电感降压式开关电源BUCK降压设计方案

合集下载

开关直流降压电源(BUCK)设计

开关直流降压电源(BUCK)设计

开关直流降压电源(BUCK)设计摘要随着电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多,电子设备与人们的工作、生活的关系日益密切。

近年来,随着功率电子器件(如IGBT、MOSFET)、PWM技术以及电源理论发展,新一代的电源开始逐步取代传统的电源电路。

该电路具有体积小,控制方便灵活,输出特性好、纹波小、负载调整率高等特点。

开关电源中的功率调整管工作在开关状态,具有功耗小、效率高、稳压范围宽、温升低、体积小等突出优点,在通信设备、数控装置、仪器仪表、视频音响、家用电器等电子电路中得到广泛应用。

开关电源的高频变换电路形式很多, 常用的变换电路有推挽、全桥、半桥、单端正激和单端反激等形式。

本论文采用双端驱动集成电路——TL494输的PWM脉冲控制器设计开关电源,利用MOSFET 管作为开关管,可以提高电源变压器的工作效率,有利于抑制脉冲干扰,同时还可以减小电源变压器的体积。

关键词:直流,降压电源,TL494,MOSFET1目录摘要 (1)Abstract........................................................... ........ 错误!未定义书签。

1.方案论证与比较 (4)1.1 总方案的设计与论证 ...................................... 错误!未定义书签。

1.2 控制芯片的选择 (4)1.3 隔离电路的选择 .............................................. 错误!未定义书签。

2. BUCK电路工作原理 ......................................... 错误!未定义书签。

3. 控制电路的设计及电路参数的计算 ................ 错误!未定义书签。

3.1 TL494控制芯片................................................ 错误!未定义书签。

TL494开关电源设计--BUCK电路解析

TL494开关电源设计--BUCK电路解析

+5V
IN2 +
GND
IN2 -
CT
RT
DE AD
4
16
C2 332
15
R4 10K
R3 10K R9 0.1
R8 120
图三:由TL494组成降压型开关稳压电源
过载保护--过载时,降低输出电压使负载电流保持在保护值。 不论开关管T2是否导通,流过负载的电流都经过R9(由上向下),R9的下端
电位为负,当负载电流达一定值时,误差放大器2的反相端电位为负,误差
t
电流连续状态CCM
续流管阴极电位VK 、 电感电流IL、负载电流IO 2IOC
CO=(3~5)(ΔI) T/(2ΔVP-P)
产生纹波的两个因素:1.输出电容容 量有限;2.开关过程产生的过冲,这
VIN-VSTA IOC
-VF
t
(tON)min (tOFF)max
临界连续状态
部分较难滤除。
续流管阴极电位VK 、 电感电流IL、负载电流IO VIN-VSTA VO -VF (tON)min (tOFF)max IO<IOC
tON=TOSCVO/(VIN-Vsta)=13.0~21.4uS(Vsta~1.2V)。
七、参数选择 4.开关管:
开关速度<1uS,
IC VEC PT
VIN+VF
IECO tON tOFF
VSTA t
耐压>2(VIN)max,
电流>2(IO)max
图四:开关管开关速度与功耗分析
TIP127(100V/5A,
死区时间控制 触发器 时钟
反馈/PWM比较器输入
Q
Q
Q1射极

BUCK型DCDC开关电源芯片的设计与实现

BUCK型DCDC开关电源芯片的设计与实现

BUCK型DCDC开关电源芯片的设计与实现一、Buck型DC-DC开关电源的原理Buck型DC-DC开关电源采用PWM(脉宽调制)技术实现降压功率转换。

其基本原理是通过开关管(MOSFET)的开关控制,使电源源电压经过电感产生瞬间高压脉冲,然后经过二极管和电容进行滤波,从而得到较低的输出电压。

1.选取合适的芯片2.电路设计在电路设计中,需要考虑以下关键元件:(1)开关管(MOSFET):选择合适的MOSFET型号,使其能够承受输入电压和输出电流,并具有低导通压降和低开关损耗。

(2)电感:选择合适的电感器件,使其具有足够的电感值,以满足电路的输出电流要求,同时要考虑其饱和电流和电流纹波等参数。

(3)二极管:选用具有较高效率和低电压降的二极管,以减小功率损耗。

(4)滤波电容:选择适当的电容容值和工作电压,以保证输出电压的稳定性和滤波效果。

3.控制电路设计(1)比较器:用于比较输出电压反馈和参考电压,生成PWM信号。

(2)误差放大器:通过调节反馈电压和参考电压之间的差值,实现输出电压的稳定控制。

(3)反馈电路:将输出电压反馈给误差放大器,使其可以实时调节PWM信号。

4.输出过压保护与过流保护为了确保开关电源在异常工作条件下能够保持安全可靠的操作,需要添加过压保护和过流保护电路。

过压保护电路通常通过监测输出电压,当输出电压超过设定阈值时,立即切断开关管的导通。

过流保护电路通过监测输出电流,当输出电流超过设定阈值时,同样会切断开关管的导通。

5.PCB布局与散热设计在设计过程中,需要合理布局电路元件,以减小元件之间的相互干扰,并降低热量产生。

合理进行散热设计,确保开关管和散热器的有效散热,以保证开关电源的稳定工作。

三、BUCK型DC-DC开关电源的测试与调试完成电路设计后,需要进行测试和调试来验证设计的正确性和可靠性。

主要包括以下测试:(1)输入电压测试:测试开关电源在不同输入电压下的输出电压和效率。

(2)输出电压稳定性测试:测试开关电源在稳定工作状态下,输出电压随负载变化的情况。

降压型(BUCK)DC-DC电路的设计与制作实验报告

降压型(BUCK)DC-DC电路的设计与制作实验报告

课题三:降压型(BUCK)DC-DC电路的设计与制作姓名:学号:得分:一、实验目的1). 学习和了解DC-DC变换电路的特点;2). 掌握降压型(BUCK)DC-DC电路的结构和工作原理;3). 熟悉强、弱电电路的隔离应用;4). 培养电子电路的设计能力和基本应用技能。

二、课题任务1)设计参数要求:① DC-DC主电路输入电压V=12V;I②输出电压: V=5V;O③输出电流:I=1A;O≤50mV,即纹波≤1%;④输出电压纹波峰-峰值 Vpp=5W。

⑤额定输出功率PO2)PWM驱动信号:=20kHz;① PWM驱动信号频率fS② PWM驱动信号占空比可调;3)驱动电路:驱动电路应为单端输入、双端浮地输出。

5)撰写完整的实习报告。

三、实验原理本课题只做了控制电路与驱动电路的设计,最后实验只要测得输出波形为频率20kHz,占空比范围在30%-70%的方波即可。

如下图即为电路原理图。

图1 电路原理图本设计选择555定时器来设计控制电路。

555定时器引脚图如图2所示。

图2 555定时器引脚图驱动电路为控制电路与MOSFET 之间提供电气隔离,一般可以采用光隔离或者磁隔离。

本设计采用光隔离的方法,具体设计如下:先加一级光耦隔离,再加一级推挽电路进行放大从而把输出的控制信号放大。

占空比计算如下:()1211,1.43T R Rp R C =⨯++⨯ ()11111,1.43T R Rp C =⨯+⨯ ()22211.1.43T R Rp C =⨯+⨯ 1.T D T=四、元器件清单五、实验步骤(1)检查实验设备是否齐全,包括直流稳压电源,数字信号发生器,双踪示波器,万用表以及相应的电源线,输出线等,领取镊子,剪刀,芯片,电烙铁等材料。

(2)根据实验原理图和仿真开始焊接板子输出与接地之间焊接一个10KΩ的电阻。

如下图所示。

图12 电路板实物图(3)搭接电路完毕,检查电路搭接是否正确,检查完毕后,接通示波器,信号发生器,直流稳压电源,开始调试。

降压型(BUCK)DC-DC电路的设计与制作设计报告

降压型(BUCK)DC-DC电路的设计与制作设计报告

课题三:降压型(BUCK)DC-DC电路的设计与制作姓名:学号:得分:一、实验目的1). 学习和了解DC-DC变换电路的特点;2). 掌握降压型(BUCK)DC-DC电路的结构和工作原理;3). 熟悉强、弱电电路的隔离应用;4). 培养电子电路的设计能力和基本应用技能。

二、课题任务1)设计参数要求:=12V;① DC-DC主电路输入电压VI②输出电压: V=5V;O=1A;③输出电流:IO④输出电压纹波峰-峰值 V≤50mV,即纹波≤1%;pp=5W。

⑤额定输出功率PO2)PWM驱动信号:=20kHz;① PWM驱动信号频率fS② PWM驱动信号占空比可调;3)驱动电路:驱动电路应为单端输入、双端浮地输出。

5)撰写完整的实习报告。

三、实验原理BUCK电路就是降压电路,开关S闭合的时候,VD二极管承受负压关断,电感充电,电流正向流动,电流值呈现指数上升趋势。

开关S断开的时候,VD 二极管起续流作用,电感开始放电,电流逐渐下降,通过负载和二极管回到电感另外一端,短暂供电。

这样电压就能降低。

实际使用的时候,S开关是通过MOSFE 或者IGBT实现的,输出电压等于输入电压乘以PWM波的占空比。

开关电源总的来分有隔离型和非隔离型电路。

所谓非隔离型电路是根据电路形式的不同,可以分为降压型buck电路、升压Boost型电路、升降压Buck-Boost 型电路、Cuk型丘克电路、Sepic型电路、Zeta型电路。

我们这里主要分析降压型DC-DC转换器的工作原理,Buck电路如图1所示。

图中功率MOSFET为开关调整元件,它的导通与关断由控制电路决定;L和C为滤波元件;开关截止时,二极管VD可保持输出电流连续,所以通常称为续流二极管。

控制电路输出信号使开关管VT导通时,滤波电感L中的电流逐渐增加,因此贮能也逐渐增大,电容器C开始充电。

忽略MOSFET的导通压降,MOSFET源极电压应为Uin。

图1 降压变换器原理图当施加输入直流电压Ui后,降压型电路需经过一段较短时间的暂态过程,才能进入到稳定工作状态。

buck降压电路设计

buck降压电路设计

buck降压电路设计Buck降压电路是一种常见的电源电路,被广泛应用于各种电子设备中,如手机、电脑、电视等。

它通过降低输入电源的电压,得到所需的输出电压,以满足电子设备的工作要求。

在本篇文章中,我们将详细介绍Buck降压电路的设计原理和步骤。

让我们来了解Buck降压电路的基本工作原理。

Buck电路通常由输入电压源、功率开关、电感、二极管和负载组成。

其中,功率开关可以是MOSFET或BJT,用于控制电路的通断状态。

输入电压通过功率开关和电感形成一个电流环路,通过电流环路的开关控制,可以改变电路中电感的导通和断开状态,从而实现对输出电压的控制。

通过调节电流环路的开关频率,可以实现输出电压的稳定。

接下来,我们将详细介绍Buck降压电路的设计步骤。

1. 确定输出电压要求:我们需要确定所需的输出电压。

根据实际应用需求,确定输出电压的数值和精度要求。

2. 选择功率开关元件:根据所需输出电压和负载电流的要求,选择适当的功率开关元件。

常用的功率开关有MOSFET和BJT两种,根据实际应用需求选取合适的型号。

3. 计算电感和电容数值:根据所选功率开关元件的参数,以及设计输出电压和负载电流的要求,计算电感和电容的数值。

电感和电容的数值选择对输出电压的稳定性有很大影响。

4. 确定开关频率:开关频率也是Buck降压电路设计中非常重要的一个参数。

开关频率的选择要考虑输出电压稳定性、功率开关元件的性能和电路的EMI(电磁干扰)等方面。

5. 设计反馈回路:反馈回路用于检测输出电压,并根据需要进行调节。

常用的反馈回路有电压反馈和电流反馈两种。

根据设计需求,选择合适的反馈回路,并进行设计。

6. 进行仿真和优化:在设计完成后,可以进行电路的仿真和优化。

利用电路仿真软件,对电路进行模拟,验证设计的可行性和稳定性。

如果有必要,可以进一步对电路参数进行调整和优化。

7. PCB布局与焊接:将设计好的电路布局在PCB板上,并进行焊接和连线。

TL494开关电源设计--BUCK电路

TL494开关电源设计--BUCK电路

VIN-VSTA IOC
-VF
t
(tON)min (tOFF)max
临界连续状态
L0 ~
VIN T 8I
续流管阴极电位VK 、 电感电流IL、负载电流IO VIN-VSTA VO -VF (tON)min (tOFF)max IO<IOC
t
I (10% ~ 20%) I O max
电流断续状态DCM
t
电流连续状态CCM
续流管阴极电位VK 、 电感电流IL、负载电流IO 2IOC
CO=(3~5)(ΔI) T/(2ΔVP-P)
产生纹波的两个因素:1.输出电容容 量有限;2.开关过程产生的过冲,这
VIN-VSTA IOC
-VF
t
(tON)min (tOFF)max
临界连续状态
部分较难滤除。
续流管阴极电位VK 、 电感电流IL、负载电流IO VIN-VSTA VO -VF (tON)min (tOFF)max IO<IOC
5. 较典型的设计验证方法和负载实验。
三、BUCK型DC-DC变换器(CCM工作模式)
1. 导通状态 U I UO UL I ON t1 t1 L L 2. 截止状态 UO UL I OFF t2 t2 L L 3. 输入输出关系
I ON I OFF
U O DU I
100u/25V
C6
220u/25V
T2 TIP127 (100V/5A/Darl-L) 104 R2 C3 1K
10 9
3K R6
FR307 D4 103 C5 570 R13
C7
104 C9 5K1 R17
R16 3K6
5
6

降压式变换电路(Buck电路)详解

降压式变换电路(Buck电路)详解

降压式变换电路(Buck电路)详解降压式变换电路(Buck电路)详解一、BUCK 电路基本结构开关导通时等效电路开关关断时等效电路二、等效的电路模型及基本规律(1)从电路可以看出,电感L 和电容C 组成低通滤波器,此滤波器设计的原则是使us(t)的直流分量可以通过,而抑制us(t) 的谐波分量通过;电容上输出电压uo(t)就是us(t) 的直流分量再附加微小纹波uripple(t) 。

(2)电路工作频率很高,一个开关周期内电容充放电引起的纹波uripple(t) 很小,相对于电容上输出的直流电压Uo 有:电容上电压宏观上可以看作恒定。

电路稳态工作时,输出电容上电压由微小的纹波和较大的直流分量组成,宏观上可以看作是恒定直流,这就是开关电路稳态分析中的小纹波近似原理。

(3)一个周期内电容充电电荷高于放电电荷时,电容电压升高,导致后面周期内充电电荷减小、放电电荷增加,使电容电压上升速度减慢,这种过程的延续直至达到充放电平衡,此时电压维持不变;反之,如果一个周期内放电电荷高于充电电荷,将导致后面周期内充电电荷增加、放电电荷减小,使电容电压下降速度减慢,这种过程的延续直至达到充放电平衡,最终维持电压不变。

这种过程是电容上电压调整的过渡过程,在电路稳态工作时,电路达到稳定平衡,电容上充放电也达到平衡,这是电路稳态工作时的一个普遍规律。

(4)开关S 置于1 位时,电感电流增加,电感储能;而当开关S 置于2 位时,电感电流减小,电感释能。

假定电流增加量大于电流减小量,则一个开关周期内电感上磁链增量为:此增量将产生一个平均感应电势:此电势将减小电感电流的上升速度并同时降低电感电流的下降速度,最终将导致一个周期内电感电流平均增量为零;一个开关周期内电感上磁链增量小于零的状况也一样。

这种。

BUCK电路方案设计

BUCK电路方案设计

BUCK电路方案设计在电子领域中,BUCK电路是一种非常常见且重要的电路方案。

BUCK电路是一种降压型DC-DC转换器,也被称为降压开关电源。

它通过将输入电压降低到一个较低的输出电压来实现电源调节功能。

BUCK电路的工作原理是,当开关管导通时,输入电压源通过电感和开关管输出到输出电容上,输出电压上升。

当开关管截止时,电感中的能量继续通过电容供应负载,输出电压下降。

通过这种方式,BUCK电路能够稳定地将输入电压变为较低的输出电压。

1.确定输入和输出电压要求:根据具体应用需求确定输入和输出电压范围。

在此基础上,选择合适的开关管和电感。

2.计算工作频率:选择合适的工作频率,一般常见的有几十kHz到几MHz的范围。

工作频率的选择要平衡转换效率和滤波器尺寸。

3.计算电感和电容值:根据输入和输出电压范围,使用以下公式计算电感和电容值:电感值(L)=(输出电压/工作频率)*(输入电压-输出电压)/输出电流电容值(C)=输出电流/(工作频率*最大纹波电压)4.根据负载要求计算开关管的最大电流和功耗:通过确定负载电流以及开关管的最大导通时间和导通电阻,计算开关管的最大电流和功耗。

5.添加反馈控制:为了实现稳定的输出电压,需要使用反馈控制回路。

一般采用PID控制,通过调节开关管的导通时间来实现输出电压的调节。

6.性能评估和优化:通过仿真和实验评估BUCK电路的性能,包括效率、稳定性和纹波等。

根据评估结果进行优化,例如选择更合适的元件、调整控制参数等。

总之,BUCK电路是一种常用且重要的电路方案,适用于很多应用场景。

通过合理的设计和优化,可以实现稳定、高效的输出电压。

在实际应用中,还需考虑元件的选取、温度变化等因素,并根据具体需求进行优化调整,以实现最佳的电路性能。

基于BUCK电路的电源设计

基于BUCK电路的电源设计

基于BUCK电路的电源设计BUCK电路是一种常用的电源设计方案,其原理是通过电感压缩稳定输出电压。

在这篇文档中,我们将深入探讨基于BUCK电路的电源设计。

一、介绍电源设计是电子系统设计中至关重要的一部分。

它确保系统能够以稳定的电压供电,从而保证各个电路元件能够正常工作。

BUCK电路是一种常用的降压型DC-DC转换器,广泛应用于各种电子设备中。

二、BUCK电路原理BUCK电路的基本原理是通过控制开关管的导通时间,将输入电压降低到所需的输出电压。

当开关管导通时,电流从输入电压源流向电感和负载。

当开关管截止时,电流通过二极管回路,从电感中平滑输出。

通过调整开关管导通的时间,可以调整输出电压。

三、BUCK电路的设计要点1.选择合适的元件在设计BUCK电路时,需要选择合适的元件,包括开关管、二极管、电感和电容等。

开关管应具有低导通电阻和快速开关速度,以减少功耗和开关损耗。

二极管应具有低压降和快速恢复特性,以提高效率。

电感应具有合适的自感值和饱和电流,以满足输出电流的需求。

电容应具有足够的容值和频率响应,以提供稳定的输出电压。

2.稳压控制稳压控制是BUCK电路设计中的关键问题。

常见的稳压控制方式有电流模式控制和电压模式控制。

电流模式控制通过对电流变化的反馈控制开关管的导通时间,以稳定输出电流。

电压模式控制则通过对输出电压变化的反馈控制开关管的导通时间,以稳定输出电压。

选择合适的稳压控制模式可以提高系统的稳定性和响应速度。

3.过流保护BUCK电路设计中需要考虑过流保护功能。

过流保护可以防止电流过大导致元件损坏。

常见的过流保护方式包括电流限制和短路保护。

电流限制通过控制开关管的导通时间,将输出电流限制在一定范围内。

短路保护则通过在开关管回路中添加短路检测电路,当输出短路时及时切断开关管的导通。

4.过压保护过压保护是BUCK电路设计中的另一个重要问题。

过压保护可以防止输出电压超过设定值导致元件损坏。

常见的过压保护方式包括电压限制和过压检测。

Buck降压电路设计与实现

Buck降压电路设计与实现

开关电源设计及MATLAB仿真胡志健学号21411300设计要求:(1)输⼊24V,输出18V,10A,开关频率为50kHz;(2)画出电路原理图,计算所⽤的元器件参数;(3)画出仿真波形图(PWM和主回路关键波形),开环闭环都可。

根据要求,需要设计⼀个降压电路。

Buck电路是⼀个降压斩波器,降压变换器的输出电压平均值U o总是⼩于输出电压U d,通常电感中的电流是否连续,取决于开关频率、滤波器电感L和电容C的数值。

1主电路设计参数说明:(1) 输⼊直流电压:V in=24V;1(2) 输出电压:V o=18V;(3) 输出电流:I N=10A;(4) 开关频率:f s=50kHz;(5)Buck主电路⼆极管的通态压降V D=0.5V,电感中的电阻压降V L=0.1V,开关管导通压降V on=0.5V,滤波电容C和电阻R C的乘积为75µΩ·F。

根据以上对元器件参数分析设计主电路,如上所⽰。

1.1滤波电容的设计因为输出纹波电压只与电容的容量以及ESR有关,R c=V rr∆i L=V rr0.2I N(1)电解电容⽣产⼚商很少给出ESR,但C与RC的乘积趋于常数,约为50∼80µΩ·F。

在本课题中取为75µΩ·F,由公式可得R C=25mΩ,C=3000µF。

1.2滤波电感的设计根据电路知识,可以列出开关管闭合与导通状态的基尔霍夫电压⽅程。

如下所⽰:V in−V o−V L−V ON=L∆i L/T ON(2)V o+V L+V D=L∆i L/T OF F(3)T off+T on=1/f s(4)假设⼆极管的通态压降为V D=0.5V,电感中的电阻压降为V L=0.1V,开关管导通压降为V ON=0.5V。

利⽤T on+T off=1/f s,可得T on=15.5µs,代⼊(2)式可算得L=8.37µH。

buck降压电路设计

buck降压电路设计

buck降压电路设计摘要:1.Buck 降压电路的简介和设计目的2.Buck 降压电路的输出电压和常见系统工作电压3.推荐的芯片方案4.避免局限于特定型号的建议正文:一、Buck 降压电路的简介和设计目的Buck 降压电路,又称为降压稳压电路,是一种基于开关管工作的电源电路。

其主要目的是将较高的输入电压转换为较低的输出电压,以满足不同电子设备的电源需求。

在设计Buck 降压电路时,需要考虑输入电压、输出电压、电流和效率等因素。

二、Buck 降压电路的输出电压和常见系统工作电压Buck 降压电路的输出电压通常为5V、3.3V 等常见系统工作电压。

这些电压是许多电子设备和芯片的典型工作电压,如微控制器、传感器和无线通信模块等。

设计Buck 降压电路时,需要根据具体应用场景选择合适的输出电压。

三、推荐的芯片方案在设计Buck 降压电路时,有许多优秀的芯片可供选择。

除了常见的LM2596 和XL40XX 等型号外,还可以考虑以下芯片方案:1.德州仪器(TI)的LM 系列:如LM2586、LM2596 等,这些芯片具有优秀的性能和稳定性。

2.安森美半导体(ADI)的Power by Linear 系列:如LTC3822、LTC3823 等,这些芯片在效率和负载调整率方面表现出色。

3.美台科技(MPS)的MP 系列:如MP1584、MP1585 等,这些芯片在轻载和重载条件下均能保持较高的效率。

四、避免局限于特定型号的建议在选择Buck 降压电路的芯片时,应避免局限于特定型号。

不同芯片在性能、成本和可用性等方面可能存在差异,因此需要根据实际应用需求和设计要求进行权衡。

在选型过程中,可以参考以下原则:1.评估芯片的基本性能参数,如输出电压、电流、效率和负载调整率等。

2.考虑芯片的成本和供应情况,以确保供应链的稳定和成本的可控。

3.参考其他工程师的经验和评价,了解芯片在实际应用中的表现和潜在问题。

总之,Buck 降压电路设计需要综合考虑输入电压、输出电压、电流和效率等因素,选择合适的芯片方案。

500v转15v降压开关电源方案

500v转15v降压开关电源方案

500v转15v降压开关电源方案降压开关电源(Buck Converter)可以将输入电压降低到较低的输出电压。

在这个例子中,我们将输入电压500V转换为15V。

以下是一个简单的步骤,以帮助您设计一个500V到15V的降压开关电源方案:1. 选择合适的降压开关电源芯片:首先,需要选择一个适合您应用需求的降压开关电源芯片。

您可以选择一些市场上常见的芯片,例如TI的LM2596、LM2575或者AD的LT3573等等。

这些芯片通常具有广泛的应用,因此能更好地满足您的需求。

2. 确定所需的输出电流和功率:根据您的应用需求,确定输出电流和功率要求。

这将有助于您选择合适的电感和电容值,以及相关元件的尺寸。

3. 计算电感和电容值:根据所选的芯片规格和要求,使用相关公式或设计工具计算所需的电感和电容值。

这些值将直接影响到电源的有效性和稳定性。

4. 选择合适的功率MOSFET和二极管:根据芯片规格,选择合适的功率MOSFET和二极管来处理高压和大电流。

这些元件应具有足够的功率容量和低导通电阻,以确保高效率的转换。

5. 设计相关电路:将选定的芯片、电感、电容、功率MOSFET和二极管连接起来,形成一个完整的降压开关电源电路。

注意正确布局和连接,以提高性能和可靠性。

6. 进行仿真和测试:在实际制作电路之前,进行PMSPICE仿真来验证电路的性能,并进行一些实验来测试设备的稳定性和效率。

7. 优化和调整:如果测试结果不符合预期,根据实际情况进行必要的优化和调整。

可能需要更改元件值、布局或其他参数来提高性能。

请注意,高压开关电源设计需要特别小心和谨慎,以确保操作安全,并遵循相关的安全标准和规定。

我们建议在设计过程中参考降压开关电源的数据手册和应用笔记,以获得更详细的设计指导。

此外,如果您对电源设计或相关知识不太熟悉,我们建议请教专业的电源工程师进行指导。

BUCK型DCDC开关电源芯片的设计与实现

BUCK型DCDC开关电源芯片的设计与实现

BUCK型DCDC开关电源芯片的设计与实现BUCK型DCDC开关电源芯片是一种常用于电子设备中的降压型直流到直流转换器。

它能够将输入电压降低到较低的输出电压,同时还能够提供高效的电力转换。

本文将介绍BUCK型DCDC开关电源芯片的设计与实现。

首先,BUCK型DCDC开关电源芯片的设计需要考虑以下几个关键因素:1.输入输出电压:确定所需的输入和输出电压范围。

输入电压应该大于最小额定输入电压,输出电压应小于输入电压。

2.输入输出电流:根据应用需求确定所需的输入和输出电流。

这将影响开关器件和滤波器的尺寸选择。

3.开关频率:选择适当的开关频率以平衡功率转换效率和电路尺寸。

较高的开关频率能够减小开关器件尺寸,但可能导致更多的开关损耗。

4.控制方式:选择合适的控制方式,比如PWM调制或恒定频率和变占空比调制。

PWM调制常用于高功率应用,而恒定频率和变占空比调制常用于低功率应用。

接下来是BUCK型DCDC开关电源芯片的实现过程:1.选择电源芯片:根据设计需求,选择适当的BUCK型DCDC开关电源芯片。

考虑芯片的输入输出电压范围、电流能力和控制功能等因素。

2.设计输入和输出滤波器:根据电源芯片的输入输出电流要求,设计适当的输入输出滤波器来减小电流纹波和噪音。

3.设计控制电路:根据选择的控制方式,设计控制电路来生成适当的PWM信号或调制信号。

这可以使用定时器、比较器和反馈电路等元件实现。

4.选择开关器件:根据输入输出电压和电流要求,选择合适的功率开关器件。

这些器件应能够处理所需的功率和频率要求,并具备低开关损耗和低导通电阻。

5.进行电路布局和焊接:根据设计要求,在PCB上进行电路布局和元器件焊接。

应留出足够的空间来放置所有的电路元件,并确保良好的热管理。

6.进行测试和调试:完成电路布局和焊接后,进行对电路的测试和调试。

这包括验证输入输出电压、电流和效率等参数。

如果有必要,进行相应的调整和优化。

最后,完成BUCK型DCDC开关电源芯片的设计与实现后,可以将其应用于各种电子设备中。

BUCK电路设计

BUCK电路设计

BUCK电路设计BUCK电路设计是一种降压直流-直流(DC-DC)转换电路,被广泛应用于电子设备中。

其原理是通过控制功率晶体管的导通时间,将高电压输入转换为较低电压输出。

本文将以一种原创的BUCK电路设计为例,详细介绍其工作原理、设计步骤和关键参数。

一、工作原理:BUCK电路利用了电感元件的性质来实现电压降低,通过周期性的开关来控制电感上的电流。

当功率晶体管导通时,电感储存能量,并将电流传递到负载上;当功率晶体管关断时,电感释放储存的能量,维持电流并维持负载的电压。

二、设计步骤:1.确定输入和输出电压:根据实际应用需求,确定BUCK电路的输入电压和输出电压。

输入电压通常较高,仅能提供相对稳定的直流电源;输出电压通常较低,为电子设备正常工作所需的电压。

2.估算输出电流:根据负载特性和功率需求,估算出所需的输出电流。

输出电流大小决定了电感元件和功率晶体管的选型,以保证电路正常运行。

3.计算电感元件的值:根据输出电流的大小,选择适当的电感元件。

电感元件的值决定了电感的储能能力,传导电流的能力和电路的效率。

根据工作频率和输出电流,可以使用下列公式计算电感值:L = (V_in - V_out) * (1 - D) / (f * ΔI_L)其中,L为电感值,V_in为输入电压,V_out为输出电压,D为占空比,f为开关频率,ΔI_L为电感电流的变化幅度。

4.计算输出电容的值:为了减少输出的纹波电压并提供稳定的电压,需要加入适当的输出电容。

根据输出电流变化的速率和滤波要求,可以使用下列公式计算输出电容的值:C = ΔI_out / (f * ΔV_out)其中,C为输出电容的值,ΔI_out为输出电流的变化幅度,ΔV_out为输出电压的变化幅度。

5.设计反馈网络:为了确保输出电压的稳定性,需要设计一个反馈网络来控制占空比。

一般使用电压反馈方式,通过比较输出电压和参考电压,来控制功率晶体管的导通时间和关断时间,以调节输出电压。

CAD课程设计BUCK降压电路工作原理

CAD课程设计BUCK降压电路工作原理

CAD课程设计BUCK降压电路工作原理BUCK降压电路是一种常见的直流-直流(DC-DC)转换器,用于将高电压输入转换为较低的输出电压。

在CAD(计算机辅助设计)课程设计中,了解和掌握BUCK降压电路的工作原理是非常重要的。

一、BUCK降压电路的基本原理BUCK降压电路是一种开关电源电路,由一个开关管(通常是一个MOSFET)和一个电感组成。

其基本原理如下:1. 开关管的导通状态:当开关管导通时,电感储存能量,电流从输入电源流过电感,同时输出电压也被电感储存。

2. 开关管的截止状态:当开关管截止时,电感释放储存的能量,电流通过二极管流回电源,同时输出电压也被电感提供。

二、BUCK降压电路的工作步骤BUCK降压电路的工作步骤如下:1. 导通状态:当开关管导通时,电流从输入电源流过电感,同时输出电压也被电感储存。

2. 截止状态:当开关管截止时,电感释放储存的能量,电流通过二极管流回电源,同时输出电压也被电感提供。

三、BUCK降压电路的工作原理详解1. 导通状态:a. 当开关管导通时,电流从输入电源流过电感,电感储存能量。

b. 开关管导通时,输入电压与电感的极性相同,电感的磁场能量逐渐增加。

c. 输出电压由电感提供,同时二极管截止,不参预电流传导。

d. 输出电压的大小取决于导通时间的长度。

2. 截止状态:a. 当开关管截止时,电感释放储存的能量。

b. 开关管截止时,电感的磁场能量逐渐减小,释放能量给输出电路。

c. 电感的磁场能量通过二极管回流到电源,同时输出电压也被电感提供。

d. 输出电压的大小取决于截止时间的长度。

四、BUCK降压电路的优势和应用1. 优势:a. 高效率:BUCK降压电路能够实现高效率的能量转换,减少能量损耗。

b. 稳定性好:BUCK降压电路能够提供稳定的输出电压,适合于对电压要求较高的应用。

c. 尺寸小:BUCK降压电路体积小巧,适合于紧凑空间的设计要求。

2. 应用:a. 电子设备:BUCK降压电路广泛应用于各种电子设备中,如手机、平板电脑、电视等。

基于BUCK变换器开关电源设计

基于BUCK变换器开关电源设计

基于BUCK变换器开关电源设计一、引言开关电源是一种常见的电源系统,其主要由开关电路、滤波电路和稳压电路组成。

其中,开关电路是关键部分,负责将输入电源的直流电压转换为需要的电压形式。

BUCK变换器是开关电源中常用的一种变换器类型,在工业和电子设备中广泛应用。

本文将介绍基于BUCK变换器的开关电源设计的详细步骤和注意事项。

二、BUCK变换器的原理BUCK变换器是一种降压变换器,其工作原理是通过开关管控制输入电源的导通和断开,从而通过电感和电容的锁相环作用,实现输出电压的稳定调节。

具体工作步骤如下:1.开关管导通状态:当开关管导通时,输入电源与电感形成回路,电感里的能量被储存在磁场中,同时电容开始充电。

2.开关管断开状态:当开关管断开时,电感的磁场崩溃,释放能量,使得电流通过二极管回路,电容开始放电。

通过这种开关过程,BUCK变换器可以将输入电源的直流电压降低,达到需要的输出电压。

三、基于BUCK变换器的开关电源设计步骤1.确定输入电源和输出电压要求:根据具体应用需求,确定所需要的输入电压和输出电压,以及电流要求。

2.计算开关管的参数:根据输出电压和电流要求,计算开关管的额定电流和功率,选择合适的开关管类型。

3.计算电感和电容的参数:根据输入电压、输出电压和电流要求,计算出合适的电感和电容参数。

选择合适的电感和电容类型,并进行热稳定计算。

4.设计开关频率:根据应用需求和电路参数,选择合适的开关频率,以达到较高的功率转换效率。

5.设计控制电路:根据选择的开关频率和开关管类型,设计合适的控制电路,实现开关管的正常工作,如脉宽调制控制、开关管的驱动电路等。

6.选择滤波电路:根据输出电压的纹波和稳压要求,选择合适的滤波电路进行设计,如低通滤波器、电容滤波器等。

7.PCB布局和散热设计:根据电路参数和设计要求,进行PCB布局和散热设计,确保电路能够正常工作并具有较高的稳定性和可靠性。

四、注意事项1.在设计过程中,需根据电路参数和工作条件选择合适的元件,如开关管、电感、电容等。

开关电源课程设计降压型转换电路

开关电源课程设计降压型转换电路

开关电源课程设计降压型转换电路
课程设计要求降压型转换电路,可以选择使用开关电源,其中的降压型转换电路可以选择使用开关稳压器或者降压型开关电源电路。

以下是一种可能的课程设计方案:
1. 设计目标:实现输入电压Vin(通常为交流电)降压到特定
的输出电压Vout。

2. 选择合适的开关电源拓扑结构和控制方式。

常见的开关电源拓扑结构包括:Buck(降压型), Boost(升压型), Buck-Boost(反搏控制型)等。

根据要求,我们选择Buck拓扑结构来实现降压转换。

3. 电压变换原理:Buck拓扑结构通过周期性地将输入电压
Vin与电感和开关元件(MOSFET或BJT)进行开关控制,从
而实现输出电压Vout的降压。

4. 具体电路设计:根据输入输出电压要求,选择合适的元件参数(如电感、电容、开关元件等),以及控制开关元件的电路(如PWM调制器)。

可以使用理论计算、电路仿真软件以及
实际的元器件测试来设计和调试电路。

5. 安全设计考虑:在电路设计中,需要注意过压、过流、短路、过温等保护措施,以确保电路的安全性和稳定性。

6. 性能评估和测试:通过实际测试,评估电路的输出稳定性、
效率、负载调整能力等指标。

7. 设计报告和展示:整理设计过程、电路图、仿真结果和实际测试结果,撰写设计报告,并进行设计成果的展示与讲解。

总之,该课程设计的目标是实现降压型转换电路,设计过程需要考虑选择合适的开关电源拓扑结构、元件参数和控制方式,同时保证电路的安全性和稳定性。

最后会进行性能评估和测试,并进行设计报告和展示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电流纹波率的介入,电感的参数公式的推导
开关电源实际设计过程器件参数计算以及器件的选型上
开关电源实际设计过程器件参数计算以及器件的选型下
电源控制芯片手册详细解读
电源芯片内部功能模块的总结以及开关电源PCB设计过程的几点注意
实际案例现场计算电感参数以及示波器测量波形并进行分析和调试
对于前期的总结以及后续的展望和计划
重要元件的引入----电感
详细讲解电感电压的形成和公式计算
通过电感的电流曲线进一步走进电感世界
详细讲解电感电压的与电感中电流大小以及电流变化率
详细讲解电感中的电流波形的三种模式以及拓扑的相关几大总结
十分重要的参数----占空比,公式的详细推导
开பைடு நூலகம்电源BUCK中元器件的相关参数详细计算上
开关电源BUCK中元器件的相关参数详细计算下
电感降压式开关电源BUCK降压设计方案
开关电源入门介绍
开关电源工作原理以及与线性电源的比较
开关电源工作形象化讲解1
开关电源工作形象化讲解2及纹波的产生解读
开关器件的选择,MOSFET,IGBT和三极管的优点和缺点
开关电源体积与频率的关系以及温升的了解
详细推导开关电源的BUCK电路拓扑上
详细推导开关电源的BUCK电路拓扑下
相关文档
最新文档