列,则等于()A.1B.2C.3D.4考点:等差数列的前n项和.专题:计算题.分析:由S1,S2,S4成等比数列,根据等比数列的性质得到S22=S1S4,然后利用等差数列的前n项和的公式分别表示出各项后,代入即可得到首项和公差的关系式,根据公差不为0,即可求出公差与首项的关系并解出公差d,然后把所求的式子利用等差数列的通项公式化简后,把公差d的关系式代入即可求出比值.解答:解:由S1,S2,S4成等比数列,∴(2a1+d)2=a1(4a1+6d).∵d≠0,∴d=2a1.∴===3.故选C点评:此题考查学生掌握等比数列的性质,灵活运用等差数列的通项公式及前n项和的公式化简求值,是一道综合题.26.设a n=﹣2n+21,则数列{a n}从首项到第几项的和最大()A.第10项B.第11项C.第10项或11项D.第12项考点:等差数列的前n项和;二次函数的性质.专题:转化思想.分析:方法一:由a n,令n=1求出数列的首项,利用a n﹣a n﹣1等于一个常数,得到此数列为等差数列,然后根据求出的首项和公差写出等差数列的前n项和的公式,得到前n项的和与n成二次函数关系,其图象为开口向下的抛物线,当n=﹣时,前n项的和有最大值,即可得到正确答案;方法二:令a n大于等于0,列出关于n的不等式,求出不等式的解集即可得到n的范围,在n的范围中找出最大的正整数解,从这项以后的各项都为负数,即可得到正确答案.解答:解:方法一:由a n=﹣2n+21,得到首项a1=﹣2+21=19,a n﹣1=﹣2(n﹣1)+21=﹣2n+23,则a n﹣a n﹣1=(﹣2n+21)﹣(﹣2n+23)=﹣2,(n>1,n∈N+),所以此数列是首项为19,公差为﹣2的等差数列,则S n=19n+•(﹣2)=﹣n2+20n,为开口向下的抛物线,当n=﹣=10时,S n最大.所以数列{a n}从首项到第10项和最大.方法二:令a n=﹣2n+21≥0,解得n≤,因为n取正整数,所以n的最大值为10,所以此数列从首项到第10项的和都为正数,从第11项开始为负数,则数列{a n}从首项到第10项的和最大.故选A点评:此题的思路可以先确定此数列为等差数列,根据等差数列的前n项和的公式及二次函数求最值的方法得到n的值;也可以直接令a n≥0,求出解集中的最大正整数解,要求学生一题多解.二.填空题(共4小题)27.如果数列{a n}满足:= .考点:数列递推式;等差数列的通项公式.专题:计算题.分析:根据所给的数列的递推式,看出数列是一个等差数列,根据所给的原来数列的首项看出等差数列的首项,根据等差数列的通项公式写出数列,进一步得到结果.解答:解:∵根据所给的数列的递推式∴数列{}是一个公差是5的等差数列,∵a1=3,∴=,∴数列的通项是∴故答案为:点评:本题看出数列的递推式和数列的通项公式,本题解题的关键是确定数列是一个等差数列,利用等差数列的通项公式写出通项,本题是一个中档题目.28.如果f(n+1)=f(n)+1(n=1,2,3…),且f(1)=2,则f(100)= 101 .考点:数列递推式;等差数列的通项公式.专题:计算题.分析:由f(n+1)=f(n)+1,x∈N+,f(1)=2,依次令n=1,2,3,…,总结规律得到f(n)=n+1,由此能够求出f(100).解答:解:∵f(n+1)=f(n)+1,x∈N+,f(1)=2,∴f(2)=f(1)+1=2+1=3,f(3)=f(2)+1=3+1=4,f(4)=f(3)+1=4+1=5,…∴f(n)=n+1,∴f(100)=100+1=101.故答案为:101.点评:本题考查数列的递推公式的应用,是基础题.解题时要认真审题,仔细解答.29.等差数列{a n}的前n项的和,则数列{|a n|}的前10项之和为58 .考点:数列的求和;等差数列的通项公式.专题:计算题.分析:先求出等差数列的前两项,可得通项公式为a n=7﹣2n,从而得到n≤3时,|a n|=7﹣2n,当n>3时,|a n|= 2n﹣7.分别求出前3项的和、第4项到第10项的和,相加即得所求.解答:解:由于等差数列{a n}的前n项的和,故a1=s1=5,∴a2=s2﹣s1=8﹣5=3,故公差d=﹣2,故a n=5+(n﹣1)(﹣2)=7﹣2n.当n≤3时,|a n|=7﹣2n,当n>3时,|a n|=2n﹣7.故前10项之和为a1+a2+a3﹣a4﹣a5﹣…﹣a10=+=9+49=58,故答案为58.点评:本题主要考查等差数列的通项公式,前n项和公式及其应用,体现了分类讨论的数学思想,属于中档题.30.已知{a n}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16.(Ⅰ)求数列{a n}的通项公式:(Ⅱ)若数列{a n}和数列{b n}满足等式:a n==(n为正整数),求数列{b n}的前n项和S n.考点:数列的求和;等差数列的通项公式.专题:计算题.分析:(1)将已知条件a3a6=55,a2+a7=16,利用等差数列的通项公式用首项与公差表示,列出方程组,求出首项与公差,进一步求出数列{a n}的通项公式(2)将已知等式仿写出一个新等式,两个式子相减求出数列{b n}的通项,利用等比数列的前n项和公式求出数列{b n}的前n项和S n.解答:解(1)解:设等差数列{a n} 的公差为d,则依题设d>0由a2+a7=16.得2a1+7d=16①由a3•a6=55,得(a1+2d)(a1+5d)=55 ②由①得2a1=16﹣7d 将其代入②得(16﹣3d)(16+3d)=220.即256﹣9d2=220∴d2=4,又d>0,∴d=2,代入①得a1=1∴a n=1+(n﹣1)•2=2n﹣1所以a n=2n﹣1(2)令c n=,则有a n=c1+c2+…+c n,a n+1=c1+c2+…+c n﹣1两式相减得a n+1﹣a n=c n+1,由(1)得a1=1,a n+1﹣a n=2∴c n+1=2,c n=2(n≥2),即当n≥2时,b n=2n+1又当n=1时,b1=2a1=2∴b n=<BR>于是S n=b1+b2+b3…+b n=2+23+24+…+2n+1=2+22+23+24+…+2n+1﹣4=﹣6,即S n=2n+2﹣6点评:求一个数列的前n项和应该先求出数列的通项,利用通项的特点,然后选择合适的求和的方法.。