风电叶片基础知识之复合材料篇一
风力发电机叶片复合材料性能分析【论文】
风力发电机叶片复合材料性能分析摘要:风力发电机叶片是风力机捕获、利用风能的重要部件,故为了优化风力发电机的性能,现阶段已经有越来越多的研究者重视起对风力发电机叶片的性能探索。
由此本文就对风力发电机叶片中复合材料性能进行分析,不仅阐述了风力发电机及其叶片的概念与重要作用,还通过利用真空灌注工艺以及如巴氏硬度计、万能试验机等设备开展了风机叶片的材料性能实验。
关键词:风力发电机叶片;复合材料;性能分析现代社会中可持续发展的环保理念不断普及,诸如太阳能、潮汐能、风能等可再生能源逐渐占据了更重要的地位。
由此现阶段的电力企业中也逐渐改变了过去仅依靠火力发电的模式,相关的风力发电机逐渐拥有了更为广泛的应用空间。
而作为风力发电机核心技术,风机叶片技术也同样受到了更多人的注重,由此本文就对风机叶片的构成、性能、结构等方面进行了深入探索。
1.风力发电机叶片作为风力发电机中的重要部件之一,风机叶片通常可占一架风机总成本的15%到20%,这主要是由于风机叶片的质量常会影响到风机性能及其相关效益,根据相关数据显示,风机叶片每增加6%的长度,风机对风能的利用率即可提升12%左右。
一般来说,风机叶片主要是由外壳、腹板、梁帽、挡雨环、人孔盖等结构组成,再经由相关结构的结合后,风机叶片常能够具备良好的力学性能和防水性,而且相关结构的连接也在一定程度上保障了风机叶片的质量。
并且随着现阶段复合材料在风机叶片制造中的广泛应用,风机叶片的性能、质量等也得到了良好提高。
而现阶段一个制造完成的风机叶片,其中复合材料可占整个叶片90%及以上的比重,故现代的风机叶片通常不仅具备有较轻的重量,其耐腐蚀、抗疲劳等性能也较为优越,相关特点往往来源于复合材料的特性。
同时,随着复合材料的多样化发展,如夹层结构复合材料、先进复合材料等材料的应用都在不同程度上提高了风机叶片的质量。
此外,现阶段在制造风力发电机叶片时,也常会根据所制造叶片部位的不同而使用不同种类的复合材料,如在叶片外壳的制造中常会选择玻璃纤维增强树脂作为原材料,而在叶尖、叶片主梁的制造中则会选用具备更高强度的碳纤维材料,只有叶片前缘、后缘和抗剪腹等处则常会以夹层结构复合材料为主要原材料 [1] 。
风机叶片材料
风机叶片材料、设计与工艺简介复合材料风机叶片是风力发电系统的关键动部件,直接阻碍着整个系统的性能,并要具有长期在户外自然环境条件下利用的耐候性和合理的价钱。
因此,叶片的材料、设计和制造质量水平十分重要,被视为风力发电系统的关键技术和技术水平代表。
阻碍风机叶片相关性能的因素要紧有原材料、风机叶片设计及叶片的制造工艺三种。
一风机叶片的原料目前的风力发电机叶片大体上是由聚酯树脂、乙烯基树脂和环氧树脂等热固性基体树脂与E-玻璃纤维、S-玻璃纤维、碳纤维等增强材料,通过手工铺放或树脂注入等成型工艺复合而成。
关于同一种基体树脂来讲,采纳玻璃纤维增强的复合材料制造的叶片的强度和刚度的性能要差于采纳碳纤维增强的复合材料制造的叶片的性能。
可是,碳纤维的价钱目前是玻璃纤维的10左右。
由于价钱的因素,目前的叶片制造采纳的增强材料要紧以玻璃纤维为主。
随着叶片长度不断增加,叶片对增强材料的强度和刚性等性能也提出了新的要求,玻璃纤维在大型复合材料叶片制造中慢慢显现性能方面的不足。
为了保证叶片能够平安的承担风温度等外界载荷,风机叶片能够采纳玻璃纤维/碳纤维混杂复合材料结构,尤其是在翼缘等对材料强度和刚度要求较高的部位,那么利用碳纤维作为增强材料。
如此,不仅能够提高叶片的承载能力,由于碳纤维具有导电性,也能够有效地幸免雷击对叶片造成的损伤。
风电机组在工作进程中,风机叶片要经受壮大的风载荷、气体冲洗、砂石粒子冲击、紫外线照射等外界的作用。
为了提高复合材料叶片的承担载荷、耐侵蚀和耐冲洗等性能,必需对树脂基体系统进行精心设计和改良,采纳性能优异的环氧树脂代替不饱和聚酯树脂,改善玻璃纤维/树脂界面的粘结性能,提高叶片的承载能力,扩大玻璃纤维在大型叶片中的应用范围。
同时,为了提高复合材料叶片在恶劣工作环境中长期利用性能,能够采纳耐紫外线辐射的新型环氧树脂系统。
二风机叶片的设技以最小的叶片重量取得最大的叶片面积,使得叶片具有更高的捕风能力,叶片的优化设计显得十分重要,尤其是符合空气动力学要求的大型复合材料叶片的最正确外形设计和结构优化设计的重要性尤其突出,它是实现叶片的材料/工艺有效结合的软件支撑。
复合材料风电辅材及工艺
复合材料风电叶片辅材及工艺By 2010年,可以说是我国海上风电开始有序发展的“元年”。
对于当前业界高度关注的海上风电特许权招标问题,国家能源局可再生能源司副司长史立山对记者表示,加快海上风电建设的条件已基本具备,海上风电将是今后风电发展的重点之一。
由此可见,未来风电项目对风电叶片的要求将会更高,更轻质的大型复合材料叶片将会受到市场的青睐。
复合材料的市场机遇风机叶片用主要材料体系包括各种增强材料、基体材料、夹层泡沫、胶粘剂和各种辅助材料等。
增强材料对于同一种基体树脂来讲,采用玻璃纤维增强的复合材料制造的叶片的强度和刚度的性能要差于采用碳纤维增强的复合材料制造的叶片的性能。
但是,碳纤维的价格目前是玻璃纤维的10倍左右。
由于价格的因素,目前的叶片制造采用的增强材料主要以玻璃纤维为主。
因此玻璃纤维仍是风机叶片制造未来主要的增强材料。
随着叶片长度不断增加,叶片对增强材料的强度和刚性等性能也提出了新的要求,玻璃纤维在大型复合材料叶片制造中逐渐出现性能方面的不足。
为了保证叶片能够安全的承担风温度等外界载荷,风机叶片可以采用玻璃纤维/碳纤维混杂复合材料结构,尤其是在翼缘等对材料强度和刚度要求较高的部位,则使用碳纤维作为增强材料。
这样,不仅可以提高叶片的承载能力,由于碳纤维具有导电性,也可以有效地避免雷击对叶片造成的损伤。
因此碳纤维在中国无法突破技术瓶颈的前提下,这种与玻璃纤维混搭增强也是一个重要市场。
其他增强材料方面,我国竹纤维增强风电叶片已经实现批量生产,因此天然纤维也将分得风电叶片市场的一杯羹。
基体材料目前的风力发电机叶片基本上是由聚酯树脂、乙烯基树脂和环氧树脂等热固性基体树脂与玻璃纤维、碳纤维等增强材料,通过手工铺放或树脂注入等成型工艺复合而成。
为了提高复合材料叶片的承担载荷、耐腐蚀和耐冲刷等性能,必须对树脂基体系统进行精心设计和改进,采用性能优异的环氧树脂代替不饱和聚酯树脂,改善玻璃纤维/树脂界面的粘结性能,提高叶片的承载能力,扩大玻璃纤维在大型叶片中的应用范围。
多轴向经编复合材料在风电叶片制造中的应用
多轴向经编复合材料在风电叶片制造中的应用摘要:风力作为我们国家非常重要的能源之一,一直以来为我们的国家发展贡献了很多力量,尤其我们国家目前大力发展清洁能源,风力发电越发引起人们的重视,那么如何快速地推动风电叶片制造,成为了我们国家发展风力发电行业的重中之重,多轴向经编复合材料便给我们国家风力发电行业,尤其是风力发电叶片的制造提高了一个新的思路。
关键词:风能;风力发电;叶片制造研发;多轴向经编复合材料一、风力发电市场前景一直以来传统的火力发电的模式一直我国主要的发电方式。
并且我们国家地大物博,煤炭保有量,天然气保有量等都较多,可以支撑起我们国家的火力发电事业。
但是长期以来的火力发电,严重影响着我们国家的生态环境。
我们国家大片的树林被砍伐,一片片青山,成为平地,泥石流,雾霾,沙尘暴,臭氧层被破坏等等各种自然灾害,让我们了解到火机发电的弊端。
那就是对生态的破坏几乎是毁灭性的,严重影响了我国居民的身心健康。
在这样的大背景下,我国政府开始大力发现新型能源,同时也大力开发风力发电。
对于风力发电我们国家出台了各种扶持政策,对于表现较好的企业会给与扶持资金,这样的政策扶持和资金支持,将营造一个良好的风力发电的成长环境,所以就此而言,风力发电可谓是前景无限。
我国优越的地理环境也为风力发电提供了更多的可能,我们可以在不同的位置选择最适合的发电场所,满足人民用电的需求。
二、多轴向经编复合材料的优势2.1使用多轴向经编复合材料,可以减轻叶片重量目前我们国家的风力发电机的叶片普遍使用的都是金属材质,所以导致了叶片的重量很大,增加了叶片的运输难度,同时也不利于叶片的安装和使用,但是使用多轴向经编复合材料,可以很显著的减轻叶片的重量,更加有利于安装,同时也大大节约了人力成本,并且对于叶片的正常使用没有任何影响。
2.2使用多轴向经编复合材料,可以显著提高发电效率使用多轴向经编复合材料,有效的减轻了叶片的重量,这样可以让我们在进行叶片的设计过程中,将更多的精力应用到叶片的结构中,从而可以更加显著的捕捉风能,并且使用多轴向经编复合材料,减轻质量以后,风力的推动也可以使使叶片转动的圈数大大的增加,从而提高了电能的产出,节约了大量的风能。
复合材料在风力机叶片上的应用
复合材料在风力机叶片上的应用摘要:目前,我国电力事业发展迅速,风力发电的快速发展也推动了相关技术水平的提高。
文章主要对复合材料在风力机叶片上的应用展开分析与研究。
关键词:复合材料;风力机;风力叶片;材料应用引言在风能利用过程中符合材料风力机片叶是主要部件之一,铺层结构相对较为复杂,叶片整体结构性能会在一定程度上受到纤维布所占铺层厚度影响,在设计不同方向纤维布铺设层厚度过程中应该保证其能够实现最优化处理。
在风力机的运行过程中,叶片受到周围流场的影响产生变形,这一变形又会使流场发生改变,这种流体与固体之间的相互作用会对风力机的正常运转产生极大的影响,因此分析风力机叶片的流固耦合问题十分重要。
1风电叶片的结构及常见缺欠风力叶片是复合材料制成的薄壳结构,一般由根部、外壳和加强梁等3部分组成,复合材料在整个风电叶片中的重量一般占到90%以上。
复合材料叶片最初采用的是廉价的玻璃纤维增强不饱和聚酯树脂体系,直到现在其仍是大部分叶片的制造材料。
随着叶片长度的不断增大,自身重量的不断增加,这种体系在某些场合已不能满足要求,于是碳纤维增强结构逐渐得到应用。
对于玻璃纤维复合材料叶片,一般采用开模工艺,尤其手糊黏接方式较多,其本身在加工过程中会产生气孔、干纤、褶皱、纤维断裂以及夹杂等缺欠,在与梁的合模过程中还会产生缺胶、脱黏等缺欠。
2叶片铺层结构模型目前,风力机叶片主要由增强玻璃纤维布材料复合而成,其目的是在保证叶片强度和刚度的前提下,减轻叶片的质量和载荷。
本文以某1.5MW叶片为例对叶片的结构模型和强度计算方法进行研究,1.5MW叶片的长度为38m,重量为7.9t,所用的复合材料及其规格参数和力学性能如表1所示,其中,Vf为纤维的体积分数,Ex为纤维主方向弹性模量,Ey为纤维次方向弹性模量,νxy为纤维面内泊松比,Gxy为纤维面内剪切弹性模量。
表1 材料力学性能Table1Mechanicalpropertiesofthebladematerial叶片各截面主要采用主梁梁帽、腹板、翼面,以及前、后缘增强的基本结构形式,其中主梁是主要构件,承受大部分的挥舞和摆振方向的载荷,并将其传递到叶片根部。
复合材料在风机叶片中的应用及能力认可现状
摘要本文简述了风机叶片用复合材料中不同纤维增强复合材料的优缺点,以及未来增强体和基体应用的发展趋势,同时总结了CNAS认可的风机叶片以及叶片中材料性能检测的认可现状。
认为碳纤维和玻璃纤维的混杂纤维、高性能纤维等增强体,以及聚氨酯树脂、热塑性树脂或可回收树脂等基体是未来风机叶片用复合材料的研究方向;同时通过总结分析风机叶片检测实验室在认可过程中的常见问题,为后续相关实验室认可提供了关注点。
风能是可再生的清洁能源,风力发电作为一种优质的发电方式,能够有效改善电力行业对石油、煤炭等不可再生能源的依赖,对于生态环境保护和适应时代发展具有重要的意义。
风力发电非常环保,且风能蕴量巨大,因此日益受到世界各国的重视。
根据国家能源局的统计数据显示,截止到2023年7月底我国风电装机容量约3.9亿kW,同比增长14.3%。
随着风机单机容量的不断扩大,风机叶片的长度也要求不断增加。
风力机叶片作为风能发电机中的核心部件,其良好的设计、可靠的质量和优越的性能是保证机组正常运行的重要因素。
叶片在工作中要承受多种外部环境的影响,因此要求叶片材质具有良好的强度、刚度和韧性以及抗风沙、抗冲击、耐腐蚀等性能。
目前,纤维增强复合材料在风力机叶片上得到了广泛的应用,其质量轻、强度高、耐久性好,已成为大型风力发电机叶片的首选材料。
1玻璃钢复合材料玻璃纤维增强热固性树脂复合材料,俗称玻璃钢,是一种以玻璃纤维或其制品为增强体,以热固性树脂为基体,并通过一定的成型工艺复合成的材料。
玻璃钢具有成本低、强度高、重量轻、耐腐蚀、易加工等特点,被广泛应用于风力发电机叶片的制造。
常见的玻璃纤维分为E型和S型,E型玻璃纤维也称无碱玻璃纤维,是一种硼硅酸盐玻璃,因其良好的电气绝缘性和机械性能,被大量用于生产玻璃钢。
S型玻璃纤维是一种特制的抗拉强度极高的硅酸铝-镁玻璃纤维,它的模量比E型玻璃纤维材料高出了18%;它的纤维拉伸强度为4600MPa,比E型玻璃纤维的3450MPa 增加了33%。
风电叶片材料(免费)
风电叶片材料(一):不饱和树脂1.不饱和聚酯树脂的定义人类最早发现的树脂是从树上分泌物中提炼出来的脂状物,如松香等,这是“脂”前有“树”的原因。
直到1906年第一次用人工合成了酚醛树脂,才开辟了人工合成树脂的新纪元。
1942年美国橡胶公司首先投产不饱和聚酯树脂,后来把未经加工的任何高聚物都称作树脂。
但是早就与“树”无关了。
树脂又分为热塑性树脂和热固性树脂两大类。
对于加热熔化冷却变固,而且可以反复进行的可熔的树脂叫做热塑性树脂,如聚氯乙烯树脂(PVC)、聚乙烯树脂(PE)等;对于加热固化以后不再可逆,成为既不溶解,又不熔化的固体,叫做热固性树脂,如酚醛树脂、环氧树脂、不饱和聚酯树脂等。
“聚酯”是相对于“酚醛”“环氧”等树脂而区分的含有酯键的一类高分子化合物。
这种高分子化合物是由二元酸和二元醇经缩聚反应而生成的,而这种高分子化合物中含有不饱和双键时,就称为不饱和聚酯,这种不饱和聚酯溶解于有聚合能力的单体中(一般为苯乙烯)而成为一种粘稠液体时,称为不饱和聚酯树脂(英文名Unsaturated Polyester Resin 简称UPR)。
因此,不饱和聚酯树脂可以定义为由饱和的或不饱和的二元酸与饱和的或不饱和的二元醇缩聚而成的线型高分子化合物溶解于单体(通常用苯乙烯)中而成的粘稠的液体。
2.不饱和聚酯树脂的特性不饱和聚酯树脂是一种热固性树脂,当其在热或引发剂的作用下,可固化成为一种不溶不融的高分子网状聚合物。
但这种聚合物机械强度很低,不能满足大部分使用的要求,当用玻璃纤维增强时可成为一种复合材料,俗称“玻璃钢”(英文名Fiber Reinforced Plastics 简称FRP)。
“玻璃钢”的机械强度等各方面性能与树脂浇铸体相比有了很大的提高。
以不饱和树脂为基材的玻璃钢(UPR-FRP)具有以下特性:1)耐腐蚀性能良好UPR-FRP是一种良好的耐腐蚀性材料,能耐一般浓度的酸、碱、盐类,大部分有机溶剂、海水、大气、油类,对微生物的抵抗力也很强,正广泛应用于石油、化工、农药、医药、染料、电镀、电解、冶炼、轻工等国民经济诸领域,发挥着其他材料无法替代的作用。
风机叶片复合材料
风机叶片复合材料连云港的中复连众复合材料集团有限公司,是一家集复合材料产品开发、设计、生产、服务于一体,以风力发电机叶片、玻璃钢管道、贮罐和高压气瓶、高压管道为主打产品的高新技术企业。
机缘巧合之下,我有幸简单参观到这个公司生产的风机叶片。
我第一次见到这些放置在长拖车上的长达40米的叶片时,我感到非常惊讶,刚好老师在课上播放了风机叶片安装过程的视频,更加激起了我的好奇心,很想知道它们是怎么生产出来的。
下面是我查阅的一些资料。
目前的风力发电机叶片基本上是由聚酯树脂、乙烯基树脂和环氧树脂等热固性基体树脂与E-玻璃纤维、S-玻璃纤维、碳纤维等增强材料,通过手工铺放或树脂注入等成型工艺复合而成。
1玻璃纤维复合材料叶片玻璃纤维增强聚脂树脂和玻璃纤维增强环氧树脂是目前制造风机叶片的主要材料,E-玻纤则是主要的增强材料,研究表明,采用射电频率等离子体沉积去涂覆E-玻纤,可降低纤维间的微振磨损,其耐拉伸疲劳强度就可以达到碳纤维的水平。
但是,E2玻纤密度较大,随着叶片长度的增加,叶片的质量也越来越重,叶片越重,对发电机和塔座要求就越高,同时也影响到发电机组的性能和效率,因此,需要寻找更好材料以适应大型叶片发展的要求。
2碳纤维复合材料叶片研究表明,碳纤维(CF)复合材料叶片的刚度是玻璃纤维复合材料叶片的2~3倍,大型叶片采用碳纤维作为增强材料更能充分发挥其轻质高强的优点。
但由于其价格昂贵,限制了它在风力发电上的大规模应用。
因此,全球各大复合材料公司正在从原材料、工艺技术、质量控制等各方面进行深入研究,以求降低成本。
现在碳纤维轴已广泛应用于转动叶片根部,因为制动时比相应的钢轴要轻得多,但在发展更大功率风力发电装置和更长转子叶片时,采用性能更好的碳纤维复合材料势在必行。
3碳纤维/轻木/玻纤混杂复合材料叶片当叶片长度增加时,质量的增加要高于能量的取得,因此碳纤维或碳/玻混杂纤维的使用对抑制质量的增大是必要的。
在制造大型叶片时,采用玻纤、轻木和PVC相结合的方法可以在保证刚度和强度的同时减轻叶片的质量。
新型复合材料在风机叶片中的应用
新型复合材料在风机叶片中的应用【摘要】随着叶片尺寸的不断增大必将造成叶片重量越来越大,对叶片的强度和刚度有严格的要求,以避免叶尖在极端风载下出现碰撞塔架的情况。
复合材料高强度轻质量的优势却很好的满足了大型叶片的要求。
【关键词】复合材料;风力发电机1.引言风电技术发展的一个重要标志就是风力发电机组的单机容量不断提高。
自1997年以来,在欧洲特别是丹麦、德国、西班牙等国家风电技术发展很快,与过去比在单机容量方面也大大的得到提高。
当前世界风机的主力机型是1.5MW—3MW,平均单机容量也达到1MW。
风力发电可分为海上风电和内陆风电,海上风电发展与内陆风力发电相比,海上风力发电的工作风速普遍比较高,从发电量来看一般海上风场和陆上风场相比都要高出几乎0.2到0.4倍,并且对陆上景观的影响也比较小。
目前,风电技术已经能够制造出单机容量为2MW—5MW的风力机来用于海上风力发电的要求,为了满足这些条件风机叶片变得越来越长,现在已达到了40m—60m。
当风力机组装机容量更大时叶片的长度还会随之增加。
在丹麦筹建的RISOE新叶片试验中心中可以进行长度高达100m的叶片结构试验,这也成为风力发电机叶片的研究趋势。
如此巨大的叶片尺寸使得其对制造材料和工艺有了更高的要求。
2.新型材料在风机叶片中的应用随着叶片尺寸的不断增大必将造成叶片重量越来越大。
经研究,叶片重量与长度成三次方关系。
当风力发电机组正常工作时,在重力的作用下将会对叶片产生交变荷载,这些载荷将会引起叶片本身的疲劳破坏,甚至会使整个风力发电机出现疲劳损伤。
通过叶片重量的减轻,从而可以减少对其起到支撑作用的塔架、轮毂以及机舱等结构的质量。
对于风力机组的运行、能量输出、疲劳寿命来说,风机叶片的重量都是一个重要的影响因素。
在风机运行中,对叶片的强度和刚度有严格的要求,以避免叶尖在极端风载下出现碰撞塔架的情况。
对于大型风力机来说,在必须满足强度与刚度的前提下,尽量减轻叶片自重最有效的方法就是优化叶片结构和提高所用材料的性能质量。
风电叶片复合材料失效机理及预测
风电叶片复合材料失效机理及预测一、风电叶片复合材料概述风电叶片是风力发电机组的关键部件之一,其主要作用是将风能转化为机械能,进而驱动发电机发电。
随着风电技术的不断发展,风电叶片的尺寸和功率等级也在不断增加,对叶片材料的性能要求也越来越高。
复合材料因其轻质、高强度、耐腐蚀等优点,成为风电叶片制造的首选材料。
风电叶片复合材料通常由增强材料(如玻璃纤维、碳纤维等)和基体材料(如环氧树脂、聚酯树脂等)组成,通过特定的工艺方法复合而成。
二、风电叶片复合材料失效机理风电叶片在运行过程中,会受到复杂的载荷作用,包括周期性的气动载荷、疲劳载荷以及极端天气条件下的随机载荷等。
这些载荷会导致复合材料内部应力的产生和分布,长期作用下可能会引发材料的损伤和失效。
风电叶片复合材料的失效机理主要包括以下几种:1. 疲劳损伤风电叶片在运行过程中,由于风速的不断变化,叶片会经历周期性的气动载荷作用,导致材料内部产生循环应力。
在循环应力的长期作用下,复合材料内部的纤维和基体之间可能会产生疲劳裂纹,裂纹的扩展最终可能导致叶片的断裂失效。
2. 冲击损伤风电叶片在运行或运输过程中,可能会受到冰雹、飞鸟、叶片间的碰撞等冲击载荷。
冲击载荷会导致复合材料表面或内部产生冲击损伤,如分层、脱粘、纤维断裂等,这些损伤会降低叶片的承载能力和耐久性。
3. 环境老化风电叶片长期暴露在户外环境中,会受到紫外线、湿度、温度变化等环境因素的作用,导致复合材料发生老化。
老化过程会改变材料的物理和化学性质,如树脂基体的硬化、纤维的强度降低等,从而影响叶片的整体性能。
4. 湿热环境影响风电叶片在湿热环境中运行时,水分和热量可能会渗透到复合材料内部,导致树脂基体的膨胀和软化,进而影响复合材料的力学性能。
此外,湿热环境还可能加速材料的老化过程,增加叶片失效的风险。
三、风电叶片复合材料失效预测为了确保风电叶片的安全可靠运行,对复合材料的失效进行预测和评估是非常重要的。
失效预测可以通过以下几种方法进行:1. 理论分析通过对复合材料的力学行为进行理论分析,建立材料的应力-应变关系模型,预测在不同载荷作用下材料的应力分布和损伤情况。
《叶片修复复合材料》word版
风机叶片修复材料浅谈内容摘要风力发电机组长期在恶劣的自然环境中暴露运行,不仅要承受强大的风载荷,还要经受气体冲刷、砂石粒子冲击,以及强烈的紫外线照射等外界侵蚀。
为了提高损伤修复过程中所使用复合材料的载荷、耐腐蚀和耐冲刷等性能, 必须对所使用叶片修复材料中的树脂基体系统进行精心研究和筛选, 对传统叶片修复工艺进行创新。
采用性能优异的环氧树脂, 改善玻璃纤维/树脂界面的粘结性能, 提高叶片的承载能力, 扩大玻璃纤维在大型叶片中的应用范围。
研究结果表明叶片修复过程中合理使用的复合材料完全可以达到在恶劣工作环境中长期使用的性能要求。
关键词:风力机; 叶片; 环氧树脂;引言随着风力发电机单机功率的不断提高,叶片的质量和尺寸也越来越大,对叶片的要求也越来越高:要求叶片质量轻且分布均匀,外形尺寸精度控制准确;具有最佳的疲劳强度和机械性能,能经受暴风等极端恶劣条件和随机负荷的考验;叶片旋转时的振动频率特性曲线正常,传递给整个发电系统的负荷稳定性好;耐腐蚀、抗紫外线照射和抗雷击的性能好;发电成本较低,维护费用最低。
叶片的材料越轻、强度和刚度越高,叶片抵御载荷的能力就越强,叶片就可以做得越大,它的捕风能力也就越强。
因此,轻质高强、耐蚀性好、具有可设计性的玻璃纤维增强环氧树脂复合材料是目前国内大型风机叶片生产及修复的首选材料。
本文主要探讨了风机叶片生产和修复过程中所用的主要材料玻璃纤维增强环氧树脂复合材料,以及PVC材料。
一、叶片损伤原因为了提高风机的发电效率,风机绝大多数处在地理、气候环境相对恶劣的地区,从而导致风机叶片容易遭受损伤。
其中对于风机叶片发生故障率最大的损伤原因是雷击,而且雷击往往会给风机叶片带来较严重的损伤甚至报废。
其次为风沙磨损、酸雨腐蚀,导致叶片表面出现麻点,影响风机使用寿命。
飞鸟撞击也是造成风机叶片损伤的一大杀手,由于风机所在地人眼稀少,所以飞鸟较多,飞鸟撞击往往会使风机叶片表面大面漆胶衣脱落。
大型风力机的复合材料叶片
大型风力机的复合材料叶片第一篇:大型风力机的复合材料叶片1.大型风力机的复合材料叶片随着现代风电技术的发展与日趋成熟,风力发电机组的技术沿着增大单机容量、减轻单位千瓦重量、提高转换效率的方向发展。
上世纪末,风电机组主力机型是750kW。
到2002年前后,主力机型已经达到1.5MW以上。
1997年兆瓦级机组占当年世界新增风电装机容量的9.7%,而2001年和2003年分别占到52.3%和71.4%。
海上风电场的建设要求单机容量更大的机组,欧洲已批量安装3.6MW机组,5MW机组也已安装运行。
叶片是风力机的关键部件之一,涉及气动、复合材料结构、工艺等领域。
在兆瓦级风电机组中,叶片更是技术关键。
如1.5MW主力机型风力机叶片长 34~37m,每片重6t,设计制造难度很高。
在国外叶片集中在几家专业公司生产。
最著名的叶片公司是丹麦的LM公司,是世界上唯一一家全球叶片生产商。
目前在全世界正在运行的风机叶片中1/3以上都是LM的产品。
至2000年LM已生产6万片叶片,当年生产7200片叶片,占居世界市场的45%,近来一些著名的风力机制造商也开始自己生产叶片。
大型风力机的复合材料叶片技术2.1 材料目前商品化的大型风力机叶片大多采用玻璃纤维复合材料(GRP)。
长度大于40m叶片可以采用碳/玻混杂复合材料,但由于碳纤维的价格,未能推广应用。
GRP叶片有以下特点:①可根据风力机叶片的受力特点设计强度与刚度风力机叶片主要是纵向受力,即气动弯曲和离心力,气动弯曲荷载比离心力大得多,由剪切与扭转产生的剪应力不大。
利用纤维受力为主的受力理论,可把主要纤维安排在叶片的纵向,这样就可减轻叶片的重量。
②翼型容易成型,并达到最大气动效率。
为了达到最佳气动效果,叶片具有复杂的气动外形。
在风轮的不同半径处,叶片的弦长、厚度、扭角和翼型都是不同的,如用金属制造十分困难。
GRP叶片可实现批量生产。
③叶片使用20a,要经受108次以上疲劳交变,因此材料的疲劳性能要好。
风电叶片
风电叶片材料简介环氧树脂是泛指分子中含有两个或两个以上环氧基团的有机高分子化合物,除个别外,它们的相对分子质量都不高。
环氧树脂的分子结构是以分子链中含有活泼的环氧基团为其特征,环氧基团可以位于分子链的末端、中间或成环状结构。
由于分子结构中含有活泼的环氧基团,使它们可与多种类型的固化剂发生交联反应而形成不溶、不熔的具有三向网状结构的高聚物。
[1]应用特性:1、形式多样。
各种树脂、固化剂、改性剂体系几乎可以适应各种应用对形式提出的要求,其范围可以从极低的粘度到高熔点固体。
2、固化方便。
选用各种不同的固化剂,环氧树脂体系几乎可以在0~180℃温度范围内固化。
3、粘附力强。
环氧树脂分子链中固有的极性羟基和醚键的存在,使其对各种物质具有很高的粘附力。
环氧树脂固化时的收缩性低,产生的内应力小,这也有助于提高粘附强度。
4、收缩性低。
环氧树脂和所用的固化剂的反应是通过直接加成反应或树脂分子中环氧基的开环聚合反应来进行的,没有水或其它挥发性副产物放出。
它们和不饱和聚酯树脂、酚醛树脂相比,在固化过程中显示出很低的收缩性(小于2%)。
5、力学性能。
固化后的环氧树脂体系具有优良的力学性能。
6、电性能。
固化后的环氧树脂体系是一种具有高介电性能、耐表面漏电、耐电弧的优良绝缘材料。
7、化学稳定性。
通常,固化后的环氧树脂体系具有优良的耐碱性、耐酸性和耐溶剂性。
像固化环氧体系的其它性能一样,化学稳定性也取决于所选用的树脂和固化剂。
适当地选用环氧树脂和固化剂,可以使其具有特殊的化学稳定性能。
8、尺寸稳定性。
上述的许多性能的综合,使环氧树脂体系具有突出的尺寸稳定性和耐久性。
9、耐霉菌。
固化的环氧树脂体系耐大多数霉菌,可以在苛刻的热带条件下使用。
类型分类:根据分子结构,环氧树脂大体上可分为五大类:1、缩水甘油醚类环氧树脂2、缩水甘油酯类环氧树脂3、缩水甘油胺类环氧树脂4、线型脂肪族类环氧树脂5、脂环族类环氧树脂复合材料工业上使用量最大的环氧树脂品种是上述第一类缩水甘油醚类环氧树脂,而其中又以二酚基丙烷型环氧树脂(简称双酚A型环氧树脂)为主。
复合材料风机叶片运维及修复
复合材料风机叶片运维及修复叶片是风力发电机的核心部件之一,叶片状态的好坏直接影响到整机的性能和发电效率.。
本文通过对某风电场运行中风机叶片失效分析,提出叶片故障的预控描施及如何做好运维过程管控.。
关键词:故障分析;维护管理;预控办法引言叶片是将风能转化为机械能,通过变桨装置调整桨距角,改变风力发电机组输出功率,实现控制功率输出的目的,叶片维护至关重要,有效的保养和修复能够提高叶片的使用寿命和发电效率.。
一、复合材料叶片简介叶片主材为玻璃纤维增强环氧树脂,叶片结构包括外壳、主梁帽及夹层结构的腹板,主梁帽、腹板、外壳都采用玻璃钢制作而成,叶片由两片外壳粘接而成,中间由腹板支撑,叶片外壳夹层采用轻质的Balsa木、PVC泡沫做成.。
叶片避雷系统由叶尖的铝制接闪器,和中部接闪器,(PS面和SS面分别对称).。
接闪器与铜质导线连接,连接铜导线和铝制部分的电缆采用镀层以防止铝端的电离腐蚀;叶根避雷导线直接连接于人孔盖板的铜连接板上.。
二、复合材料叶片缺陷(1)技术缺陷(1)夹芯结构缺陷或损伤分为外蒙皮缺陷或损伤、芯材缺陷或损伤、外蒙皮加芯材缺陷或损伤、外蒙皮及芯材加内蒙皮贯穿性缺陷或损伤等.。
合模前或合模后叶片内腔人能进入到的位置内蒙皮损伤、内蒙皮加芯材缺陷或损伤可等效为外蒙皮缺陷或损伤、外蒙皮加芯材缺陷或损伤.。
(2)梁帽及后缘UD缺陷及损伤主要指梁帽及后缘发白、褶皱、杂物等缺陷或损伤.。
(3)叶根玻璃钢区域缺胶及损伤主要指包围、发白、撞伤等缺陷或损伤.。
(4)叶片前、后缘缺胶:分为需要修复性缺胶和无需修复性缺胶,前缘修复性缺胶需满足:弦向缺胶位置总长度大于弦向粘接宽度的20%,且长度大于2cm;后缘修复性缺胶需满足:弦向缺胶位置总长度大于弦向粘接宽度的15%,且长度大于2cm.。
(5)腹板缺胶:分为需要修复性缺胶和无需修复性缺胶,腹板缺胶需满足:弦向粘接法兰缺胶宽度大于3cm,且轴向长度大于5cm.。
(6)叶片后缘开裂叶片后缘开裂包括I型后缘结构胶开裂与Ⅱ型后缘结构胶.。
复合材料风力发电叶片制造技术及应用现状毕业论文
复合材料风力发电叶片制造技术及应用现状[摘要]:随着世界能源危机的日益严重,风能作为一种清洁的可再生能源日益受到各国政府重视。
作为风力发电装置中的重要一员,叶片技术成为制约风力发电发展的瓶颈。
复合材料具有高的比强度、比刚度,具有金属材料无可比拟的优越性,加上耐疲劳、结构稳定、抗腐蚀、耐高温等优势,成为大型风力发电叶片的首选材料。
[关键词]:风力发电;叶片;复合材料The Manufacturing Technology and Application ofComposite Wind Turbine BladeGao Qian(Class 01,Grade 07,material formation and control engineering,school of material science and engineering,Shaanxi University of Technology,Hanzhong,723003,Shaanxi )Tutor: Ai TaotaoAbstract:With the increasingly serious world energy crisis, wind, as a kind of clean and renewable energy resources, received a lot of attention from government all over the world. Being an important member of wind power device, blade technology has become the bottleneck on the development of wind power generation. Composite, with its high specific strength, high specific stiffness, incomparable advantage of metallic material, fatigue resistance, structural stability, corrosion resistance and thermo stability, has become the preferred material in large-scale wind power blades.Key words:wind power generation; blade; composite毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
复合材料在风电叶片制造领域的应用和未来发展
一、复合材料在风电叶片中的应用 常用的结构泡沫
Balsa轻木 PET
PVC HPE
对结构泡沫的技术要求: 抗压缩强度高; 吸胶量低; 热稳定性好; 需要有适宜树脂流
动的沟槽、孔结构; 工艺切口,利于铺
放时随型。
一、复合材料在风电叶片中的应用 Balsa轻木技术要求:
序号
测试项目
主梁 叶根
蒙皮
腹板
蒙皮:双轴玻纤,轻木,PVC 主梁:单向织物(UD) 叶根:双轴织物,三轴织物 腹板:双轴织物,PVC
大型风电叶片复合材料结构示意图
一、复合材料在风电叶片中的应用 大型风电叶片中使用的5种主要原材料
树脂基体:环氧树脂,乙烯基树脂 增强材料:玻璃纤维(E玻纤,高模玻纤),碳纤维 结构芯材:PVC,Balsa轻木 粘接胶:环氧粘接胶,聚氨酯粘接胶 涂料:聚氨酯涂料
碳纤维真空灌注复合材料 1880 141 631 119 57 9.9 177 9.22 70.84 5.13
碳纤维预预浸料 2050 134 765 133 39.47 6.91 126 7.86 57.39 3.56
三、复合材料在风电叶片中应用的未来发展
碳玻混杂复合材料
纵向拉伸模量随纤维质量含量变化的曲线
单位
值
测试方法及标准
1
标准密度
2
压缩模量Eyc
3
压缩模量Eyc和Ezc
5
剪切模量Gxy和Gxz
含水率
kg/m3
GPa MPa MPa
%
ISO 845 150±22.5
(测整板样品:1220*610mm)
≥1
35‐120 ≥ 70 <12
GB/T 8813‐2008 ISO 844:2004
浅议玻璃钢复合材料及风力发电机叶片
差, 引起 了大气 的对流运 动从而形成 了 风。 据估 计在地球 上太 阳能 只有 b ) 真空导入法 百分之 二的能 量能转 化为风能 , 即使是 这样 , 其量也是 非常可观 的。 据 真空 导入 法具 有 成本 较低 、 污染 小 、 成 型效率 高等 特 点, 其 特 征 统计 全球 的风 能总量 , 是地球 上可开发利 用水能 总量的 1 0 倍。 目 前世 界 是 : 不借助外 部压 力, 仅在 外界大气压 的作用 下, 把 树 脂导入 到模 腔 中 自 然环境 正在 日 益恶 化, 其 中, 利用煤炭、 石油 、 天然 气等 燃料发电所产 进行填充 。 生的 的二氧化碳 致使 的温 室效应 是一 个重要因素 , 然而 就算是 核能 发 真空导入成型工艺在 复合材料成 型领域中得到了广泛的推 广, 在应 电, 也面 临着核废料如 何处 理的 问题 。 随 着世界 能源储量 的 日 益减少及 用领域也 被大范 围的应 用, 例如 , 航 天航空、 船舶工业, 国防工程等行业 自 然 环境 的不 断恶化 , 许 多国家都开始 加重 对清 洁新能 源和 可再生 能
浅议玻璃钢复合材料及风力发电机叶片
王海 连云港中复连众复合材料
【 摘要 】本文主要介 绍了 两点 内容。( 1 ) 风能的介 绍以及风 力发电在 用途 、 数 量来 灵活 多变地 选择成 型工艺 , 这 就突 出它 的工艺性 , 玻 璃钢 中国的发展的现 状。( 2 ) 玻 璃钢复 合材料 的特点, 以及玻 璃钢制 品在风力发 也可一次成 型, 经济效果也十分明显。 电领域常用的成型工艺; 重点讲 述了 玻 璃钢复合材 ̄ 55 -  ̄机叶片中的应用。 3 ) 玻璃钢制 品在 风力发电中的成型方法 a ) 手糊法 【 关键 词】 玻 璃钢; 风机叶片; 风力发电 手糊 法是玻璃 钢成型 工艺 中最简易、 最 基本的 。 手糊法主要针对 整 我们 知道 的风它是 地球 上一种 自 然 的现象 , 是 由太 阳能辐 射热 引 体制品和机械强度要求不高 的大 型制 品。 当前手糊法技术 工艺是制 作叶 起 的。 太 阳光照射 到地球 表面时 , 地球各 表面处的受 热不 同, 即产生温 片、 机舱 罩的主要成型方法 。
风电叶片基础知识之复合材料篇一
6-1-2 复合材料的结构(structure of composites)
① 无规分散(弥散)增强结构 (含颗粒、晶须、
短纤维)(randomly oriented) ② 连续长纤单向增强结构(单向板)(aligned) ③ 层合(板)结构(二维织布或连续纤维铺层,每层 不同)(laminate) ④ 三维编织体增强结构(braided fabric or filament winding) ⑤ 夹层结构(蜂窝夹层等)(sandwich constructure) ⑥ 混杂结构(hybrid constructure)
风电叶片基础知识之复合材料篇一
6-1
复合材料的组成与结构
STRUCTURE OF COMPOSITE MATERIALS
Composition and Structures of Composites Materials Concept, Types and Properties Structures Interfacial Phase
( 3 )第三阶段:液态(或粘流态)组分的固化过程,即凝固或 化 学反应
i) 界面的固定(亚稳态、非平衡态)
ii) 界面的稳定(稳态、平衡态) 在复合材料界面形成过程中涉及:
i) 界面间的相互置换:如,润湿过程是一个固-液界
面置换固-气表面的过程 i i) 界面间的相互转化:如,固化过程是固-液界面
ZrO 颗粒等, 复合的目的不是提高模量与强度,而是对陶瓷基体增韧 CMC仍以烧结成型为主,由于基体与增强体都具有高模量、 高耐温特点,残余应力很大,导致微裂纹,因此,两相的CTE必须 匹配, CMC适合于作高温结构材料,被称为“材料的梦想”。
5. C/C复合材料 化学组成单一,C元素,但C的形态与结构十分复杂 (1) 基体碳:i) CVD碳;ii) 树脂碳;iii) 沥青碳 (2) 增强体:高性能碳纤维及其织物 (3) 性能特点:保持碳材料(石墨)的特性,如:密度低、 低蠕变、高导热、低CTE、高抗热震性、高耐温、 耐烧蚀等的 同时,还具有高强、高模、抗疲劳、力学性能随温度 升高而升高的特点 缺点:高温下易氧化,材料多孔而疏松 高温结构材料和耐烧蚀材料,近年发展很快。
W9复合材料风电叶片技术研究-PPT课件
疲劳分析
计算单位载荷应变 利用Markov矩阵求解均值与幅值 求解许用循环次数 求解疲劳寿命 求解疲劳剩余安全系数
1MW叶片某纤维布的疲劳剩余安全系数
截面编号 剩余安全系数
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
叶片局部失稳图(L=27.9m,屈曲因子=2.738)
叶根螺栓连接分析
叶根螺栓连接分析包括连接螺栓的静强度分析和叶片根部玻璃钢强度分析,采 用工程算法和ABAQUS有限元算法对叶根螺栓连接强度进行分析。
叶根连接的有限元模型
十字头螺栓的应力变化图
*叶片根部最小剩余强度系数表
部 件 双头螺柱 计算部位 光杆拉伸 弯曲 剩余系数 1.56 1.1 失效系数 / /
1MW叶片三维模型
6.实例2:2.5MW叶片气动外形设计
设计尖速比的选择:9.5
叶片长度:48.8m
7.实例2:2.5MW叶片气动外形设计
二、复合材料叶片材料设计
材料、结构与工艺
材料设计
纤维/树脂/芯材
结构设计
蒙皮/主梁/腹板 叶根
生产工艺
灌注/预侵料
1 原材料选择与复合材料性能
A 原材料选择原则 结构、工艺、成本 B 纤维选择 玻璃纤维、碳纤维 C 芯材选择 PVC、BALSA D 树脂选择(热固性) 环氧树脂、不饱和聚酯
分析类型
模态分析:固有频率与预应力模态分析
变形分析:叶尖最大挠度分析
静强度分析:应力-应变分析 纤维失效分析:纤维方向和纤维层间失效分析 稳定性分析:叶片整体与局部稳定性分析 叶根螺栓连接分析:螺栓强度与螺栓寿命分析 疲劳分析:叶片寿命分析