(通用版)202x高考数学一轮复习 1.1 集合学案 理

合集下载

高考数学一轮复习 第一章集合与常用逻辑用语1.1集合的概念与运算教学案 理

高考数学一轮复习 第一章集合与常用逻辑用语1.1集合的概念与运算教学案 理

第一章集合与常用逻辑用语1.1 集合的概念与运算考纲要求1.集合的含义与表示(1)了解集合的含义,元素与集合的属于关系.(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集.(2)在具体情境中,了解全集与空集的含义.3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用韦恩(Venn)图表达集合间的关系及运算.1.集合元素的三个特征:______、______、______.2.元素与集合的关系是____或______关系,用符号____或____表示.3.集合的表示法:______、______、图示法.4.常用数集:自然数集______;正整数集______(或______);整数集______;有理数集________;实数集____.5.集合的分类:按集合中元素的个数划分,集合可以分为______、______.6.子集、真子集及其性质:对任意的x∈A,都有x∈B,则A⊆B(或B⊇A);若集合A⊆B,但存在元素x∈B,且x∉A,则A B(或B A);∅⊆A;A⊆A;A⊆B,B⊆C⇒A⊆C.若集合A含有n个元素,则A的子集有____个,A的非空子集有____个,A的非空真子集有____个.7.集合相等:若A⊆B,且____,则A=B.8.集合的并、交、补运算:并集:A∪B=____________;交集:A∩B=__________;补集:∁U A=__________;U为全集,∁U A表示集合A相对于全集U的补集.9.集合的运算性质并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.补集的性质:A∪(∁U A)=U;A∩(∁U A)=∅;∁U(∁U A)=A;∁U(A∩B)=(∁U A)∪(∁U B);∁U(A∪B)=(∁U A)∩(∁U B).1.设M={x|x≤211},a=2 014,则下列关系中正确的是( ).A.a⊆M B.a∉MC.{a}∉M D.{a}⊆M2.(2012山东高考)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为( ).A.{1,2,4} B.{2,3,4}C.{0,2,4} D.{0,2,3,4}3.若集合A={x|x<1},B={x|x≥a},且A∩B≠∅,则实数a的取值范围为( ).A.a≤1 B.a<1C.a≥1 D.a>14.(2012湖北高考)已知集合A={x|x2-3x+2=0,x∈R},B ={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为( ).A.1 B.2C.3 D.45.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a的值为__________.一、集合的概念【例1-1】若集合A={2,3,4},B={x|x=n·m,m,n∈A,m≠n},则集合B的元素个数为( ).A.2 B.3 C.4 D.5【例1-2】已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,则2 014a的值为__________.方法提炼1.研究一个集合,首先要看集合中的代表元素,然后再看元素的限制条件,当集合用描述法表示时,注意弄清其元素表示的意义是什么.集合 {x |f (x )=0}{x |f (x )>0}{x |y =f (x )} {y |y =f (x )} {(x ,y )|y =f (x )} 集合的 意义方程f (x )= 0的解集 不等式f (x ) >0的解集函数y =f (x ) 的定义域函数y =f (x ) 的值域函数y =f (x ) 图象上的点集2.对于含有字母的集合,在求出字母的值后,要注意检验集合是否满足互异性.3.空集是一个特殊的集合,要注意正确区分∅,{0},{∅}三个符号的含义.∅是不含任何元素的集合,即空集.{0}是含有一个元素0的集合,它不是空集,因为它有一个元素,这个元素是0.{∅}是含有一个元素∅的集合.请做演练巩固提升1二、集合间的基本关系【例2-1】已知a ∈R ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a ,1={a 2,a +b,0},则a2 014+b 2 014=__________.【例2-2】已知集合A ={x |(x -2)(x -3a -1)<0},函数y=lg 2a -xx -a 2+1的定义域为集合B .求满足B ⊆A 的实数a 的取值范围.方法提炼1.解决有关集合相等的问题,应利用集合相等的定义,首先分析已知元素在另一个集合中与哪一个元素相等,有几种情况等,然后列方程(组),求解,还要注意检验.2.集合A 中元素的个数记为n ,则它的子集的个数为2n,真子集的个数为2n -1,非空真子集的个数为2n-2.3.通过集合之间的关系,求参数的取值范围,最终是要通过比较区间端点的大小来实现,因此确定两个集合内的元素,成为解决该类问题的关键.由于元素的属性中含有参数,所以分类讨论成为必然,分类讨论时要注意不重不漏.请做演练巩固提升2三、集合的基本运算【例3-1】(2012广东粤西北九校高三联考)设函数f (x )=lg(1-x 2),集合A ={x |y =f (x )},B ={y |y =f (x )},则图中阴影部分表示的集合为( ).A .[-1,0]B .(-1,0)C .(-∞,-1)∪[0,1)D .(-∞,-1]∪(0,1)【例3-2】设集合A ={x |x 2-3x +2=0},B ={x |x 2+2(a +1)x +(a 2-5)=0}.(1)若A ∩B ={2},求实数a 的值;(2)若A ∪B =A ,求实数a 的取值范围. 方法提炼1.集合运算的常用方法(1)集合元素离散时借助Venn 图运算;(2)集合元素连续时借助数轴运算,借助数轴运算时应注意端点值的取舍.2.常用重要结论(1)A ∩B =A ⇔A ⊆B ; (2)A ∪B =A ⇔A ⊇B .3.A ∩B =A ∪B ⇔A =B .请做演练巩固提升3,4忽视集合为空集的情况而失误【典例1】已知集合A ={x |x 2+x -2=0},B ={x |ax =1},若A ∩B =B ,则a =( ).A .-12或1 B .2或-1C .-2或1或0D .-12或1或0解析:依题意可得A ∩B =B ⇔B ⊆A .因为集合A ={x |x 2+x -2=0}={-2,1},当x =-2时,-2a =1,解得a =-12;当x =1时,a =1;又因为B 是空集时也符合题意,这时a =0,故选D . 答案:D【典例2】若集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},且B ⊆A ,则由m 的可取值组成的集合为__________.解析:当m +1>2m -1,即m <2时,B =∅,满足B ⊆A ; 若B ≠∅,且满足B ⊆A ,如图所示,则⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,即⎩⎪⎨⎪⎧m ≥2,m ≥-3,m ≤3,∴2≤m ≤3.故m <2或2≤m ≤3,即所求集合为{m |m ≤3}.答案:{m |m ≤3}答题指导:1.典例1易出现忽略a =0的情况,典例2易出现不讨论B =∅的情况.2.在解决有关A ∩B =∅,A ∪B =∅,A ⊆B 等集合问题时,往往容易忽略空集的情况,一定要先考虑∅是否成立,以防漏解.另外要注意分类讨论和数形结合思想的应用.1.已知集合A ={2,3,4},B ={2,4,6,8},C ={(x ,y )|x ∈A ,y ∈B ,且log x y ∈N *},则集合C 中的元素个数是( ).A .9B .8C .3D .42.(2012课标全国高考)已知集合A ={x |x 2-x -2<0},B ={x |-1<x <1},则( ).A .AB B .B AC .A =BD .A ∩B =∅3.(2012广东高考)设集合U ={1,2,3,4,5,6},M ={1,3,5},则∁U M =( ).A .{2,4,6}B .{1,3,5}C .{1,2,4}D .U4.(2012北京高考)已知集合A ={x ∈R |3x +2>0},B ={x ∈R |(x +1)(x -3)>0},则A ∩B =( ).A .(-∞,-1)B .⎝⎛⎭⎪⎫-1,-23C .⎝ ⎛⎭⎪⎫-23,3 D .(3,+∞)5.(2012山东济宁模拟)设集合P ={x |sin x =1,x ∈R },Q ={x |cos x =-1,x ∈R },S ={x |sin x +cos x =0,x ∈R },则( ).A .P ∩Q =SB .P ∪Q =SC .P ∪Q ∪S =RD .(P ∩Q )⊆S参考答案基础梳理自测知识梳理1.确定性互异性无序性2.属于不属于∈∉3.列举法描述法4.N N*N+Z Q R5.有限集无限集6.2n2n-1 2n-27.B⊆A8.{x|x∈A,或x∈B} {x|x∈A,且x∈B} {x|x∈U,且x∉A}基础自测1.D 解析:∵2 014<211=2 048,∴{2 014}⊆M,故选D.2.C 解析:易知∁U A={0,4},所以(∁U A)∪B={0,2,4},故选C.3.B 解析:在数轴上表示出两个集合,可以看到,当a<1时,A∩B≠∅.故选B.4.D 解析:由题意可得,A={1,2},B={1,2,3,4}.又∵A ⊆C⊆B,∴C={1,2}或{1,2,3}或{1,2,4}或{1,2,3,4},故选D.5.1 解析:∵A={-1,1,3},B={a+2,a2+4},A∩B={3},a2+4>3,∴a+2=3,a=1.考点探究突破【例1-1】B 解析:由题意知,B中的元素有:2×3=6,2×4=8,3×4=12,因此B={6,8,12},故选B.【例1-2】1 解析:当a+2=1,即a=-1时,(a+1)2=0,a2+3a+3=1与a+2相同,∴不符合题意.当(a+1)2=1,即a=0或a=-2时,①a=0符合要求.②a=-2时,a2+3a+3=1与(a+1)2相同,不符合题意.当a2+3a+3=1,即a=-2或a=-1.①当a=-2时,a2+3a+3=(a+1)2=1,不符合题意.②当a=-1时,a2+3a+3=a+2=1,不符合题意.综上所述,a=0.∴2 014a=1. 【例2-1】1 解析:由题意知b =0,因此集合化简为{a,0,1}={a 2,a,0},因此a 2=1,解得a =±1.经检验a =1不符合集合元素的互异性,故a =-1.故a 2 014+b 2 014=1.【例2-2】解:由于2a ≤a 2+1,当2a =a 2+1时,即a =1时,函数无意义,∴a ≠1,B ={x |2a <x <a 2+1}.①当3a +1<2,即a <13时,A ={x |3a +1<x <2},要使B ⊆A成立,则⎩⎪⎨⎪⎧2a ≥3a +1,a 2+1≤2,即a =-1.②当3a +1=2,即a =13时,A =∅,B =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫23<x <109,此时不满足B ⊆A ;③当3a +1>2,即a >13时,A ={x |2<x <3a +1},要使B ⊆A成立,则⎩⎪⎨⎪⎧2a ≥2,a 2+1≤3a +1,即1≤a ≤3.又a ≠1,故1<a ≤3.综上所述,满足B ⊆A 的实数a 的取值范围是{a |1<a ≤3}∪{a |a =-1}.【例3-1】D 解析:因为A ={x |y =f (x )}={x |1-x 2>0}={x |-1<x <1},则u =1-x 2∈(0,1],所以B ={y |y =f (x )}={y |y ≤0}, A ∪B =(-∞,1),A ∩B =(-1,0],故题图中阴影部分表示的集合为(-∞,-1]∪(0,1),选D.【例3-2】解:由x 2-3x +2=0, 得x =1或x =2, 故集合A ={1,2}.(1)∵A ∩B ={2},∴2∈B ,代入B 中的方程,得a 2+4a +3=0⇒a =-1或a =-3.当a =-1时,B ={x |x 2-4=0}={-2,2},满足条件;当a =-3时,B ={x |x 2-4x +4=0}={2},满足条件, 综上,a 的值为-1或-3. (2)对于集合B ,Δ=4(a +1)2-4(a 2-5)=8(a +3). ∵A ∪B =A ,∴B ⊆A ,①当Δ<0,即a <-3时,B =∅,满足条件; ②当Δ=0,即a =-3时,B ={2},满足条件;③当Δ>0,即a >-3时,B =A ={1,2}才能满足条件, 则由根与系数的关系得⎩⎪⎨⎪⎧1+2=-2(a +1)1×2=a 2-5⇒⎩⎪⎨⎪⎧a =-52,a 2=7,矛盾;综上,a 的取值范围是(-∞,-3].演练巩固提升 1.D2.B 解析:由题意可得,A ={x |-1<x <2}, 而B ={x |-1<x <1},故B A .3.A 解析:∵M ={1,3,5},U ={1,2,3,4,5,6}, ∴∁U M ={2,4,6}.4.D 解析:由题意得,A =⎩⎨⎧⎭⎬⎫x |x >-23,B ={x |x <-1,或x>3},所以A ∩B =(3,+∞).5.D 解析:方法一:由sin x =1得,x =2k π+π2,k ∈Z ,所以P =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =2k π+π2,k ∈Z ;由cos x =-1得,x =2k π+π,k ∈Z ,所以Q ={x |x =2k π+π,k ∈Z }; 由sin x +cos x =0得,2sin ⎝ ⎛⎭⎪⎫x +π4=0,即sin ⎝⎛⎭⎪⎫x +π4=0,可得x +π4=k π,k ∈Z ,即x =k π-π4,k ∈Z ,所以S =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =k π-π4,k ∈Z .由于P ∩Q =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =2k π+π2,k ∈Z ∩{x |x =2k π+π,k ∈Z }=∅,因此(P ∩Q )⊆S ,所以选项D 正确.方法二:P 表示终边落在y 轴非负半轴上角的集合,Q 表示终边落在x 轴非正半轴上角的集合,故P ∩Q =∅,所以选项D 正确.。

新教材高考数学一轮复习第一章1.1集合课件

新教材高考数学一轮复习第一章1.1集合课件

(3)A
解析 (1)(数形结合)由数轴可知
所以A∪B={x|1≤x<4},故选C.
(2)满足x,y∈ N*,y≥x,且x+y=8的元素(x,y)有(1,7),(2,6),(3,5),(4,4),共4个,故
A∩B中元素的个数为4.
(3)∵A∪B={-1,0,1,2},
∴∁U(A∪B)={-2,3}.故选A.
A.{1,4} B.{1,4,5}
)
C.{4,5} D.{6,7}
答案 C
解析 由题意得∁UB={1,4,5},又A={2,3,4,5},所以A∩(∁UB)={4,5},故选C.
5.(202X江苏南京六校5月联考,1)已知集合A={x|x2-2x<0},B={x|x<1},则
A∪B=
.
答案 (-∞,2)
D.[-4,4]
(2)(202X年1月8省适应测试)已知M,N均为R的子集,且∁RM⊆N,则
M∪(∁RN)=(
A.⌀
B.M
)
C.N
D.R
(3)(202X山东潍坊一模,1)设集合A={2,4},B={x∈N|x-3≤0},则A∪B=(
A.{1,2,3,4}
B.{0,1,2,3,4}
C.{2}
D.{x|x≤4}
= 2
=
=
1
,
4

1
2
= 0,
1
故 a=0 或4.
= 1,
解题心得与集合中的元素有关问题的求解策略:
(1)确定集合中的代表元素是什么,即集合是数集、点集,还是其他类型的
集合.
(2)看这些元素满足什么限制条件.
(3)根据限制条件列式求参数的值或确定集合中元素的个数,但要注意检验

高三数学一轮复习精品教案2:1.1集合教学设计

高三数学一轮复习精品教案2:1.1集合教学设计

第一节集合1.集合的基本概念(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系:属于或不属于,表示符号分别为∈和∉.(3)集合的三种表示方法:列举法、描述法、V enn图法.2.集合间的基本关系(1)子集:若对∀x∈A,都有x∈B,则A⊆B或B⊇A.(2)真子集:若A⊆B,但∃x∈B,且x∉A,则A B或B A.(3)相等:若A⊆B,且B⊆A,则A=B.(4)空集的性质:∅是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算续表1.(人教A版教材习题改编)若集合M={x∈N|x≤10},a=22,则下面结论中正确的是()A.{a}⊆M B.a⊆MC.{a}∈M D.a∉M『解析』∵M={x∈N|x≤10}={0,1,2,3},∴a∉M.『答案』 D2.(2013·慈溪模拟)设集合M={x|x<2 013},N={x|0<x≤2 013},则M∪N=() A.M B.NC.{x|x≤2 013} D.{x|0<x<2 012}『解析』M∪N={x|x≤2 013}.『答案』 C3.(2012·广东高考)设集合U={1,2,3,4,5,6},M={1,2,4},则∁U M=() A.U B.{1,3,5}C.{3,5,6} D.{2,4,6}『解析』∵U={1,2,3,4,5,6},M={1,2,4},∴∁U M={3,5,6}.『答案』 C4.若P={x|x<1},Q={x|x>-1},则()A.P⊆Q B.Q⊆PC.∁R P⊆Q D.Q⊆∁R P『解析』∵P={x|x<1},∴∁R P={x|x≥1},因此∁R P⊆Q.『答案』 C5.若集合A={x|x<1},B={x|x≥a},且A∩B≠∅,则实数a的取值范围为() A.{a|a≤1} B.{a|a<1}C.{a|a≥1} D.{a|a>1}『解析』∵A∩B≠∅,∴a<1,故选B.『答案』 B(1)(2013·洛阳模拟)设P 、Q 为两个非空实数集合,定义集合P +Q ={a +b |a ∈P ,b ∈Q },若P ={0,2,5},Q ={1,2,6},则P +Q 中元素的个数为( )A .9B .8C .7D .6(2)(2013·连云港模拟)已知集合A ={m +2,2m 2+m ,-3},若3∈A ,则m 的值为________.『思路点拨』 (1)先确定a 值,再确定b 值,注意元素的互异性. (2)根据元素与集合的关系知,m +2=3或2m 2+m =3,注意元素的互异性. 『尝试解答』 (1)当a =0,b =1,2,6时,P +Q ={1,2,6}; 当a =2,b =1,2,6时,P +Q ={3,4,8}; 当a =5,b =1,2,6时,P +Q ={6,7,11}.∴当P ={0,2,5},Q ={1,2,6}时,P +Q ={1,2,3,4,6,7,8,11}. 故集合P +Q 有8个元素.(2)∵3∈A ,∴m +2=3或2m 2+m =3,解得m =1或m =-32.当m =1时,m +2=2m 2+m =3,不满足集合元素的互异性,当m =-32时,A ={-3,12,3}满足题意.故m =-32. 『答案』 (1)B (2)-32,1.解答本题(1)时,若不按分类讨论计算,易漏掉元素,对于本题(2)易忽视元素的互异性而得到错误答案.2.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其它的集合.3.对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性.(1)若定义:A *B ={z |z =xy ,x ∈A ,y ∈B }.设A ={1,2},B ={0,2},则集合A *B 的所有元素之和为( )A .0B .2C .3D .6(2)已知集合A ={x |ax 2-3x +2=0},若A =∅,则实数a 的取值范围为________. 『解析』 (1)∵A *B ={z |z =xy ,x ∈A ,y ∈B }, 又A ={1,2},B ={0,2},∴A *B ={0,2,4},其所有元素之和为6,故选D. (2)∵A =∅,∴方程ax 2-3x +2=0无实根, 当a =0时,x =23不合题意,当a ≠0时,Δ=9-8a <0,∴a >98.『答案』 (1)D (2)(98,+∞)(1)已知a ∈R ,b ∈R ,若{a ,ba ,1}={a 2,a +b ,0},则a 2 013+b 2 013=________.(2)已知集合A ={x |x 2-3x -10≤0},B ={x |m +1≤x ≤2m -1},若A ∪B =A ,则实数m 的取值范围是________.『思路点拨』 (1)0∈{a ,ba ,1},则b =0,1∈{a 2,a ,0},则a 2=1,a ≠1,从而a ,b 可求.(2)A ∪B =A ⇒B ⊆A ,分B =∅和B ≠∅两种情况求解. 『尝试解答』 (1)由已知得ba=0及a ≠0,所以b =0,于是a 2=1,即a =1或a =-1.又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a 2 013+b 2 013=(-1)2 013=-1.(2)A ={x |x 2-3x -10≤0}={x |-2≤x ≤5}, 又A ∪B =A ,所以B ⊆A .①若B =∅,则2m -1<m +1,此时m <2. ②若B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5.解得2≤m ≤3.由①、②可得,符合题意的实数m 的取值范围为m ≤3. 『答案』 (1)-1 (2)(-∞,3』,1.解答本题(2)时应注意两点:一是A ∪B =A ⇒B ⊆A ;二是B ⊆A 时,应分B =∅和B ≠∅两种情况讨论.2.集合A 中元素的个数记为n ,则它的子集的个数为2n ,真子集的个数为2n -1,非空真子集的个数为2n -2.3.已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系.解决这类问题常常合理利用数轴、V enn 图化抽象为直观.若集合M ={x |x 2+x -6=0},N ={x |ax +2=0,a ∈R },且M ∩N =N ,则实数a 的取值集合是________.『解析』 因为M ∩N =N ,所以N ⊆M . 又M ={-3,2}, 若N =∅,则a =0.若N ≠∅,则N ={-3}或N ={2}.所以-3a +2=0或2a +2=0,解得a =23或a =-1.所以a 的取值集合是{-1,0,23}.『答案』 {-1,0,23}(1)(2012·浙江高考)设集合A ={x |1<x <4},集合B ={x |x 2-2x -3≤0},则A ∩(∁R B )=( )A .(1,4)B .(3,4)C .(1,3)D .(1,2)∪(3,4)(2)(2012·天津高考)已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =________,n =________.『思路点拨』 (1)先化简集合B ,求出∁R B ,再借助数轴求A ∩∁R B . (2)根据A ∩B 结构特征求解.『尝试解答』 (1)解x 2-2x -3≤0得-1≤x ≤3, ∴B =『-1,3』,则∁R B =(-∞,-1)∪(3,+∞), ∴A ∩(∁R B )=(3,4).(2)∵A ={x |-5<x <1},B ={x |(x -m )(x -2)<0}, 且A ∩B ={x |-1<x <n },∴m=-1,n=1.『答案』(1)B(2)-11,1.在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.2.在解决有关A∩B=∅,A⊆B等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.3.要注意六个关系式A⊆B、A∩B=A、A∪B=B、∁U A⊇∁U B、A∩(∁U B)=∅、(∁U A)∪B =U的等价性.(2012·辽宁高考)已知全集U={0,1,2,3,4,5,6,7,8,9},集合A ={0,1,3,5,8},集合B={2,4,5,6,8},则(∁U A)∩(∁U B)=() A.{5,8}B.{7,9}C.{0,1,3} D.{2,4,6}『解析』因为∁U A={2,4,6,7,9},∁U B={0,1,3,7,9},所以(∁U A)∩(∁U B)={7,9}.『答案』 B一种方法正如数轴是研究实数的工具,Venn图是研究集合的工具,借助Venn图和数轴即数形结合能使抽象问题直观化,其中运用数轴图示法要特别注意端点是实心还是空心.两个防范1.空集在解题时具有特殊地位,它是任何集合的子集,是任何非空集合的真子集,应时刻关注对空集的讨论,防止漏解.2.在解决含参数的集合问题时,要检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致结论错误.(见学生用书第3页)从近两年课标区高考试题看,集合间的关系与集合的运算是高考命题的重点,常与函数、方程、不等式等知识结合命题,而以集合为背景的新定义题,则是高考命题的热点.创新探究之一以集合为背景的新定义题(2012·课标全国卷)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为()A.3B.6C.8D.10『解析』因为A={1,2,3,4,5},所以集合A中的元素都为正数,若x-y∈A,则必有x-y>0,即x>y.当y=1时,x可取2,3,4,5,共有4个数;当y=2时,x可取3,4,5,共有3个数;当y=3时,x可取4,5,共有2个数;当y=4时,x只能取5,共有1个数;当y=5时,x不能取任何值.综上,满足条件的实数对(x,y)的个数为4+3+2+1=10,即集合B中的元素共有10个,故选D.『答案』 D创新点拨:(1)本题以元素与集合的关系为载体,用附加条件“x∈A,y∈A,x-y∈A”定义以有序实数对(x,y)为元素的集合B,通过对新定义的理解与应用来考查阅读理解能力与知识迁移能力.(2)考查创新意识、化归转化能力,以及分类讨论思想.应对措施:(1)准确理解集合B是解决本题的关键,集合B中的元素是有序实数对(x,y),并且要求x∈A,y∈A,x-y∈A,所以要判断集合B中元素的个数,需要根据x-y是否是集合A中的元素进行判断.(2)为化复杂为简单,以y取何值为标准分类,分别求值.1.(2012·湖北高考)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为()A.1B.2C.3D.4『解析』由x2-3x+2=0得x=1或x=2,∴A={1,2}.由题意知B={1,2,3,4},∴满足条件的C可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.『答案』 D2.(2012·山东高考)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为()A.{1,2,4} B.{2,3,4}C.{0,2,4} D.{0,2,3,4}『解析』∵∁U A={0,4},B={2,4},∴(∁U A)∪B={0,2,4}.『答案』 C。

(新人教)高三数学第一轮复习教案1.1.1集合(1)

(新人教)高三数学第一轮复习教案1.1.1集合(1)

一.课题:集合(1)二.教学目标:1.理解集合的概念和性质.2.了解元素与集合的表示方法.3.熟记有关数集.4.培养学生认识事物的能力三.教学重、难点:集合概念、性质.四.教学过程:(一)复习:回顾初中代数中涉及“集合”提法(二)新课讲解:1.定义:一般地,某些指定的对象集在一起就成为一个集合(集).进一步指出:集合中每个对象叫做这个集合的元素.由此上述例中集合的元素是什么?(例(1)的元素为1、3、5、7,例(2)的元素为到两定点距离等于两定点间距离的点,例(3)的元素为满足不等式323x x +>+的实数x ,例(4)的元素为所有直角三角形,例(5)为高一·三班全体男同学.)请同学们另外举出三个例子,并指出其元素.一般用大括号表示集合,则上几例可表示为……由以上四个问题可知,集合元素具有三个特征:(1)确定性;(2)互异性;(3)无序性.元素与集合的关系有“属于∈”及“不属于∉( ∉ 也可表示为 )两种.请同学们熟记上述符号及其意义.∈请同学回答:已知a b c m ++=,2{|}A x ax bx c m =++=,判断1与A 的关系. [1A ∈]五.课堂练习:课本P 5,练习1、2补充练习:若23{1,3,1}m m m -∈-+,求m 。

[1m =-或2]m =-六.小结:1.集合的概念2.集合元素的三个特征:其中“集合中的元素必须是确定的”应理解为:对于一个给定的集合,它的元素的意义是明确的.“集合中的元素必须是互异的”应理解为:对于给定的集合,它的任何两个元素都是不同的.3.常见数集的专用符号.七.课后作业:课本P 7,习题1.1 第1题.。

高考数学一轮复习学案:1.1 集合及其运算(含答案)

高考数学一轮复习学案:1.1 集合及其运算(含答案)

高考数学一轮复习学案:1.1 集合及其运算(含答案)1.1集合及其运算集合及其运算最新考纲考情考向分析1.了解集合的含义,体会元素与集合的属于关系.2.能用自然语言.图形语言.集合语言列举法或描述法描述不同的具体问题.3.理解集合之间包含与相等的含义,能识别给定集合的子集.4.在具体情境中,了解全集与空集的含义.5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.7.能使用韦恩Venn图表达集合的基本关系及集合的基本运算.集合的交.并.补运算及两集合间的包含关系是考查的重点,在集合的运算中经常与不等式.函数相结合,解题时常用到数轴和韦恩Venn图,考查学生的数形结合思想和计算推理能力,题型以选择题为主,低档难度.1集合与元素1集合中元素的三个特征确定性.互异性.无序性2元素与集合的关系是属于或不属于,用符号或表示3集合的表示法列举法.描述法.图示法4常见数集的记法集合自然数集正整数集整数集有理数集实数集符号NN*或NZQR2.集合间的基本关系关系自然语言符号语言Venn图子集集合A中所有元素都在集合B中即若xA,则xBAB或BA真子集集合A 是集合B的子集,且集合B中至少有一个元素不在集合A中AB或BA集合相等集合A,B中的元素相同或集合A,B互为子集AB3.集合的基本运算运算自然语言符号语言Venn图交集由属于集合A且属于集合B的所有元素组成的集合ABx|xA且xB并集由所有属于集合A或属于集合B的元素组成的集合ABx|xA或xB补集由全集U中不属于集合A的所有元素组成的集合UAx|xU且xA 知识拓展1若有限集合A中有n个元素,则集合A的子集个数为2n,真子集的个数为2n1.2ABABAABB.3AUA;AUAU;UUAA.题组一思考辨析1判断下列结论是否正确请在括号中打“”或“”1任何一个集合都至少有两个子集2x|yx21y|yx21x,y|yx213若x2,10,1,则x0,1.4x|x1t|t15对于任意两个集合A,B,关系ABAB恒成立6若ABAC,则BC.题组二教材改编2P11例9已知U|0180,Ax|x是锐角,Bx|x是钝角,则UAB________.答案x|x是直角3P44A组T5已知集合Ax,y|x2y21,Bx,y|yx,则AB中元素的个数为________答案2解析集合A表示以0,0为圆心,1为半径的单位圆,集合B表示直线yx,圆x2y21与直线yx相交于两点22,22,22,22,则AB中有两个元素题组三易错自纠4若集合A1,1,B0,2,则集合z|zxy,xA,yB中的元素的个数为A5B4C3D2答案C解析当x1,y0时,z1;当x1,y2时,z1;当x1,y0时,z1;当x1,y2时,z3,故集合z|zxy,xA,yB中的元素个数为3,故选C.5已知集合Ax|x22x30,Bx|x1答案D解析因为AB,所以集合A,B有公共元素,作出数轴,如图所示,易知a1.2集合A0,2,a,B1,a2,若AB0,1,2,4,16,则a的值为A0B1C2D4答案D解析由题意可得a,a24,16,a4.3设集合A0,4,Bx|x22a1xa210,xR若ABB,则实数a的取值范围是______答案,11解析因为A0,4,所以BA分以下三种情况当BA时,B0,4,由此可知,0和4是方程x22a1xa210的两个根,由根与系数的关系,得4a124a210,2a14,a210,解得a1;当B且BA时,B0或B4,并且4a124a210,解得a1,此时B0满足题意;当B时,4a124a210,解得a1.综上所述,所求实数a的取值范围是,11思维升华1一般来讲,集合中的元素若是离散的,则用Venn图表示;集合中的元素若是连续的,则用数轴表示,此时要注意端点的情况2运算过程中要注意集合间的特殊关系的使用,灵活使用这些关系,会使运算简化跟踪训练1xx天津设集合A1,2,6,B2,4,CxR|1x5,则ABC等于A2B1,2,4C1,2,4,6DxR|1x5答案B解析AB1,2,4,6又CxR|1x5,则ABC1,2,4,故选B.2已知集合Ax|x2x120,Bx|2m1xm1,且ABB,则实数m的取值范围为A1,2B1,3C2,D1,答案D解析由x2x120,得x3x40,即3x4,所以Ax|3x4又ABB,所以BA.当B时,有m12m1,解得m2;当B时,有32m1,m14,2m1m1,解得1m2.综上,m的取值范围为1,题型四题型四集合的新定义问题集合的新定义问题典例已知集合Ax,y|x2y21,x,yZ,Bx,y||x|2,|y|2,x,yZ,定义集合ABx1x2,y1y2|x1,y1A,x2,y2B,则AB中元素的个数为A77B49C45D30答案C解析如图,集合A表示如图所示的所有圆点“”,集合B表示如图所示的所有圆点“”所有圆点“”,集合AB显然是集合x,y||x|3,|y|3,x,yZ中除去四个点3,3,3,3,3,3,3,3之外的所有整点即横坐标与纵坐标都为整数的点,即集合AB表示如图所示的所有圆点“”所有圆点“”所有圆点“”,共45个故AB 中元素的个数为45.故选C.思维升华解决以集合为背景的新定义问题,要抓住两点1紧扣新定义首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,应用到具体的解题过程之中2用好集合的性质解题时要善于从试题中发现可以使用集合性质的一些因素跟踪训练定义一种新的集合运算ABx|xA,且xB若集合Ax|x24x30,Bx|2x4,则按运算,BA等于Ax|3x4Bx|3x4Cx|3x4Dx|2x4答案B解析Ax|1x3,Bx|2x4,由题意知,BAx|xB,且xAx|3x4.。

2025年新人教版高考数学一轮复习讲义 第一章 §1.1 集 合

2025年新人教版高考数学一轮复习讲义  第一章 §1.1 集 合

(2)已知集合A={0,m,m2-3m+2},且2∈A,则实数m的值为
A.2
√B.3
C.0
D.-2
因为集合A={0,m,m2-3m+2},且2∈A, 则m=2或m2-3m+2=2,解得m∈{0,2,3}. 当m=0时,集合A中的元素不满足互异性; 当m=2时,m2-3m+2=0,集合A中的元素不满足互异性; 当m=3时,A={0,3,2},符合题意.综上所述,m=3.
知识梳理
3.集合的基本运算
表示 运算
集合语言
并集 _{_x_|x_∈__A_,__或__x_∈__B_}_
交集 _{_x_|x_∈__A_,__且__x_∈__B_}_
补集 _{_x_|x_∈__U__,__且__x∉_A__}_
图形语言
记法 _A__∪__B_ _A__∩__B_
_∁_U_A_
常用结论
例5 (多选)群论是代数学的分支学科,在抽象代数中具有重要地位,且 群论的研究方法也对抽象代数的其他分支有重要影响,例如一元五次及 以上的方程没有根式解就可以用群论知识证明.群的概念则是群论中最基 本的概念之一,其定义如下:设G是一个非空集合,“·”是G上的一个代 数运算,即对所有的a,b∈G,有a·b∈G,如果G的运算还满足:①∀a, b,c∈G,有(a·b)·c=a·(b·c);②∃e∈G,使得∀a∈G,有e·a=a·e=a; ③∀a∈G,∃b∈G,使a·b=b·a=e,则称G关于“·”构成一个群.
1.若集合A有n(n≥1)个元素,则集合A有2n个子集,2n-1个真子集. 2.空集是任何集合的子集,是任何非空集合的真子集. 3.A∩B=A⇔A⊆B,A∪B=A⇔B⊆A. 4.∁U(A∩B)=(∁UA)∪(∁UB),∁U(A∪B)=(∁UA)∩(∁UB).

(通用版)高考数学大一轮复习 第1讲 集合学案 理 新人教A版-新人教A版高三全册数学学案

(通用版)高考数学大一轮复习 第1讲 集合学案 理 新人教A版-新人教A版高三全册数学学案

第1讲集合1.元素与集合(1)集合元素的性质:、、无序性.(2)集合与元素的关系:①属于,记为;②不属于,记为.(3)集合的表示方法:列举法、和.(4)常见数集及记法数集自然数集正整数集整数集有理数集实数集符号2.集合间的基本关系文字语言符号语言记法基本关系子集集合A中的都是集合B中的元素x∈A⇒x∈BA⊆B或集合A是集合B的子集,但集合B中有一个元素不属于AA⊆B,∃x0∈B,x0∉AAB或B⫌A 相等集合A,B的元素完全A⊆B,B⊆A空集任何元素的集合,空集∀x,x∉⌀,⌀是任何集合的子集⌀⊆A3.集合的基本运算表示运算文字语言符号语言图形语言记法交集属于A属于B的元素组成的集合{x|x∈A,x∈B}并集属于A属于B的元素组成的集合{x|x∈A,x∈B}补集全集U中属于A的元素组成的集合{x|x∈U,xA}4.集合的运算性质(1)并集的性质:A∪⌀=A;A∪A=A;A∪B= ;A∪B= ⇔B⊆A.(2)交集的性质:A∩⌀=⌀;A∩A=A;A∩B=B∩A;A∩B=A⇔A B.(3)补集的性质:A∪(∁U A)=U;A∩(∁U A)= ;∁U(∁U A)= ;∁U(A∪B)=(∁U A)(∁U B);∁U(A∩B)= ∪.常用结论(1)非常规性表示常用数集:如{x|x=2(n-1),n∈Z}为偶数集,{x|x=4n±1,n∈Z}为奇数集等.(2)①一个集合的真子集必是其子集,一个集合的子集不一定是其真子集;②任何一个集合是它本身的子集;③对于集合A,B,C,若A⊆B,B⊆C,则A⊆C(真子集也满足);④若A⊆B,则有A=⌀和A≠⌀两种可能.(3)集合子集的个数:集合A中有n个元素,则集合A有2n个子集、2n-1个真子集、2n-1个非空子集、2n-2个非空真子集.集合元素个数:card(A∪B)=card(A)+card(B)-card(A∩B)(常用在实际问题中).题组一常识题1.[教材改编]已知集合A={0,1,x2-5x},若-4∈A,则实数x的值为.2.[教材改编]已知集合A={a,b},若A∪B={a,b,c},则满足条件的集合B有个.3.[教材改编]设全集U=R,集合A={x|0≤x≤2},B={y|1≤y≤3},则(∁U A)∪B= .4.[教材改编]已知集合A={-1,1},B={a,a2+2}.若A∩B={1},则实数a的值为.题组二常错题◆索引:忽视集合元素的性质致错;对集合的表示方法理解不到位致错;忘记空集的情况导致出错;忽视集合运算中端点取值致错.5.已知集合A={1,3,√m},B={1,m},若B⊆A,则m= .6.已知x∈N,y∈N,M={(x,y)|x+y≤2},N={(x,y)|x-y≥0},则M∩N中元素的个数是.7.已知集合M={x|x-a=0},N={x|ax-1=0},若M∩N=N,则实数a的值是.8.设集合A={x||x-a|<1,x∈R},B={x|1<x<5,x∈R},若A⫋B,则a的取值范围为.探究点一集合的含义与表示例1 (1)[2018·全国卷Ⅱ]已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9B.8C.5D.4(2)设集合A={-4,2a-1,a2},B={9,a-5,1-a},且集合A,B中有唯一的公共元素9,则实数a的值为.[总结反思] 解决集合含义问题的关键有三点:一是确定构成集合的元素;二是确定元素的限制条件;三是根据元素的特征(满足的条件)构造关系式解决相应问题.特别提醒:含字母的集合问题,在求出字母的值后,需要验证集合的元素是否满足互异性.变式题 (1)已知集合A={x|x=3k-1,k∈Z},则下列表示正确的是()A.-1∉AB.-11∈AC.3k2-1∈AD.-34∉A(2)[2018·上海黄浦区二模]已知集合A={1,2,3},B={1,m},若3-m∈A,则非零实数m的值是.探究点二集合间的基本关系例2 (1)[2018·武汉4月调研]已知集合M={x|x2=1},N={x|ax=1},若N⊆M,则实数a的取值集合为()A.{1}B.{-1,1}C.{1,0}D.{1,-1,0}(2)设集合M={x|x=5-4a+a2,a∈R},N={y|y=4b2+4b+2,b∈R},则下列关系中正确的是()A.M=NB.M⫋NC.N⫋MD.M∈N[总结反思] (1)一般利用数轴法、Venn图法以及结构法判断两集合间的关系,如果集合中含有参数,需要对式子进行变形,有时需要进一步对参数分类讨论.(2)确定非空集合A的子集的个数,需先确定集合A中的元素的个数.特别提醒:不能忽略任何非空集合是它自身的子集.(3)根据集合间的关系求参数值(或取值范围)的关键是将条件转化为元素满足的式子或区间端点间的关系,常用数轴法、Venn图法.=1,则集合A,B间的关系为变式题 (1)设x,y∈R,集合A={(x,y)|y=x},B=(x,y)mm()A.A⫋BB.B⫋AC.A=BD.A∩B=⌀(2)已知集合M={x|x≤1},N={x|a≤x≤3a+1},若M∩N=⌀,则a的取值范围是.探究点三集合的基本运算角度1集合的运算例3 (1)[2018·长沙周南中学月考]已知集合A={x|x<1},B={x|e x<1},则()A.A∩B={x|x<1}B.A∪B={x|x<e}C.A∪(∁R B)=RD.(∁R A)∩B={x|0<x<1}(2)[2018·山西大学附中5月调研]已知集合A={x|2x≤1},B={x|ln x<1},则A∪B=()A.{x|x<e}B.{x|0≤x≤e}C.{x|x≤e}D.{x|x>e}[总结反思] 对于已知集合的运算,可根据集合的交集和并集的定义直接求解,必要时可结合数轴以及Venn图求解.角度2利用集合运算求参数例4 (1)已知集合A={x∈Z|x2-4x-5<0},B={x|4x>2m},若A∩B中有三个元素,则实数m的取值范围是()A.[3,6)B.[1,2)C.[2,4)D.(2,4](2)设全集U=R,集合A={x|x>1},集合B={x|x>p},若(∁U A)∩B=⌀,则p应该满足的条件是()A.p>1B.p≥1C.p<1D.p≤1[总结反思] 根据集合运算求参数,要把集合语言转换为方程或不等式,然后解方程或不等式,再利用数形结合法求解.角度3集合语言的运用例5 (1)已知集合S={0,1,2,3,4,5},A是S的一个子集,当x∈A时,若有x-1∉A且x+1∉A,则称x为A的一个“孤立元素”,那么S的无“孤立元素”的非空子集的个数为 ()A.16B.17C.18D.20(2)对于a,b∈N,规定a*b={m+m,m与m的奇偶性相同,m×m,m与m的奇偶性不同,集合M={(a,b)|a*b=36,a,b∈N*},则M中的元素个数为.[总结反思] 解决集合新定义问题的关键是:(1)准确转化:解决新定义问题时,一定要读懂新定义的本质含义,紧扣题目所给定义,结合题目的要求进行恰当转化,切忌同已有概念或定义相混淆.(2)方法选取:对于新定义问题,可恰当选用特例法、筛选法、一般逻辑推理等方法,并结合集合的相关性质求解.第1讲集合考试说明 1.集合的含义与表示:(1)了解集合的含义、元素与集合的属于关系;(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.集合间的基本关系:(1)理解集合之间包含与相等的含义,能识别给定集合的子集;(2)在具体情境中,了解全集与空集的含义.3.集合的基本运算:(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用韦恩(Venn)图表达集合间的关系及运算.【课前双基巩固】知识聚焦1.(1)确定性 互异性 (2)∈ ∉ (3)描述法 图示法 (4)N N *或N + Z Q R 2.任意一个元素 B ⊇A 至少 ⫋ 相同 A=B 不含 3.且 且 A ∩B 或 或 A ∪B 不 ∉ ∁U A 4.(1)B ∪A A (2)⊆ (3)⌀ A ∩ (∁U A ) (∁U B ) 对点演练1.4或1 [解析] 因为-4∈A ,所以x 2-5x=-4,解得x=1或x=4. 2.4 [解析] 因为(A ∪B )⊇B ,A={a ,b },所以满足条件的集合B 可以是{c },{a ,c },{b ,c },{a ,b ,c },所以满足条件的集合B 有4个.3.(-∞,0)∪[1,+∞) [解析] 因为∁U A={x|x>2或x<0},B={y|1≤y ≤3},所以(∁U A )∪B=(-∞,0)∪[1,+∞).4.1 [解析] 由题意可得1∈B ,又a 2+2≥2,故a=1,此时B={1,3},符合题意.5.0或3 [解析] 因为B ⊆A ,所以m=3或m=√m ,即m=3或m=0或m=1,根据集合元素的互异性可知,m ≠1,所以m=0或3.6.4 [解析] 依题意得M={(0,2),(0,1),(1,1),(0,0),(1,0),(2,0)},所以M ∩N={(1,1),(0,0),(1,0),(2,0)},所以M ∩N 中有4个元素.7.0或1或-1 [解析] 易得M={a }.∵M ∩N=N ,∴N ⊆M ,∴N=⌀或N=M ,∴a=0或a=±1. 8.2≤a ≤4 [解析] 由|x-a|<1得-1<x-a<1,∴a -1<x<a+1,由A ⫋B 得{m -1≥1,m +1<5或{m -1>1,m +1≤5,∴2≤a ≤4.【课堂考点探究】例1 [思路点拨] (1)根据列举法,确定圆及其内部整数点的个数;(2)因为9∈A ,所以依据2a-1=9或a 2=9分类求解,但要注意集合元素的互异性.(1)A (2)-3 [解析] (1)当x=-1时,y=-1,0,1;当x=0时,y=-1,0,1;当x=1时,y=-1,0,1.所以集合A={(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1)},共有9个元素.(2)∵集合A ,B 中有唯一的公共元素9,∴9∈A.若2a-1=9,即a=5,此时A={-4,9,25},B={9,0,-4},则集合A ,B 中有两个公共元素-4,9,与已知矛盾,舍去.若a 2=9,则a=±3,当a=3时,A={-4,9,5},B={-2,-2,9},B 中有两个元素均为-2,与集合中元素的互异性矛盾,应舍去;当a=-3时,A={-4,-7,9},B={9,-8,4},符合题意. 综上所述,a=-3.变式题 (1)C (2)2 [解析] (1)当k=0时,x=-1,所以-1∈A ,所以A 错误;令-11=3k-1,得k=-103∉Z,所以-11∉A ,所以B 错误;令-34=3k-1,得k=-11,所以-34∈A ,所以D 错误;因为k ∈Z,所以k 2∈Z,则3k 2-1∈A ,所以C 正确.(2)由题知,若3-m=2,则m=1,此时集合B 不符合元素的互异性,故m ≠1; 若3-m=1,则m=2,符合题意;若3-m=3,则m=0,不符合题意.故答案为2.例2 [思路点拨] (1)先求出集合M={x|x 2=1}={-1,1},当a=0和a ≠0时,分析集合N ,再根据集合M ,N 的关系求a ;(2)把集合对应的函数化简,求出集合M ,N ,即可得M ,N 的关系. (1)D (2)A [解析] (1)∵集合M={x|x 2=1}={-1,1},N={x|ax=1},N ⊆M ,∴当a=0时,N=⌀,成立;当a ≠0时,N={1m },则1m =-1或1m =1, 解得a=-1或a=1.综上,实数a 的取值集合为{1,-1,0}.故选D .(2)集合M={x|x=5-4a+a 2,a ∈R}={x|x=(a-2)2+1,a ∈R}={x|x ≥1},N={y|y=4b 2+4b+2,b ∈R}={y|y=(2b+1)2+1,b ∈R}={y|y ≥1},∴M=N.变式题 (1)B (2)a<-12或a>1 [解析] (1)由题意得,集合A={(x ,y )|y=x }表示直线y=x 上的所有点,集合B=(x ,y )mm =1表示直线y=x 上除点(0,0)外的所有点,所以B ⫋A.故选B .(2)当N=⌀时,由a>3a+1得a<-12,满足M ∩N=⌀;当N ≠⌀时,由M ∩N=⌀得{1<m ,m ≤3m +1,解得a>1.所以a 的取值范围是a<-12或a>1.例3[思路点拨] (1)先求出∁R A,∁R B,再判断各选项是否正确;(2)先求出A,B中不等式的解集,确定出集合A,B,再求出两集合的并集即可.(1)C(2)A[解析] (1)∵集合A={x|x<1},B={x|e x<1}={x|x<0},∴∁R B={x|x≥0},∁R A={x|x≥1}.易知A∩B={x|x<0},故A错误;A∪B={x|x<1},故B错误;A∪(∁R B)=R,故C正确;(∁R A)∩B=⌀,故D错误.故选C.(2)集合A={x|2x≤1}={x|x≤0},B={x|ln x<1}={x|0<x<e},∴A∪B={x|x<e},故选A.例4[思路点拨] (1)分别求出集合A和B,根据A∩B中有三个元素,求出实数m的取值范围;(2)根据补集、交集和空集的定义即可得出p满足的条件.(1)C(2)B[解析] (1)集合A={x∈Z|x2-4x-5<0}={0,1,2,3,4},B={x|4x>2m}={m|m>m 2},∵A∩B中有三个元素,∴1≤m2<2,解得2≤m<4,∴实数m的取值范围是[2,4).(2)∵全集U=R,集合A={x|x>1},集合B={x|x>p},∴∁U A={x|x≤1},又(∁U A)∩B=⌀,∴p≥1.例5[思路点拨] (1)按照S的无“孤立元素”的非空子集所含元素个数的多少分类讨论,可得出结果;(2)根据定义分情况讨论满足条件的点(a,b)的个数,从而得出M中的元素个数.(1)D(2)41[解析] (1)根据“孤立元素”的定义知,单元素集合都含“孤立元素”.S的无“孤立元素”且含2个元素的子集为{0,1},{1,2},{2,3},{3,4},{4,5},共5个;S的无“孤立元素”且含3个元素的子集为{0,1,2},{1,2,3},{2,3,4},{3,4,5},共4个;S的无“孤立元素”且含4个元素的子集为{0,1,2,3},{0,1,3,4},{0,1,4,5},{1,2,3,4},{1,2,4,5},{2,3,4,5},共6个;S的无“孤立元素”且含5个元素的子集为{0,1,2,3,4},{1,2,3,4,5},{0,1,2,4,5},{0,1,3,4,5},共4个;S的无“孤立元素”且含6个元素的子集为{0,1,2,3,4,5},共1个.故S的无“孤立元素”的非空子集有5+4+6+4+1=20(个).(2)由a*b=36,a,b∈N*知,若a和b一奇一偶,则a×b=36,满足此条件的有1×36=3×12=4×9,故点(a,b)有6个;若a和b同奇同偶,则a+b=36,满足此条件的有1+35=2+34=3+33=4+32=…=18+18,共18组, 故点(a,b)有35个.所以M中的元素个数为41.【备选理由】例1考查对两集合之间关系以及元素与集合之间关系的理解;例2考查集合的运算及集合子集个数的计算;例3考查集合的运算;例4为根据集合运算求参数问题,重点关注区间端点的取值情况.例1[配合例2使用] [2018·陕西黄陵中学三模]已知集合M={x|y=(-x2+2x+3)12,x∈N},Q={z|z=x+y,x∈M,y∈M},则下列运算正确的是 ()A.M∩Q=⌀B.M∪Q=ZC.M∪Q=QD.M∩Q=Q[解析] C由-x2+2x+3>0,得-1<x<3,∵x∈N,∴x=0,1,2,∴M={0,1,2}.∵Q={z|z=x+y,x∈M,y∈M},∴Q={0,1,2,3,4},∴M∩Q=M,M∪Q=Q,故选C.例2[配合例3使用] [2018·佛山南海中学模拟]已知集合A={x∈N|x2-2x≤0},B={x|-1≤x≤2},则A∩B的子集的个数为()A.3B.4C.7D.8[解析] D∵A={x∈N|x2-2x≤0}={0,1,2},B={x|-1≤x≤2},∴A∩B={0,1,2},∴A∩B的子集的个数为23=8,故选D.例3[配合例3使用] 设集合A={x||x-1|≥2},B={x|y=lg(-x-3)},则A∩B=() A.(-4,+∞) B.[-4,+∞)C.(-∞,-3)D.(-∞,-3)∪[3,+∞)[解析] C由|x-1|≥2,得x-1≥2或x-1≤-2,即x≥3或x≤-1.由-x-3>0,得x<-3,所以A∩B={x|x≥3或x≤-1}∩{x|x<-3}={x|x<-3},故选C.例4 [配合例4使用] 已知集合A={x|y=√4-m 2},B={x|a ≤x ≤a+1},若A ∪B=A ,则实数a 的取值范围为 ( )A .(-∞,-3]∪[2,+∞)B .[-1,2]C .[-2,1]D .[2,+∞)[解析] C 要使函数y=√4-m 2有意义,则4-x 2≥0,据此可得A={x|-2≤x ≤2}.若A ∪B=A ,则集合B 是集合A 的子集,据此有{m ≥-2,m +1≤2,求解不等式组可得,实数a 的取值范围为[-2,1].。

高考数学一轮复习 1.1集合教案

高考数学一轮复习 1.1集合教案

课题第一章集合与常用逻辑用语第一节集合教学目标:知识与技能:了解集合的含义,元素与集合的属于关系,理解集合之间的包含与相等关系,理解子集与补集的关系。

过程与方法:会求两个集合的交,并,补集,能使用韦恩图表达集合的关系及运算。

情感、态度与价值观:教学过程中,要让学生充分体验集合的具体应用,应用集合解决实际问题的方法。

教学重点:集合的交,并,补关系及运算教学难点:使用韦恩图表达集合的关系及运算教具:多媒体、实物投影仪教学过程:一、复习引入:1.集合的含义与表示方法2.集合间的基本关系3.集合的基本运算二、例题讲解例1判断下面结论是否正确(请在括号中打“√”或“×”).(1)已知集合A={x|y=x2},B={y|y=x2},C={(x,y)|y=x2},则A=B=C.( )(2)含有n个元素的集合的子集个数是2n,真子集个数是2n-1,非空真子集的个数是2n-2.( )(3)A∩B= 的充要条件是A=B= .( )(4)A∩B=A⇔A⊆B.( )(5)A∪B=A⇔B⊆A.( )(6) (A∪B)=( A)∩( B).( )【解析】(1)错误.集合A是函数y=x2的定义域,即A=(-∞,+∞);集合B是函数y=x2的值域,即B=[0,+∞);集合C是满足方程y=x2的实数x,y的集合,也可以看作是函数y=x2图象上的点组成的集合,因此这三个集合互不相等.(2)正确.空集的子集个数为1个,即;含有1个元素的集合{a1}的子集个数为2个,即 ,{a1};含有2个元素的集合{a1,a2}的子集个数为4个,即 ,{a1},{a2},{a1,a2}……归纳可得含有n个元素的集合的子集个数为2n个,故其真子集个数是2n-1,非空真子集的个数是2n-2.(3)错误. A∩B= 时,只要集合A,B没有公共元素即可,不一定是A=B= .(4)正确.当A⊆B时,显然A∩B=A;当A∩B=A时,对任意x∈A,得x∈A∩B,得x∈B,即x∈A⇒x∈B,故A⊆B.(5)正确.当B⊆A时,显然A∪B=A;当A∪B=A时,对任意x∈B,则x∈A∪B,得x∈A,即x∈B⇒x∈A,即B⊆A.(6)正确.设x∈ (A∪B),则x (A∪B),得x A且x B,即x∈ A且x∈ B,即x∈( A)∩( B),即 (A∪B)⊆( A)∩( B);反之,当x∈( A)∩( B)时,得x∈ A且x∈ B得x A且x B,得x (A∪B),得x∈ (A∪B),即 (A∪B) ( A)∩( B).根据集合相等的定义得 (A∪B)=( A)∩( B).答案:(1)× (2)√ (3)× (4)√ (5)√ (6)√考向 1 集合的基本概念∈A},则B中所含元素的个数为( )(A)3 (B)6 (C)8 (D)10(2)已知A={a+2,(a+1)2,a2+3a+3},若1∈A,则实数a构成的集合B的元素个数是( )(A)0 (B)1 (C)2 (D)3【思路点拨】(1)集合B中的元素是满足x∈A,y∈A,x-y∈A的有序实数对,根据要求分类列举求解.(2)据1∈A逐个讨论求解a值,根据集合元素的互异性得集合B中元素的个数.【规范解答】(1)选D.方法:x=2时,y=1,x-y=1,此时(x,y)=( 2,1),此时(x,y)有1个;x=3时,y=1,2,此时x-y=2,1,(x,y)有2个;x=4时,y=1,2,3,此时x-y=3,2,1,(x,y)有3个;所以集合B中的元素个数为1+2+3+4=10.(2)选B.若a+2=1,则a=-1,代入集合A,得A={1,0,1},与集合元素的互异性矛盾;若(a+1)2=1,得a=0或-2,代入集合A,得A={2,1,3}或A={0,1,1},后者与集合元素的互异性矛盾,故a=0符合要求;若a2+3a+3=1,则a=-1或-2,代入集合A,得A={1,0,1}或A={0,1,1},都与集合元素的互异性相矛盾.综上可知,只有a=0符合要求,故集合B中只有一个元素.【互动探究】在本例(1)的集合B中如果去掉x-y∈A的限制条件,其他条件均不变,则集合B中含有的元素个数是多少?5×5=25个元素【变式训练】定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为( )(A)0 (B)2 (C)3 (D)6【解析】选D.根据指定的法则,集合A*B中的元素是A,B中的元素的乘积,根据集合元素的性质,得A*B={0,2,4},故集合A*B中所有元素之和为6.考向 2 集合间的基本关系【典例2】(1)(2014·三明模拟)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为( )(A)1 (B)2 (C)3 (D)4(2)若集合A={1,a,b},B={a,a2,ab},且A∪B=A∩B,则实数a的取值集合是.【思路点拨】(1)求出A,B中的元素,由A⊆C⊆B,知集合C的个数由B中有A中没有的元素个数决定.(2)A∪B=A∩B⇔A=B,得出关于a,b的方程组,解出a,b,再根据集合元素的性质加以检验得出结论.【规范解答】(1)选D.A={x|x2-3x+2=0,x∈R}={1,2},方法一:则C中含有除1,2之外的3,4两元素中的0个、1个、2个,即C的个数可以看作是集合{3,4}的子集的个数,有22=4个.(2)方法一:因为A∪B=A∩B,所以A=B,所以{1,b}={a2,ab},所以解得反代回A,B集合知,只有适合,所以即实数a的取值集合是{-1}.【变式训练】(1)已知M={x|x-a=0},N={x|ax-1=0},若M∩N=N,则实数a的值为( ) (A)1 (B)-1 (C)1或-1 (D)0或1或-1【解析】选D.M∩N=N⇔N⊆M.当a=0时,N= ,符合要求,当a≠0时,只要即a=±1即可.(2)设集合A={x,y,x+y},B={0,x2,xy},若A=B,则实数对(x,y)的取值集合是_________.【解析】由A=B,且0∈B,故集合B中的元素x2≠0,xy≠0,故x≠0,y≠0,那么只能是集合A中的x+y=0,此时就是在条件x+y=0下,{x,y}={x2,xy},答案:{(1,-1),(-1,1)}考向 3 集合的基本运算【典例3】(1)(2012·福建高考)已知集合M={1,2,3,4},N={-2,2},下列结论成立的是( )(A)N⊆M (B)M∪N=M (C)M∩N=N (D)M∩N={2}(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6}【思路点拨】(1)根据集合M,N中元素的特点逐一验证.(2)可以根据补集定义求出 A, B,再根据交集定义得出结论,还可以利用Venn图解决.【规范解答】(1)选D.显然M∩N={2}. (2)选B.方法:集合( A)∩( B)= (A∪B)={7,9}.如图所示:【拓展提升】小结:集合的运算律(1)交换律:A∪B=B∪A,A∩B=B∩A.(2)结合律:(A∪B)∪C=A∪(B∪C);(A∩B)∩C=A∩(B∩C).(3)分配律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C).【变式训练】(1)已知集合M={y|y=2x},集合N={x|y=lg(2x-x2)},则M∩N=( )(A)(0,2) (B)(2,+∞)(C)[0,+∞] (D)(-∞,0)∪(2,+∞)【解析】选A. 集合M为函数y=2x的值域,即M=(0,+∞),集合N是函数y=lg(2x-x2)的定义域,由不等式2x-x2>0,解得N=(0,2),所以M∩N=(0,2).三,布置作业思考辨析,考点自测,知能巩固中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。

高考数学最新一轮复习 必考题型巩固提升 1.1集合的概念与运算学案

高考数学最新一轮复习 必考题型巩固提升 1.1集合的概念与运算学案

1.1集合的概念与运算考情分析:1.考查集合中元素的互异性.2.求几个集合的交、并、补集.基础知识1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法、区间法.(4)常用数集:自然数集N;正整数集N*(或N+);整数集Z;有理数集Q;实数集R.(5)集合的分类:按集合中元素个数划分,集合可以分为有限集、无限集、空集.2.集合间的基本关系(1)子集:对任意的x∈A,都有x∈B,则A⊆B(或B⊇A).(2)真子集:若A⊆B,且A≠B,则A B(或B A).(3)空集:空集是任意一个集合的子集,是任何非空集合的真子集.即∅⊆A,∅B(B≠∅).(4)若A含有n个元素,则A的子集有2n个,A的非空子集有2n-1个.(5)集合相等:若A⊆B,且B⊆A,则A=B.3.集合的基本运算(1)并集:A∪B={x|x∈A,或x∈B}.(2)交集:A∩B={x|x∈A,且x∈B}.(3)补集:∁U A={x|x∈U,且x∉A}.(4)集合的运算性质①A∪B=A⇔B⊆A,A∩B=A⇔A⊆B;②A∩A=A,A∩∅=∅;③A∪A=A,A∪∅=A;④A∩∁U A=∅,A∪∁U A=U,∁U(∁U A)=A.注意事项:(1)空集在解题时有特殊地位,它是任何集合的子集,是任何非空集合的真子集,时刻关注对空集的讨论,防止漏解.(2)认清集合元素的属性(是点集、数集或其他情形).(3)在解决含参数的集合问题时,要检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致结论错误.典型例题题型一:集合的概念【例1】1已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6 ()C 8 ()D 10【答案】D【解析】5,1,2,3,4x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个. 【变式1】 设集合A ={-1,1,3},B ={a +2,a 2+2},A ∩B ={3},则实数a 的值为________. 解析 若a +2=3,a =1,检验此时A ={-1,1,3},B ={3,5},A ∩B ={3},满足题意.若a 2+2=3,则a =±1.当a =-1时,B ={1,3}此时A ∩B ={1,3}不合题意,故a =1. 答案 1题型二:集合的基本运算若A={2,4, a 3-2a 2-a +7},B={1, a +1, a 2-2a +2,-12(a 2-3a -8), a 3+a 2+3a +7},且A ∩B={2,5},则实数a 的值是________.【变式2】 (2013江西模拟)若集合A ={x |-1≤2x +1≤3},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -2x ≤0,则A ∩B =( ).A .{x |-1≤x <0}B .{x |0<x ≤1}C .{x |0≤x ≤2}D .{x |0≤x ≤1} 解析 ∵A ={x |-1≤x ≤1},B ={x |0<x ≤2}, ∴A ∩B ={x |0<x ≤1}. 答案 B题型三:集合间的基本关系【例3】►已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,求实数m 的取值范围.解 当B =∅时,有m +1≥2m -1,得m ≤2,当B ≠∅时,有⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上:m ≤4.【变式3】 (2013江苏模拟)设集合A =⎩⎪⎨⎪⎧x ,y ⎪⎪⎪ m2≤x -22+y 2≤m 2,⎭⎬⎫x ,y ∈R ,B ={(x ,y )|2m ≤x +y ≤2m +1,x ,y ∈R }.若A ∩B ≠∅,则实数m 的取值范围是________.解析 ①若m <0,则符合题的条件是:直线x +y =2m +1与圆(x -2)2+y 2=m 2有交点,从而|2-2m -1|2≤|m |,解得2-22≤m ≤2+22,与m <0矛盾;②若m =0,代入验证,可知不符合题意;③若m >0,则当m 2≤m 2,即m ≥12时,集合A 表示一个环形区域,集合B 表示一个带形区域,从而当直线x +y =2m +1与x +y =2m 中至少有一条与圆(x -2)2+y 2=m 2有交点,即符合题意,从而有|2-2m |2≤|m |或|2-2m -1|2≤|m |,解得2-22≤m ≤2+2,由于12>2-22,所以12≤m ≤2+ 2.综上所述,m 的取值范围是12≤m ≤2+ 2.答案 ⎣⎢⎡⎦⎥⎤12,2+2 巩固提高:1.设集合A ={x |2≤x <4},B ={x |3x -7≥8-2x },则A ∪B 等于( ). A .{x |3≤x <4}B .{x |x ≥3}C .{x |x >2}D .{x |x ≥2}解析 B ={x |3x -7≥8-2x }={x |x ≥3},∴结合数轴得:A ∪B ={x |x ≥2}. 答案 D2.若P ={x |x <1},Q ={x |x >-1},则( ). A .P ⊆Q B .Q ⊆P C .∁R P ⊆Q D .Q ⊆∁R P 解析 ∵∁R P ={x |x ≥1}∴∁R P ⊆Q . 答案 C3.i 是虚数单位,若集合S ={-1,0,1},则( ).A .i ∈SB .i 2∈SC .i 3∈S D.2i ∈S解析 ∵i 2=-1,∴-1∈S ,故选B. 答案 B4.已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围是( ).A .(-∞,-1] B. [1,+∞)C .[-1,1]D .(-∞,-1]∪[1,+∞)解析 因为P ∪M =P ,所以M ⊆P ,即a ∈P ,得a 2≤1,解得-1≤a ≤1,所以a 的取值范围是[-1,1]. 答案 C5.已知集合A ={1,3,m },B ={3,4},A ∪B ={1,2,3,4},则m =________. 解析 A ∪B ={1,3,m }∪{3,4}={1,2,3,4}, ∴2∈{1,3,m },∴m =2. 答案 2。

高三数学一轮复习学案 §1.1.集合的概念

高三数学一轮复习学案 §1.1.集合的概念

一轮复习学案 §1.1.集合的概念 ☆学习目标: 1.理解集合、子集的概念,元素的性质,集合的表示方法,集合语言、思想; 2.能利用集合、元素的性质解决问题,掌握集合问题的常规处理方法.☻知识梳理:1. 集合:某些指定的对象集在一起成为一个集合.10. 集合的元素:集合中的对象称元素, ① 若a 是集A 的元素,记作a A ;若b 不是集合A 的元素,记作b A ;② 集合中的元素必须满足:确定性、互异性与无序性.确定性:设A 是一给定的集,x 是某一具体对象,则a A ∈或a A ∉两者 成立;互异性:同一集合中不应 同一元素;无序性:集合中不同的元素之间没有地位差异,集合与元素的排列顺序 .20. 集合的表示:一个集合可用列举法、描述法或图示法. 列举法:把集合中的元素一一列举出来,写在大括号内;如:描述法:把集合中的元素的公共属性描述出来,写在大括号{}内;如:图示法:如:30.常用数集及其记法:自然数集,记 ;正整数集,记 ;整数集,记 ; 有理数集,记 ;实数集, 记 ;复数集,记 .2. 子集:若集A 的任一元素都是集B 的元素,则称A 是B 的子集(或B 包含A ),记作A B ;10. 集合相等:两个集合的元素完全一样。

若A ⊆B 且B ⊇A ,则称A 等于B ,记作A B ; 20. 真子集:若A ⊆B 且A ≠B ,则称A 是B 的真子集,记作A B ;30. 性质:① A A ; Φ A ; ② 若A ⊆B ,B ⊆C ,则A C ; ③ 若Card A n =,则集合A 有 个子集(其中有 个真子集).3.全集与补集:10. 包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U ; 20. 若S 是一个集合,A ⊆S ,则,S C =}|{A x S x x ∉∈且称S 中子集A 的补集; 30. 简单性质:①S C (S C A ) A ; ②S C S= ,ΦS C = .☆ 案例分析:例1.(1) (08湖北)若非空集合,,A B C 满足A B C = ,且B 不是A 的子集,则 ( )A. “x C ∈”是“x A ∈”的充分条件但不是必要条件B. “x C ∈”是“x A ∈”的必要条件但不是充分条件C. “x C ∈”是“x A ∈”的充要条件D. “x C ∈”既不是“x A ∈”的充分条件也不是“x A ∈”必要条件(2) (08陕西)已知全集{12345}U =,,,,,集合2{|320}A x x x =-+=,{|2}B x x a a A ==∈,, 则集合()U A B ð中元素的个数为( )A .1B .2C .3D .4 (3) (08山东)满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a = ,,,的集合M 的个数是( ) A .1 B .2 C .3 D .4(4) 已知集合P={(x ,y)||x|+|y|=1},Q={(x ,y)|x 2+y 2≤1},则 ( )A.P ⊆QB.P=QC.P ⊇QD.P ∩Q=Q例2. 已知集合2{,,2},{,,}A m m d m d B m mq mq =++=,0m ≠其中,A B =且,求q 的值.例3. ①若{}2|10,A x x ax x R =++=∈, {}1,2B =,且A B A = ,求a 的范围.②设{}2120P x x x =+-≥,{}132Q x m x m =-≤≤-,若Q P P = ,求m 的范围.例4. 已知全集32{1,3,2}S x x x =--,A ={1,21x -}, 如果}0{=A C S ,则这样的实数x 是 否存在?若存在,求出x ,若不存在,说明理由。

高考数学一轮复习第一章 1.1集合的概念与运算学案理含解析北师大版

高考数学一轮复习第一章 1.1集合的概念与运算学案理含解析北师大版

第一章集合与常用逻辑用语1.1集合的概念与运算必备知识预案自诊知识梳理1.集合的含义与表示(1)集合元素的三个特征:、、.(2)元素与集合的关系有或两种,用符号或表示.(3)集合的表示方法:、、.(4)常见数集的记法.集合自然数集正整数集整数集有理数集实数集符号2.集合间的基本关系关系自然语言符号表示V enn图子集对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,就称集合A为集合B的子集真子集如果集合A⊆B,但存在元素x∈B,且x∉A,就称集合A是集合B 的真子集集合相等如果集合A的任何一个元素都是集合B的元素,同时集合B 的任何一个元素都是集合A的元素,那么集合A与集合B相等3.集合的运算集合的并集集合的交集集合的补集Venn图符号语言A∪B=A∩B=∁U A=1.并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.2.交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.3.补集的性质:A∩(∁U A)=∅;A∪(∁U A)=U;∁U(∁U A)=A;∁U(A∪B)=(∁U A)∩(∁U B);∁U(A∩B)=(∁U A)∪(∁U B).4.若集合A中含有n个元素,则它的子集个数为2n,真子集的个数为2n-1,非空真子集的个数为2n-2.5.如图所示,用集合A,B表示图中Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分所表示的集合分别是A∩B,A∩(∁U B),B∩(∁U A),∁U(A∪B).6.card(A∪B)=card(A)+card(B)-card(A∩B).考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”.(1)集合{x2+x,0}中的实数x可取任意值.()(2){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.()(3)对任意集合A,B,一定有A∩B⫋A∪B.()(4)若A∩B=A∩C,则B=C.()(5)直线y=x+3与y=-2x+6的交点组成的集合是{1,4}.()2.(2020广东湛江测试,理1)已知集合A={1,2,3,4},B={y|y=2x-3,x∈A},则集合A∩B的子集个数为()A.1B.2C.4D.83.(2020山东济南一模,1)已知全集U=R,集合A={x|x2>x},则∁U A=()A.[0,1]B.(0,1)C.(-∞,1]D.(-∞,1)4.(2020山东潍坊二模,1)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则A∩(∁U B)=()A.{1,4}B.{1,4,5}C.{4,5}D.{6,7}5.(2020江苏南京六校5月联考,1)已知集合A={x|x2-2x<0},B={x|x<1},则A∪B=.关键能力学案突破考点集合的基本概念【例1】(1)已知集合A={x∈Z|-x2+x+2>0},则集合A的真子集个数为()A.3B.4C.7D.8(2)(2020山东潍坊临朐二模,13)已知集合A={a,b,2},B={2,b2,2a},且A∩B=A∪B,则a=.思考求集合中元素的个数或求集合中某些元素的值应注意什么?解题心得与集合中的元素有关问题的求解策略(1)确定集合中的代表元素是什么,即集合是数集、点集,还是其他类型的集合.(2)看这些元素满足什么限制条件.(3)根据限制条件列式求参数的值或确定集合中元素的个数,但要注意检验集合是否满足元素的互异性.对点训练1(1)(2020河北唐山一模,理1)已知集合A={-1,0,1,2},B={y|y=2x},M=A∩B,则集合M的子集个数是()A.2B.3C.4D.8(2)已知集合A={m+2,2m2+m},若3∈A,则m的值为.考点集合间的基本关系【例2】(1)设集合A={y|y=√x2-1},B={x|y=√x2-1},则下列结论正确的是()A.A=BB.A⊆BC.B⊆AD.A∩B={x|x≥1}(2)(2020河北石家庄二中模拟,理2)设集合P={x||x|>3},Q={x|x2>4},则下列结论正确的是()A.Q⊆PB.P⊆QC.P=QD.P∪Q=R思考判定集合间的基本关系有哪些方法?解决集合间基本关系问题的常用技巧有哪些?解题心得1.判定集合间的基本关系的方法有两种:一是化简集合,从表达式中寻找集合间的关系;二是用列举法(或图示法等)表示各个集合,从元素(或图形)中寻找集合间的关系.2.解决集合间基本关系问题的常用技巧有:(1)若给定的集合是不等式的解集,则结合数轴求解;(2)若给定的集合是点集,则用数形结合法求解;(3)若给定的集合是抽象集合,则用Venn 图求解.对点训练2(1)已知集合A=x |x -2x≤0,x∈N,B={x|√x≤2,x∈Z},则满足条件A⊆C,且C⊆B的集合C的个数为()A.1B.2C.4D.8(2)集合M=x|x=n2+1,n∈Z,N=y y=m+12,m∈Z,则两集合M,N的关系为()A.M∩N=∅B.M=NC.M⊆ND.N⊆M考点集合的运算(多考向探究)考向1利用集合运算的定义进行运算【例3】(1)(2020新高考全国1,1)设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}(2)(2020全国3,理1)已知集合A={(x,y)|x,y∈N+,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为()A.2B.3C.4D.6(3)(2020全国2,理1)已知集合U={-2,-1,0,1,2,3},A={-1,0,1},B={1,2},则∁U(A∪B)=()A.{-2,3}B.{-2,2,3}C.{-2,-1,0,3}D.{-2,-1,0,2,3}思考利用集合运算的定义进行运算的一般思路和求解的原则是什么?解题心得1.求解思路:一般是先化简集合,再由交集、并集、补集的定义求解.2.求解原则:一般是先算括号里面的,再按运算顺序求解.对点训练3(1)(2020江西名校大联考,理1)已知集合A={x|x2-4x>0},B={x|x2-4≤0},则A∩B=()A.[-2,0]B.(-∞,0)C.[-2,0)D.[-4,4](2)(2019全国1,文2)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩(∁U A)=()A.{1,6}B.{1,7}C.{6,7}D.{1,6,7}(3)(2020山东潍坊一模,1)设集合A={2,4},B={x ∈N |x-3≤0},则A ∪B=( ) A.{1,2,3,4} B.{0,1,2,3,4} C.{2} D.{x|x ≤4}考向2 定义新集合运算法则进行集合运算【例4】设P ,Q 是两个非空集合,定义集合间的一种运算“☉”:P ☉Q={x|x ∈P ∪Q ,且x ∉P ∩Q }.如果P={y|y=√4-x 2},Q={y|y=4x ,x>0},则P ☉Q=( )A.[0,1]∪(4,+∞)B.[0,1]∪(2,+∞)C.[1,4]D.(4,+∞)思考求解集合新定义运算的关键是什么?解题心得求解集合新定义运算的关键是仔细分析新定义运算法则的特点,把新定义运算法则所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中.对点训练4定义A*B={x|x=x 1+2x 2,x 1∈A ,x 2∈B },若A={1,2,3},B={1,2},则A*B= ;(A ∩(A*B))∪B= .考点求集合中参数的值或取值范围【例5】(1)(2020湖南湘潭三模,理1)已知集合A={x|ax=x 2},B={0,1,2},若A ⊆B ,则实数a 的值为( )A.1或2B.0或1C.0或2D.0或1或2(2)(2020全国1,理2)设集合A={x|x 2-4≤0},B={x|2x+a ≤0},且A ∩B={x|-2≤x ≤1},则a=( )A.-4B.-2C.2D.4 思考如何求集合表达式中参数的值或取值范围?解题心得一般来讲,若集合中的元素是离散的,则用Venn 图表示,根据Venn 图得到关于参数的一个或多个方程,求出参数后要验证是否与集合元素的互异性矛盾;若集合中的元素是连续的,则用数轴表示,根据数轴得到关于参数的不等式,解之得到参数的取值范围,此时要注意端点的取舍.对点训练5(1)已知集合A={x|x 2-3x+2≥0},B={x|x+1≥a },若A ∪B=R ,则实数a 的取值范围是 ( )A.[2,+∞)B.(-∞,2]C.[1,+∞)D.(-∞,1](2)已知集合A={x|x<-3,或x>7},B={x|x<2m-1},若B ⊆A ,则实数m 的取值范围是 .变式发散1将本题(2)中的B 改为B={x|m+1≤x ≤2m-1},其余条件不变,该如何求解?变式发散2将本题(2)中的A 改为A={x|-3≤x ≤7},B 改为B={x|m+1≤x ≤2m-1},其余条件不变,又该如何求解?学生用书正文答案与解析 第一章 集合与常用逻辑用语 1.1 集合的概念与运算 必备知识·预案自诊知识梳理1.(1)确定性 互异性 无序性 (2)属于 不属于 ∈ ∉ (3)列举法 描述法 Venn 图法 (4)N N +(或N *) Z Q R2.A ⊆B (或B ⊇A ) A ⫋B (或B ⫌A ) A=B3.{x|x ∈A ,或x ∈B } {x|x ∈A ,且x ∈B } {x|x ∈U ,且x ∉A }考点自诊1.(1)× (2)× (3)× (4)× (5)×2.C 因为A={1,2,3,4},B={y|y=2x-3,x ∈A },所以B={-1,1,3,5},所以A ∩B={1,3},所以A ∩B 的子集个数为22=4.3.A 由x 2>x ,得x>1或x<0,即A={x|x>1,或x<0},所以∁U A={x|0≤x ≤1}=[0,1].4.C 由题意得∁U B={1,4,5},又A={2,3,4,5},所以A ∩(∁U B )={4,5},故选C .5.(-∞,2) ∵集合A={x|x 2-2x<0}={x|0<x<2},且B={x|x<1},∴A ∪B={x|x<2}.关键能力·学案突破 例1(1)A (2)0或14 (1)因为A={x ∈Z |-x 2+x+2>0}={x ∈Z |-1<x<2}={0,1},所以集合A 的真子集个数为22-1=3.故选A .(2)因为A ∩B=A ∪B ,所以A=B ,则{a =b 2,b =2a 或{b =b 2,a =2a ,解得{a =0,b =0(舍去)或{a =14,b =12或{a =0,b =1,故a=0或14. 对点训练1(1)C (2)-32 (1)因为B={y|y=2x }={y|y>0},A={-1,0,1,2},所以M=A ∩B={1,2},因此,集合M 的子集个数是22=4.故选C .(2)由题意得m+2=3,或2m 2+m=3,解得m=1或m=-32.当m=1时,m+2=3,且2m 2+m=3,根据集合中元素的互异性可知不满足题意;当m=-32时,m+2=12,而2m 2+m=3,故m=-32.例2(1)D (2)B (1)∵A={y|y=√x 2-1}={y|y ≥0},B={x|y=√x 2-1}={x|x ≥1,或x ≤-1},∴A ∩B={x|x ≥1},故选D .(2)由题得,集合P={x||x|>3}={x|x<-3,或x>3},Q={x|x 2>4}={x|x<-2,或x>2},所以P ⊆Q ,故选B .对点训练2(1)D (2)D (1)由x -2x≤0,得0<x ≤2,故A={1,2};由√x ≤2,得0≤x ≤4,故B={0,1,2,3,4}.满足条件A ⊆C ,且C ⊆B 的集合C 的个数为23=8,故选D .(2)∵M=x |x =n+22,n ∈Z ,N=y |y =2m+12,m ∈Z ,又n+2为整数,2m+1为奇数,且奇数是整数的一部分,∴N ⊆M ,故选D .例3(1)C (2)C (3)A (1)(数形结合)由数轴可知所以A ∪B={x|1≤x<4},故选C .(2)满足x ,y ∈N *,y ≥x ,且x+y=8的元素(x ,y )有(1,7),(2,6),(3,5),(4,4),共4个,故A ∩B 中元素的个数为4.(3)∵A ∪B={-1,0,1,2},∴∁U (A ∪B )={-2,3}.故选A .对点训练3(1)C (2)C (3)B (1)由题得A={x|x 2-4x>0}={x|x<0,或x>4},B={x|x 2-4≤0}={x|-2≤x ≤2},则A ∩B={x|-2≤x<0},故选C .(2)由已知得∁U A={1,6,7}, 所以B ∩(∁U A )={6,7}.故选C .(3)因为A={2,4},B={x ∈N |x-3≤0}={0,1,2,3},所以A ∪B={0,1,2,3,4}. 例4B ∵P=[0,2],Q=(1,+∞),∴P ∪Q=[0,+∞),P ∩Q=(1,2], 因此P ☉Q=[0,1]∪(2,+∞).对点训练4{3,4,5,6,7} {1,2,3} ∵A={1,2,3},B={1,2},∴A*B={x|x=x 1+2x 2,x 1∈A ,x 2∈B }={3,4,5,6,7};(A ∩(A*B ))∪B=({1,2,3}∩{3,4,5,6,7})∪{1,2}={3}∪{1,2}={1,2,3}.例5(1)D (2)B (1)因为当a=0时,A={x|0=x 2}={0},满足A ⊆B ;当a ≠0时,A={0,a },若A ⊆B ,则a=1或2.综上a 的值为0或1或2.故选D .(2)由已知得A={x|-2≤x ≤2},B={x |x ≤-a2}.因为A ∩B={x|-2≤x ≤1},所以有-a2=1,解得a=-2.对点训练5(1)B (2)(-∞,-1] (1)由题得集合A={x|x 2-3x+2≥0}={x|x ≤1,或x ≥2},B={x|x+1≥a }={x|x ≥a-1},又A ∪B=R ,∴a-1≤1,解得a ≤2,∴实数a 的取值范围是(-∞,2].(2)由题意知2m-1≤-3,m ≤-1,所以m 的取值范围是(-∞,-1].变式发散1解当B=∅时,有m+1>2m-1,则m<2.当B ≠∅时,有{m +1≤2m -1,2m -1<-3或{m +1≤2m -1,m +1>7,解得m>6.综上可知,m 的取值范围是(-∞,2)∪(6,+∞).变式发散2解当B=∅时,满足B ⊆A ,此时有m+1>2m-1,即m<2;当B ≠∅时,要使B ⊆A ,则有{m +1≥-3,2m -1≤7,m ≥2,解得2≤m ≤4.综上可知,m 的取值范围是(-∞,4].。

(全国通用版)高考数学一轮复习 第一单元 集合与常用逻辑用语学案 理-人教版高三全册数学学案

(全国通用版)高考数学一轮复习 第一单元 集合与常用逻辑用语学案 理-人教版高三全册数学学案

第一单元集合与常用逻辑用语第1课集__合[过双基]1.集合的含义及表示(1)集合的含义:研究对象叫做元素,一些元素组成的总体叫做集合.集合中元素的性质:确定性、无序性、互异性.(2)元素与集合的关系:①属于,记为∈;②不属于,记为∉.(3)集合的表示方法:列举法、描述法和图示法.(4)常用数集的记法:自然数集N,正整数集N*或N+,整数集Z,有理数集Q,实数集R.2.集合间的基本关系表示关系文字语言符号语言记法基本关系子集集合A的元素都是集合B的元素x∈A⇒x∈B A⊆B或B⊇A 真子集集合A是集合B的子集,且集合B中至少有一个元素不属于AA⊆B,且∃x0∈B,x0∉AA B或B A相等集合A,B的元素完全相同A⊆B,B⊆AA=B空集不含任何元素的集合.空集是任何集合A的子集∀x,x∉∅,∅⊆A∅3.集合的基本运算表示运算文字语言符号语言图形语言记法交集属于集合A 且属于集合B 的元素组成的集合{x |x ∈A ,且x ∈B }A ∩B并集属于集合A 或属于集合B 的元素组成的集合{x |x ∈A ,或x ∈B }A ∪B补集全集U 中不属于集合A 的元素组成的集合{x |x ∈U ,且x ∉A }∁U A(1)集合A 是其本身的子集,即A ⊆A ; (2)子集关系的传递性,即A ⊆B ,B ⊆C ⇒A ⊆C ;(3)A ∪A =A ∩A =A ,A ∪∅=A ,A ∩∅=∅,∁U U =∅,∁U ∅=U . [小题速通]1.(2018·江西临川一中期中)已知集合A ={2,0,1,8},B ={k |k ∈R ,k 2-2∈A ,k -2∉A },则集合B 中所有的元素之和为( )A .2B .-2C .0D. 2解析:选B 若k 2-2=2,则k =2或k =-2,当k =2时,k -2=0,不满足条件,当k =-2时,k -2=-4,满足条件;若k 2-2=0,则k =±2,显然满足条件;若k 2-2=1,则k =±3,显然满足条件;若k 2-2=8,则k =±10,显然满足条件.所以集合B 中的元素为-2,±2,±3,±10,所以集合B 中的元素之和为-2,故选B.2.(2018·河北武邑中学期中)集合A ={x |x 2-7x <0,x ∈N *},则B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪6y ∈N *,y ∈A 中元素的个数为( )A .1B .2C .3D .4解析:选 D A ={x |x 2-7x <0,x ∈N *}={x |0<x <7,x ∈N *}={1,2,3,4,5,6},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪6y∈N *,y ∈A ={1,2,3,6},则B 中元素的个数为4个. 3.(2017·黄冈三模)设集合U ={1,2,3,4},集合A ={x ∈N|x 2-5x +4<0},则∁U A 等于( )A .{1,2}B .{1,4}C.{2,4} D.{1,3,4}解析:选B 因为集合U={1,2,3,4},集合A={x∈N|x2-5x+4<0}={x∈N|1<x<4}={2,3},所以∁U A={1,4}.4.(2017·天津高考)设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C =( )A.{2} B.{1,2,4}C.{1,2,4,6} D.{x∈R|-1≤x≤5}解析:选B A∪B={1,2,4,6},又C={x∈R|-1≤x≤5},则(A∪B)∩C={1,2,4}.5.(2017·衡水押题卷)已知集合A={x|x2-2x≤0},B={y|y=log2(x+2),x∈A},则A∩B为( )A.(0,1) B.[0,1]C.(1,2) D.[1,2]解析:选D 因为A={x|0≤x≤2},所以B={y|y=log2(x+2),x∈A}={y|1≤y≤2},所以A∩B={x|1≤x≤2}.[清易错]1.在写集合的子集时,易忽视空集.2.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.3.在应用条件A∪B=B⇔A∩B=A⇔A⊆B时,易忽略A=∅的情况.1.(2018·西安质检)已知集合M={1,2,3,4},则集合P={x|x∈M,且2x∉M}的子集的个数为( )A.8 B.4 C.3 D.2解析:选B 由题意,得P={3,4},所以集合P的子集有22=4个,故选B.2.已知全集U={2,3,a2+2a-3},A={|a+1|,2},∁U A={a+3},则实数a的值为________.解析:∵∁U A={a+3},∴a+3≠2且a+3≠|a+1|且a+3∈U,由题意,得a+3=3或a+3=a2+2a-3,解得a=0或a=2或a=-3,又∵|a+1|≠2且A U,∴a≠0且a≠-3,∴a=2.答案:23.设集合A ={x |x 2-5x +6=0},集合B ={x |mx -1=0},若A ∩B =B ,则实数m 组成的集合是________.解析:由题意知A ={2,3},又A ∩B =B ,所以B ⊆A . 当m =0时,B =∅,显然成立;当m ≠0时,B =⎩⎨⎧⎭⎬⎫1m ⊆{2,3},所以1m =2或1m =3,即m =12或13.故m 组成的集合是⎩⎨⎧⎭⎬⎫0,12,13.答案:⎩⎨⎧⎭⎬⎫0,12,13[全国卷5年命题分析]考点 考查频度 考查角度集合的基本概念 5年5考 集合的表示、集合元素的性质集合间的基本关系 5年2考 子集概念集合的基本运算 5年12考交、并、补运算,多与不等式相结合集合的基本概念[典例] (1)∈A ,b ∈B },则M 中的元素个数为( )A .3B .4C .5D .6(2)(2018·厦门模拟)已知P ={x |2<x <k ,x ∈N},若集合P 中恰有3个元素,则k 的取值范围为________.[解析] (1)∵a ∈A ,b ∈B ,∴x =a +b 为1+4=5,1+5=2+4=6,2+5=3+4=7,3+5=8,共4个元素.(2)因为P 中恰有3个元素,所以P ={3,4,5},故k 的取值范围为5<k ≤6. [答案] (1)B (2)(5,6] [方法技巧]与集合中的元素有关问题的求解策略(1)确定集合的元素是什么,即集合是数集还是点集.(2)看这些元素满足什么限制条件.(3)根据限制条件列式求参数的值或确定集合中元素的个数,但要注意检验集合是否满足元素的互异性.[即时演练]1.(2018·莱州一中模拟)已知集合A ={x ∈N|x 2+2x -3≤0},B ={C |C ⊆A },则集合B 中元素的个数为( )A .2B .3C .4D .5解析:选C A ={x ∈N|(x +3)(x -1)≤0}={x ∈N|-3≤x ≤1}={0,1},共有22=4个子集,因此集合B 中元素的个数为4,选C.2.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.解析:由题意得m +2=3或2m 2+m =3,则m =1或m =-32,当m =1时,m +2=3且2m2+m =3,根据集合中元素的互异性可知不满足题意;当m =-32时,m +2=12,而2m 2+m =3,故m =-32.答案:-32集合间的基本关系[典例] (1)则实数a 的取值范围为( )A .(-∞,0)∪(2,+∞)B .(-∞,0]∪[3,+∞)C .[0,2]D .[0,3](2)已知集合A ={x |1≤x <5},B ={x |-a <x ≤a +3},若B ⊆(A ∩B ),则实数a 的取值范围为________.[解析] (1)∵C ⊆A ,∴⎩⎪⎨⎪⎧a ≥0,a +1≤3,解得0≤a ≤2,故实数a 的取值范围为[0,2].(2)因为B ⊆(A ∩B ),所以B ⊆A . ①当B =∅时,满足B ⊆A , 此时-a ≥a +3,即a ≤-32;②当B ≠∅时,要使B ⊆A ,则⎩⎪⎨⎪⎧-a <a +3,-a ≥1,a +3<5,解得-32<a ≤-1.由①②可知,实数a 的取值范围为(-∞,-1]. [答案] (1)C (2)(-∞,-1] [方法技巧]已知两集合的关系求参数时,关键是将两集合的关系转化为元素间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn 图帮助分析.[即时演练]1.设U =R ,集合A ={x |x 2+3x +2=0},B ={x |x 2+(m +1)x +m =0},若B ⊆A ,则m =________.解析:由已知得A ={x |x =-2或x =-1},B ={x |x =-1或x =-m }.因为B ⊆A ,当-m =-1,即m =1时,满足题意;当-m =-2,即m =2时,满足题意,故m =1或2. 答案:1或22.已知集合A ={x |log 2x ≤2},B =(-∞,a ),若A ⊆B ,实数a 的取值范围是(c ,+∞),则c =________.解析:由log 2x ≤2,得0<x ≤4, 即A ={x |0<x ≤4}, 而B =(-∞,a ),由于A ⊆B ,如图所示,则a >4,即c =4. 答案:4集合的基本运算集合运算多与解简单的不等式、函数的定义域、值域相联系,考查对集合的理解及不等式的有关知识;有些集合题为抽象集合题或新定义型集合题,考查学生的灵活处理问题的能力.常见的命题角度有:1求交集或并集;2交、并、补的混合运算;3集合运算中的参数范围;4集合的新定义问题.角度一:求交集或并集1.(2017·山东高考)设函数y=4-x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=( )A.(1,2) B.(1,2]C.(-2,1) D.[-2,1)解析:选D 由题意可知A={x|-2≤x≤2},B={x|x<1},故A∩B={x|-2≤x<1}.2.(2017·浙江高考)已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q=( ) A.(-1,2) B.(0,1)C.(-1,0) D.(1,2)解析:选A 根据集合的并集的定义,得P∪Q=(-1,2).角度二:交、并、补的混合运算3.设全集U=R,集合A={x|x>0},B={x|x2-x-2<0},则A∩(∁U B)=( )A.(0,2] B.(-1,2]C.[-1,2] D.[2,+∞)解析:选D 因为A={x|x>0},B={x|-1<x<2},所以∁U B={x|x≤-1或x≥2},所以A∩(∁U B)={x|x≥2}.4.若全集U=R,集合A={x|1<2x<4},B={x|x-1≥0},则A∪(∁U B)=________.解析:A={x|0<x<2},B={x|x≥1},则∁U B={x|x<1},所以A∪(∁U B)={x|x<2}.答案:{x|x<2}角度三:集合运算中的参数范围5.(2017·上海高考)设集合A={x||x-2|≤3},B={x|x<t},若A∩B=∅,则实数t 的取值范围是________.解析:因为集合A={x|-1≤x≤5},B={x|x<t},且A∩B=∅,所以t≤-1,即实数t 的取值范围是(-∞,-1].答案:(-∞,-1] 角度四:集合的新定义问题6.设M ,P 是两个非空集合,定义M 与P 的差集为:M -P ={x |x ∈M ,且x ∉P },则M -(M -P )=( )A .PB .M ∩PC .M ∪PD .M解析:选B 设全集U ,由题意可得M -P =M ∩(∁U P ),所以M -(M -P )=M ∩P .7.对于集合M ,定义函数f M (x )=⎩⎪⎨⎪⎧-1,x ∈M ,1,x ∉M ,对于两个集合A ,B ,定义集合A ΔB={x |f A (x )·f B (x )=-1}.已知A ={2,4,6,8,10},B ={1,2,4,8,12},则用列举法写出集合A ΔB 的结果为________.解析:由题意知当x ∈A 且x ∉B 或x ∈B 且x ∉A 时,有f A (x )·f B (x )=-1成立,所以A ΔB ={1,6,10,12}.答案:{1,6,10,12} [方法技巧]解集合运算问题4个注意点(1)看元素构成集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的关键. (2)对集合化简有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了、易于解决.(3)应用数形常用的数形结合形式有数轴和Venn 图. (4)创新性问题以集合为依托,对集合的定义、运算、性质进行创新考查,但最终化为原来的集合知识和相应数学知识来解决.1.(2017·全国卷Ⅰ)已知集合A ={x |x <1},B ={x |3x<1},则( ) A .A ∩B ={x |x <0} B .A ∪B =R C .A ∪B ={x |x >1}D .A ∩B =∅解析:选A ∵集合A={x|x<1},B={x|x<0},∴A∩B={x|x<0},A∪B={x|x<1},故选A.2.(2016·全国卷Ⅱ)已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B =( )A.{1} B.{1,2}C.{0,1,2,3} D.{-1,0,1,2,3}解析:选 C 因为B={x|(x+1)(x-2)<0,x∈Z}={x|-1<x<2,x∈Z}={0,1},A={1,2,3},所以A∪B={0,1,2,3}.3.(2015·全国卷Ⅱ)已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B=( ) A.(-1,3) B.(-1,0)C.(0,2) D.(2,3)解析:选A 将集合A与集合B在数轴上画出(如图).由图可知A∪B=(-1,3),故选A.4.(2014·全国卷Ⅱ)已知集合A={-2,0,2},B={ x|x2-x-2=0},则A∩B=( ) A.∅B.{2}C.{0} D.{-2}解析:选B 因为B={x|x2-x-2=0}={-1,2},A={-2,0,2},所以A∩B={2},故选B.5.(2013·全国卷Ⅰ)已知集合A={x|x2-2x>0},B={x|-5<x<5},则( ) A.A∩B=∅B.A∪B=RC.B⊆A D.A⊆B解析:选B 因为集合A={x|x>2或x<0},所以A∪B={x|x>2或x<0}∪{x|-5<x<5}=R,故选B.一、选择题1.(2017·北京高考)若集合A={x|-2<x<1},B={x|x<-1或x>3},则A∩B=( ) A.{x|-2<x<-1} B.{x|-2<x<3}C .{x |-1<x <1}D .{x |1<x <3}解析:选A 由集合交集的定义可得A ∩B ={x |-2<x <-1}.2.设集合A ={x |x 2-9<0},B ={x |2x ∈N},则A ∩B 中元素的个数为( ) A .3 B .4 C .5D .6解析:选D 因为A ={x |-3<x <3},B ={x |2x ∈N},所以由2x ∈N 可得A ∩B =⎩⎨⎧⎭⎬⎫0,12,1,32,2,52,其元素的个数是6. 3.(2017·全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0解析:选B 因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.4.设集合A ={x |x 2-2x -3<0},B ={x |x >0},则A ∪B =( ) A .(-1,+∞) B .(-∞,3) C .(0,3)D .(-1,3)解析:选A 因为集合A ={x |x 2-2x -3<0}={x |-1<x <3},B ={x |x >0},所以A ∪B ={x |x >-1}.5.(2017·全国卷Ⅱ)设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B =( )A .{1,-3}B .{1,0}C .{1,3}D .{1,5}解析:选C 因为A ∩B ={1},所以1∈B ,所以1是方程x 2-4x +m =0的根,所以1-4+m =0,m =3,方程为x 2-4x +3=0,解得x =1或x =3,所以B ={1,3}.6.设集合A ={-1,0,1},集合B ={0,1,2,3},定义A *B ={(x ,y )|x ∈A ∩B ,y ∈A ∪B },则A *B 中元素的个数是( )A .7B .10C .25D .52解析:选B 因为A ={-1,0,1},B ={0,1,2,3}, 所以A ∩B ={0,1},A ∪B ={-1,0,1,2,3}.由x ∈A ∩B ,可知x 可取0,1; 由y ∈A ∪B ,可知y 可取-1,0,1,2,3. 所以元素(x ,y )的所有结果如下表所示:x y-1 0 1 2 3 0 (0,-1) (0,0) (0,1) (0,2) (0,3) 1 (1,-1)(1,0)(1,1)(1,2)(1,3)所以A *B 中的元素共有10个.7.(2017·吉林一模)设集合A ={0,1},集合B ={x |x >a },若A ∩B 中只有一个元素,则实数a 的取值范围是( )A .(-∞,1)B .[0,1)C .[1,+∞)D .(-∞,1]解析:选B 由题意知,集合A ={0,1},集合B ={x |x >a },画出数轴(如图所示).若A ∩B 中只有一个元素,则0≤a <1,故选B.8.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q },如果P ={x |log 2x <1},Q ={x ||x -2|<1},那么P -Q =( )A .{x |0<x <1}B .{x |0<x ≤1}C .{x |1≤x <2}D .{x |2≤x <3}解析:选B 由log 2x <1,得0<x <2, 所以P ={x |0<x <2}. 由|x -2|<1,得1<x <3, 所以Q ={x |1<x <3}.由题意,得P -Q ={x |0<x ≤1}. 二、填空题9.(2018·辽宁师大附中调研)若集合A ={x |(a -1)x 2+3x -2=0}有且仅有两个子集,则实数a 的值为________.解析:由题意知,集合A 有且仅有两个子集,则集合A 中只有一个元素.当a -1=0,即a =1时,A =⎩⎨⎧⎭⎬⎫23,满足题意;当a -1≠0,即a ≠1时,要使集合A 中只有一个元素,需Δ=9+8(a -1)=0,解得a =-18.综上可知,实数a 的值为1或-18.答案:1或-1810.已知集合A ={x |1≤x ≤3},B ={x |x -1≥1}.若A ∩B 是集合{x |x ≥a }的子集,则实数a 的取值范围为________.解析:∵由x -1≥1,得x ≥2,∴B ={x |x ≥2}. ∵A ={x |1≤x ≤3},∴A ∩B ={x |2≤x ≤3}. 若集合A ∩B ={x |2≤x ≤3}是集合{x |x ≥a }的子集, 则a ≤2. 答案:(-∞,2]11.(2018·贵阳监测)已知全集U ={a 1,a 2,a 3,a 4},集合A 是全集U 的恰有两个元素的子集,且满足下列三个条件:①若a 1∈A ,则a 2∈A ;②若a 3∉A ,则a 2∉A ;③若a 3∈A ,则a 4∉A .则集合A =________.(用列举法表示)解析:假设a 1∈A ,则a 2∈A ,由若a 3∉A ,则a 2∉A 可知,a 3∈A ,故假设不成立;假设a 4∈A ,则a 3∉A ,a 2∉A ,a 1∉A ,故假设不成立.故集合A ={a 2,a 3}.答案:{a 2,a 3}12.(2016·北京高考)某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种.则该网店①第一天售出但第二天未售出的商品有________种; ②这三天售出的商品最少有________种.解析:设三天都售出的商品有x 种,第一天售出,第二天未售出,且第三天售出的商品有y 种,则三天售出商品的种类关系如图所示.由图可知:①第一天售出但第二天未售出的商品有19-(3-x )-x =16(种).②这三天售出的商品有(16-y )+y +x +(3-x )+(6+x )+(4-x )+(14-y )=43-y (种).由于⎩⎪⎨⎪⎧16-y ≥0,y ≥0,14-y ≥0,所以0≤y ≤14.所以(43-y )min =43-14=29. 答案:①16 ②29三、解答题13.已知A ={x |-1<x ≤3},B ={x |m ≤x <1+3m }. (1)当m =1时,求A ∪B ;(2)若B ⊆∁R A ,求实数m 的取值范围. 解:(1)因为m =1时,B ={x |1≤x <4}, 所以A ∪B ={x |-1<x <4}. (2)∁R A ={x |x ≤-1或x >3}.当B =∅时,则m ≥1+3m ,得m ≤-12,满足B ⊆∁R A ,当B ≠∅时,要使B ⊆∁R A ,须满足⎩⎪⎨⎪⎧m <1+3m ,1+3m ≤-1或⎩⎪⎨⎪⎧m <1+3m ,m >3,解得m >3.综上所述,m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-12∪(3,+∞).14.记函数f (x )= 2-x +3x +1的定义域为A ,g (x )=lg[(x -a -1)(2a -x )](a <1)的定义域为B .(1)求A ;(2)若B ⊆A ,求实数a 的取值范围. 解:(1)由2-x +3x +1≥0,得x -1x +1≥0, 解得x <-1或x ≥1,即A =(-∞,-1)∪[1,+∞). (2)由(x -a -1)(2a -x )>0, 得(x -a -1)(x -2a )<0,∵a <1,∴a +1>2a ,∴B =(2a ,a +1),∵B ⊆A ,∴2a ≥1或a +1≤-1,即a ≥12或a ≤-2,∵a <1,∴12≤a <1或a ≤-2,∴实数a 的取值范围是(-∞,-2]∪⎣⎢⎡⎭⎪⎫12,1.1.已知定义域均为{x |0≤x ≤2}的函数f (x )=xe x -1与g (x )=ax +3-3a (a >0),设函数f (x )与g (x )的值域分别为A 与B ,若A ⊆B ,则a 的取值范围是( )A .[2,+∞)B .[1,2]C .[0,2]D .[1,+∞)解析:选B 因为f ′(x )=1-x e x -1,所以f (x )=xex -1在[0,1)上是增函数,在(1,2]上是减函数,又因为f (1)=1,f (0)=0,f (2)=2e ,所以A ={x |0≤x ≤1};由题意易得B =[3-3a,3-a ], 因为[0,1]⊆[3-3a,3-a ],所以3-3a ≤0且3-a ≥1,解得1≤a ≤2.2.设集合A ={(x 1,x 2,x 3,x 4)|x i ∈{-1,0,1},i =1,2,3,4},那么集合A 中满足条件“x 21+x 22+x 23+x 24≤4”的元素个数为( )A .60B .65C .80D .81解析:选D 由题意知,每一个元素都有3种取法,所以元素的个数为34=81.第2课命题及其关系__充分条件与必要条件[过双基]1.命题概念 使用语言、符号或者式子表达的,可以判断真假的陈述句 特点 (1)能判断真假;(2)陈述句 分类 真命题、假命题2(1)四种命题间的相互关系:(2)四种命题中真假性的等价关系:原命题等价于逆否命题,原命题的否命题等价于逆命题.在四种形式的命题中真命题的个数只能是0,2,4.3.充要条件若p ⇒q ,则p 是q 的充分条件,q 是p的必要条件p 成立的对象的集合为A ,q 成立的对象的集合为Bp 是q 的充分不必要条件 p ⇒q 且q ⇒/p A 是B 的真子集 集合与充要条件p 是q 的必要不充分条件 p ⇒/q 且q ⇒p B 是A 的真子集p 是q 的充要条件p ⇔qA =Bp 是q 的既不充分也不必要条件p ⇒/q 且q ⇒/pA ,B 互不包含[1.命题“若a >b ,则ac >bc ”的逆否命题是( ) A .若a >b ,则ac ≤bc B .若ac ≤bc ,则a ≤b C .若ac >bc ,则a >bD .若a ≤b ,则ac ≤bc解析:选B 由逆否命题的定义可知,答案为B.2.已知命题p :对于x ∈R ,恒有2x+2-x≥2成立;命题q :奇函数f (x )的图象必过原点,则下列结论正确的是( )A .p ∧q 为真B .(綈p )∨q 为真C .p ∧(綈q )为真D .(綈p )∧q 为真解析:选C 由指数函数与基本不等式可知,命题p 是真命题;当函数f (x )=1x时,是奇函数但不过原点,则可知命题q 是假命题,所以p ∧(綈q )是真命题,故选C.3.已知p :x >1或x <-3,q :x >a ,若q 是p 的充分不必要条件,则a 的取值范围是( ) A .[1,+∞) B .(-∞,1] C .[-3,+∞)D .(-∞,-3)解析:选A 法一:设P ={x |x >1或x <-3},Q ={x |x >a },因为q 是p 的充分不必要条件,所以Q P ,因此a ≥1.法二:令a =-3,则q :x >-3,则由命题q 推不出命题p ,此时q 不是p 的充分条件,排除B 、C ;同理,取a =-4,排除D ,选A.4.已知命题p :x ≠π6+2k π,k ∈Z ;命题q :sin x ≠12,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B 令x =5π6,则sin x =12,即p ⇒/ q ;当sin x ≠12时,x ≠π6+2k π或5π6+2k π,k ∈Z ,即q ⇒p ,因此p 是q 的必要不充分条件.[清易错]1.易混淆否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.易忽视A 是B 的充分不必要条件(A ⇒B 且B ⇒/A )与A 的充分不必要条件是B (B ⇒A 且A ⇒/B )两者的不同.1.“若x ,y ∈R 且x 2+y 2=0,则x ,y 全为0”的否命题是( ) A .若x ,y ∈R 且x 2+y 2≠0,则x ,y 全不为0 B .若x ,y ∈R 且x 2+y 2≠0,则x ,y 不全为0 C .若x ,y ∈R 且x ,y 全为0,则x 2+y 2=0 D .若x ,y ∈R 且xy ≠0,则x 2+y 2=0解析:选B 原命题的条件:x ,y ∈R 且x 2+y 2=0, 结论:x ,y 全为0.否命题是否定条件和结论.即否命题:“若x ,y ∈R 且x 2+y 2≠0,则x ,y 不全为0”.2.设a ,b ∈R ,函数f (x )=ax +b (0≤x ≤1),则f (x )>0恒成立是a +2b >0成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 充分性:因为f (x )>0恒成立, 所以⎩⎪⎨⎪⎧f 0=b >0,f1=a +b >0,则a +2b >0,即充分性成立;必要性:令a =-3,b =2,则a +2b >0成立,但是,f (1)=a +b >0不成立,即f (x )>0不恒成立,则必要性不成立.所以答案为A.[全国卷5年命题分析]考点考查频度 考查角度四种命题的相互关系及真假判断5年1考 与复数有关的命题的真假判断充分条件、必要条件 未考查命题的相互关系及真假性[典例] 0”,命题q :“若a 不是正数,则它的平方等于0”,则q 是p 的( )A .逆命题B .否命题C .逆否命题D .否定 (2)原命题为“若a n +a n +12<a n ,n ∈N *,则{a n }为递减数列”,关于其逆命题、否命题、逆否命题真假性的依次判断正确的是( )A .真,真,真B .假,假,真C .真,真,假D .假,假,假[解析] (1)命题p :“正数a 的平方不等于0”可写成“若a 是正数,则它的平方不等于0”,从而q 是p 的否命题.(2)原命题是:“若a n +1<a n ,n ∈N *,则{a n }为递减数列”为真命题,则其逆否命题为真,逆命题是:“若{a n }为递减数列,n ∈N *,则a n +1<a n ”为真命题,所以否命题也为真命题.[答案] (1)B (2)A [方法技巧]命题的关系及真假判断(1)在判断命题之间的关系时,首先要分清命题的条件与结论,再分析每个命题的条件与结论之间的关系,要注意四种命题关系的相对性.(2)判断命题真假的方法:一是联系已有的数学公式、定理、结论进行正面直接判断;二是利用原命题和其逆否命题的等价关系进行判断.[即时演练]1.已知命题α:如果x <3,那么x <5;命题β:如果x ≥3,那么x ≥5;命题γ:如果x ≥5,那么x ≥3.关于这三个命题之间的关系,下列三种说法正确的是( )①命题α是命题β的否命题,且命题γ是命题β的逆命题; ②命题α是命题β的逆命题,且命题γ是命题β的否命题; ③命题β是命题α的否命题,且命题γ是命题α的逆否命题. A .①③ B .② C .②③ D .①②③解析:选A 命题的四种形式,逆命题是把原命题中的条件和结论互换,否命题是把原命题的条件和结论都加以否定,逆否命题是把原命题中的条件与结论先都否定,然后交换条件与结论所得,因此①正确,②错误,③正确.2.给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )A .3B .2C .1D .0解析:选C 易知原命题是真命题,则其逆否命题也是真命题,而逆命题、否命题是假命题,故它的逆命题、否命题、逆否命题三个命题中,真命题只有一个.充分、必要条件的判定[典例] n S n ,则“d >0”是“S 4+S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件(2)设α:1≤x ≤3,β:m +1≤x ≤2m +4,m ∈R ,若α是β的充分条件,则m 的取值范围是________.[解析] (1)因为{a n }为等差数列,所以S 4+S 6=4a 1+6d +6a 1+15d =10a 1+21d,2S 5=10a 1+20d ,S 4+S 6-2S 5=d ,所以d >0⇔S 4+S 6>2S 5.(2)若α是β的充分条件,则α对应的集合是β对应集合的子集,则⎩⎪⎨⎪⎧m +1≤1,2m +4≥3,解得-12≤m ≤0.[答案] (1)C (2)⎣⎢⎡⎦⎥⎤-12,0 [方法技巧]充要条件的3种判断方法定义法直接判断若p 则q ,若q 则p 的真假等价法 即利用A ⇒B 与綈B ⇒綈A ;B ⇒A 与綈A ⇒綈B ;A ⇔B 与綈B ⇔綈A 的等价关系,对于条件或结论是否定形式的命题,一般运用等价法集合法 即设A ={x |p (x )},B ={x |q (x )}:若A ⊆B ,则p 是q 的充分条件或q 是p 的必要条件;若A B ,则p 是q 的充分不必要条件,若A =B ,则p 是q 的充要条件[即时演练]1.(2016·四川高考)设p :实数x ,y 满足x >1且y >1,q :实数x ,y 满足x +y >2,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A ∵⎩⎪⎨⎪⎧x >1,y >1,∴x +y >2,即p ⇒q .而当x =0,y =3时,有x +y =3>2,但不满足x >1且y >1,即q ⇒/ p .故p 是q 的充分不必要条件.2.已知m ,n ∈R ,则“mn <0”是“抛物线mx 2+ny =0的焦点在y 轴正半轴上”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选C 若“mn <0”,则x 2=-nm y 中的-n m>0,所以“抛物线mx 2+ny =0的焦点在y 轴正半轴上”成立,是充分条件;反之,若“抛物线mx 2+ny =0的焦点在y 轴正半轴上”,则x 2=-n m y 中的-n m>0,即mn <0,则“mn <0”成立,故是充要条件.根据充分、必要条件求参数的范围根据充分条件、必要条件求参数的范围是对充分条件、必要条件与集合之间关系的深层次考查.此类题的解决方法一般有两种:(1)直接法:先求出p ,q 为真命题时所对应的条件,然后表示出綈p 与綈q ,把綈p 与綈q 所对应的关系转化为綈p 与綈q 所对应集合之间的关系,列出参数所满足的条件求解;(2)等价转化法,把綈p ,綈q 的关系转化为p ,q 的关系.p x 2x q x 2a xa (a +1)≤0.若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是________.[解析] 由2x 2-3x +1≤0,得12≤x ≤1,∴条件p 对应的集合P =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤1. 由x 2-(2a +1)x +a (a +1)≤0,得a ≤x ≤a +1, ∴条件q 对应的集合为Q ={x |a ≤x ≤a +1}. 法一:用“直接法”解题綈p 对应的集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >1或x <12, 綈q 对应的集合B ={x |x >a +1或x <a }. ∵綈p 是綈q 的必要不充分条件,即B A , ∴⎩⎪⎨⎪⎧a <12,a +1≥1或⎩⎪⎨⎪⎧a ≤12,a +1>1,∴0≤a ≤12.即实数a 的取值范围是⎣⎢⎡⎦⎥⎤0,12. 法二:用“等价转化法”解题 ∵綈p 是綈q 的必要不充分条件,∴根据原命题与逆否命题等价,得p 是q 的充分不必要条件. ∴p ⇒q ,即P Q ⇔⎩⎪⎨⎪⎧a <12,a +1≥1或⎩⎪⎨⎪⎧a ≤12,a +1>1,解得0≤a ≤12.即实数a 的取值范围是⎣⎢⎡⎦⎥⎤0,12.[答案] ⎣⎢⎡⎦⎥⎤0,12 [方法技巧]根据充分、必要条件求参数范围的2个注意点(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.[即时演练]1.(2018·安阳调研)已知p :x ∈A ={x |x 2-2x -3≤0,x ∈R},q :x ∈B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R}.若p 是綈q 的充分条件,则实数m 的取值范围是________.解析:∵A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2},∴∁R B ={x |x <m -2或x >m +2}.∵p 是綈q 的充分条件,∴A ⊆∁R B ,∴m -2>3或m +2<-1,∴m >5或m <-3.答案:(-∞,-3)∪(5,+∞)2.若“x 2>1”是“x <a ”的必要不充分条件,则a 的最大值为________. 解析:由x 2>1,得x <-1,或x >1,又“x 2>1”是“x <a ”的必要不充分条件,知由“x <a ”可以推出“x 2>1”,反之不成立,所以a ≤-1,即a 的最大值为-1.答案:-11.(2014·全国卷Ⅱ)函数f (x )在x =x 0处导数存在.若p :f ′(x 0)=0;q :x =x 0是f (x )的极值点,则( )A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件解析:选C 当f ′(x 0)=0时,x =x 0不一定是f (x )的极值点,比如,y =x 3在x =0时,f ′(0)=0,但在x =0的左右两侧f ′(x )的符号相同,因而x =0不是y =x 3的极值点.由极值的定义知,x =x 0是f (x )的极值点必有f ′(x 0)=0.综上知,p 是q 的必要条件,但不是充分条件.2.(2017·天津高考)设θ∈R ,则“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“si n θ<12”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:选A 法一:由⎪⎪⎪⎪⎪⎪θ-π12<π12,得0<θ<π6,故sin θ<12.由sin θ<12,得-7π6+2k π<θ<π6+2k π,k ∈Z ,推不出“⎪⎪⎪⎪⎪⎪θ-π12<π12”.故“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“si n θ<12”的充分而不必要条件. 法二:⎪⎪⎪⎪⎪⎪θ-π12<π12⇒0<θ<π6⇒sin θ<12,而当sin θ<12时,取θ=-π6,⎪⎪⎪⎪⎪⎪-π6-π12=π4>π12. 故“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“si n θ<12”的充分而不必要条件. 3.(2016·北京高考)设a ,b 是向量,则“| a |=|b |”是“|a +b |=|a -b |”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选D 若|a|=|b|成立,则以a ,b 为邻边的平行四边形为菱形.a +b ,a -b 表示的是该菱形的对角线,而菱形的两条对角线长度不一定相等,所以|a +b|=|a -b|不一定成立,从而不是充分条件;反之,若|a +b|=|a -b|成立,则以a ,b 为邻边的平行四边形为矩形,而矩形的邻边长度不一定相等,所以|a|=|b|不一定成立,从而不是必要条件.故“|a|=|b |”是“|a +b|=|a -b |”的既不充分也不必要条件.4.(2015·陕西高考)“sin α=cos α”是“cos 2α=0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选A cos 2α=0等价于cos 2α-sin 2α=0,即cos α=±sin α.由cos α=sin α可得到cos 2α=0,反之不成立,故选A.5.(2015·重庆高考)“x >1”是“log 12(x +2)<0”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件解析:选 B ∵x >1⇒log 12(x +2)<0,log 12(x +2)<0⇒x +2>1⇒x >-1,∴“x>1”是“log 12(x +2)<0”的充分而不必要条件.一、选择题1.命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α≠1C .若tan α≠1,则α=π4D .若tan α≠1,则α≠π4解析:选D 逆否命题是将原命题中的条件与结论都否定后再交换位置即可. 所以逆否命题为:若tan α≠1,则α≠π4.2.在命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真解析:选D 对于原命题:“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”,这是一个真命题,所以其逆否命题也为真命题;但其逆命题:“若{x |ax 2+bx +c <0}≠∅,则抛物线y =ax 2+bx +c 的开口向下”是一个假命题,因为当不等式ax 2+bx +c <0的解集非空时,可以有a >0,即抛物线的开口可以向上,因此否命题也是假命题.故选D.3.“直线y =x +b 与圆x 2+y 2=1相交”是“0<b <1”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析:选C 由直线y =x +b 与圆x 2+y 2=1相交可得|b |2<1,所以-2<b <2,因此,“直线y =x +b 与圆x 2+y 2=1相交”⇒/ “0<b <1”,但“0<b <1”⇒“直线y =x +b 与圆x 2+y 2=1相交”.故选C.4.命题p :“∀x >e ,a -ln x <0”为真命题的一个充分不必要条件是( ) A .a ≤1 B .a <1 C .a ≥1D .a >1解析:选B 由题意知∀x >e ,a <ln x 恒成立,因为ln x >1,所以a ≤1,故答案为B. 5.a 2+b 2=1是a sin θ+b cos θ≤1恒成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 因为a 2+b 2=1,所以设a =cos α,b =sin α,则a sin θ+b cos θ=sin(α+θ)≤1恒成立;当a sin θ+b cos θ≤1恒成立时,只需a sin θ+b cos θ=a 2+b 2sin(θ+φ)≤a 2+b 2≤1即可,所以a 2+b 2≤1,故不满足必要性.6.若向量a =(x -1,x ),b =(x +2,x -4),则“a ⊥b ”是“x =2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 若“a ⊥b ”,则a ·b =(x -1,x )·(x +2,x -4)=(x -1)(x +2)+x (x -4)=2x 2-3x -2=0,则x =2或x =-12;若“x =2”,则a ·b =0,即“a ⊥b ”,所以“a⊥b ”是“x =2”的必要不充分条件.7.在△ABC 中,“sin A -sin B =cos B -cos A ”是“A =B ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 在△ABC 中,当A =B 时,sin A -sin B =cos B -cos A 显然成立,即必要性成立;当sin A -sin B =cos B -cos A 时,则sin A +cos A =sin B +cos B ,两边平方可得sin 2A =sin 2B ,则A =B 或A +B =π2,即充分性不成立.则在△ABC 中,“sin A -sinB =cos B -cos A ”是“A =B ”的必要不充分条件.8.设m ,n 是两条直线,α,β是两个平面,则下列命题中不正确的是( ) A .当n ⊥α时,“n ⊥β”是“α∥β”的充要条件 B .当m ⊂α时,“m ⊥β”是“α⊥β”的充分不必要条件 C .当m ⊂α时,“n ∥α”是“m ∥n ”的必要不充分条件 D .当m ⊂α时,“n ⊥α”是“m ⊥n ”的充分不必要条件解析:选C 由垂直于同一条直线的两个平面平行可知,A 正确;显然,当m ⊂α时,“m ⊥β”⇒“α⊥β”;当m ⊂α时,“α⊥β”⇒/ “m ⊥β”,故B 正确;当m ⊂α时,“m ∥n ”⇒/ “n ∥α”, n 也可能在平面α内,故C 错误;当m ⊂α时,“n ⊥α”⇒“m ⊥n ”,反之不成立,故D 正确.二、填空题9.“若a ≤b ,则ac 2≤bc 2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________.解析:其中原命题和逆否命题为真命题,逆命题和否命题为假命题. 答案:210.下列命题正确的序号是________.①命题“若a >b ,则2a >2b”的否命题是真命题;②命题“a ,b 都是偶数,则a +b 是偶数”的逆否命题是真命题; ③若p 是q 的充分不必要条件,则綈p 是綈q 的必要不充分条件; ④方程ax 2+x +a =0有唯一解的充要条件是a =±12.解析:①否命题“若2a ≤2b,则a ≤b ”,由指数函数的单调性可知,该命题正确;②由互为逆否命题真假相同可知,该命题为真命题;由互为逆否命题可知,③是真命题;④方程ax 2+x +a =0有唯一解,则a =0或⎩⎪⎨⎪⎧Δ=1-4a 2=0,a ≠0,求解可得a =0或a =±12,故④是假命题.答案:①②③11.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x<8,x ∈R,B ={x |-1<x <m +1,x ∈R},若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.解析:A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x<8,x ∈R={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴AB ,∴m +1>3,即m >2.答案:(2,+∞) 12.给出下列四个结论: ①若am 2<bm 2,则a <b ;②已知变量x 和y 满足关系y =-0.1x +1,若变量y 与z 正相关,则x 与z 负相关; ③“已知直线m ,n 和平面α,β,若m ⊥n ,m ⊥α,n ∥β,则α⊥β”为真命题; ④m =3是直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直的充分不必要条件. 其中正确的结论是________(填序号).解析:由不等式的性质可知,①正确;由变量间相关关系可知,当变量y 和z 是正相关时,x 与z 负相关,故②正确;③由已知条件,不能判断α与β的位置关系,故③错误;④当m =3时,直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直;当直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直时,(m +3)m -6m =0,则m =3或m =0,即m =3是直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直的充分不必要条件,则④正确.答案:①②④ 三、解答题13.写出命题“已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0有非空解集,则a 2≥4b ”的逆命题、否命题、逆否命题,并判断它们的真假.解:(1)逆命题:已知a ,b ∈R ,若a 2≥4b ,则关于x 的不等式x 2+ax +b ≤0有非空解集,为真命题.(2)否命题:已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0没有非空解集,则a 2<4b ,为真命题.(3)逆否命题:已知a ,b ∈R ,若a 2<4b ,则关于x 的不等式x 2+ax +b ≤0没有非空解集,为真命题.14.已知集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪⎪y =x 2-32x +1,x ∈⎣⎢⎡⎦⎥⎤34,2,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解:y =x 2-32x +1=⎝ ⎛⎭⎪⎫x -342+716,∵x ∈⎣⎢⎡⎦⎥⎤34,2,∴716≤y ≤2,∴A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪716≤y ≤2. 由x +m 2≥1,得x ≥1-m 2, ∴B ={x |x ≥1-m 2}.∵“x ∈A ”是“x ∈B ”的充分条件, ∴A ⊆B ,∴1-m 2≤716,解得m ≥34或m ≤-34,故实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-34∪⎣⎢⎡⎭⎪⎫34,+∞.1.下列四个命题中,①命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”; ②“x =4”是“x 2-3x -4=0”的充分条件;③命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题;。

高三数学一轮复习精品教案1:1.1集合 (1)教学设计

高三数学一轮复习精品教案1:1.1集合 (1)教学设计

1.1集__合1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)集合中元素与集合的关系:元素与集合之间的关系有属于和不属于两种,表示符号为∈和∉.(3)集合的表示法:列举法、描述法、Venn图.2.集合间的基本关系3.集合的基本运算1.认清集合元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.2.要注意区分元素与集合的从属关系;以及集合与集合的包含关系.3.易忘空集的特殊性,在写集合的子集时不要忘了空集和它本身.4.运用数轴图示法易忽视端点是实心还是空心.5.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误. 『试一试』1.(2013·南通二模)设全集U =R ,A =⎩⎨⎧⎭⎬⎫xx -2x +1<0,B =⎩⎨⎧⎭⎬⎫x sin x ≥32,则A ∩B =________. 『解析』由题意知A =(-1,2),B =⎣⎡⎦⎤2k π+π3,2k π+2π3,k ∈Z ,则A ∩B =⎣⎡⎭⎫π3,2. 『答案』⎣⎡⎭⎫π3,22.已知集合M ={1,m +2,m 2+4},且5∈M ,则m 的值为________.『解析』由题意知m +2=5或m 2+4=5.解得m =3或m =±1.经检验m =3,或m =1符合题意.『答案』1或33.已知集合A ={x |y =x 2},B ={(x ,y )|y =x },则A ∩B =________. 『答案』∅1.判断集合关系的方法有三种 (1)一一列举观察;(2)集合元素特征法:首先确定集合的元素是什么,弄清集合元素的特征,再利用集合元素的特征判断集合关系;(3)数形结合法:利用数轴或Venn 图. 2.解决集合的综合运算的方法解决集合的综合运算时,一般先运算括号内的部分.当集合是用列举法表示的数集时,可以通过列举集合的元素进行运算;当集合是用不等式形式表示时,可运用数轴求解. 3.数形结合思想数轴和Venn 图是进行交、并、补集运算的有力工具,数形结合是解集合问题的常用方法,解题时要先把集合中各种形式的元素化简,使之明确化,尽可能地借助数轴、直角坐标系或Venn 图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解题. 『练一练』1.(2014·南京学情调研)已知集合A ={x |x 2<3x +4,x ∈R },则A ∩Z 中元素的个数为________. 『解析』由x 2<3x +4得-1<x <4,所以A ={x |-1<x <4},故A ∩Z ={0,1,2,3}. 『答案』42.(2013·南通期末)已知A ,B 均为集合U ={2,4,6,8,10}的子集,且A ∩B ={4},(∁U B )∩A ={10},则A =________.『解析』因为(∁U B )∪B =U ,故A =A ∩(B ∪∁U B )=(A ∩B )∪(A ∩∁U B )={4,10}. 『答案』{4,10}对应学生用书P21.(2013·江苏高考)集合{-1,0,1}共有________个子集. 『解析』由题意知,所给集合的子集个数为23=8. 『答案』82.已知集合M ={1,m },N ={n ,log 2n },若M =N ,则(m -n )2 013=________. 『解析』由M =N 知⎩⎪⎨⎪⎧ n =1,log 2n =m 或⎩⎪⎨⎪⎧n =m ,log 2n =1, ∴⎩⎪⎨⎪⎧m =0,n =1或⎩⎪⎨⎪⎧m =2,n =2. 『答案』-1或03.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________. 『解析』因为3∈A ,所以m +2=3或2m 2+m =3. 当m +2=3,即m =1时,2m 2+m =3, 此时集合A 中有重复元素3, 所以m =1不符合题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3符合题意.所以m =-32.『答案』-32『备课札记』 『类题通法』1.研究集合问题,一定要抓住元素,看元素应满足的属性,对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性.2.对于集合相等首先要分析已知元素与另一个集合中哪一个元素相等,分几种情况列出方程(组)进行求解,要注意检验是否满足互异性.『典例』 (1)(2013·南京二模)已知集合A ={x |x 2-2x ≤0,x ∈R },B ={x |x ≥a },若A ∪B =B ,则实数a 的取值范围是________.(2)已知集合A ={x |log 2x ≤2},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =________.『解析』 (1)由A ∪B =B 可知A ⊆B .又A =『0,2』,所以实数a 的取值范围是(-∞,0』. (2)由log 2x ≤2,得0<x ≤4,即A ={x |0<x ≤4},而B =(-∞,a ), 由于A ⊆B ,如图所示,则a >4,即c =4.『答案』 (1)(-∞,0』 (2)4『备课札记』 『类题通法』1.已知两集合的关系求参数时,关键是将两集合的关系转化为元素间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、V enn 图帮助分析. 2.当题目中有条件B ⊆A 时,不要忽略B =∅的情况. 『针对训练』1.(2014·苏锡常镇一模)已知集合A ={x |x 2-x ≤0,x ∈R },设函数f (x )=2-x +a (x ∈A )的值域为B ,若B ⊆A ,则实数a 的取值范围是________.『解析』A =『0,1』,B ={f (x )|f (x )=2-x +a ,x ∈A }=⎣⎡⎦⎤12+a ,1+a .又因为B ⊆A ,即⎣⎡⎦⎤12+a ,1+a ⊆『0,1』,则有⎩⎪⎨⎪⎧a +12≥0,a +1≤1,解得-12≤a ≤0.『答案』⎣⎡⎦⎤-12,0 2.已知集合A ={x |-3≤x ≤4},B ={x |2m -1<x <m +1},且B ⊆A .则实数m 的取值范围为________. 『解析』∵B ⊆A ,(1)当B =∅时,m +1≤2m -1,解得m ≥2. (2)当B ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2, 综上得m ≥-1. 『答案』『-1,+∞)『典例』 (1)(2013·南京三模)如图,已知集合A ={2,3,4,5,6,8},B ={1,3,4,5,7},C ={2,4,5,7,8,9},用列举法写出图中阴影部分表示的集合为________.(2)(2014·无锡期末)已知集合A =⎩⎨⎧⎭⎬⎫x ⎝⎛⎭⎫12x >14,B ={x |log 2(x -1)<2},则A ∩B=________.『解析』 (1)A ∩C ={2,4,5,8},又4,5在集合B 中,2,8不在集合B 中,故阴影部分表示的集合为{2,8}.(2)由⎝⎛⎭⎫12x >14得⎝⎛⎭⎫12x >⎝⎛⎭⎫122,解得x <2,即A =(-∞,2).又由log 2(x -1)<2,得0<x -1<4,解得1<x <5,即B =(1,5),从而A ∩B =(1,2). 『答案』 (1){2,8} (2)(1,2)『备课札记』 『类题通法』集合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图. 『针对训练』设U =R ,集合A ={x |x 2+3x +2=0},B ={x |x 2+(m +1)x +m =0}.若(∁U A )∩B =∅,则m 的值是________.『解析』A ={-2,-1},由(∁U A )∩B =∅,得B ⊆A ,∵方程x 2+(m +1)x +m =0的判别式Δ=(m +1)2-4m =(m -1)2≥0,∴B ≠∅. ∴B ={-1}或B ={-2}或B ={-1,-2}. ①若B ={-1},则m =1;②若B ={-2},则应有-(m +1)=(-2)+(-2)=-4,且m =(-2)·(-2)=4,这两式不能同时成立,∴B ≠{-2};③若B ={-1,-2},则应有-(m +1)=(-1)+(-2)=-3,且m =(-1)·(-2)=2,由这两式得m =2.经检验知m =1和m =2符合条件. ∴m =1或2. 『答案』1或2以集合为背景的新定义问题是近几年高考命题创新型试题的一个热点,此类题目常常以“问题”为核心,以“探究”为途径,以“发现”为目的,这类试题只是以集合为依托,考查考生理解问题、解决创新问题的能力.归纳起来常见的命题角度有: 1创新集合新定义; 2创新集合新运算; 3创新集合新性质. 角度一 创新集合新定义创新集合新定义问题是通过重新定义相应的集合,对集合的知识加以深入地创新,结合原有集合的相关知识和相应数学知识,来解决新定义的集合创新问题.1.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合有________个. 『解析』具有伙伴关系的元素组是-1;12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫-1,12,2.『答案』3角度二 创新集合新运算创新集合新运算问题是按照一定的数学规则和要求给出新的集合运算规则,并按照此集合运算规则和要求结合相关知识进行逻辑推理和计算等,从而达到解决问题的目的.2.如图所示的Venn 图中,A ,B 是非空集合,定义集合A B 为阴影部分表示的集合.若x ,y ∈R ,A ={x |y =2x -x 2},B ={y |y =3x ,x >0},则A B 为________. 『解析』因为A ={x |0≤x ≤2},B ={y |y >1}, A ∪B ={x |x ≥0},A ∩B ={x |1<x ≤2}, 所以A B =∁A ∪B (A ∩B )={x |0≤x ≤1或x >2}. 『答案』『0,1』∪(2,+∞) 角度三 创新集合新性质创新集合新性质问题是利用创新集合中给定的定义与性质来处理问题,通过创新性质,结合相应的数学知识来解决有关的集合性质的问题.3.对于复数a ,b ,c ,d ,若集合S ={a ,b ,c ,d }具有性质“对任意x ,y ∈S ,必有xy ∈S ”,则当⎩⎪⎨⎪⎧a =1,b 2=1,c 2=b时,b +c +d 等于________.『解析』∵S ={a ,b ,c ,d },由集合中元素的互异性可知当a =1时,b =-1,c 2=-1,∴c =±i ,由“对任意x ,y ∈S ,必有xy ∈S ”知±i ∈S ,∴c =i ,d =-i 或c =-i ,d =i , ∴b +c +d =(-1)+0=-1. 『答案』-1『备课札记』 『类题通法』解决新定义问题应注意的问题(1)遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质; (2)按新定义的要求,“照章办事”逐步分析、验证、运算,使问题得以解决; (3)对于选择题,可以结合选项通过验证,排除、对比、特值等方法解决.『课堂练通考点』1.(2013·苏北四市二模)已知集合A ={0,2,a 2},B ={1,a },若A ∪B ={0,1,2,4},则实数a 的值为________.『解析』由题意得a 2=a =4或⎩⎪⎨⎪⎧ a =0,a 2=4或⎩⎪⎨⎪⎧ a =2,a 2=4或⎩⎪⎨⎪⎧a 2=1,a =4,解得a =2. 『答案』22.(2013·新课标全国卷Ⅰ改编)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =________.『解析』n =1,2,3,4时,x =1,4,9,16,∴集合B ={1,4,9,16},∴A ∩B ={1,4}. 『答案』{1,4}3.设集合A ={1,2},则满足A ∪B ={1,2,3}的集合B 的个数是________. 『解析』根据已知,满足条件的集合B 为{3},{1,3},{2,3},{1,2,3}. 『答案』44.创新题设S 为复数集C 的非空子集.若对任意x ,y ∈S ,都有x +y ,x -y ,xy ∈S ,则称S 为封闭集.下列命题:①集合S ={a +b i|a ,b 为整数,i 为虚数单位}为封闭集; ②若S 为封闭集,则一定有0∈S ; ③封闭集一定是无限集;④若S 为封闭集,则满足S ⊆T ⊆C 的任意集合T 也是封闭集. 其中的真命题是________.(写出所有真命题的序号)『解析』①对,当a ,b 为整数时,对任意x ,y ∈S ,x +y ,x -y ,xy 的实部与虚部均为整数;②对,当x =y 时,0∈S ;③错,当S ={0}时,是封闭集,但不是无限集;④错,设S ={0}⊆T ,T ={0,1},显然T 不是封闭集.因此,真命题为①②. 『答案』①②5.创新题设P ,Q 为两个非空实数集合,定义集合P *Q ={z |z =a ÷b ,a ∈P ,b ∈Q },若P ={-1,0,1},Q ={-2,2},则集合P *Q 中元素的个数是________. 『解析』当a =0时,无论b 取何值,z =a ÷b =0; 当a =-1,b =-2时,z =(-1)÷(-2)=12;当a =-1,b =2时,z =(-1)÷2=-12;当a =1,b =-2时,z =1÷(-2)=-12;当a =1,b =2时,z =1÷2=12.故P *Q =⎩⎨⎧⎭⎬⎫0,-12,12,该集合中共有3个元素.『答案』36.已知全集U =R ,集合A ={x |x 2-2x >0},B ={x |y =lg(x -1)},则(∁U A )∩B =________. 『解析』解不等式x 2-2x >0,即x (x -2)>0,得x <0或x >2,故A ={x |x <0或x >2}; 集合B 是函数y =lg(x -1)的定义域, 由x -1>0,解得x >1,所以B ={x |x >1}.如图所示,在数轴上分别表示出集合A,B,则∁U A={x|0≤x≤2},所以(∁U A)∩B={x|0≤x≤2}∩{x|x>1}={x|1<x≤2}.『答案』(1,2』。

高考数学大一轮复习 1.1 集合的概念与运算导学案 理(1

高考数学大一轮复习 1.1 集合的概念与运算导学案 理(1

集合的概念与运算导学目标:1.能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.理解集合之间包含与相等的含义,能识别给定集合的子集.3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.4.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.5.能使用韦恩(Venn)图表达集合的关系及运算.自主梳理1.集合元素的三个特征:确定性、互异性、无序性.2.元素与集合的关系是属于或不属于关系,用符号∈或∉表示. 3.集合的表示法:列举法、描述法、图示法、区间法. 4.集合间的基本关系对任意的x ∈A ,都有x ∈B ,则A ⊆B (或B ⊇A ).若A ⊆B ,且在B 中至少有一个元素x ∈B ,但x ∉A ,则A B (或BA ).若A ⊆B 且B ⊆A ,则A =B . 5.集合的运算及性质设集合A ,B ,则A ∩B ={x |x ∈A 且x ∈B },A ∪B ={x |x ∈A 或x ∈B }. 设全集为U ,则∁U A ={x |x ∈U 且x ∉A }.A ∩∅=∅,A ∩B ⊆A ,∩⊆, A ∩B =A ⇔A ⊆B .A ∪∅=A ,A ∪B ⊇A ,A ∪B ⊇B , A ∪B =B ⇔A ⊆B .A ∩∁U A =∅;A ∪∁U A =U .自我检测1.(2011·长沙模拟)下列集合表示同一集合的是( ) A .M ={(3,2)},N ={(2,3)}B .M ={(x ,y )|x +y =1},N ={y |x +y =1}C .M ={4,5},N ={5,4}D .M ={1,2},N ={(1,2)} 答案 C2.(2009·辽宁)已知集合M ={x |-3<x ≤5},N ={x |-5<x <5},则M ∩N 等于( ) A .{x |-5<x <5} B .{x |-3<x <5} C .{x |-5<x ≤5} D .{x |-3<x ≤5} 答案 B解析 画数轴,找出两个区间的公共部分即得M ∩N ={x |-3<x <5}.3.(2010·湖北)设集合A ={(x ,y )|x 24+y 216=1},B ={(x ,y )|y =3x},则A ∩B 的子集的个数是( )A .4B .3C .2D .1 答案 A 解析 易知椭圆x 24+y 216=1与函数y =3x的图象有两个交点,所以A ∩B 包含两个元素,故A ∩B 的子集个数是4个.4.(2010·潍坊五校联考)集合M ={y |y =x 2-1,x ∈R},集合N ={x |y =9-x 2,x ∈R},则M∩N等于( )A.{t|0≤t≤3} B.{t|-1≤t≤3}C.{(-2,1),(2,1)} D.∅答案 B解析∵y=x2-1≥-1,∴M=[-1,+∞).又∵y=9-x2,∴9-x2≥0.∴N=[-3,3].∴M∩N=[-1,3].5.(2011·福州模拟)已知集合A={1,3,a},B={1,a2-a+1},且B⊆A,则a=________.答案-1或2解析由a2-a+1=3,∴a=-1或a=2,经检验符合.由a2-a+1=a,得a=1,但集合中有相同元素,舍去,故a=-1或2.探究点一 集合的基本概念例1 (2011·沈阳模拟)若a ,b ∈R ,集合{1,a +b ,a }={0,b a,b },求b -a 的值. 解题导引 解决该类问题的基本方法为:利用集合中元素的特点,列出方程组求解,但解出后应注意检验,看所得结果是否符合元素的互异性.解 由{1,a +b ,a }={0,b a,b }可知a ≠0,则只能a +b =0,则有以下对应关系:⎩⎪⎨⎪⎧a +b =0,ba =a ,b =1① 或⎩⎪⎨⎪⎧a +b =0,b =a ,b a =1.②由①得⎩⎪⎨⎪⎧a =-1,b =1,符合题意;②无解.∴b -a =2.变式迁移1 设集合A ={1,a ,b },B ={a ,a 2,ab },且A =B ,求实数a ,b . 解 由元素的互异性知,a ≠1,b ≠1,a ≠0,又由A =B ,得⎩⎪⎨⎪⎧ a 2=1,ab =b ,或⎩⎪⎨⎪⎧a 2=b ,ab =1,解得a =-1,b =0. 探究点二 集合间的关系例2 设集合M ={x |x =5-4a +a 2,a ∈R},N ={y |y =4b 2+4b +2,b ∈R},则下列关系中正确的是( )A .M =NB .M NC .M ND .M ∈N解题导引 一般地,对于较为复杂的两个或两个以上的集合,要判断它们之间的关系,应先确定集合中元素的形式是数还是点或其他,属性如何.然后将所给集合化简整理,弄清每个集合中的元素个数或范围,再判断它们之间的关系.答案 A解析 集合M ={x |x =5-4a +a 2,a ∈R}={x |x =(a -2)2+1,a ∈R}={x |x ≥1}, N ={y |y =4b 2+4b +2,b ∈R}={y |y =(2b +1)2+1,b ∈R}={y |y ≥1}.∴M =N .变式迁移2 设集合P ={m |-1<m <0},Q ={m |mx 2+4mx -4<0对任意实数x 恒成立,且m ∈R},则下列关系中成立的是( )A .P QB .Q PC .P =QD .P ∩Q =∅ 答案 A解析 P ={m |-1<m <0},Q :⎩⎪⎨⎪⎧m <0,Δ=16m 2+16m <0,或m =0.∴-1<m ≤0.∴Q ={m |-1<m ≤0}. ∴P Q .探究点三 集合的运算例3 设全集是实数集R ,A ={x |2x 2-7x +3≤0},B ={x |x 2+a <0}. (1)当a =-4时,求A ∩B 和A ∪B ;(2)若(∁R A )∩B =B ,求实数a 的取值范围.解题导引 解决含参数问题的集合运算,首先要理清题目要求,看清集合间存在的相互关系,注意分类讨论、数形结合思想的应用以及空集的特殊性.解 (1)A ={x |12≤x ≤3}.当a =-4时,B ={x |-2<x <2},∴A ∩B ={x |12≤x <2},A ∪B ={x |-2<x ≤3}.(2)∁R A ={x |x <12或x >3}.当(∁R A )∩B =B 时,B ⊆∁R A , 即A ∩B =∅.①当B =∅,即a ≥0时,满足B ⊆∁R A ;②当B ≠∅,即a <0时,B ={x |--a <x <-a },要使B ⊆∁R A ,需-a ≤12,解得-14≤a <0.综上可得,a 的取值范围为a ≥-14.变式迁移3 (2011·阜阳模拟)已知A ={x ||x -a |<4},B ={x ||x -2|>3}. (1)若a =1,求A ∩B ;(2)若A ∪B =R ,求实数a 的取值范围. 解 (1)当a =1时, A ={x |-3<x <5}, B ={x |x <-1或x >5}. ∴A ∩B ={x |-3<x <-1}. (2)∵A ={x |a -4<x <a +4},B ={x |x <-1或x >5},且A ∪B =R , ∴⎩⎪⎨⎪⎧a -4<-1a +4>5⇒1<a <3. ∴实数a 的取值范围是(1,3).分类讨论思想在集合中的应用例 (12分)(1)若集合P ={x |x 2+x -6=0},S ={x |ax +1=0},且S ⊆P ,求由a 的可取值组成的集合;(2)若集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},且B ⊆A ,求由m 的可取值组成的集合.【答题模板】解 (1)P ={-3,2}.当a =0时,S =∅,满足S ⊆P ; [2分]当a ≠0时,方程ax +1=0的解为x =-1a,为满足S ⊆P 可使-1a =-3或-1a=2,即a =13或a =-12. [4分]故所求集合为{0,13,-12}. [6分](2)当m +1>2m -1,即m <2时,B =∅,满足B ⊆A ; [8分] 若B ≠∅,且满足B ⊆A ,如图所示,则⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,即⎩⎪⎨⎪⎧m ≥2,m ≥-3,m ≤3,∴2≤m ≤3.[10分]故m <2或2≤m ≤3,即所求集合为{m |m ≤3}. [12分] 【突破思维障碍】在解决两个数集关系问题时,避免出错的一个有效手段即是合理运用数轴帮助分析与求解,另外,在解含有参数的不等式(或方程)时,要对参数进行讨论,分类时要遵循“不重不漏”的分类原则,然后对于每一类情况都要给出问题的解答.【易错点剖析】(1)容易忽略a =0时,S =∅这种情况.(2)想当然认为m +1<2m -1忽略“>”或“=”两种情况.解答集合问题时应注意五点:1.注意集合中元素的性质——互异性的应用,解答时注意检验.2.注意描述法给出的集合的元素.如{y |y =2x },{x |y =2x },{(x ,y )|y =2x}表示不同的集合.3.注意∅的特殊性.在利用A ⊆B 解题时,应对A 是否为∅进行讨论. 4.注意数形结合思想的应用.在进行集合运算时要尽可能借助Venn 图和数轴使抽象问题直观化,一般地,集合元素离散时用Venn 图表示,元素连续时用数轴表示,同时注意端点的取舍.5.注意补集思想的应用.在解决A ∩B ≠∅时,可以利用补集思想,先研究A ∩B =∅的情况,然后取补集.(满分:75分)一、选择题(每小题5分,共25分)1.满足{1}A ⊆{1,2,3}的集合A 的个数是( ) A .2 B .3 C .4 D .8 答案 B解析 A ={1}∪B ,其中B 为{2,3}的子集,且B 非空,显然这样的集合A 有3个, 即A ={1,2}或{1,3}或{1,2,3}. 2.(2011·杭州模拟)设P 、Q 为两个非空集合,定义集合P +Q ={a +b |a ∈P ,b ∈Q }.若P ={0,2,5},Q ={1,2,6},则P +Q 中元素的个数是( )A .9B .8C .7D .6 答案 B解析 P +Q ={1,2,3,4,6,7,8,11},故P +Q 中元素的个数是8.3.(2010·北京)集合P ={x ∈Z|0≤x <3},M ={x ∈Z|x 2≤9},则P ∩M 等于( ) A .{1,2} B .{0,1,2} C .{1,2,3} D .{0,1,2,3} 答案 B解析 由题意知:P ={0,1,2},M ={-3,-2,-1,0,1,2,3},∴P ∩M ={0,1,2}.4.(2010·天津)设集合A ={x ||x -a |<1,x ∈R},B ={x |1<x <5,x ∈R}.若A ∩B =∅,则实数a 的取值范围是( )A .{a |0≤a ≤6}B .{a |a ≤2或a ≥4}C .{a |a ≤0或a ≥6}D .{a |2≤a ≤4}答案 C解析 由|x -a |<1得-1<x -a <1, 即a -1<x <a +1.由图可知a +1≤1或a -1≥5,所以a ≤0或a ≥6.5.设全集U 是实数集R ,M ={x |x 2>4},N ={x |2x -1≥1},则右图中阴影部分所表示的集合是( )A .{x |-2≤x <1}B .{x |-2≤x ≤2}C .{x |1<x ≤2}D .{x |x <2} 答案 C解析 题图中阴影部分可表示为(∁U M )∩N ,集合M 为{x |x >2或x <-2},集合N 为 {x |1<x ≤3},由集合的运算,知(∁U M )∩N ={x |1<x ≤2}.二、填空题(每小题4分,共12分)6.(2011·绍兴模拟)设集合A ={1,2},则满足A ∪B ={1,2,3}的集合B 的个数是________.答案 4解析 由题意知B 的元素至少含有3,因此集合B 可能为{3}、{1,3}、{2,3}、{1,2,3}.7.(2009·天津)设全集U =A ∪B ={x ∈N *|lg x <1},若A ∩(∁U B )={m |m =2n +1, n =0,1,2,3,4},则集合B =________. 答案 {2,4,6,8}解析 A ∪B ={x ∈N *|lg x <1}={1,2,3,4,5,6,7,8,9},A ∩(∁U B )={1,3,5,7,9}, ∴B ={2,4,6,8}. 8.(2010·江苏)设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a =____. 答案 1解析 ∵3∈B ,由于a 2+4≥4,∴a +2=3,即a =1. 三、解答题(共38分)9.(12分)(2011·烟台模拟)集合A ={x |x 2+5x -6≤0},B ={x |x 2+3x >0},求A ∪B 和A ∩B .解 ∵A ={x |x 2+5x -6≤0} ={x |-6≤x ≤1}.(3分)B ={x |x 2+3x >0}={x |x <-3或x >0}.(6分) 如图所示,∴A ∪B ={x |-6≤x ≤1}∪{x |x <-3或x >0}=R.(9分) A ∩B ={x |-6≤x ≤1}∩{x |x <-3或x >0} ={x |-6≤x <-3,或0<x ≤1}.(12分)10.(12分)已知集合A ={x |0<ax +1≤5},集合B ={x |-12<x ≤2}.若B ⊆A ,求实数a的取值范围.解 当a =0时,显然B ⊆A ;(2分)当a <0时,若B ⊆A ,如图, 则⎩⎪⎨⎪⎧4a ≤-12,-1a >2,(5分)∴⎩⎪⎨⎪⎧a ≥-8,a >-12.∴-12<a <0;(7分)当a >0时,如图,若B ⊆A , 则⎩⎪⎨⎪⎧-1a ≤-12,4a ≥2,(9分)∴⎩⎪⎨⎪⎧a ≤2,a ≤2.∴0<a ≤2.(11分)综上知,当B ⊆A 时,-12<a ≤2.(12分)11.(14分)(2011·岳阳模拟)已知集合A ={x |x -5x +1≤0},B ={x |x 2-2x -m <0}, (1)当m =3时,求A ∩(∁R B );(2)若A ∩B ={x |-1<x <4},求实数m 的值.解 由x -5x +1≤0,所以-1<x ≤5,所以A ={x |-1<x ≤5}.(3分) (1)当m =3时,B ={x |-1<x <3}, 则∁R B ={x |x ≤-1或x ≥3},(6分) 所以A ∩(∁R B )={x |3≤x ≤5}.(10分) (2)因为A ={x |-1<x ≤5}, A ∩B ={x |-1<x <4},(12分)所以有42-2×4-m =0,解得m =8. 此时B ={x |-2<x <4},符合题意, 故实数m 的值为8.(14分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章集合与常用逻辑用语第一节集合[考纲要求]1.了解集合的含义,体会元素与集合的属于关系.2.能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.3.理解集合之间包含与相等的含义,能识别给定集合的子集.4.在具体情境中,了解全集与空集的含义.5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.7.能使用韦恩(Venn)图表达集合间的关系及集合运算.突破点一集合的概念与集合间的基本关系[基本知识]1.集合的有关概念(1)集合元素的特性:确定性、互异性、无序性.(2)集合与元素的关系:若a属于集合A,记作a∈A;若b不属于集合A,记作b∉A.(3)集合的表示方法:列举法、描述法、图示法.2.集合间的基本关系表示关系文字语言记法集合间的基本关系子集集合A中任意一个元素都是集合B中的元素A⊆B或B⊇A真子集集合A是集合B的子集,并且B中至少有一个元素不属于AA B或B A 相等集合A中的每一个元素都是集合B中的元素,集合B中的每一个元素也都是集合A中的元素A⊆B且B⊆A⇔A=B空集空集是任何集合的子集∅⊆A空集是任何非空集合的真子集∅B且B≠∅一、判断题(对的打“√”,错的打“×”)(1){x |y =x 2+1}={y |y =x 2+1}={(x ,y )|y =x 2+1}.( )(2)若{x 2,1}={0,1},则x =0,1.( )(3)∅∈{0}.( )答案:(1)× (2)× (3)×二、填空题1.已知集合P ={-2,-1,0,1},集合Q ={y |y =|x |,x ∈P },则Q =________.解析:将x =-2,-1,0,1分别代入y =|x |中,得到y =2,1,0,故Q ={2,1,0}.答案:{2,1,0}2.已知非空集合A 满足:①A ⊆{1,2,3,4};②若x ∈A ,则5-x ∈A .则满足上述要求的集合A 的个数为________.解析:由题意,知满足题中要求的集合A 可以是{1,4},{2,3},{1,2,3,4},共3个. 答案:33.设集合M ={1,x ,y },N ={x ,x 2,xy },且M =N ,则x 2 019+y 2 020=________.解析:因为M =N ,所以⎩⎨⎧ x 2=1,xy =y 或⎩⎨⎧x 2=y ,xy =1,由集合中元素的互异性,可知x ≠1,解得⎩⎨⎧ x =-1,y =0.所以x 2 019+y 2 020=-1. 答案:-14.已知集合A ={x |ax 2+2x +a =0,a ∈R},若集合A 有且仅有2个子集,则a 的值是________.解析:因为集合A 有且只有2个子集,所以A 仅有一个元素,即方程ax 2+2x +a =0(a ∈R)仅有一个根.①当a =0时,A ={0}符合题意;②当a ≠0时,要满足题意,需有Δ= 4-4a 2=0,即a =±1.综上所述,a =0或a =±1.答案:0或±1[典例感悟]1.(2019·厦门一中模拟)设集合M ={x |x =2m +1,m ∈Z},P ={y |y =2m ,m ∈Z},若x 0∈M ,y 0∈P ,a =x 0+y 0,b =x 0y 0,则( )A.a∈M,b∈P B.a∈P,b∈MC.a∈M,b∈M D.a∈P,b∈P解析:选A 设x0=2n+1,y0=2k,n,k∈Z,则x0+y0=2n+1+2k=2(n+k)+1∈M,x0y0=2k(2n+1)=2(2nk+k)∈P,即a∈M,b∈P,故选A.2.(2019·广州模拟)已知集合{x|x2+ax=0}={0,1},则实数a的值为( )A.-1 B.0C.1 D.2解析:选A 依题意知a≠0,则{0,-a}={0,1},所以a=-1.故选A.3.(2019·湖南长郡中学选拔考试)已知集合A={0},B={-1,0,1},若A⊆C⊆B,则符合条件的集合C的个数为( )A.1 B.2C.4 D.8解析:选C 由题意得,含有元素0且是集合B的子集的集合有{0},{0,-1},{0,1},{0,-1,1},即符合条件的集合C共有4个.[方法技巧]1.与集合概念有关问题的求解策略(1)确定构成集合的元素是什么,即确定性.(2)看这些元素的限制条件是什么,即元素的特征性质.(3)根据元素的特征性质求参数的值或范围,或确定集合中元素的个数,要注意检验集合中的元素是否满足互异性.2.判断集合间关系的常用方法含有n(n∈N*)个元素的集合有2n个子集,有2n-1个非空子集,有2n-1个真子集,有2n-2个非空真子集.[针对训练]1.设集合A={0,1,2,3},B={x|-x∈A,1-x∉A},则集合B中元素的个数为( )解析:选A 若x ∈B ,则-x ∈A ,故x 只可能是0,-1,-2,-3,当0∈B 时,1-0=1∈A ;当-1∈B 时,1-(-1)=2∈A ;当-2∈B 时,1-(-2)=3∈A ;当-3∈B 时,1-(-3)=4∉A ,所以B ={-3},故集合B 中元素的个数为1.2.(2019·贵阳高三检测)设集合P ={x |x <1},Q ={x |x 2<1},则( )A .P ⊆QB .Q ⊆PC .P ⊆∁R QD .Q ⊆∁R P解析:选B 依题意得Q ={x |-1<x <1},因此Q ⊆P .3.已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,则实数m 的取值范围为________.解析:∵B ⊆A ,∴①若B =∅,则2m -1<m +1,此时m <2.②若B ≠∅,则⎩⎨⎧ 2m -1≥m +1,m +1≥-2,2m -1≤5.解得2≤m ≤3. 由①②可得,符合题意的实数m 的取值范围为(-∞,3].答案:(-∞,3]突破点二 集合的基本运算[基本知识]1.集合的三种基本运算符号表示 图形表示 符号语言 集合的并集A ∪B A ∪B ={x |x ∈A ,或x ∈B } 集合的交集A ∩B A ∩B ={x |x ∈A ,且x ∈B } 集合的补集 若全集为U ,则集合A 的补集为∁U A∁U A ={x |x ∈U ,且x ∉A }(1)A ∩A =A ,A ∩∅=∅.(2)A∪A=A,A∪∅=A.(3)A∩∁U A=∅,A∪∁U A=U,∁U(∁U A)=A.(4)A ⊆B ⇔A ∩B =A ⇔A ∪B =B ⇔∁U A ⊇∁U B ⇔A ∩(∁U B )=∅.[基本能力]一、判断题(对的打“√”,错的打“×”)(1)对于任意两个集合A ,B ,关系(A ∩B )⊆(A ∪B )恒成立.( )(2)若集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x | 1x >0,则∁R A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x | 1x ≤0.( ) (3)设集合U ={x |-3<x <3,x ∈Z},A ={1,2},B ={-2,-1,2},则A ∩(∁U B )={1}.( ) 答案:(1)√ (2)× (3)√二、填空题1.(2018·江苏高考)已知集合A ={0,1,2,8},B ={-1,1,6,8},那么A ∩B =____________. 答案:{1,8}2.已知集合A ={x |-2≤x <3},B ={x |x <-1},则A ∩(∁R B )=____________.解析:因为B ={x |x <-1},则∁R B ={x |x ≥-1},所以A ∩(∁R B )={x |-2≤x <3}∩{x |x ≥-1}={x |-1≤x <3}.答案:{x |-1≤x <3}3.(2019·合肥模拟)已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},B ={1,2},则A ∩(∁U B )=________.解析:由题意,知A ∪B ={1,2,3}.又B ={1,2},∴∁U B ={3,4},∴A ∩(∁U B )={3}. 答案:{3}4.(2019·淮南二中调研)已知全集U =R ,集合A ={x |x <3或x ≥7},B ={x |x <a }.若 (∁U A )∩B ≠∅,则实数a 的取值范围为________.解析:因为A ={x |x <3或x ≥7},所以∁U A ={x |3≤x <7},又(∁U A )∩B ≠∅,则a >3. 答案:(3,+∞)[典例感悟]1.(2019·衡水模拟)已知集合A ={x |-x 2+4x ≥0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 181<3x <27,C ={x |x =2n ,n ∈N},则(A ∪B )∩C =( )A .{2,4}B .{0,2}C .{0,2,4}D .{0,4}解析:选C 集合A ={x |0≤x ≤4},B ={x |-4<x <3},故A ∪B ={x |-4<x ≤4},集合C 表示非负偶数,故(A ∪B )∩C ={0,2,4},故选C.2.(2019·太原阶段性测评)设集合A ={-1,0,1,2},B ={x |y =x 2-1},则图中阴影部分所表示的集合为( )A .{1}B .{0}C .{-1,0}D .{-1,0,1}解析:选B 由题意得图中阴影部分表示的集合为A ∩(∁R B ).∵B ={x |y =x 2-1}={x |x 2-1≥0}={x |x ≥1或x ≤-1},∴∁R B ={x |-1<x <1},∴A ∩(∁R B )={0},故选B.3.设P ,Q 为两个非空实数集合,定义集合P *Q ={z |z =a b ,a ∈P ,b ∈Q },若P ={1,2},Q ={-1,0,1},则集合P *Q 中元素的个数是( )A .2B .3C .4D .5解析:选B 因为a ∈P ,b ∈Q ,所以a 的取值只能为1,2;b 的取值只能为-1,0,1.z =a b 的不同运算结果如下表所示: ba-1 0 1 11 1 12 12 1 2由上表可知P *Q =⎩⎪⎨⎪⎧⎭⎪⎬⎪1,12,2,显然该集合中共有3个不同的元素. [方法技巧]1.集合基本运算的求解策略求解思路一般是先化简集合,再由交、并、补的定义求解 求解原则一般是先算括号里面的,然后再按运算顺序求解 求解思想 注重数形结合思想的运用,利用好数轴、Venn 图等耐心阅读,分析含义,准确提取信息是解决这类问题的前提,剥去新定义、新法则、新运算的外表,利用所学的集合性质等知识将陌生的集合转化为我们熟悉的集合,是解决这类问题的突破口.[针对训练]1.(2018·全国卷Ⅲ)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( )A.{0} B.{1}C.{1,2} D.{0,1,2}解析:选C ∵A={x|x-1≥0}={x|x≥1},B={0,1,2},∴A∩B={1,2}.2.(2018·全国卷Ⅰ)已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2} B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2} D.{x|x≤-1}∪{x|x≥2}解析:选B ∵x2-x-2>0,∴(x-2)(x+1)>0,∴x>2或x<-1,即A={x|x>2或x<-1}.则∁R A={x|-1≤x≤2}.故选B.3.已知集合A={x|x2-3x-10<0},B={x|y=ln(x-2)},则A∩(∁R B)=( )A.(2,5) B.[2,5)C.(-2,2] D.(-2,2)解析:选C 解一元二次不等式x2-3x-10<0,得-2<x<5,∴A={x|-2<x<5}.由y =ln(x-2)可知x-2>0,即x>2,∴B={x|x>2},因此∁R B={x|x≤2},则A∩(∁R B)=(-2,2].故选C.4.已知集合A={x∈N|x2-2x-3≤0},B={1,3},定义集合A,B之间的运算“*”:A*B={x|x=x1+x2,x1∈A,x2∈B},则A*B中的所有元素之和为( )A.15 B.16C.20 D.21解析:选D 由x2-2x-3≤0,得(x+1)(x-3)≤0,又x∈N,故集合A={0,1,2,3}.∵A*B={x|x=x1+x2,x1∈A,x2∈B},∴A*B中的元素有0+1=1,0+3=3,1+1=2,1+3=4,2+1=3(舍去),2+3=5,3+1=4(舍去),3+3=6,∴A*B={1,2,3,4,5,6},∴A*B中的所有元素之和为21.[课时跟踪检测]1.已知集合M={x|x2+x-2=0},N={0,1},则M∪N=( )A.{-2,0,1} B.{1}C.{0} D.∅解析:选A 集合M={x|x2+x-2=0}={x|x=-2或x=1}={-2,1},N={0,1},则M∪N={-2,0,1}.故选A.2.(2018·浙江高考)已知全集U={1,2,3,4,5},A={1,3},则∁U A=( )A.∅B.{1,3}C.{2,4,5} D.{1,2,3,4,5}解析:选C ∵U={1,2,3,4,5},A={1,3},∴∁U A={2,4,5}.3.(2019·衡水模拟)已知集合A={x|y=x2-2x},B={y|y=x2+1},则A∩B=( ) A.[1,+∞) B.[2,+∞)C.(-∞,0]∪[2,+∞) D.[0,+∞)解析:选B 由于集合A={x|y=x2-2x}表示的是函数y=x2-2x的定义域,所以由x2-2x≥0可知集合A={x|x≤0或x≥2}.集合B={y|y=x2+1}表示的是函数y=x2+1的值域,因此B={y|y≥1}.∴A∩B=[2,+∞).故选B.4.(2019·河北五个一名校联考)若集合A={x|3+2x-x2>0},集合B={x|2x<2},则A∩B 等于( )A.(1,3) B.(-∞,-1)C.(-1,1) D.(-3,1)解析:选C 依题意,可求得A=(-1,3),B=(-∞,1),∴A∩B=(-1,1).5.(2019·浙江五校联考)设全集U=R,集合A={x|x≥3},B={x|0≤x<5},则(∁U A)∩B =( )A.{x|0<x<3} B.{x|0≤x≤3}C.{x|0<x≤3} D.{x|0≤x<3}解析:选D 由题意得∁U A={x|x<3},所以(∁U A)∩B={x|0≤x<3},故选D.6.(2019·长沙模拟)已知集合A={1,2,3},B={x|x2-3x+a=0,a∈A},若A∩B≠∅,则a的值为( )A.1 B.2C.3 D.1或2解析:选B 当a=1时,x2-3x+1=0,无整数解,则A∩B=∅;当a=2时,B={1,2},A∩B={1,2}≠∅;当a=3时,B=∅,A∩B=∅.因此实数a=2.7.(2019·资阳模拟)设全集U=R,集合A={x|x2-2x-3<0},B={x|x-1≥0},则图中阴影部分所表示的集合为( )A.{x|x≤-1或x≥3}B.{x|x<1或x≥3}C.{x|x≤1}D.{x|x≤-1}解析:选D 图中阴影部分表示集合∁U(A∪B),又A={x|-1<x<3},B={x|x≥1},∴A∪B={x|x>-1},∴∁U(A∪B)={x|x≤-1},故选D.8.(2019·石家庄重点高中毕业班摸底)已知集合M={ x|x29+y24=1},N=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y|x3+y2=1,则M∩N=( )A.∅B.{(3,0),(0,2)}C.[-2,2] D.[-3,3]解析:选D 因为集合M={x|-3≤x≤3},N=R,所以M∩N=[-3,3],故选D.9.设集合A={x|y=lg(-x2+x+2)},B={x|x-a>0},若A⊆B,则实数a的取值范围是( )A.(-∞,-1) B.(-∞,-1]C.(-∞,-2) D.(-∞,-2]解析:选B 因为集合A={x|y=lg(-x2+x+2)}={x|-1<x<2},B={x|x>a},因为A⊆B,所以a≤-1.10.已知全集U={x|-1<x<9},A={x|1<x<a},A是U的子集,若A≠∅,则a的取值范围是( )A.{a|a<9} B.{a|a≤9}C.{a|a≥9} D.{a|1<a≤9}解析:选D 由题意知,集合A≠∅,所以a>1,又因为A是U的子集,故需a≤9,所以a的取值范围是{a|1<a≤9}.11.定义集合M与N的新运算:M⊕N={x|x∈M或x∈N且x∉M∩N},则(M⊕N)⊕N=( )A.M∩N B.M∪NC.M D.N解析:选C 按定义,M⊕N表示图中的阴影部分,两圆内部的公共部分表示M∩N.(M⊕N)⊕N应表示x∈M⊕N或x∈N且x∉(M⊕N)∩N的所有x的集合,(M⊕N)∩N表示N上的阴影部分,因此(M⊕N)⊕N=M.12.某班共40人,其中24人喜欢篮球运动,16人喜欢乒乓球运动,6人这两项运动都不喜欢,则喜欢篮球运动但不喜欢乒乓球运动的人数为( )A.17 B.18C.19 D.20解析:选B 记全集U为该班全体同学,喜欢篮球运动的记作集合A,喜欢乒乓球运动的记作集合B,则喜欢篮球但不喜欢乒乓球运动的记作A∩∁U B(如图),故有18人.13.设A={1,4,2x},B={1,x2},若B⊆A,则x=________.解析:由B⊆A,则x2=4或x2=2x.得x=±2或x=0,当x=-2时,A={1,4,-4},B={1,4},符合题意;当x=2时,则2x=4,与集合的互异性相矛盾,故舍去;当x=0时,A={1,4,0},B={1,0},符合题意.综上所述,x=-2或x=0.答案:-2或014.设集合A={x|x+m≥0},B={x|-2<x<4},全集U=R,且(∁U A)∩B=∅,则实数m的取值范围为________.解析:由已知A={x|x≥-m},∴∁U A={x|x<-m}.∵B={x|-2<x<4},(∁U A)∩B =∅,∴-m≤-2,即m≥2.∴m的取值范围为{m|m≥2}.答案:{m|m≥2}15.对于任意两集合A,B,定义A-B={x|x∈A且x∉B},A*B=(A-B)∪(B-A),记A={y|y≥0},B={x|-3≤x≤3},则A*B=________________.解析:由题意知A-B={x|x>3},B-A={x|-3≤x<0},所以A*B=[-3,0)∪(3,+∞).答案:[-3,0)∪(3,+∞)16.设[x ]表示不大于x 的最大整数,集合A ={x |x 2-2[x ]=3},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |18<2x <8,则A ∩B =________.解析:因为不等式18<2x <8的解为-3<x <3,所以B =(-3,3).若x ∈A ∩B ,则⎩⎨⎧x 2-2[x ]=3,-3<x <3,所以[x ]只可能取值-3,-2,-1,0,1,2.若[x ]≤-2,则x 2=3+2[x ]<0,没有实数解;若[x ]=-1,则x 2=1,得x =-1;若[x ]=0,则x 2=3,没有符合条件的解;若[x ]=1,则x 2=5,没有符合条件的解;若[x ]=2,则x 2=7,有一个符合条件的解,x =7.因此,A ∩B ={-1,7}.答案:{-1,7}17.(2019·南阳模拟)若集合A ={(x ,y )|x 2+mx -y +2=0,x ∈R},B ={(x ,y )|x -y +1=0,0≤x ≤2},当A ∩B ≠∅时,求实数m 的取值范围.解:∵集合A ={(x ,y )|x 2+mx -y +2=0,x ∈R}={(x ,y )|y =x 2+mx +2,x ∈R},B ={(x ,y )|x -y +1=0,0≤x ≤2}={(x ,y )|y =x +1,0≤x ≤2},∴A ∩B ≠∅等价于方程组⎩⎨⎧y =x 2+mx +2,y =x +1在x ∈[0,2]上有解, 即x 2+mx +2=x +1在[0,2]上有解,即x 2+(m -1)x +1=0在[0,2]上有解,显然x =0不是该方程的解,从而问题等价于-(m -1)=x +1x在(0,2]上有解. 又∵当x ∈(0,2]时,1x +x ≥2( 当且仅当1x=x ,即x =1时取“=” ), ∴-(m -1)≥2,∴m ≤-1,即m 的取值范围为(-∞,-1].18.已知集合A ={x |x 2-3x +2=0},B ={x |x 2+2(a +1)x +a 2-5=0}.(1)若A ∩B ={2},求实数a 的值;(2)若A ∪B =A ,求实数a 的取值范围.解:(1)∵A ={x |x 2-3x +2=0}={1,2},A ∩B ={2},∴2∈B,2是方程x 2+2(a +1)x +a 2-5=0的根,∴a 2+4a +3=0,a =-1或a =-3.经检验a的取值符合题意,故a=-1或a=-3. (2)∵A∪B=A,∴B⊆A.当B=∅时,由Δ=4(a+1)2-4(a2-5)<0,解得a<-3;当B≠∅时,由B={1}或B={1,2},可解得a∈∅;由B={2},可解得a=-3.综上可知,a的取值范围是(-∞,-3].如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档