(完整版)计数原理知识点、题型小结doc
计数原理知识点
计数原理知识点一、分类加法计数原理1. 原理内容- 完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N = m + n种不同的方法。
- 推广:完成一件事有n类不同方案,在第1类方案中有m_1种不同的方法,在第2类方案中有m_2种不同的方法,……,在第n类方案中有m_n种不同的方法,那么完成这件事共有N=m_1 + m_2+·s+m_n种不同的方法。
2. 特点- 各类办法之间相互独立,都能独立地完成这件事,且各类方法中的每种方法也相互独立。
3. 示例- 从甲地到乙地,可以乘火车,也可以乘汽车。
一天中,火车有3班,汽车有2班。
那么一天中乘坐这些交通工具从甲地到乙地共有3 + 2=5种不同的走法。
二、分步乘法计数原理1. 原理内容- 完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N = m× n种不同的方法。
- 推广:完成一件事需要n个步骤,做第1步有m_1种不同的方法,做第2步有m_2种不同的方法,……,做第n步有m_n种不同的方法,那么完成这件事共有N = m_1× m_2×·s× m_n种不同的方法。
2. 特点- 各个步骤相互依存,只有各个步骤都完成了,这件事才算完成。
3. 示例- 从甲地到丙地,要先从甲地到乙地,再从乙地到丙地。
从甲地到乙地有3条路可走,从乙地到丙地有2条路可走,那么从甲地到丙地共有3×2 = 6种不同的走法。
三、排列与组合的基本概念1. 排列- 定义:从n个不同元素中取出m(m≤ n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
- 排列数:从n个不同元素中取出m(m≤ n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记作A_{n}^m。
- 排列数公式:A_{n}^m=(n!)/((n - m)!)=n(n - 1)(n - 2)·s(n - m+1),其中n!=n×(n - 1)×(n - 2)×·s×2×1,规定0!=1。
概率论中的计数原理例题和知识点总结
概率论中的计数原理例题和知识点总结在概率论中,计数原理是非常基础且重要的一部分,它为我们解决各种概率问题提供了有力的工具。
接下来,我们将通过一些具体的例题来深入理解计数原理,并对相关知识点进行总结。
一、知识点梳理1、加法原理如果完成一件事有 n 类不同的方案,在第一类方案中有 m1 种不同的方法,在第二类方案中有 m2 种不同的方法,……,在第 n 类方案中有 mn 种不同的方法,那么完成这件事共有 N = m1 + m2 +… + mn 种不同的方法。
2、乘法原理如果完成一件事需要 n 个步骤,做第一步有 m1 种不同的方法,做第二步有 m2 种不同的方法,……,做第 n 步有 mn 种不同的方法,那么完成这件事共有 N =m1 × m2 × … × mn 种不同的方法。
3、排列从 n 个不同元素中取出 m(m ≤ n)个元素的排列数,记作 Anm ,Anm = n(n 1)(n 2)…(n m + 1) 。
4、组合从 n 个不同元素中取出 m(m ≤ n)个元素的组合数,记作 Cnm ,Cnm = n! / m!(n m)!。
二、例题解析例 1:从 0 到 9 这 10 个数字中,任取 3 个数字组成一个没有重复数字的三位数,有多少种取法?解:第一步,百位数字不能为 0,有 9 种选择;第二步,十位数字有 9 种选择(因为百位已经选了一个数字);第三步,个位数字有 8种选择。
根据乘法原理,共有 9 × 9 × 8 = 648 种取法。
例 2:有 5 本不同的语文书,4 本不同的数学书,3 本不同的英语书,从中任取 2 本不同学科的书,有多少种不同的取法?解:分三种情况讨论:(1)取语文和数学书,有 5 × 4 = 20 种取法;(2)取语文和英语书,有 5 × 3 = 15 种取法;(3)取数学和英语书,有 4 × 3 = 12 种取法。
高二数学(选修2-3人教B版)-计数原理全章总结
例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和. 解:(2)由通项可知,展开式的第三项是
T3 C52 13 (2x)2 40x2
所以,第三项的系数为40.
例6、求 (1 2x)5的展开式的:
表示?
(a b)n (a b)(a b) (a b)
n个a b
Tr1 Cnr anr br
例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和.
例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和.
解:首先将A、B、C、D排成一排,共有 A44 种排法,每一种
排法都会产生五个“空”,在这五个“空”中任选一个,将E
放入,共有 C51 种方法;其次,E中的两个元素可以交换,有 A22
种方法.
所以,共有 A44 C51 A22 240 种不同的排法.
问题4 (a b)n 的展开式中的系数为什么可以用组合数的形式
(
Cm n1
ቤተ መጻሕፍቲ ባይዱ
Cmn
Cm1 n
)?
作业: 1.一个集合由8个元素组成,这个集合含有3个元素的子集有多 少个? 2.将6名应届大学毕业生分配到两个用人单位,每个单位至少 两人,一共有多少种不同的分配方案? 3.求 (9x 1 )18 展开式的常数项,并说明它是展开式的第几项.
3x
入,共有 A43 种排法. 所以,一共有A33 A43 144 种不同的排法.
例5、有6位同学站成一排,符合下列各题要求的不同排法有多 少种? (2)甲、乙相邻. 解:(2) 设除甲、乙之外的另外四个同学为A、B、C、D. 因为甲、乙要相邻,所以可以把甲、乙“绑”在一起看作一个 元素(记为E).
(精品计数原理基本知识点
(精品计数原理基本知识点计数原理是离散数学中的一个重要分支,用于研究计数和排列组合问题。
它在实际应用中有着广泛的应用,例如密码学、组合优化、统计学等领域。
以下是关于计数原理的基本知识点:1.乘法原理:乘法原理用于计算多个独立事件同时发生的总数。
根据乘法原理,若事件A发生的可能性为m种,事件B发生的可能性为n种,则事件A和B 同时发生的可能性为m×n种。
2.加法原理:加法原理用于计算两个或多个事件分别发生的总数。
根据加法原理,若事件A发生的可能性为m种,事件B发生的可能性为n种,则事件A或B发生的可能性为m+n种。
3.排列:排列是指从一组对象中选择一部分进行排列的方式。
如果有n个对象要排列,只选取其中的k个进行排列,那么排列的可能性总数可以表示为P(n,k)。
排列的计算公式为:P(n,k)=n!/(n-k)!4.组合:组合是指从一组对象中选择一部分对象,不考虑其顺序的方式。
如果有n个对象要选择,只选取其中的k个进行组合,那么组合的可能性总数可以表示为C(n,k)。
组合的计算公式为:C(n,k)=n!/(k!*(n-k)!)5.递推关系:递推关系是计数原理中常用的一种思维方法。
通过建立递推关系,可以从已知的计数问题推导出更复杂的计数问题的解。
例如,在排列和组合中可以使用递推关系快速计算出较大规模的情况。
6.容斥原理:容斥原理用于计算多个集合的交集和并集的大小。
根据容斥原理,若存在n个集合A_1、A_2、..、A_n,那么它们的并集的大小为:A_1∪A_2∪...∪A_n,=Σ,A_i,-Σ,A_i∩A_j,+Σ,A_i∩A_j∩A_k,-...+(-1)^(n-1),A_1∩A_2∩...∩A_n7.应用举例:计数原理的应用举例有很多,例如密码学中的密码破解问题,通过计算排列或组合的可能性来确定破解密码的策略。
另外,在组合优化问题中,例如旅行商问题(TSP)、集合覆盖问题等,也可以使用计数原理来计算问题的解。
(完整版)计数原理知识点、题型小结doc
第一章、计数原理知识点小结一、分类加法计数原理与分步乘法计数原理1.分类计数原理-加法原理:如果完成一件事有 不同的方案,由第1类方案中有1m 种方法,在第2类方案中有2m 种不同的方法,种方法类方案中有第n m n 那么,完成这件工作共有 种不同的方法.2.分步计数原理-乘法原理:完成一件事需要 步骤,完成第1步有1m 种不同的方法,完成第2步有2m 种不同的方法,,种方法步中有第n m n 那么,完成这件工作共有 种不同方法。
3.两种方法的区别与联系:4.用两个计数原理解决计数问题时,需要注意的问题有哪些?最重要的是在开始计算之前进行仔细分析,弄清楚是一件什么事,正确选择是先分类还是先分步.分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用加法原理求和;分步要做到“步骤完整”,完成所有步骤,恰好完成任务. 分步后要计算每一步的方法数,把每一步的方法数相乘,得到总数。
5.常用的方法有:填空法,使用时注意:6.常见的题型:(1)有关数字排列问题例1:由数字4,5,6,7组成的所有的不重复的三位数的个数为?(可以重复的三位数字又有多少个呢?)变式1:由0,1,2,3,4,5,6,这七个数字可以组成多少个无重复数字的四位偶数?小结:(2)形如n m m n 和的问题。
例2:5名学生从3项体育项目中选择参赛,若每一名学生只能参加一项,则有多少种不同的参赛方法?变式1:若5名学生争夺3项比赛冠军(每一名学生参赛项目不限),则冠军获得者有几种不同的情况(没有并列冠军)小结:(3)涂色问题 4块(ABCD )涂色要求共边两块颜色互异,求有多少种不同的涂色方案?变式:将红、黄、绿、黑四种不同的颜色涂入图中的五个区域内,要求相邻的两个区域的颜色都不同,则有多少种不同的涂色方法?小结:1.排列的定义:一般地,从n 个 元素中取出m ( )个元素,按照一定的 排成一排,叫做从 个不同元素中取出 个元素的一个排列.2.排列问题有何特点?什么条件下是排列问题?3.排列数的定义:从 个 元素中取出 (n m )个元素的 的个数,叫做从n个不同元素取出m 元素的排列数,用符合 表示.4.排列数公式:从n 个不同元素中取出m (n m )个元素的排列数 m n A5.全排列:从n 个不同元素中 取出的一个排列,叫做n 个元素的一个全排列,用公式表示为 n n A6.n 的阶乘定义: 用 表示。
计数原理
8. 1 计数原理一、知识要点1.分类计数原理(加法原理):做一件事情,完成它可以有n 类办法,在第一类办法中有m 1种不同的方法,在第二类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法.那么完成这件事共有 N=m 1+m 2+…+m n 种不同的方法.2.分步计数原理(乘法原理):做一件事情,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,……,做第n 步有m n 种不同的方法,那么完成这件事有 N=m 1×m 2×…×m n 种不同的方法.二、例题分析例1.从集合{1,2,3,…,10}中,选出由5个数组成的子集,使得这5个数中的任何两个数的和不等于11,这样的子集共有多少个?变式:把问题中选出5个数组成子集改为选出4个数组成子集,结果如何?例2.关于正整数2160,求:(1)它有多少个不同的正因数? (2)它的所有正因数的和是多少?例3.用0,1,2,3,4,5这六个数字, (1)可以组成多少个数字不重复的三位数? (2)可以组成多少个数字允许重复的三位数?(3)可以组成多少个数字不允许重复的三位数的奇数?(4)可以组成多少个能被3整除的数字不允许重复的三位数?(数字问题)例4.(1)三人相互传球,由甲开始发球,经过5次传球后,球仍回到甲手中,则不同的传球方法的种数是( )A 、6B 、8C 、10D 、16(2)1,2,3,4号足球运动员各有一件球衣在4人中互相赠送(每一个运动员不能拿自己的球衣),则不同的赠送方法有( )A .6种B .9种C .11种D .23种评注:第(2)小题是著名的贝努利装错信封问题当4n =时的特例.原意是,若一个人写了n 封不同的信和n 只相应的不同的信封,问这个人把这n 封信都装错了信封的装法有多少种?问题可转化为:n 个不同元素12,,,n a a a 进行排列,其中()1,2,,i a i n = 不排第i 个位置的排法种数.由容斥原理,可得相应的排法种数为:()()()()()12!1!2!1!1knk n n n n n n C n C n C n k C -⋅-+⋅--+-⋅-++- .例5.如图一,要给①,②,③,④四块区域分别涂上五种颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同涂色方法种数为( )D. 60变式:若变为图二,图三呢? 图四呢?(染色问题)例6.(1)某城市在中心广场建造一个花圃,花圃分为6个部分(如图(1)).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有多少? (2)(2010天津理)如图(2),用四种不同颜色给图中的A,B,C,D,E,F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法有( ) (A )288种 (B )264种 (C )240种 (D )168种三、规律总结1.弄清两个原理的区别与联系,是正确使用这两个原理的前提和条件.这两个原理都是指完成一件事而言的.其区别在于:(1)分类计数原理是“分类”,分步计数原理是“分步”;(2)分类计数原理中每类办法中的每一种方法都能独立完成一件事,分步计数原理中每步中每种方法都只能做这件事的一步,不能独立完成这件事.2.分类计数原理和分步计数原理是解决排列、组合问题的理论基础,解题中要力争做到“步骤完整、不重不漏”.3.元素能重复的问题往往用两个计数原理解决.图一图二图三图四四、巩固练习1.5名运动员争夺3项比赛冠军(每项比赛无并列冠军),那么获得冠军的可能种数为( )A .35B .53C .35AD . 35C2.(2009辽宁卷理)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有 ( ) A .70种 B . 80种 C . 100种 D .140种3.(08全国卷1)如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为 ( )A .96B .84C .60D .48 4.从{一3,-2,-1,0,1,2,3}中,任取3个不同的数作为抛物线方程c bx ax y 2++= 的系数,如果抛物线经过原点,且顶点在第一象限,则这样的抛物线共有 ( ) A. 7条 B. 8条 C. 9条 D. l0条5.从集合{1,2,3}和{1,4,5,6}中各取1个元素作为点的坐标,则在直角坐标系中能确定不同点的个数是 ( ) A. l2 B. 11 C. 24 D. 236.甲、乙、丙、丁四人相互传球,第一次甲传给乙、丙、丁三人中的一人,第二次由拿球 者再传给其他三人中任一人,这样共传了4次,则第四次仍传回到甲的方法共有( )A 、21种 B 、24种 C 、27种 D 、42种7.从6人中选出4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有 ( ) A .300种 B .240种 C .144种 D .96种8.某赛季足球比赛的计分规则是:胜一场,得3分;平一场,得1分;负一场,得0分, 一球队打完15场,积33分,若不考虑顺序,该队胜、负、平的情况共有 ( ) (A )3种 (B )4种 (C )5种 (D )6种9.从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 ( )A.8种B.12种C.16种D.20种 10.一个集合有5个元素,则该集合的非空真子集共有 个11.乘积)c ...c c )(b ...b b )(a ...a a (k 21m 21n 21+++++++++展开后的项数为_______. 12.72的正约数共有__________个.13.如图,某电子器件是由三个电阻组成的回路,其中有6个焊接点A ,B , C ,D ,E ,F ,如果某个焊接点脱落,整个电路就会不通.现发现电路不通了,那么焊接点脱落的可能性共有14.用1,2,3,,9 这九数字填写在如上图的9个空格中,要求每一行从左到右依次增大,每一列从上到下依次增大,当数字4固定在中心位置时,则所有填写空格的方法共有 .15.同室四人各写一张贺卡,先集中起来,然后每人从中拿一张另人送出的贺年卡,则四张贺年卡不同的分配方法有__________种.16.如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色.现有4种颜色可供选择,则不同的着色方法共有_____________种.(以数字作答)①②③④⑤17.(2010浙江理)有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复. 若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人. 则不同的安排方式共有______________种(用数字作答).18.三边长均为整数,且最大边长为11的三角形的个数是多少?19.将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端点异色,如果只有5种颜色可供使用,求不同的染色方法总数.20.用数字0,1,2,3,4组成无重复数字的四位数.(1)有多少个四位偶数?(2)若按从小到大排列,3204是第几个数?8. 1 计数原理二、例题分析例1.解:和为11的数共有5组:1与10,2与9,3与8,4与7,5与6,子集中的元素不能取自同一组中的两数,即子集中的元素取自5个组中的一个数.而每个数的取法有2种,所以子集的个数为2×2×2×2×2=25=32.变式:802445=⋅C例2.解:解:(1)∵N =2160=24×33×5,∴2160的正因数为P =2α×3β×5γ,其中α=0,1,2,3,4,β=0,1,2,3,γ=0,1. ∴2160的正因数共有5×4×2=40个.(2)式子(20+21+22+23+24)×(30+31+32+33)×(50+51)的展开式就是40个正因数. ∴正因数之和为31×40×6=7440.例3.本题是一种典型的选数与组数的问题,与计数有关,故考虑利用两个计数原理解决,但需要注意的是,无论组成多少位数字,首位均不能为0.(1)分三步:①先选百位数字,由于0不能作为百位数,因此有5种不同的选法;②十位数字有5种选法;③个位数字有4种不同的选法,由分步乘法计数原理知,所求的三位数共有554100⨯⨯=个.(2)分三步:①先选百位数字,由于0不能作为百位数字,因此有5种不同的选法; ②十位数字有6种不同的选法;③个位数字有6种不同的选法.由分步乘法计原理可知所求的三位数共有5×6×6=180个.(3)分三步:①先选个位数字,由于组成的三位数是奇数,因此有3种不同的选法;②再选百位数字有4种选法;③十位数字也有4种选法.由分步乘法计数原理知,所求的三位数共有3×4×4=48个.(4)被3整除的数它的各位数字之和被3整除.对0,1,2,3,4,5这六个数字按被3除后的余数进行分类:{}00,3A =,{}11,4A =,{}22,5A =,则这三个数字只能每个集合各取一个,12,A A 中各取一数有22⨯种选法.若0A 中取数字0,可组成22⨯个三位数;若0A 中取数字3,可组成321⨯⨯个三位数;所求的三位数共有41040⨯=个. 例4.解:(1)画树枝图,共有10种不同的方法,选C . (2)方法1:画树枝图,略.方法2:记1,2,3,4号足球运动员对应的球衣为,,,a b c d ,先让1号运动员选择有3种方法,如选b ;然后,让与 球衣b 对应的2号运动员选择,也有3种方法,如选d ; 再让与d 对应的4号运动员选择,则只能选a . 因此,不同的赠送方法有339⨯=种. 例5.解:图一,5433180⨯⨯⨯=种; 变式:图二,5434240⨯⨯⨯=;图三,5×4×4×4=320种.图四,()541433260⨯⨯+⨯=种.例6.(1)解法一:从题意来看6部分种4种颜色的花,又从图形看知必有2组同颜色的花,从同颜色的花入手分类求.(1)②与⑤同色,则③⑥也同色或④⑥也同色,所以共有N 1=4×3×2×2×1=48种; (2)③与⑤同色,则②④或⑥④同色,所以共有N 2=4×3×2×2×1=48种; (3)②与④且③与⑥同色,则共有N 3=4×3×2×1=24种. 所以,共有N =N 1+N 2+N 3=48+48+24=120种. 解法二:记颜色为A 、B 、C 、D 四色,先安排1、2、3有A 34种不同的栽法,不妨设1、2、3已分别栽种A 、B 、C ,则4、5、6栽种方法共5种,由以下树状图清晰可见.1 2 3 4a b c d456C CC CD DD D D BB根据分步计数原理,不同栽种方法有N =A 34×5=120. (2)D 【解析】①B,D,E,F 用四种颜色,则有441124A ⨯⨯=种涂色方法; ②B,D,E,F 用三种颜色,则有334422212192A A ⨯⨯+⨯⨯⨯=种涂色方法; ③B,D,E,F 用两种颜色,则有242248A ⨯⨯=种涂色方法;所以共有24+192+48=264种不同的涂色方法。
计数原理题型
计数原理题型
一、分类加法计数原理
分类加法计数原理是指在进行计数时,可以将问题分成若干个互不重叠的部分,分别计算各类事件的数量,然后将这些数量相加,得到总的事件数量。
这个原理主要应用于排列组合问题中,可以通过对问题的不同情况进行分类,然后分别计算每类情况下的事件数量,最后相加得到总数。
二、分步乘法计数原理
分步乘法计数原理是指在进行计数时,可以将问题分成若干个连续的步骤,每个步骤有不同的可能性,分别计算每一步的可能性数量,然后将这些数量相乘,得到总的事件数量。
这个原理主要应用于组合计数问题中,可以通过对问题的不同步骤进行分解,然后计算每一步的可能性数量,最后相乘得到总数。
三、排列组合计数原理
排列组合计数原理是指在进行计数时,可以将问题分成若干个不同的元素,然后根据元素的性质对这些元素进行组
合和排列,最后得到总的事件数量。
这个原理主要应用于概率统计和组合优化问题中,可以通过对问题的不同元素进行组合和排列,得到总的事件数量。
四、容斥原理
容斥原理是指在进行计数时,需要考虑多个条件,而每个条件下的计数又相互影响,这时需要采用容斥原理进行计算。
这个原理主要应用于概率统计和离散数学中,可以通过对不同条件下的计数进行容斥处理,得到总的事件数量。
五、递推关系计数原理
递推关系计数原理是指在进行计数时,需要使用递推关系式来计算事件的数量。
这个原理主要应用于动态规划问题中,可以通过建立递推关系式来求解最优解。
六、概率与计数原理
概率与计数原理是指在进行计数时,需要考虑事件的概率。
这个原理主要应用于概率论和统计学中,可以通过对事件的概率进行计算,得到总的事件数量。
高中数学知识点总结 计数原理
高中数学知识点总结计数原理一、分类加法计数原理和分步乘法计数原理1.分类加法计数原理和分步乘法计数原理【注意】区分分类与分步的依据在于“一次性”完成.若能“一次性”完成,则不需分步,只需分类;否则就分步处理.2.两个计数原理的区别与联系123,,,,{}n a a a a 的子集有2n 个,真子集有21n -个.二、排列1.排列的定义一般地,从n 个不同元素中取出()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. 特别提醒确定一个具体问题是否为排列问题的方法:(1)首先要保证元素的无重复性,即是从n 个不同元素中取出m (m ≤n )个不同的元素,否则不是排列问题.(2)其次要保证元素的有序性,即安排这m 个元素时是有顺序的,有序的就是排列,无序的不是排列.而检验它是否有顺序的依据是变换元素的位置,看结果是否发生变化,有变化就是有顺序,无变化就是无顺序.2.解决排列应用问题的步骤:(1)分清问题是否与元素的顺序有关,若与顺序有关则是排列问题.(2)注意对元素或位置有无特殊要求.(3)借助排列数公式计算. 特别提醒当问题的正面分类较多或计算较复杂,而问题的反面分类较少或计算更简便时往往使用“间接法”.含“至多”、“至少”类词语的排列(组合)问题,是需要分类问题,常用间接法(即排除法)解答.这时可以先不考虑特殊元素(位置),而列出所有元素的全排列数,从中再减去不满足特殊元素(位置)要求的排列数,即排除法.3.排列数、排列数公式从n 个不同元素中取出()m m n ≤个元素的所有不同排列的个数叫做从n 个不同元素中取出m 个元素的排列数,用符号A mn 表示.特别提醒排列与排列数是两个不同的概念,一个排列是指“按照一定的顺序排成一列”,它是具体的一件事,排列数是指“从n 个不同元素中取出()m m n ≤个元素的所有不同排列的个数”,它是一个数.三、组合1.组合的定义一般地,从n 个不同元素中取出()m m n ≤个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合.特别提醒解答排列、组合综合问题的一般思路和注意点:(1)一般思路:“先选后排”,也就是把符合题意的元素都选出来,再对元素或位置进行排列.(2)注意点:①元素是否有序是区分排列与组合的基本方法,元素无序是组合问题,元素有序是排列问题.②对于有多个限制条件的复杂问题,应认真分析每个限制条件,然后再考虑是分类还是分步,这是处理排列、组合的综合问题的一般方法.3.组合数的性质性质1:C C m n m n n-=. 性质1表明从n 个不同元素中取出m 个元素的组合,与剩下的n m -个元素的组合是一一对应关系.性质2:11C C C m m m n n n-+=+. 性质2表明从1n +个不同元素中任取m 个元素的组合,可以分为两类:第1类,取出的m 个元素中不含某个元素a 的组合,只需在除去元素a 的其余n 个元素中任取m 个即可,有C mn 个组合;第2类,取出的m 个元素中含有某个元素a 的组合,只需在除去a 的其余n 个元素中任取1m -个后再取出元素a 即可,有1C m n-个组合.四、二项式定理1.二项式定理 011()C C C C ()n n n k n k k n n n n n na b a a b a b b n --*+=+++++∈L L N ,这个公式叫做二项式定理,等号右边的多项式叫做()n a b +的二项展开式,共有n +1项,其中各项的系数C ({0,1,2,,})kn k n ∈L 叫做二项式系数.二项展开式中的C k n k k n a b -叫做二项展开式的通项,用1k T +表示,即通项为展开式的第1k +项:1C k n k k k nT a b -+=. 2.二项式系数的性质(4)奇数项的二项式系数之和等于偶数项的二项式系数之和,即2131C C C C 2n n n n n -++=++=L L . 特别提醒求二项展开式的特定项问题,实质是考查通项的特点,一般需要建立方程求k,再将k 的值代回通项求解,注意k的取值范围(0,1,2,,L).k n(1)第m项::此时k+1=m,直接代入通项.(2)常数项:即这项中不含“变元”,令通项中“变元”的幂指数为0建立方程.(3)有理项:令通项中“变元”的幂指数为整数建立方程.。
计数原理与简单排列组合问题知识点及题型归纳
分析将同室4人分别记为a,b,c,d,然后利用4个取卡的情况分步来确定.
解析解法一:第一步,4个人中的任意一人(例如a)取一张,则由题意知共有3种取法;第二步:由第一人取走的贺卡的供卡人取,也有3种取法;第三步:由剩余的两人中的任一人取,只有1种取法;第四步:最后一人取,只有1种取法,由分步计数原理,共有3×3×1×1=9(种).
当然,在解决实际问题时,并不一定是单一应用分类计数原理或分步计数原理,有时可能同时用到两个计数原理.即分类时,每类的方法可能运用分步完成;而分步后,每步的方法数可能会采取分类的思想求方法数.对于同一问题,我们可以从不同的角度去处理,从而得到不同的解法(但方法数相同),这也是检验排列组合问题的很好方法.
(3)可分两类:每一类又分两步.第1类:选1名教师和1名男生,因有两步,故3×8=24(种)选法;第2类:选1名教师和1名女生,因有两步,故有3×5=15(种)选法.再由分类计数原理,共有15+24=39(种)选法.
评注 在解决实际问题时,并不一定是单一地应用分类计数原理或分步计数原理,有时可能同时用到两个计数原理.即分类时,每类的方法可能运用分步完成,而分步后,每步的方法数可能会采取分类的思想求取.
A. 6种 B. 8种 C. 10种 D. 16种
例12.4某外语组有10人,每人至少会英语、法语中的一门.其中7人会英语,5人会法语.从中选择会英语和法语的各一人派往两地参加会议,有多少种不同的方法?
高中数学计数原理知识点总结
高中数学计数原理知识点总结高中数学计数原理知识点总结如下:1. 计数原理:分类加法计数原理:完成一件事情,有n类方式,第一类有m1种方法,第二类有m2种方法,……,第n类有mn种方法,则完成这件事情共有N=m1+m2+...+mn种方法。
分步乘法计数原理:完成一件事情,需要分成n个步骤,第一步有m1种方法,第二步有m2种方法,……,第n步有mn种方法,则完成这件事情共有N=m1×m2×...×mn种方法。
2. 排列:从n个不同元素中取出m(m≤n)个元素按照一定的顺序排成一列,叫做从n个元素中取出m个元素的一个排列。
所有排列的个数记作A(n,m)或anm,规定0≤m≤n。
3. 组合:从n个不同元素中取出m(m≤n)个元素并成一组,叫做从n个元素中取出m个元素的一个组合。
所有组合的个数记作C(n,m)或cnm,规定0≤m≤n。
C(n,m)=n!/(n-m)!C(n,m)=C(n,n-m)C(n,k)=C(n-1,k-1)+C(n-1,k)4. 二项式定理:(a+b)n的展开式为:二项式系数:C(n,k)=n!/[(n-k)!k!]展开式一共有n+1项各项系数为二项式系数各项次数之和等于(a+b)的次数5. 特殊项的二项式定理:当a=b=1时,(1+1)n=2n的展开式为:当k=0时,项为:1当k=1时,项为:n+1当k=2时,项为:C(n,2)+3C(n,3)/2!当k=3时,项为:C(n,3)+8C(n,4)/3!当k=4时,项为:C(n,4)+15C(n,5)/4!以上是高中数学计数原理知识点总结。
希望对您有帮助。
第六章 高考数学 计数原理知识总结
第六章 计数原理()()1212_...__...._.12.n n n N m m m n N m m m ⎧⎧⇒⎪⎨=+++⎩⎪⎪⎧⎪⇒⎨⎪=⨯⨯⨯⎫⎪⎩⇒⎬⎨⎭⎪⎪⇒⎪⎪⎪⎪⎩⇒定义:完成一件事有类不同方案分类加法计算原理公式:定义:完成一件事需要个步骤分步乘法计数原理公式:分类加法计算原理与分步乘法计算原理区别:一个分类,一个分步两个计算原理的关系及综合应用综合应用明确是先分类还是先分步;确定分类标准和分步程序排列排列计数原理排列与组合11(1)(2)...(1)______.:______.,:mn mmn n m m m n m m m m n n n n nA n n n n m A C A C C C C C --+⎧⎪=---+⎪⎨⎪⎪⎩⎧=⎪⎪⎪==+⎨⎪⎪⎪⎩的定义:按一定的顺序排成一列排列数及其公式:排烈应用题:元素分析法、位置分析法、捆绑法、插空法、整体法组合的定义合成一组组合数及其公式:组合组合数的性质:组合应用题:直接法、间接法、隔板法排列、组合综合应用题先分组后012..""2m n mn n n n n n n n C C C C C C -⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎧⎧⇒⎪⎪⎨⎩⎪⎪⎪⎪⎧=⎪⎪⇒⎨⎪⎪⎪⎪⎪⇒⎨⎪⎪⎪⎪⎪⎪⎪+++⋅⋅⋅+=⎩⎩⎪⎪⎪⎪⎩排列二项式定理的内容:二项式定理二项展开式的通项对称性;二项式定理增减性与最大值;杨辉三角形与二项式系数的性质各二项式系数的和;知识点一、计数原理1.分类加法计数原理概念:完成一件事有n 类不同方案,在第1类方案中有1m 种不同的方法,在第2类方案中有2m 种不同的方法,…,在第n 类方案中有n m种不同的方法,那么完成这件事共有12n N m m m =++⋅⋅⋅+种不同的方法(也称加法原理)特征:(1)任何一类方案都能完成这件事;(2)各类方案之间相互独立;(3)分类要做到“不重不漏”2.分步乘法计数原理概念:完成一件事需要n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么,完成这件事共有12n N m m m =⨯⨯⋅⋅⋅⨯种不同的方法(也称乘法原理)特征:(1)任何一步都不能单独完成这件事;(2)各步之间相互依存;(3)分步要做到“步骤完整”知识点二、排列1.排列:一般地,从n 个不同元素中取出()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列2.排列数:从n 个不同元素中取出()m m n ≤个元素的所有不同排列的个数叫做从n 个不同元素中取出m 个元素的排列数,用符号mn A 表示 3.排列数公式:()()()()!121!mn n A n n n n m n m =--⋅⋅⋅-+=-(*,m n N ∈,且m n ≤)知识点三、组合1.组合:一般地,从n 个不同的元素中取出()m m n ≤个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合2.组合数:从n 个不同元素中取出()m m n ≤个元素的所有不同组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号mn C 表示3.组合数公式:()()()()121!!!!mmn nm n n n n n m A n C A m m n m --⋅⋅⋅-+===-(*,m n N ∈,且m n ≤)4.组合数的性质:(1)m n m n n C C -=;(2)11m m m n n n C C C -+=+知识点四、二项式定理1.二项式定理概念:一般地,对于任意的正整数n , 都有()()01102*nnn n k n k k n nn n n n n a b C a C aC a b C a b C b n N ---+=+++⋅⋅⋅++⋅⋅⋅+∈. 这个公式称为二项式定理,等号右边的式子称为()n a b +的二项展开式,()na b +的二项展开式共有1n +项,其中各项的系数{}()0,1,2,,kn C k n ∈⋅⋅⋅叫做二项式系数,k n k k n C a b -称为二项展开式的第1k +项,又称为二项展开式的通项 2.二项展开式的特征: (1)二项展开式共有1n +项;(2)二项式系数依次为组合数012,,,,,,knn n n n n C C C C C ⋅⋅⋅⋅⋅⋅; (3)各项次数都等于二项式的幂指数n ;(4)字母a 的指数由n 开始按降幂排列到0,b 的指数由0开始按升幂排列到n 3.二项式系数与项的系数的区别:二项式系数为项的系数指该项中除字母外的部分 4.二项式系数的性质对称性:与首末两端“等距离”的两个二项式系数相等 增减性:当12n k +<时,二项式系数是逐渐增大的,由对称性知它的后半部分是逐渐减小的最大值:当n 是偶数时,中间一项的二项式系数2n nC 取得最大值;当n 是奇数时,中间两项的二项式系数1122,n n nnCC-+相等,且同时取得最大值5.二项式系数和:(1)二项展开式中各二项式系数之和为2n;(2)在二项展开式中奇数项的二项式系数之和与偶数项的二项式系数之和相等且都等于12n -.类型一:两个基本计数原理的实际应用问题例1 在某种信息传输过程中,4个数字组成的一个排列 (数字允许重复)表示一个信息,不同的排列表示不同的信息.若所用数字只有0和1,则与信息0110至多有2个对位置上的数字相同的信息个数为( )A .10B .11C .12D .15解析:方法1:分有0个时应位置上的数字相同、1个对应位显上的数字相同、2个时应位五上的数字相同讨论:(1)若有0个对应位五上的数字相同.则信息为1001,共有1个. (2)若有1个叶应位丑上的数字相同1101,1011,1000.共有4个. (3)若有2个时应位置上的数字相同,又分为以下情况①若位笠一与二对应相同,则信息为0101; ②若位五一与三时应相同,则信息为0011; ③若位五一与四对应相同,则信忽为0000; ④若位且二与三对应相同,则信息为1111; ⑤若位里二与四时应相同,则信忠为1100;⑥若位置三与四时应相同、则信.息为1010.共有6个.故与信息0110至多有2个对应位置上的数字相同的信息个数为14611.++= 方法2:若有0个对应位置上的数字相同.共有1个;若有1个对应位置上的数字相同。
(完整版)两个计数原理与排列组合知识点及例题(最新整理)
m
1
mm
1
2m
1n
m
1
m
n!
1!n
m
1 ! n
2n
1
m
n 1 !n
2!
m
1 !
C m1 n2
右
另法:利用公式
C
m n
Cm n1
C
m1 n1
推得
左
C m1 n
C nm
C
m n
C m1 n
C m1 n1
Cn n1
C m1 n2
右
点评:证明排列、组合恒等式通常利用排列数、组合数公式及组合数基本性质
并列需要分类计算
解:(1)A 中每个元都可选 0,1,2 三者之一为像,由分步计数原理,共有 3 3 3 3 34 个不同
映射
(2)根据 a, b, c, d 对应的像为 2 的个数来分类,可分为三类:
第一类:没有元素的像为 2,其和又为 4,必然其像均为 1,这样的映射只有一个;
第二类:一个元素的像是
(1)6 名学生排 3 排,前排 1 人,中排 2 人,后排 3 人; (2)6 名学生排成一排,甲不在排头也不在排尾; (3)从 6 名运动员中选出 4 人参加 4×100 米接力赛,甲不跑第一棒,乙不跑第四棒; (4)6 人排成一排,甲、乙必须相邻; (5)6 人排成一排,甲、乙不相邻; (6)6 人排成一排,限定甲要排在乙的左边,乙要排在丙的左边(甲、乙、丙可以不相邻)
根据分类计数原理和点 A 共面三点取法共有 3C53 3 33 种
(2)取出的 4 点不共面比取出的 4 点共面的情形要复杂,故采用间接法:先不加限制任取 4 点( C140
例 1 完成下列选择题与填空题
高中数学选修2-3(人教A版)第一章计数原理1.2知识点总结含同步练习及答案
1 6 7 12 C0 12 < C12 < ⋯ < C12 > C12 > ⋯ > C12 ,所以 2x − 3 ⩾ 5 且 2x ⩽ 12 解得 4 ⩽ x ⩽ 6.
高考不提分,赔付1万元,关注快乐学了解详情。
− A5 9
= =
8 × 7 × 6 × 5 × (8 + 7) 8 × 7 × 6 × 5 × (24 − 9) = 1.
2×8×7×6×5×4+7×8×7×6×5 8×7×6×5×4×3×2×1−9×8×7×6×5
(3)根据原方程,可得
3x(x − 1)(x − 2) = 2(x + 1)x + 6x(x − 1).
0 10 (1)计算:C5 10 ⋅ C10 − C10 ; m−1 (2)证明:mCm n = nCn−1 .
解:(1)原式= (2)证明:因为
10 × 9 × 8 × 7 × 6 × 1 − 1 = 252 − 1 = 251 ; 5×4×3×2×1
Cm n =
n! , m!(n − m)! (n − 1)! n(n − 1)! n m−1 n n! ⋅ = = . Cn−1 = m m (m − 1)!(n − m)! m ⋅ (m − 1)!(n − m)! m!(n − m)!
正整数 1 到 n 的连乘积,叫做 n 的阶乘,用 n! 表示.另外,我们规定 0! = 1 .所以排列数公 式还可以写成
Am n =
(n − m)!
n!
.
组合的定义 一般地,从 n 个不同元素中取出 m (m ⩽ n )个元素合成一组,叫做从 n 个不同元素中取出 m 个元素的一个组合(combination). 组合数及组合数的公式 从 n 个不同元素中取出 m (m ⩽ n )个元素的所有不同组合的个数,叫做从 n 个不同元素中取 出 m 个元素的组合数,用符号 Cm n 表示.
高中数学选修2-3(人教B版)第一章计数原理1.4知识点总结含同步练习题及答案
描述:例题:高中数学选修2-3(人教B版)知识点总结含同步练习题及答案第一章 计数原理 1.3计数模型(补充)一、学习任务掌握计数的几种模型,并能处理一些简单的实际问题.二、知识清单数字组成模型 条件排列模型 分组分配模型染色模型计数杂题三、知识讲解1.数字组成模型与顺序相关的数字问题,通常是计算满足某些特征的数字的个数.常见特征比如各个数位的数字不同、四位数、奇数、比某数大的数、某个数位满足某种条件的数等等,其中各个数位数字可以相同的问题通常借助乘法原理分步解决,各个数位数字不相同通常是与排列相关的问题.由 、、、、 这五个数字可组成多少个无重复数字的五位数?解:首位不能是 ,有 种,后四位数有 种排列,所以这五个数可以组成 个无重复的五位数.012340C 14A 44=96C 14A 44用数字 、 组成四位数,且数字 、 至少都出现一次,这样的四位数共有______个(用数字作答).解:因为四位数的每个数位上都有两种可能性,其中四个数字全是 或 的情况不合题意,所以符合题意的四位数有 个.23231423−2=1424从 , 中选一个数字,从 、、 中选两个数字,组成无重复数字的三位数,其中奇数的个数为( )A. B. C. D.解:B当选 时,先从 、、 中选 个数字有 种方法,然后从选中的 个数字中选 个排在末位有 种方法,剩余 个数字排在首位,共有 种方法;当选 时,先从 、、 中选 个数字有 种方法,然后从选中的 个数字中选 个排在末位有 种方法,其余 个数字全排列,共有 种方法.依分类加法计数原理知共有 个奇数.02135241812601352C 2321C 121=6C 23C 1221352C 2321C 122=12C 23C 12A 226+12=18用 , ,, , , 这 个数字,可以组成______个大于 且小于 的012345630005421描述:例题:2.条件排列模型计算满足某些限制条件的排列的个数,常见的如相邻问题、不相邻问题、某位置不能排某人、某人只能或不能排在某些位置的问题等等.不重复的四位数.解:分四类:①千位数字为 , 之一时,百十个位数只要不重复即可,有 (个);②千位数字为 ,百位数字为 ,,, 之一时,共有 (个);③千位数字是 ,百位数字是 ,十位数字是 , 之一时,共有 (个);④最后还有 也满足条件.所以,所求四位数共有 (个).175342=120A 3550123=48A 14A 245401=6A 12A 135420120+48+6+1=175 名男生, 名女生,按照不同的要求排队,求不同的排队方案的方法种数.(1)全体站成一排,其中甲只能在中间或两端;(2)全体站成一排,男生必须排在一起;(3)全体站成一排,甲、乙不能相邻.解:(1)先考虑甲的位置,有 种方法,再考虑其余 人的位置,有 种方法.故有种方法;(2)(捆绑法)男生必须站在一起,即把 名男生进行全排列,有 种排法,与 名女生组成 个元素全排列,故有 种不同的排法;(3)(插空法)甲、乙不能相邻,先把剩余的 名同学全排列,有 种排法,然后将甲、乙分别插到 个空中,有 种排法,故有 种不同的排法.34A 136A 66=2160A 13A 663A 3345=720A 33A 555A 556A 26=3600A 55A 26有甲、乙、丙在内的 个人排成一排照相,其中甲和乙必须相邻,丙不排在两头,则这样的排法共有______种.解:甲和乙必须相邻,可将甲、乙捆绑,看成一个元素,与丙除外的另三个元素构成四个元素,自由排列,有 种方法;丙不排在两头,可对丙插空,插四个元素生成的中间的三个空中的任何一个,有 种方法;最后甲、乙两人的排法有 种方法.综上,总共有 种排法.6144A 44A 13A 22=144A 44A 13A 22 把椅子摆成一排, 人随机就座,任何两人不相邻的坐法种数为( )A. B. C. D.解:D“不相邻”应该用“插空法”,三个空椅子,形成 个空,三个坐人的椅子插入空中,因为人不同,所以需排序,所以有 种不同坐法.6314412072244=24A 34某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同课程的排法?解:法一: 门课程总的排法是 种,其中不符合要求的可分为:体育排在第一节有 种排法,数学排在最后一节有 种排法,但这两种方法,都包括体育在第一节,数学排在最后一节,这种情况有 种排法,因此符合条件的排法应是: 种.法二:① 体育、数学即不排在第一节也不排在最后一节,这种情况有 种排法;② 数学6A 66A 55A 55A 44−2+=504A 66A 55A 44⋅A 24A 44⋅144种颜色可供选择,则不同的着色方法共有______种.(以数字作答)72种花,且相邻的96高考不提分,赔付1万元,关注快乐学了解详情。
计数原理知识点及题型小结
一、知识点解读1.分类加法与分步乘法计数原理(3)分类加法与分步乘法计数原理的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,才算完成这件事。
2.排列与组合(1)排列与组合的概念。
(2)排列与组合问题的识别方法。
(3)排列数与组合数。
①排列数的定义:从n个不同元素中取出m (m ≤n)个元素的所有不同排列的个数叫作从个不同元素中取出m 个元素的排列数,用A n m表示。
②组合数的定义:从个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫作从n 个不同元素中取出m 个元素的组合数,用C n m表示。
(4)排列数、组合数的公式及性质。
3.二项式定理(1)二项式定理。
(2)二项式系数的性质。
① 0≤k≤n时,C n k=C n n−k.②二项式系数先增后减,中间项最大。
当n为偶数时,第n2+1项的二项式系数最大,最大值为C nn2;当n为奇数时,第n+12项和第n+12+1项的二项式系数最大,最大C nn−12和Cnn+12.③各二项式系数和:C n0 +C n1 +C n2+…+C n n =2n;C n0 +C n2 +C n4+…=C n1+C n3 +C n5+…=2n−1(3)几个易误点。
①通项公式T r+1=C n r a n−r b r是展开式的第r+1项,不是第r项。
②(a+b)n与(b+a)n虽然结果相同,但具体到它们展开式的某一项时是不相同的,所以公式中的第一个量a与第二个量b的位置不能颠倒。
③易混淆二项式中的“项”、“项的系数”、“项的二项式系数”等概念,注意项的系数是指非字母因数所有部分,包含符号,二项式系数仅指C n k ( k=0,1,⋯,n)。
二、常考题型分析考点一:分类计数原理用分类加法计数原理解题时首先要根据问题的特点确定一个合适的分类标准,标准要统一,不能遗漏,且每类做法中每一种方法都能完成这件事情,类与类之间是独立的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章、计数原理知识点小结一、分类加法计数原理与分步乘法计数原理1.分类计数原理-加法原理:如果完成一件事有 不同的方案,由第1类方案中有1m 种方法,在第2类方案中有2m 种不同的方法,种方法类方案中有第n m n 那么,完成这件工作共有 种不同的方法.2.分步计数原理-乘法原理:完成一件事需要 步骤,完成第1步有1m 种不同的方法,完成第2步有2m 种不同的方法,,种方法步中有第n m n 那么,完成这件工作共有 种不同方法。
3.两种方法的区别与联系:4.用两个计数原理解决计数问题时,需要注意的问题有哪些?最重要的是在开始计算之前进行仔细分析,弄清楚是一件什么事,正确选择是先分类还是先分步.分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用加法原理求和;分步要做到“步骤完整”,完成所有步骤,恰好完成任务. 分步后要计算每一步的方法数,把每一步的方法数相乘,得到总数。
5.常用的方法有:填空法,使用时注意:6.常见的题型:(1)有关数字排列问题例1:由数字4,5,6,7组成的所有的不重复的三位数的个数为?(可以重复的三位数字又有多少个呢?)变式1:由0,1,2,3,4,5,6,这七个数字可以组成多少个无重复数字的四位偶数?小结:(2)形如n m m n 和的问题。
例2:5名学生从3项体育项目中选择参赛,若每一名学生只能参加一项,则有多少种不同的参赛方法?变式1:若5名学生争夺3项比赛冠军(每一名学生参赛项目不限),则冠军获得者有几种不同的情况(没有并列冠军)小结:(3)涂色问题 4块(ABCD )涂色要求共边两块颜色互异,求有多少种不同的涂色方案?变式:将红、黄、绿、黑四种不同的颜色涂入图中的五个区域内,要求相邻的两个区域的颜色都不同,则有多少种不同的涂色方法?小结:1.排列的定义:一般地,从n 个 元素中取出m ( )个元素,按照一定的 排成一排,叫做从 个不同元素中取出 个元素的一个排列.2.排列问题有何特点?什么条件下是排列问题?3.排列数的定义:从 个 元素中取出 (n m ≤)个元素的 的个数,叫做从n个不同元素取出m 元素的排列数,用符合 表示.4.排列数公式:从n 个不同元素中取出m (n m ≤)个元素的排列数=m n A5.全排列:从n 个不同元素中 取出的一个排列,叫做n 个元素的一个全排列,用公式表示为=n n A6.n 的阶乘定义: 用 表示。
=n nA 规定:0!= 注:1!= 2!= 3!= 4!= 5!= 6!=例1计算:⑴410A ; ⑵ 218A ; ⑵ 66A7.解决排列问题的基本方法类型一:直接法和间接法例1:用0到9这10个数字,可以组成多少个没有重复数字的三位数?(多种方法)小结:排列问题时,当问题分成互斥各类时,根据加法原理,可用分类法;当问题考虑先后次序时,根据乘法原理,可用位置法;这两种方法又称作 .当问题的正面的分类较多或计算较复杂,而反面分类较少,计算简单时,可通过求差采用 求解;间接法的步骤:类型二:排列问题(无限制条件的和有限制条件的)例2:有4名男生,3名女生排成一排(1) 有多少种排列方法?(2) 若7和人排成两排,前排3人,后排4人有多少种排法?(3) 若甲男生不站排头也不战排尾有多少种不同的排法?(4) 若甲只能在中间或者两端?(5) 甲乙必须在两端呢?(6) 甲不站排头,乙不站排尾呢?(7) 若3名女生必须排在一起(8) 若3名女生互不相邻,有多少种不同的排法?(9)男生必须排在一起,女生必须排在一起,且男生甲与女生乙不能相邻,有多少种不同的站法??(10)若甲乙相邻,丙丁不相邻呢?(11)若甲乙间恰有两人?小结:1:解决这类有限制条件的排列问题的基本方法有:元素分析法——即优先考虑 ,然后在考虑 ;位置分析法——即优先考虑 ,再考虑小结2:排列中有些元素“相邻”问题,可以把相邻元素看成一个整体,当成一个元素和其他元素进行排列,此法称为“ ”;而对于元素不相邻的排列问题,可先将允许相邻的元素进行排列,然后在它们的空档处插入不能相邻的元素,对于这种“分离”问题我们用“ ”等.练习:用0,1,2,3,4,5六个数字,能排成多少个满足条件的四位数.(1)没有重复数字的四位偶数?(2)比1325大的没有重复数字四位数1组合的定义:一般地,从 个 元素中取出 ()m n ≤个元素 一组,叫做从n 个不同元素中取出m 个元素的一个组合.2.排列和组合的区别和联系?相同点: 不同点:3. 组合数的概念:从n 个 元素中取出m ()m n ≤个元素的 组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号 表示 4.m n C 与m n A 的关系为:m n A = m n C =5:组合数公式:mn C = = 这里的m 、n 满足的条件是6:用阶乘表示m n C = 我们规定:=0n C 7.组合数的性质一:8.常见的题型:类型一:计算例1:2313;C C 计算: 14C ;24C ; 34C ;35C ;25C例2:解方程:已知3618n C +=4218n C -,求n=? 例3: 解不等式:4n C >6n C类型二:没有限制条件的组合问题例3:(1). 若8名学生每2人互通一次电话,共通 次电话.(2)从2,3,5,7四个数字中任取两个不同的数相乘,有m 个不同的积;任取两个不同的数相除,有n 个不同的商,则m :n = .(3)一位教练的足球队共有17名初级学员,他们呢中以前没有一人参加过比赛,按照足球比赛规则,比赛时一个足球队的上场队员是11人,问:(1)这位教练从这17位学员中可以形成多少种学员上场的方案?(2)如果在选出的11名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事?类型三:有限制条件的组合问题例4:在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人参加市级培训,在下列条件下,有多少种不同的选法?(1) 任意选5人(2) 甲乙丙三人必须参加(3) 甲乙丙三人不能参加(4) 甲乙丙三人只能有1人参加(5) 甲乙丙三人至少有1人参加(6) 甲乙丙三人至多有1人参加小结:有限制条件的组合应用题:解决“含与不含”,问题时,将限制条件视为 ,优先满足。
解决至少与至多问题时,常用的方法有 ,注意不重不漏。
类型四.:与平面几何有关的问题在MON ∠的边OM 上有5个异于O 点的点,边ON 上有4个异于O 点的点,以这10个点(含O点)为顶点,可以得到多少个三角形?四、二项式定理1:()n a b += (*∈N n )上面公式叫做二项式定理,公式右边的多项式叫做n b a )(+的展开式,其中r n C (r =0,1,2,…,n )叫做 , 叫做二项展开式的通项,用符号 表示,即通项为展开式的第 项.即注意:(1)n b a )(+展开,共有 项?每一项的次数 ;((2)每一项中,字母a ,b 的指数有什么特点?字母a ,b 的指数和怎样?(3)各项的系数是什么?(4)r n C r r n b a -是n b a )(+的展开式的第几项?(5)n b a )(+的展开式中,二项式系数与项系数相同吗?若不同,有什么区别?2.常见的题型题型一:求二项式展开式的特定项例1 ⑴ 求6)21(x +展开式的第4项,并求第4项系数和它的二项式系数;(2)求9)33(xx + 展开式中的常数项和中间项. 213.()15?n x n x-=()在的展开式中,常数项为,求4324-(1x -():求(1x )的展开式中的系数?3:二项式系数的性质⑴ 对称性:与首末两端“等距离”的两个二项式系数相等,图象的对称轴是 .试试:① 在(a +b)6展开式中,与倒数第三项二项式系数相等是( )A 第2项B 第3项C 第4项D 第5项② 若()n b a +的展开式中,第三项的二项式系数与 第五项的二项式系数相等,则n = .⑵ 增减性与最大值 :从图象得知,中间项的二项式系数最 ,左边二项式系数逐渐 ,右边二项式系数逐渐 . 所以n b a )(+的各二项式系数的最大值是当n 是偶数时,中间项共有 项,是第 项,它的二项式系数是 ,取得最大值;当n 是奇数时,中间项共有 项,分别是第 项和第 项,它的二项式系数分别是 和 ,二项式系数都取得最大值. 试试:102⎪⎪⎭⎫ ⎝⎛-x x 的各二项式系数的最大值是⑶ 各二项式系数的和:在n b a )(+展开式中,若1==b a ,则可得到 =+⋅⋅⋅++⋅⋅⋅++n n r n n n C C C C 10即 =+⋅⋅⋅++⋅⋅⋅++n n r n n n C C C C 21若a=1,b=-1又可以得到什么呢?试试:011111111111r C C C C ++⋅⋅⋅++⋅⋅⋅+= 0261011111111C C C C ++⋅⋅⋅++⋅⋅⋅+=4.常见的题型类型一:求二项式系数和、系数的和例1.求和:n n n n n n C C C C 2222210+⋅⋅⋅+++=例2.若()772210721x a x a x a a x +⋅⋅⋅+++=-,则=+⋅⋅⋅++721a a a ,=+++7531a a a a =+++6420a a a a . 127||||||a a a ++⋅⋅⋅+=小结:特殊值法:类型二:求系数最大(小)的项例3:求()1012x +的展开式中二项式系数最大的项和系数最大的项.求二项式展开式中系数最大(小)的步骤为:类型三、求有理项:二项式的有理项的定义为346n例的展开式中,第项为常数项(1)求n 的值.(2)求展开式中所有的有理项。
类型四、多项式中的指定项例5在(x-1)(x-2)(x-3)(x-4)(x-5)的展开式中,含4x 项的系数是多少?例6. ()()()()6321111x x x x ++⋅⋅⋅++++++展开式中2x 的系数类型五、整除问题求余数问题例7. 求1008除以7的余数是 。
例8证明:10099-1能被1000整除。