数学物理方程练习题

合集下载

数学物理方程习题课

数学物理方程习题课

一、 斯通-刘维尔型1、将方程0)1('2''=---y xy y λ转化为斯通-刘维尔型。

解:原方程两端同时乘以2x e -,可得:222''2'(1)0x x x e y xe y e y λ------=则:22[](1)0xxd dy eey dxdxλ----=为其斯通-刘维尔型。

2、(8分)将方程22(1)'''()0x y xy x y λη----=转化为斯通-刘维尔型,其中η为常数。

原方程两边同乘211x-后,得:222'''011x x y y y xxλη---=--,即为:2222'''0111x xy y y y xxxηλ-+-=---方程两边同乘以21xdxx e --⎰,就化成了斯通-刘维尔型方程222211122[][][]011xx x dx dxdxx xxd dyxee y ey dx dx x xηλ------⎰⎰⎰+-=--即为:3322222(1)(1)0d x y x x y dx ηλ--+---=二、级数解的形式1、给出0')1(''=+-++y y x s xy λ在x =0处级数解的形式。

答:x =0为原方程的正则奇点,在x =0处级数解的形式为:k ckk y ax∞+==∑2、给出方程22'''(1)0xy y x x y λ++-=在0x =处级数解的形式。

解:方程对应的标准形式为:22'''(1)0y y x y xλ++-=1x在0x =处不解析,0x =为其一级极点;22(1)x λ-在0x =处解析,可知:0x =为原方程的正则奇点。

则:在0x =处级数解的形式为0cnnn y xax ∞==∑,或写成0c nnn y ax ∞+==∑或写成两个线性独立解:110c nnn y ax∞+==∑,220c nnn y bx∞+==∑。

数学物理方程练习题第七版(学生用)

数学物理方程练习题第七版(学生用)

= u(0, t) 0= , ux (2,t) 1,
u(x= ,0)
cos π x + x3 − 3x2 − x.
2
3.求定解问题的解:
u
x= x + u yy
sinπ x,
0 < x < 1, 0 < y < 1,
= u(0, y) 1,= u(1, y) 2,
u(x,0) =1+ x,
7
u
rr
+
1 u
r
r
+
1 r2
uθθ
= 0,
u= (1,θ ) A cosθ (−π < θ ≤ π ).
4. 设 A, B 为常数,用试探法求如下定解问题的解:
u rr
1 +rur
+
1 r2
u
θθ
=
0,
r < a,
u r= =a A cosθ + B sinθ (−π < θ ≤ π ).
练习十五
练习六
1.求解如下定解问题:
ut = uxx + cosπ x, (0 < x < 1, t > 0), u= x (0,t) u= x (1,t) 0, u(x,0) = 0.
3
2.求解如下定解问题:
= u tt
a2u
xx
+
t
sin
π l
x
,
u= (0,t) u= (l,t) 0, t ≥ 0,
X= ′(0)
X= (l)
0.
3. 求如下定解问题的解:
= ut uxx , 0 < x < 2, t > 0, ux= (0, t) u= (2, t) 0,

数学物理方程考试试题及解答(1)

数学物理方程考试试题及解答(1)

数学物理方程考试试题及解答(1)数学物理方程考试试题及解答考试题目:求解一阶常微分方程y'+3y=x+e^(-2x)解答:1. 首先我们需要将原方程变形,得到y'和y的系数都为1的形式: y'+3y=x+e^(-2x)y'+3y-1*x= e^(-2x)即:y'+3y-(1*x)= e^(-2x)2. 根据一阶常微分方程的标准形式 y'+p(x)y=q(x) ,我们可以将上述方程的左侧写成d/dx(y*e^(3x))的形式。

具体步骤如下:(y'+3y)e^(3x) - x*e^(3x) = e^(3x)*e^(-2x)即:d/dx(y*e^(3x)) - x*e^(3x) = e^xd/dx(y*e^(3x)) = e^(3x)+x*e^(3x)+e^x3. 将方程两侧的d/dx和e^(3x)去掉,得到最终的含y的方程:y*e^(3x) = ∫(e^(3x)+x*e^(3x)+e^x)dx + C= (1/3)*e^(3x) + (1/2)*x*e^(3x) + e^x + C即:y = (1/3) + (1/2)*x + e^(-3x)*(e^(2x)*C+1)4. 因为是一阶线性齐次方程,存在唯一的初始条件y0,可以将解方程带入初始条件得到C的值。

考试题目:提出热传导方程的边界条件∂u/∂t = a(∂²u/∂x²)解答:热传导方程描述的是一个物质内部温度分布随时间变化的情况,它可以用数学模型来表示:∂u/∂t = a(∂²u/∂x²)其中,u(x,t)是时间t和空间x处的温度,a是热传导系数,代表了物质的传热速率。

热传导方程的边界条件通常有如下几种:1. 第一类边界条件(Dirichlet边界条件):即在给定的边界上已知温度u,通常写成形式u(x,t)|_∂Ω = f(x,t) 。

在第一类边界上,温度保持不变,而且是已知的,所以我们直接用Dirichlet边界条件就可以描述。

中北大学数学物理方程典型例题与解法范例

中北大学数学物理方程典型例题与解法范例

例1下列各方程是线性的, 还是非线性的? 如果是线性的, 指出是齐次的,还是非齐次的, 并确定它的阶数. (1) 22sin sin 0xx xy yy u xu xu ++=, (2) 12=+y x u u u (3) 320xxxx xxyy yyyy u u u ++=(4)0ln =++u u u xyy xxx , (5) 5352sin xxx xy yy y u u xu u u x -+++=解:(1) 原方程为二阶齐次线性方程(2) 由于2,x y u uu 都为非线性项,因此原方程为一阶非线性方程(3) 原方程为四阶齐次线性方程(4) 由于ln u 为非线性项,因此原方程为三阶非线性方程 (5) 原方程为三阶非齐次线性方程(非齐次项2sin x ) 例2 验证函数 (3)u f x y =+ 是方程: 30x y u u -=的解, 其中f 为任意连续可微函数.证:左(3)3(3)f x y f x y x y ∂∂=+-+∂∂()(3)3()(3)f x y f x y x y ξξ∂∂''=+-+∂∂ 3()3()0f f ξξ''=-==右 (3)x y ξ=+例3 验证函数 22ln()u x y =+是方程: 0xx yy u u +=的一个解证: 222222,x y x y u u x y x y ==++,2222222222222(02)24,()()xx yy x x y u u x y x y x y x y -=+=-++++ 左22222222222224240()()x y x y x y x y x y =-+-==++++右 例4 (1) 长为l 的弦, 两端点固定, 且在初始时刻0=t 处于水平状态, 初始速度为23sinxlπ, 作微小横振动, 试写出此定解问题.(2) 设有一长度为l 的杆, 它的表面是绝热的, 在0=x 的一端温度为5C ,另一端l x=处外界媒介的温度为5C ,且初始温度分布为)(x ϕ, 试写出此定解问题.解:(1) 定解问题为 0(0,)(,)02(,0)0,3s i n t t x x t u u u t u l t u x u x t lπ==⎧⎪==⎪⎨∂⎪==⎪∂⎩(2) 定解问题为 (0,)5,[(,)]5(,0)()t x x x lu u u u t u x t x u x x κϕ==⎧⎪∂⎪=+=⎨∂⎪⎪=⎩例5 将下列二阶线性偏微分方程化为标准型(1)22222320u u u x x y y∂∂∂++=∂∂∂∂,解:(1)特征方程2320y y ''-+=,特征线12,2x y C x y C -=-=,作变量代换2x yx yξη=-⎧⎨=-⎩2,x y u u u u u u ξηξη=+=-- , 22444xx u u u u u u u u ξξξηηξηηξξξηηη=+++=++ 32xy u u u u ξξξηηη=---,2yy u u u u ξξξηηη=++代入原方程,化为0u ξη-=, 所以原方程的标准型为 0u ξη=(2) 22222u u a t x∂∂=∂∂ 解 :特征方程22()dx a dt =,特征线12,x at C x at C +=-=, 作变量代换x at x atξη=+⎧⎨=-⎩, 原方程化为 2222a u a u ξηξη-=,所以原方程的标准型为 0u ξη=(3)22222320u u u u u x x y y x y∂∂∂∂∂++++=∂∂∂∂∂∂解:特征方程2320y y ''-+=,特征线12,2x y C x y C -=-=,作变量代换2x y x y ξη=-⎧⎨=-⎩原方程化为0u u ξηη-+=, 所以原方程的标准型为 0u u ξηη-=例6.证明直角坐标系下的拉普拉斯方程: 22220u ux y∂∂+=∂∂在极坐标系下为01122222=∂∂+∂∂+∂∂θu r r u r ru证:cos ,sin tan r x r y y r x θθθ⎧==⎧⎪⎨⎨=⎩=⎪⎩2()x r x y u u u r r θ=+- , 2y r y xu u u r rθ=+222234412[]xx rr r x x x xyu u u u u r r r r r θθθ=+-++222234412[]yy rr r y y y xyu u u u u r r r r rθθθ=+-+-2222222342[]xx yy rr r x y x y x y u u u u u r r r rθθ++++=+-+222()r x y =+2221111[]rr r rr r u u u u u u r r r r rθθθθ=+-+==++,所以拉普拉斯方程:22220u ux y ∂∂+=∂∂在极坐标系下为 01122222=∂∂+∂∂+∂∂θu r r u r r u。

数学物理方程试卷

数学物理方程试卷

数学物理方程试卷一、选择题1.在一个匀速运动中,物体的速度v与物体的位移s的关系是:A.v=s/tB.v=s/t^2C.v=s*tD.v=s*t^22.以下哪个物理量属于标量?A.速度B.力C.加速度D.距离3.物体质量为m,重力加速度为g,物体所受重力的大小为:A. mgB. mg/2C. 2mgD. mg^24.物体自由落体下落t秒后的位移s与时间t的关系为:A. s=gtB. s=gt^2C. s=gt^3D. s=1/gt5.以下哪个物理量属于矢量?A.面积B.速度C.力D.质量二、填空题1.一辆车以10m/s的速度匀速行驶了20秒,那么它的位移是_____________米。

2.物体在一个小时内匀速运动40千米,速度为_____________米每秒。

3.物体在水平地面上受到10牛的推力,质量为2千克,加速度为_____________。

4.一个物体从100米高的地方自由落体,下落10秒后的速度是_____________米每秒。

5.物体质量为5千克,重力加速度为10米每秒的平方,所受重力的大小是_____________牛。

三、解答题1.用物理公式解释为什么月亮绕地球运动?答:根据万有引力定律,任意两个物体之间都存在引力。

月球的质量相对较小,在地球的引力作用下,它会受到向地心的引力,从而绕着地球进行运动。

2.一个物体以10m/s的速度沿水平方向运动,另一个物体以5m/s的速度沿同一方向追赶第一个物体,如果第二个物体和第一个物体质量相同,两个物体发生碰撞后,它们的速度是多少?答:根据动量守恒定律,两个物体的总动量在碰撞前后保持不变。

因此,第一个物体的动量为10 kg·m/s,第二个物体的动量为5 kg·m/s。

由于两个物体质量相同,碰撞后它们的速度将相等。

设碰撞后的速度为v,则第一个物体的动量为10v kg·m/s,第二个物体的动量为5v kg·m/s。

数学物理方程习题

数学物理方程习题
1 定理的叙述: 若u(Q)在A点附近调和, u(Q) = o(1) r(A,Q , 则可补充u(Q)在A之 )
值使得u(Q)在A点得邻域中调和. 16.设P 为常系数线性偏微分算子,且有基本解E (x), 满足singsuppE = {0}则P 为亚椭圆的。 (Thm6.3.2) 第七章热传导方程 1.求解热传导算子的基本解 2.求解热传导方程的Cauchy问题 { ∂u − a2 ∆u = f (x, t) t > 0 ∂t u(x, t)|t=0 = φ(x) 3.求解热传导方程的初边值问题. {
∑ 1 ξ α ∂ α uP α (x, η ) α ! α
是一个重要的公式,称为推广的莱布尼茨公式.又以后对任一函数F (x, ξ )恒
β α 记F(β ) (x, ξ ) = ∂x ∂ξ F (x, ξ ),即下标表示对x求导,上标表示对ξ 求导. (α)
8.设有C ∞ (R)函数列{fn (x)}满足 1
d2 dx2 d + dx
α, α ∈ R .
2 + ∂r , 其中r =
第六章Laplace方程
n −1 ∂r r 3
√ 2 x2 1 + ... + xn
2.设开集Ω ⊂ R 有界,边界∂ Ω光滑,u(x) ∈ C 2 (Ω) ∩ C 1 (Ω), Q ∈ Ω 证明 ∫ 1 ∂u ∫ ∫ ∆u u ∂ ( 1 )ds − 41 u(Q) = 41 ds − 41 dx π ∂ Ω r ∂n π ∂ Ω ∂n r π Ω r 3.证明球面平均值公式,球体平均值公式 4.证明调和函数的极值原理 5.利用极值原理证明以下Dirichlet问题的唯一性和稳定性 ∆u = 0 u|∂ Ω = f 6.利用Green函数求解上半平面的Dirichlet问题 ∆u(x, y ) = 0 y > 0 u|y=0 = f (x) 7.利用Green函数求解圆Ω上的Dirichlet问题 ∆u = 0 u|∂ Ω = f (x) ¯ ∩ C 2 (Ω), 证明: 8.设Ω = BR (Q)(以Q为心、 R为半径的开圆域), u ∈ C (Ω) ∫∫ ∫∫∫ 1 (1).u(Q) = 4πR )∆udx. u(P )dSp + 41 (1 − 1 2 π r ∂BR (Q) BR (Q) R ∫ ∫ 1 (2).若∆u ≥ 0, 则u(Ω) ≤ 4πR2 u(P )dSp . ∂BR (Q) 9.证明第一格林公式 ∫ ∫ u

数学物理方程复习

数学物理方程复习

一、填空题1、物理规律反映同一类物理现象的共同规律,称为___________。

2、在给定条件下求解数学物理方程,叫作____________________。

3、方程20tt xx u a u -=称为_________方程4、方程20t xx u a u -=称为_________方程5、静电场的电场强度E是无旋的,可用数学表示为_____________。

6、方程0j Ñ×=称为_____________的连续性方程。

7、第二类边界条件,就是______________________________________。

8、第一类边界条件,就是______________________________________。

9、00(0,)(0,)x x u x t u x t -=+称为所研究物理量u 的_____________。

10、00(0,)(0,)u x t u x t -=+称为所研究物理量u 的_____________。

11、对于两个自变量的偏微分方程,可分为双曲型、________和椭圆型。

12、对于两个自变量的偏微分方程,可分为双曲型、抛物线型和________。

13、分离变数过程中所引入的常数l 不能为_____________。

14、方程中,特定的数值l 叫作本征值,相应的解叫作_____________。

15、分离变数法的关键是________________________代入微分方程。

16、非齐次振动方程可采用______________和冲量定理法求解。

17、处理非齐次边界条件时,处理非齐次边界条件时,可利用叠加原理,可利用叠加原理,可利用叠加原理,把非齐次边界条件问题转化另一把非齐次边界条件问题转化另一_________的齐次边界条件问题。

18、处理非齐次边界条件时,处理非齐次边界条件时,可利用叠加原理,可利用叠加原理,可利用叠加原理,把非齐次边界条件问题转化另一把非齐次边界条件问题转化另一_________的齐次边界条件问题。

数学物理方程题库

数学物理方程题库

()()22221211*********cos 3sin 0cos 3sin 40.2cos 2cos 2sin x x y a a a x x xx y x −−+−=∆=−=−++=>⎧⎪==−⎪⎨⎪==−−⎪⎩=−xx xy yy y ,指出下列方程的类型并化为标准形式。

1) u u u u 解:方程的判别式所以方程为双曲型。

dy dx该方程的一组特征微分方程为dy dx 积分得到特征曲线为1112222211122222111222sin 2sin 2sin 2sin 2sin 082x c c y x xy x x c c y x xy x xy x x U U UB a a a x x x y y x y y a a x x y ξηξηξηξηξηξηξηξξ+=−+⎧⎧⇒⎨⎨=−−+=++⎩⎩−+⎧⎨=++⎩∂∂∂++=∂∂∂∂⎛⎞∂∂∂∂∂∂∂∂=+++=−⎜⎟∂∂∂∂∂∂∂∂⎝⎠∂∂=+∂∂∂1211121=于是令此时原方程可以转化为2A A 其中,A A ()()2221222211122212222sin 2sin 00a b y xy y B a a a b y xx x y y yU U Uu u u ξξηηηηξηξηξηξηξηξηξη∂∂++=−−∂∂∂∂∂∂=+++=−−∂∂∂∂∂∂∂∂++=∂∂∂∂⎛⎞∂∂∂++=⎜⎟∂∂∂∂⎝⎠1所以16y+sinx y+sinx +由于y+sinx=,所以上式可以变为关于,得标准方程2+32()22222121122121122211122200.,().02xy y a a a xy x y a y a xyy cx c x x u u uB a a x x y ξηηξηηηη++=∆=−=−=====∂∂∂++=∂∂∂∂∂∂⎛⎞=++⎜⎟∂∂∂⎝⎠2xx xy yy 221122) x u u u 解:方程的判别式所以方程为抛物型。

数学物理方程考试试题及解答

数学物理方程考试试题及解答

数学物理方程试题(一)一、填空题(每小题5分, 共20分)1.长为 的两端固定的弦的自由振动, 如果初始位移为 , 初始速度为x 2cos 。

则其定解条件是2.方程.的通解................3.已知边值问题 , 则其固有函数 =4.方程0)(222'"2=-++y n x xy y x α的通解为 二.单项选择题(每小题5分, 共15分)1. 拉普拉斯方程 的一个解是.. )(A )xy e y x u x sin ),(= (B )22),(y x y x u +=(C )221),(y x y x u += (D )22ln),(y x y x u += 2.一细杆中每点都在发散热量, 其热流密度为 ,热传导系数为 , 侧面绝热,体密度为 ,比热为 , 则热传导方程....)(A )ρc t x F x u a t u),(22222+∂∂=∂∂ (B )ρc t x F x u a t u ),(222+∂∂=∂∂ (C ) ρc t x u x F a t F ),(22222+∂∂=∂∂ (D) ρc t x u x F a t F ),(222+∂∂=∂∂ (其中ρc k a =2) 3.理想传输线上电压问题( 其中CL a 12=)的解为( ) (A ))(cos ),(at x A t x u +=ω (B )t a x A t x u ωωcos cos ),(=(C )t a x A t x u ωωsin cos ),(= (D ))(cos ),(t a x A t x u -=ω1. 三.解下列问题2. ( 本题8分) 求问题 ⎪⎩⎪⎨⎧==∂∂+∂∂x ex u yu x u 38)0,(03的解3. ( 本题8分)⎪⎪⎩⎪⎪⎨⎧=-==∂∂∂222),0(,cos 1)0,(6y y u x x u y x y x u...本题8分.求问. 的解1. 四.用适当的方法解下列问题2. ( 本题8分) 解问题 ⎪⎩⎪⎨⎧+-=∂∂=∂∂2222321)0,(x x x u x u a t u 2.( 本题8分) 解问题 ⎪⎪⎩⎪⎪⎨⎧=∂∂+=∂∂+∂∂+∂∂=∂∂==202202222222226,32)(y t uxz y u z u y u x u a t u t t 五. ( 本题10分)解混合问题:六. ( 本题15分)用分离变量法解下列混合问题:⎪⎪⎪⎩⎪⎪⎪⎨⎧=∂∂-===∂∂=∂∂=xt u x x x u t u t u x u a t u t 2sin 3,)(2)0,(0),(),0(022222ππ 一.单项选择题(每小题4分, 共20分)1.(D..2.(B..3.(D..4.(D )二.填空题(每空4分, 共24分)1....2...3.. ,4.)(x X n =cos ,(0,1,2,3,)2n n x B n π= 5.通解为223(,)()()2u x t x y f x g y =++ 三.解下列问..本题7分.1. 求问题 的解解: 设 (2分)代入方程,330,1m m +==- (6分)所以解为 3(,)8x y u x t e -= (7分)2. ( 本题7分) 求问题 ⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂=∂∂=20222223,2sin )0,(x t ux x u x u a t u t 的解 解: 由达朗贝尔公式, 得211(,)[sin 2()sin 2()]322x at x at u x t x at x at d aξξ+-=++-+⎰(3分) 223cos 2sin 23at x x t a t =++ (7分)四.用适当的方法解下列问题1. .本题7分.解问.解: 设代入方程,令 2066A A a x''=⎧⎨=+⎩ 显然成立 解为 22(,)12366u x t x x a t xt =-+++2.( 本题7分) 解问题 ⎪⎪⎩⎪⎪⎨⎧=∂∂++=∂∂+∂∂+∂∂=∂∂==202202222222226,32)(y t u yz y x u z u y u x u a t u t t 解: 设 (2分)代入方程22326[(212)(12)]A Bt a y At t Bt +=++∆++∆ (4分)令 , 显然成立, 解为322222632),(t a t y t a yz y x t x u +++++=五. ( 本题7分)解混合问题:⎪⎪⎪⎩⎪⎪⎪⎨⎧===∂∂=∂∂x x u t u t u x u a t u πsin 2)0,(0),1(),0(222 解1(,){(,)}u x t L U x s -=222sin a t e x ππ-= 六. ( 本题15分)用分离变量法解下列混合问题:⎪⎪⎪⎩⎪⎪⎪⎨⎧=∂∂-===∂∂=∂∂=xt u x x x u t u t u x u a t u t 2sin 3,)(2)0,(0),(),0(022222ππ 解: 设 代入方程及边界200(0)()0T a T X X X X λλπ''⎧+=⎪''+=⎨⎪==⎩22(),sin n n n n X nx πλπ=== (cos sin )sin n n n u C ant D ant nx =+1(,)(cos sin )sin n n n u x t C ant D ant nx ∞==+∑其中 3028[1(1)]()sin n n C x x nxdx n ππππ--=-=⎰ 00(2)23sin 2sin 3(2)n n D x nxdx n aππ≠⎧⎪==⎨=⎪⎩⎰ 所以解为3138[1(1)](,)sin 2sin 2cos sin n n u x t at x ant nx a n π∞=--=+∑2009-2010学年第一学期数学物理方程试题一、 填空题(每小题4分, 共24分)1.方程.的特征线..........2.长为 的弦做微小的横振动, 、 两端固定, 且在初始时刻处于水平状态, 初始速度为 .则其定解条件.................3.方程 的通解.........4.已知边值问. .. 则其固有函数)(x X n =5.方程 的通解............6...........二. 单项选择题(每小题4分, 共20分)1.微分方程.是..)(A )三阶线性偏微分方程 (B )三阶非线性偏微分方程(C )三阶线性齐次常微分方.....(D )三阶非线性常微分方程2. 拉普拉斯方程 的一个解是.. )(A )xy e y x u x sin ),(= (B )22),(y x y x u +=(C )221),(y x y x u += (D )22ln),(y x y x u += 3.一细杆中每点都在发散热量, 其热流密度为 ,热传导系数为 , 侧面绝热,体密度为 ,比热为 , 则热传导方程....)(A )ρc t x F x u a t u),(22222+∂∂=∂∂ (B )ρc t x F x u a t u ),(222+∂∂=∂∂ (C ) ρc t x u x F a t F ),(22222+∂∂=∂∂ (D) ρc t x u x F a t F ),(222+∂∂=∂∂ (其中ρc k a =2) 4.理想传输线上电压问题(A ))(cos ),(at x A t x u +=ω (B )t a x A t x u ωωcos cos ),(=(C )t a x A t x u ωωsin cos ),(= (D ))(cos ),(t a x A t x u -=ω5.单位半径的圆板的热传导混合问题⎪⎩⎪⎨⎧=<=<∂∂+∂∂=∂∂)()0,(,),(,0),1()1()1(222ρρρρρρρf u M t u t u u u a t u 有形如( )的级数解。

数学物理方程练习题第九版(学生用)

数学物理方程练习题第九版(学生用)

u(r, π=) 2
0,
0 < r < 1,
u(1,θ )=
θ (π −θ ), 2
0<θ < π . 2
练习六
3
1.求解如下定解问题:
ut = uxx + cosπ x, (0 < x < 1, t > 0), u= x (0,t) u= x (1,t) 0, u(x,0) = 0.
2.求解如下定解问题:
《数学物理方程与特殊函数》习题
练习一
1.写出长为 L 的弦振动的边界条件和初始条件:
(1)端点 x = 0, x = L 是固定的;
(2)初始状态为 f (x) ;
(3)初始速度为 g(x) ; (4)在任何一点上,在时刻 t 时位移是有界的. 2.写出弦振动的边界条件:(1)在端点 x = 0 处,弦是移动的,由 g(t) 给出;(2) 在端点 x = L 处,弦不固定地自由移动. 3. 验证函数 u = f (xy) 是方程 xux − yu y = 0 的解,其中 f 是任意连续可微函数.
保持零度,而外圆温度保持 u0 (u0 > 0) 度,试求稳恒状态下该导热版的温度分布
规律 u(r,θ ) . 问题归结为在稳恒状态下,求解拉普拉斯方程 ∆u= uxx + uy问题:
u1r (∂r∂1r,θ= )r
∂u ∂r
0,
+ 1 ∂2=u r 2 ∂θ 2 u(r2 ,θ=)
= u(0, t) s= in t, ux (π ,t) 0,
u(x,0) = 0.
4
3. 求解以下定解问题:
= uu= (t0,tu) xx
+2ux , u= (1, t )

成都理工大学数学物理方程题库

成都理工大学数学物理方程题库

《数学物理方程》模拟试题一、填空题(3分10=30分)1.说明物理现象初始状态的条件叫( ),说明边界上的约束情况的条件叫( ),二者统称为 ( ).2.三维热传导齐次方程的一般形式是:( ) .3 .在平面极坐标系下,拉普拉斯方程算符为 ( ) .4.边界条件 是第 ( )类边界条件,其中为边界.5.设函数的傅立叶变换式为,则方程的傅立叶变换 为 ( ) .6.由贝塞尔函数的递推公式有 ( ) .7.根据勒让德多项式的表达式有= ( ).8.计算积分 ( ).9.勒让德多项式的微分表达式为( ) .10.二维拉普拉斯方程的基本解是( ) .⨯f u nuS=+∂∂)(σS ),(t x u ),(t U ω22222x u a t u ∂∂=∂∂=)(0x J dxd)(31)(3202x P x P +=⎰-dx x P 2112)]([)(1x P二、试用分离变量法求以下定解问题(30分):1.2.⎪⎪⎪⎩⎪⎪⎪⎨⎧<<=∂∂== =><<∂∂=∂∂====30,0,3,0 0,30,2322222,0xtuxxtxxututtxuuu⎪⎪⎪⎩⎪⎪⎪⎨⎧===><<∂∂=∂∂===xtxxutuuuutxx2,0,0,40,4223.⎪⎪⎪⎩⎪⎪⎪⎨⎧<<=∂∂===><<+∂∂=∂∂====20,0,8,00,20,162002022222x t u t x x ut u t t x x u u u三、用达朗贝尔公式求解下列一维波动方程的初值问题(10分)四、用积分变换法求解下列定解问题(10分):⎪⎩⎪⎨⎧=∂∂=>+∞<<-∞+∂∂=∂∂==0,2sin 0,,cos 0022222t t t u x u t x x x u a t u ⎪⎪⎩⎪⎪⎨⎧=+=>>=∂∂∂==,1,10,0,1002y x u y u y x y x u五、利用贝赛尔函数的递推公式证明下式(10分):)(1)()('0''02x J xx J x J -=六、在半径为1的球内求调和函数,使它在球面上满足,即所提问题归结为以下定解问题(10分):(本题的只与有关,与无关)u θ21cos ==r u .0,12cos 3,0,10,0)(sin sin 1)(11222πθθπθθθθθ≤≤+=≤≤<<=∂∂∂∂+∂∂∂∂=r u r ur r u r r r u θ,r ϕ《数学物理方程》模拟试题参考答案一、 填空题:1.初始条件,边值条件,定解条件.2. 3.. 4. 三.5..6..7..8..9.. 10..二、试用分离变量法求以下定解问题1.解 令,代入原方程中得到两个常微分方程:,,由边界条件得到,对的情况讨论,只有当时才有非零解,令,得到为特征值,特征函数,再解,得到,于是再由初始条件得到,所以原定解问题的解为2. 解 令,代入原方程中得到两个常微分方程:,,由边界条件得到,对的情况讨论,只有当时才有非零解,令,得到)(2222222zu y u x u a t u ∂∂+∂∂+∂∂=∂∂01)(1222=∂∂+∂∂∂∂θρρρρρu u U a dt U d 2222ω-=)(1x J -2x 52)1(212-x dxd 2020)()(1lny y x x u -+-=)()(),(t T x X t x u =0)()(2''=+t T a t T λ0)()(''=+x X x X λ0)3()0(==X X λ0>λ2βλ=22223πβλn ==3s i n )(πn B x X n n =)(t T 32s i n32c o s )(;;t n D t n C t T n n n ππ+=,3s i n )32s i n 32c o s (),(1xn t n D t n C t x u n n n πππ+=∑∞=0,)1(183sin 332130=-==+⎰n n n D n xdx n x C ππ,3s i n )32c o s )1(18(),(11xn t n n t x u n n πππ+∞=-=∑)()(),(t T x X t x u =0)()('=+t T t T λ0)()(''=+x X x X λ0)4()0(==X X λ0>λ2βλ=为特征值,特征函数,再解,得到,于是再由初始条件得到,所以原定解问题的解为 3.解 由于边界条件和自由项均与t 无关,令,代入原方程中,将方程与边界条件同时齐次化。

数学物理方程习题解答案

数学物理方程习题解答案

数学物理方程习题解习题一1, 验证下面两个函数:(,)(,)sin x u x y u x y e y ==都是方程0xx yy u u +=的解。

证明:(1)(,)u x y =因为32222222222222223222222222222222222222222211()22()2()()11()22()2()()0()()x xx y yy xx yy x u x x y x y x y x x x y u x y x y yu y x y x y x y y y y x u x y x y x y y x u u x y x y =-⋅⋅=-+++-⋅-=-=++=-⋅⋅=-+++-⋅-=-=++--+=+=++所以(,)lnu x y =是方程0xx yy u u +=的解。

(2)(,)sin x u x y e y = 因为sin ,sin cos ,sin x x x xx xxy yy u y e u y e u e y u e y=⋅=⋅=⋅=-⋅所以 s i ns i n 0x xxx yy u u e y e y +=-= (,)sin x u x y e y =是方程0xx yy u u +=的解。

2,证明:()()u f x g y =满足方程: 0xy x y uu u u -= ,其中f 和g 都是任意的二次可微函数。

证明:因为()()u f x g y =所以()(),()()()()()()()()()()()()0x y xy xy x y u g y f x u f x g y u f x g y uu u u f x g y f x g y g y f x f x g y ''=⋅=⋅''=⋅''''-=⋅-⋅⋅=得证。

3, 已知解的形式为(,)()u x y f x y λ=+,其中λ是一个待定的常数,求方程 430xx xy yy u u u -+= 的通解。

数学物理方程第5章习题及答案

数学物理方程第5章习题及答案

11.设 {(x, y) | x2 y2 R2, y 0}, 考虑半圆域狄利克雷问题
u 0, x
u(x, y) (x, y),(x, y)
应用对称法求区域 上的格林函数。
解:该问题所求格林函数应满足
G (P, P0 ), P
G(P, P0 ) 0, P B(圆周) G(P, P0 ) 0, P L(x轴上的边界)
C1
1
4
解为 u 1
4 r
方法二: 本题中u只与r有关,则
所以
uxx
u yy
+uzz
=
1 r
(2ur
rurr )
2ur rurr 0 2rur r 2urr 0 (r 2ur )r 0 r 2ur C
ur
C r2
u
C1
1 r
C2
随后求解过程与方法一相同。
注:在球面坐标系中
uxx
记 G \ B ,则 G B ,在格林第二公式
(uv vu)d
(u
v n
v
u )ds n
中,令 v (P, P0 ),注意到 0 ,则有
ud
G
(u
G
n
u )ds n

ud (u u )ds (u u )ds
G
n n
B n n
在圆周B 上有
( 1
随后求解过程与方法一相同。
(3)uxx uyy +uzz =0,r 0
解:方法一: 三维拉普拉斯方程的基本解表示通解
1 u C1 r C2
lim u(r)=0
r
C2
0
u n |B(0, )
u n
B(0, )

数学物理方程题库

数学物理方程题库
2
1
2) x 2 u xx + 2 xy u xy + y 2 u yy = 0 解 : 方 程 的 判 别 式 ∆ = a12 2 − a11 a 22 = ( xy ) − x 2 y 2 = 0. 所以方程为抛物型。 该方程的一组特征微分方程为 dy a12 y = = ,解 这 个 微 分 方 程 得 到 : dx a11 x
x
' 对上式积分得,a ⎡ f x − f x = − a ϕ ⎤ ( ) ( ) 1 2 ⎣ ⎦ ∫ ( x) dξ + c
x0
⎧ ϕ ( x) 1 x ' c − ∫ ϕ ( x) dξ + ⎪ f1 ( x) = 2 2 x0 2a ⎪ 于是得到, ⎨ x ⎪ f x = ϕ ( x) + 1 ϕ' x dξ − c ( ) ∫ ⎪ 2( ) 2 2 2a x0 ⎩ ⎧ ϕ ( x + at ) 1 x+at ' c f x + at = − ϕ x d ξ + ) ( ) ⎪ 1( ∫ 2 2 2a x0 ⎪ ⇒⎨ x0 c ⎪ f x − at = ϕ ( x − at ) + 1 ' ϕ x d ξ − ( ) ( ) ∫at ⎪ 2 2 2 2a x − ( ) ⎩ ⇒ u ( x,t) = f1 ( x + at ) + f2 ( x − at ) 1 1 = ⎡ ϕ x + at + ϕ x − at ⎤ − ϕ ' (ξ ) dξ ( ) ( ) ⎣ ⎦ ∫ 2 2 x−at = ϕ ( x − at )
2 ⎧ ⎪utt = a uxx ( −∞ < x < ∞) ⎨ ' u x ,0 = ϕ x , u x ,0 = − a ϕ ( ) ( ) ( ) ( x) ⎪ t ⎩ 根据题意,令u( x,t) = f1 ( x + at ) + f2 ( x − at )

数学物理方程期末考试题及答案

数学物理方程期末考试题及答案

数学物理方程期末考试题及答案一、选择题(每题2分,共10分)1. 以下哪一项不是数学物理方程的特点?A. 连续性B. 离散性C. 线性D. 非线性答案:B2. 波方程是描述什么的方程?A. 热传导B. 电磁波C. 机械波D. 流体动力学答案:C3. 拉普拉斯方程通常出现在哪种物理现象中?A. 热传导B. 流体流动C. 电磁场D. 弹性力学答案:C4. 以下哪个不是偏微分方程的解的性质?A. 唯一性B. 线性C. 稳定性D. 离散性答案:D5. 波动方程的解通常表示什么?A. 温度分布B. 电荷分布C. 压力分布D. 位移分布答案:D二、填空题(每空2分,共20分)6. 波动方程的基本形式是 _______。

答案:\( \frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u \)7. 热传导方程,也称为________方程。

答案:傅里叶8. 拉普拉斯方程 \( \nabla^2 \phi = 0 \) 在静电学中描述的是________。

答案:电势9. 边界条件通常分为________和________。

答案:狄利克雷边界条件;诺伊曼边界条件10. 波动方程的一般解可以表示为________和________的叠加。

答案:基频解;高阶谐波三、简答题(每题10分,共30分)11. 解释什么是边界层的概念,并给出一个实际应用的例子。

答案:边界层是流体力学中的一个概念,指的是流体靠近物体表面处的一层非常薄的流体,其中速度梯度很大。

在边界层内,流体的速度从物体表面的零速度逐渐增加到与外部流体速度相匹配。

一个实际应用的例子是飞机的机翼,边界层的厚度和特性对飞机的升力和阻力有重要影响。

12. 描述什么是格林函数,并解释它在解决偏微分方程中的作用。

答案:格林函数是一种数学工具,用于解决线性偏微分方程。

它是一个特定的函数,当它与方程的算子相乘时,结果是一个狄利克雷问题,其解是原始方程的一个解。

数学物理方程 习题2

数学物理方程 习题2

数学物理方程习题2
1.一长为L的弹性体,固定其一端,而另一端沿其轴线方向拉长h后即放手,
让其作纵振动,试导出定解问题。

2.长为L的均匀细杆,侧面绝缘,一端温度为0,另一端有恒定热源q进入(即
单位时间内通过单位面积流入的热量),杆的初始温度分布为1
2
x(L−x),
试写出相应的定解问题。

3.设有一长为L的均匀柔软的弦作微小横幅振动,其平衡位置是x轴的区
间[0,L],让u表示横位移,弦的线密度为ρ,张力为T.在振动过程中受到一阻力,阻力的大小与位移速度成正比,比例系数为k,设初始位移为Φ(x),初始速度为0.在x=0处固定,在x=L处有一弹性支承,弹性强度为k,试写出弦的位移u(x,t)所满足的定解问题。

1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

σf 4dSdt.
根据热量平衡有 故所求边界条件为
−k
∂u ∂n
dSdt
=
σu4dSdt

σf
4dSdt.
−k
∂u ∂n
=
σ(u4
− f 4).
齐海涛 (SDU)
数学物理方程
2012-10-3 12 / 49
1. 热传导方程及其定解问题的导出 2. 初边值问题的分离变量法 3. 柯西问题 4. 极值原理、定解问题解的唯一性和稳定性 5. 解的渐近性态
dQ = −βQ, dt Q(0) = Q0,
⇒ Q(t) = Q0e−βt.
易知 t1 到 t2 时刻, 砼内任一区域 Ω 中的热量的增加等于从 Ω 外部流入 Ω 的热量及砼中的水化热之和, 即
齐海涛 (SDU)
数学物理方程
2012-10-3 7 / 49
热传导方程及其定解问题的导出
∫ t2 cρ ∂u dtdxdydz =
.
热传导方程
.
Heat Equations
齐海涛
山东大学(威海)数学与统计学院
htqisdu@
齐海涛 (SDU)
数学物理方程
2012-10-3 1 / 49
目录
1. 热传导方程及其定解问题的导出 2. 初边值问题的分离变量法 3. 柯西问题 4. 极值原理、定解问题解的唯一性和稳定性 5. 解的渐近性态
热传导方程及其定解问题的导出
.E.xample 1.2
.试直接推导扩散过程所满足的微分方程.
解: 设 N(x, y, z, t) 表示在时刻 t, (x, y, z) 点处扩散物质的浓度, D(x, y, z) 为 扩散系数, 在无穷小时间段 dt 内, 通过无穷小曲面块 dS 的质量为
dm
=
−D(x,
解: ∑∞
u(x, t) = Cke−k2π2t sin kπx.
k=1
Ck = 2 ∫
1

2
ξ sin kπξdξ +
1(1 − ξ) sin kπξdξ
=
0
4 kπ k2π2 sin 2
=
1 2
0,
4(−1)n (2n + 1)2π2
,
k = 2n, k = 2n + 1,
n = 0, 1, 2, . . .
齐海涛 (SDU)
数学物理方程
2012-10-3 9 / 49
热传导方程及其定解问题的导出
解: 与第1题类似, 取导线轴为 x 轴, 在时刻 t1 到 t2 介于 [x1, x2] 的导线段 的热量增加为: 从导线的其它部分流入的热量, 从侧面流入的热量以及电流通
过 [x1, x2] 这段产生的热量之和, 即
dQ1 = −k1(u − u1)πl∆x;
单位时间从 x 处, x + ∆x 处流入的热量为
dQ2
=
−k(x)
∂u ∂x
(x,
t)
·
πl2 4
,
dQ3
=
k(x
+
∂u ∆x) ∂x (x
+
∆x,
t)
·
πl2 4
,
齐海涛 (SDU)
数学物理方程
2012-10-3 3 / 49
热传导方程及其定解问题的导出
另外, 从时刻 t1 到 t2, Ω 中该物质的增加为
[N(x, y, z, t2) − N(x, y, z, t1)]dxdydz =

∫ t2 ∂N dtdxdydz. Ω t1 ∂t
根据质量守恒, 并注意到 Ω, t1, t2 的任意性, 得所求方程为
∂N ∂t
=
∂ ∂x
( ∂N ) D ∂x
y,
z)
∂N ∂n
dSdt.
因此从时刻 t1 到 t2 流入区域 Ω (Γ 为 Ω 的表面) 的质量为
∫ t2
D(x, y, z) ∂N dSdt = ∫ t2
t1
Γ
∂n
t1
div(DgradN)dxdydzdt.

齐海涛 (SDU)
数学物理方程
2012-10-3 5 / 49
热传导方程及其定解问题的导出
用分离变量法求解热传导方程的初边值问题:
.
ut = uxx u(x, 0) =
({t
> 0, x, 1−
0< x,
x
0
1 2
< 1), <x≤ <x<
1 2
,
1,
u(0, t) = u(1, t) = 0 (t > 0).
齐海涛 (SDU)
数学物理方程
2012-10-3 15 / 49
初边值问题的分离变量法
齐海涛 (SDU)
数学物理方程
2012-10-3 2 / 49
1. 热传导方程及其定解问题的导出 2. 初边值问题的分离变量法 3. 柯西问题 4. 极值原理、定解问题解的唯一性和稳定性 5. 解的渐近性态
齐海涛 (SDU)
数学物理方程
2012-10-3 3 / 49
热传导方程及其定解问题的导出
故单位时间流入 (x, x + ∆x) 的热量为
( ∂
) ∂u
πl2
dQ = dQ1 + dQ2 + dQ3 = ∂x
k(x) ∂x
·
x∗
4 ∆x − k1(u − u1)πl∆x.
综上, 从时刻 t1 到 t2 流入位于 [x1, x2] 杆段的热量为
∫ t2
t1
∫ x2
x1
[ ∂ ∂x
(
)
∂u
k(x) ∂x
πl2 4

k1(u

] u1)πl dxdt.
而在这段时间内 [x1, x2] 杆段内各点温度从 u(x, t1) 变到 u(x, t2), 其吸收热量

∫ x2
x1
cρ(u(x, t2)

u(x,
t1
))
πl2 4
dx
=
∫ t2
t1
∫ x2
x1
πl2 4

∂u ∂t
dxdt.
根据热量守恒, 并注意到 x1, x2, t1, t2 的任意性, 得所求方程为
齐海涛 (SDU)
数学物理方程
2012-10-3 11 / 49
热传导方程及其定解问题的导出
.E.xample 1.5
设物体表面的绝对温度为 u, 此时它向外界辐射出去的热量依斯特藩-玻耳兹曼 (Stefan-Boltzmann) 定律正比于 u4, 即
dQ = σu4dSdt.
假设物体和周围介质之间只有热辐射而没有热传导, 又假设物体周围介质的绝 .对温度为已知函数 f(x, y, z, t), 求此时该物体热传导问题的边界条件.
初始时刻所储的热量, 则 dQ .c, 密度为 ρ, 热传导系数为dt
= −βQ, 其中 β 为正常数. 又假设砼的比热为 k, 求它在浇筑后温度 u 满足的方程.
齐海涛 (SDU)
数学物理方程
2012-10-3 7 / 49
热传导方程及其定解问题的导出
.E.xample 1.3
砼(混泥土)内部储藏着热量, 称为水化热, 在它浇筑后逐渐放出, 放热速度和

u(x,
t)
=
∑∞
4(−1)n (2n + 1)2π2
+
∂ ∂y
( ∂N ) D ∂y
+
∂ ∂z
( D
∂N ∂z
)
.
齐海涛 (SDU)
数学物理方程
2012-10-3 6 / 49
热传导方程及其定解问题的导出
.E.xample 1.3
砼(混泥土)内部储藏着热量, 称为水化热, 在它浇筑后逐渐放出, 放热速度和
它所储藏的水化热成正比. 以 Q(t) 表示它在单位体积中所储的热量, Q0 为
解: 设 u(x, t) = X(x)T(t), 则
T ′ + λa2T = 0,
X ′′ + λX = 0, X(0) = X ′(π) = 0.
⇒ λk
=
( k
+
1 )2 2
,
k = 0, 1, 2, . . .
齐海涛 (SDU)
数学物理方程
2012-10-3 13 / 49
初边值问题的分离变量法
齐海涛 (SDU)
数学物理方程
2012-10-3 13 / 49
初边值问题的分离变量法
.E.xample 2.1
用分离变量法求下列定解问题的解:
.
ut = a2uxx (t > 0, 0 < x < π), u(0, t) = ux(π, t) = 0 (t > 0), u(x, 0) = f(x) (0 < x < π).
t1
∂t
(Q(t1) − Q(t2))dxdydz+
Ω∫ t2
[( )
Ω( )
( )]
∂ ∂u ∂ ∂u ∂ ∂u
k + k + k dxdydzdt
t1
∂x ∂x ∂y ∂y ∂z ∂z
Ω ∫ t2 dQ
=−
dtdxdydz+
t1 dt
∫ t2 Ω
[∂
( ∂u ) k+

( ∂u ) k+

( k
解: 考察边界上的面积微元 dS. 在 dt 时间内, 经边界微元流出的热量为 (k
相关文档
最新文档