浙教版九年级上册第三章圆的基本性质 专题:四点共圆

合集下载

九年级数学上册第3章圆的基本性质3.4圆心角课件(新版)浙教版

九年级数学上册第3章圆的基本性质3.4圆心角课件(新版)浙教版
那么AB=?A'B' 、AB=?A'B' 、OM?=O'M',
为什么?
已知:如图, ∠AOB = ∠A'OB'
,
OM、OM'
圆心角定理:在同圆或 等圆中,相等的圆心角
分别是弦 AB、弦 A'B' 的弦心距. 所对的弧相等,所对的
求证: AB=A'B' , AB= A'B' , OM=OM'
证明:将∠AOB连同AB绕圆心O旋转,
由把定此圆义可O:的以顶半看点径出在O,圆N点心绕NN的圆' '仍角心N落叫'O旋在做N'转圆圆任上心意.角N一'.N个' 角度, N

O
如把图圆绕中圆所心示旋,转任∠意NO一N个'角就度是后一,个仍圆与心原角来. 的圆重合.
顶点在圆心的角,叫圆心角, 如AOB , 圆心角AOB所对 的弧为AB, 所对的弦为AB;
C
作法: 1、作⊙O的直径AB.
A

B
2、过点O作CD⊥AB,交⊙O于
D
点C和D.
∴点A,B,C,D就把⊙O四等分.
想一想:如何用直尺和圆规把⊙O八等分?
我们把顶点在圆心的周角等分成360份,则每一份的圆心 角是1º.因为在同圆或等圆中,相等的圆心角所对的弧相 等,所以整个圆也被等分成360份.我们把每一份这样的 弧叫做1º的弧.
弦的弦心距 OM、OM之间的关
系.
猜想:
? 1. 若AOB AOB,则AB AB, ? ? AB AB ,OM OM .
2 . 若AOB AOB ,情况又如何?

浙教版数学九年级上册3.1 圆的基本性质课件(共26张PPT)

浙教版数学九年级上册3.1 圆的基本性质课件(共26张PPT)

3、以O为圆心,OB为半径
作圆。
所以⊙O就是所求作的
圆。
现在你知道了怎样要 将一个如图所示的破损的 圆盘复原了吗?
方法: 寻求圆弧所在圆的圆心,
在圆弧上任取三点,作其 连线段的垂直平分线,其 交点即为圆心.
已知△ABC,用直尺和圆 规作出过点A、B、C的圆
A
O C
B
经过三角形各个顶点的圆 叫做三角形的外接圆,外接圆 的圆心叫做三角形的外心,这 个三角形叫做圆的内接三角形。
A
如图:⊙O是△ABC的
外接圆, △ABC是⊙O
的内接三角形,点O是
O C △ABC的外心
B
外心是△ABC三条
边的垂直平分线的交点
如图,请找出图中圆的圆 心,并写出你找圆心的方法?
A
O C
B
画出过以下三角形的顶点的圆
A
O ●
B
C
(图一)
A
O ●

B
C
(图二)
A O ●
BC (图三)
1、比较这三个三角形外心的位置, 你有何发现?
练一练
1.下列命题不正确的是 A.过一点有无数个圆. B.过两点有无数个圆. C.弦是圆的一部分. D.过同一直线上三点不能画 圆. 2.三角形的外心具有的性质是 A.到三边的距离相等. B.到三个顶点的距离相等. C.外心在三角形外. D.外心在三角形内.
某市要建一个圆形公园,要求公园刚好把动 物园A,植物园B和人工湖C包括在内,又要使 这个圆形的面积最小,请你给出这个公园的施 工图.(A、B、C不在同一直线上)
问题: 车间工人要将一个
如图所示的破损的圆盘复 原,你有办法吗?
1、过一点可以作几条直线? 2、过几点可确定一条直线?

浙教版数学九年级上册 第3章 圆的基本性质(含答案)

浙教版数学九年级上册  第3章 圆的基本性质(含答案)

第3章 圆的基本性质班级 学号 得分 姓名一、选择题(本大题有10小题,每小题3分,共30分)1. 下列三个命题:①圆既是轴对称图形又是中心对称图形;②垂直于弦的直径平分弦;③相等的圆心角所对的弧相等.其中真命题是( )A. ①②B. ②③C. ①③D. ①②③2. 如图,AB 是⊙O 的直径,C,D 是⊙O 上位于AB 异侧的两点,下列四个角中一定与∠ACD 互余的是 ( )A. ∠ADCB. ∠ABDC. ∠BACD. ∠BAD3.如图,点A,B,C,D,E 均在⊙O 上,∠BAC=15°,∠CED=30°,则∠BOD 的度数为( )A. 45°B. 60°C. 75°D. 90°4.如图,AB 是圆O 的弦,OC⊥AB,交圆O 于点C,连结OA,OB,BC,若∠ABC=20°,则∠AOB 的度数是( )A. 40°B. 50°C. 70°D. 80°5. 如图,点A ,B ,S 在圆上,若弦AB 的长度等于圆半径 2₂倍,则∠ASB 的度数是( )A. 22.5°B. 30°C. 45°D. 60°6.(2020·中考)如图,在等腰△ABC 中, AB =AC =25,BC =8,,按下列步骤作图:①以点 A 为圆心,适当的长度为半径作弧,分别交 AB ,AC 于点E ,F ,再分别以点 E ,F 为圆心,大 12₂EF 的长为半径作弧相交于点H ,作射线AH ;②分别以点 A ,B为圆心,大 12₂AB 的长为半径作弧相交于点M ,N ,作直线MN ,交射线AH 于点O ;③以点O 为圆心线段OA 的长为半径作圆,则⊙O 的半径为( )A.25B. 10C. 4D. 57. 如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于点 D,连结BE,若 AB =27,CD =1,则BE 的长是( )A. 5B. 6C. 7D. 88.已知⊙O 中,弦AB 的长等于半径,P 为弦AB 所对的弧上一动点,则∠APB 的度数为( )A. 30°B. 150°C. 30°或150°D. 60°或120°9. 已知⊙O 的直径CD=10cm,AB 是⊙O 的弦,AB⊥CD,垂足为M,且AB=8cm,则AC 的长为…… ( ) A.25cm B.45cmC.25cm 或 45cmD.23cm 或 43cm10. 如图,AB为⊙O的直径,AC交⊙O于点E,BC交⊙O于点D,CD=BD,∠C=70°,现给出以下三个结论:①∠A=45°;②AC=AB;③AE=BE.其中正确的有( )A. 1个B. 2 个C. 3个D. 0个二、填空题(本大题有6小题,每小题4分,共24分)11. 如图,一次函数y= kx+b的图象与x轴,y轴分别相交于A,B两点,⊙O经过A,B两点,已知AB=2,则 kb的值为 .12. 如图,AB是⊙O的直径,点C,D在圆上,∠D=65°,则∠BAC等于度.13. 如图,已知矩形ABCD的边AB=3,AD=4.(1)以点 A为圆心,4为半径作圆A,则点B,C,D与圆A 的位置关系分别是;(2)若以A点为圆心作圆A,使B,C,D三点中至少有一个点在圆内,且至少有一个点在圆外,则圆A的半径r的取值范围是 .14. 如图,BC是半圆O 的直径,D,E是BC上两点,连结BD,CE 并延长交于点A,连结OD,OE.如果∠A=70°,那么∠DOE的度数为 .15. 如图所示,AB是⊙O的直径,弦CD⊥AB于点H,∠A=30∘,CD=23,则⊙O的半径是 .16. 如图所示,⊙O的直径AB=16cm,P是OB 中点,∠ABP=45°,则CD= cm.三、解答题(本大题有8小题,共66分)17.(6分)如图,点A,B,C都在⊙O上,OC⊥OB,点A 在劣弧BC上,且OA=AB,求∠ABC的度数.18. (6分)如图,在同一平面内,有一组平行线l₁,l₂,l₃,,相邻两条平行线之间的距离均为4,点O在直线l₁上,⊙O与直线l₃的交点为A,B,AB=12,求⊙O的半径.19.(6分)如图,在△ABC的外接圆上AB,BC,CA三弧的度数比为12:13:11.在劣弧BC上取一点D,过点D分别作直线AC,直线AB的平行线,分别交 BC于E,F两点,求∠EDF的度数.20. (8分)如图,△ABC内接于⊙O,AB=AC,,D在弧AB 上,连结CD交AB 于点E,B 是弧CD 的中点,求证:∠B=∠BEC.21.(8分)已知:如图,点M是/AB的中点,过点M的弦MN交AB 于点C,设⊙O的半径为4cm,. MN=43cm.(1)求圆心 O到弦MN的距离;(2)求∠ACM的度数.22.(10分)如图,已知方格纸中每个小正方形的边长为1个单位,Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2).(1)将△ABC以C 为旋转中心旋转180°,得到△A₁B₁C,请画出△A₁B₁C;(2)平移△ABC,使点 A的对应点.A₂的坐标为(−2,−6),请画出平移后对应的图形△A₂B₂C₂;(3)若将△A₁B₁C绕某一点旋转可得到△A₂B₂C₂.请直接写出旋转中心的坐标.23.(10分)如图,已知AB是⊙O的直径,C是圆周上的动点,P 是ABC的中点.(1)求证:OP//BC;(2)如图,连结PA,PC交直径AB于点D,当(OC=DC时,求∠A的度数.24.(12分)我们学习了“弧、弦、圆心角的关系”,实际上我们还可以得到“圆心角、弧、弦,弦心距之间的关系”如下:圆心角、弧、弦、弦心距之间的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦或两条弦的弦心距中有一组量相等,那么它们对应的其余各组量也相等弦心距指从圆心到弦的距离如图(1)中的 OC,OC′,弦心距也可以说成圆心到弦的垂线段的长度 l请直接运用圆心角、弧、弦、弦心距之间的关系解答下列问题.如图(2),点O是∠EPF的平分线上一点,以点O为圆心的圆与角的两边分别交于点A,B,C,D.(1)求证:AB=CD.(2)若角的顶点 P 在圆上或圆内,上述结论还成立吗? 若不成立,请说明理由;若成立,请加以证明.第3章 圆的基本性质1. A2. D3. D4. D5. C6. D7. B8. C9. C 10. A 11. 1212. 25 13. (1)B 在圆内、C 在圆外、D 在圆上(2)3<r<5 14. 40° 15. 2 16. 1417. 解:∵OA=OB,OA=AB,∴OA=OB=AB,即△OAB 是等边三角形,∴∠AOB=60°,∵OC⊥OB,∴∠COB= 90°,∴∠COA = 90°- 60°= 30°,∴∠ABC=15°.18. 解:如图,连结 OA,过点O 作OD⊥AB 于点 D.∵ AB =12,∴AD =12AB =12×12=6.相邻两条平行线之间的距离均为4,∴OD=8.在 Rt△AOD 中,∵AD =6,OD =8,∴OA =AD 2+OD = 62+82=10.∴⊙O 的半径为 10.19. 解: ∵AB ,BC ,CA 三弧的度数比为12:13:11,∴ ABm.1212+13+11×360∘=120∘,AC−m m 1112+13+11×360∘=110∘,∴∠ACB =12×120∘= 0∘,∠ABC =12×110∘=55∘,∵ACED,AB DF,∴∠FED=∠ACB=60°,∠EFD=∠ABC= 55°,∴∠EDF =180°−60°−55°=65°20. 证明:∵B 是弧 CD 的中点, ∴BC =BD ,∴∠BCE = =∠BAC.:∠BEC =180°−∠BCE,∠ACE ,=180°-∠BAC--∠B,∴∠BEC=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠B=∠BEC.21. 解:(1)连结 OM.∵点 M 是. AB 的中点,∴OM⊥AB.过点 O 作OD⊥MN 于点 D,由垂径定理,得 MD =12MN =23cm,在Rt△ODM 中,OM=4cm, MD =23cm,∴OD =OM 2−MD 2=2(cm ).故圆心 O 到弦MN 的距离为 2cm. (2)∵OD=2cm,OM=4cm,∴∠M=30°,∴∠ACM=60°.22. 解:(1)(2)图略.(3)旋转中心的坐标为(0,-2).23. (1)证明:连结AC,延长 PO 交AC 于点 H,如图,∵P 是 ABC 的中点,∴PH⊥AC,∵A B 是⊙O 的直径,∴∠ACB=90°,∴BC⊥AC,∴OP∥BC. (2)解:∵P 是 ABC 的中点, P C,∴∠PAC=∠PCA,:OA=OC, ∴ ∠OA C= ∠OCA,∴∠PAO=∠C O=CD 时,设∠DCO=x,则∠OPC=x,∠PAO=x,∴∠POD =2x,∴∠ODC=∠POD+∠OP C=3x,∵CD=CO,∴∠DOC=∠ODC=3x.在△POC 中,x+x+5x=180°,解得 x =180∘7,即 ∠PAO =180∘7.24. (1)证明:过点 O 作OM⊥AB 于点M,ON⊥CD 于点 N,连结OB,OD,则∠OMB=∠OND=90°,∵PO 平分∠EPF,∴O M=ON,∵OM⊥AB,ON⊥CD,∴AB=CD.(2)成立.当点 P 在圆上时如图;作OM⊥PB,ON⊥PD,垂足分别为M,N,∵PC平分∠EPF,∴OM=ON,∵OM⊥AB,ON⊥CD,∴PB=PD;当点P 在圆内时:过点 O作OM⊥AB,ON⊥CD,∵PO平分∠BPF,∴OM=ON.∵OM⊥AB,ON⊥CD,∴AB=CD.。

浙教版-9年级-上册-数学-第3章《圆的基本性质》分节知识点

浙教版-9年级-上册-数学-第3章《圆的基本性质》分节知识点

浙教版-9年级-上册-数学-第3章《圆的基本性质》分节知识点一、圆的有关概念及圆的确定要点一、圆的定义1、圆的描述概念(1)如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.要点诠释:(1)圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;(2)圆是一条封闭曲线.2、圆的集合概念(1)圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合.(2)平面上的一个圆,把平面上的点分成三类:圆上的点,圆内的点和圆外的点.(3)圆的内部可以看作是到圆心的距离小于半径的的点的集合;圆的外部可以看成是到圆心的距离大于半径的点的集合.要点诠释:(1)定点为圆心,定长为半径;(2)圆指的是圆周,而不是圆面;(3)强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.要点二、点与圆的位置关系(1)点和圆的位置关系有三种:点在圆内,点在圆上,点在圆外.(2)若⊙O的半径为r,点P到圆心O的距离为d,那么:点P在圆内d<r;点P在圆上d=r;点P在圆外d>r.“”读作“等价于”,它表示从左端可以推出右端,从右端也可以推出左端.要点诠释:(1)点在圆上是指点在圆周上,而不是点在圆面上;要点三、与圆有关的概念1、弦:(1)弦:连结圆上任意两点的线段叫做弦.(2)直径:经过圆心的弦叫做直径.(3)弦心距:圆心到弦的距离叫做弦心距.要点诠释:(1)直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.(2)为什么直径是圆中最长的弦?如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.证明:连结OC、OD∵AB=AO+OB=CO+OD≥CD(当且仅当CD过圆心O时,取“=”号)∴直径AB是⊙O中最长的弦.2、弧(1)弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.(2)半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;(3)优弧:大于半圆的弧叫做优弧;(4)劣弧:小于半圆的弧叫做劣弧.要点诠释:(1)半圆是弧,而弧不一定是半圆;(2)无特殊说明时,弧指的是劣弧.3、等弧:在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:(1)等弧成立的前提条件是在同圆或等圆中,不能忽视;(2)圆中两平行弦所夹的弧相等.4、同心圆与等圆(1)圆心相同,半径不等的两个圆叫做同心圆.(2)圆心不同,半径相等的两个圆叫做等圆.要点诠释:同圆或等圆的半径相等.5、圆心角:顶点在圆心的角叫做圆心角.要点诠释:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,反之也成立.要点四、确定圆的条件(1)经过一个已知点能作无数个圆;(2)经过两个已知点A、B能作无数个圆,这些圆的圆心在线段AB的垂直平分线上;(3)不在同一直线上的三个点确定一个圆.(4)经过三角形各个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.如图:⊙O是△ABC的外接圆,△ABC是⊙O的内接三角形,点O是△ABC的外心.外心的性质:外心是△ABC三条边的垂直平分线的交点,它到三角形的三个顶点的距离相等.要点诠释:(1)不在同一直线上的三个点确定一个圆.“确定”的含义是“存在性和唯一性”.(2)只有确定了圆心和圆的半径,这个圆的位置和大小才唯一确定.二、图形的旋转要点一、旋转的概念(1)一般地,一个图形变为另一个图形,在运动的过程中,原图形上的所有点都绕一个固定的点,按同一个方向,转动同一个角度,这样的图形运动叫做图形的旋转.这个固定的定点叫做旋转中心,转过的角叫做旋转角.如下图,点O为旋转中心,∠AOA′(或∠BOB′或∠COC′)是旋转角.要点诠释:(1)旋转的三个要素:旋转中心、旋转方向和旋转角度.(2)如上图,如果图形上的点A经过旋转变为点A′,那么这两个点叫做这个图形旋转的对应点.点B与点B′,点C与点C′均是对应点,线段AB与A′B′、线段AC与A′C′、线段BC与B′C′均是对应线段.要点二、旋转的性质一般地,图形的旋转有下面的性质:(1)图形经过旋转所得的图形和原图形全等;(2)对应点到旋转中心的距离相等;(3)任意一对对应点与旋转中心连线所成的角度等于旋转的角度.要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.要点三、旋转的作图(1)在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.三、垂径定理知识点一、垂径定理1、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.如图,几何语言为:CD 是直径要点诠释:2、推论(1)定理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.(2)定理2:平分弧的直径垂直平分弧所对的弦.要点诠释:(1)分一条弧成相等的两条弧的点,叫做这条弧的中点.(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(2)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.要点诠释:(1)在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)四、圆心角要点一、圆心角与弧的定义1、圆心角定义:顶点在圆心的角叫做圆心角.如图所示,∠AOB 就是一个圆心角.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)圆心角∠AOB 所对的弦为线段AB,所对的弧为弧AB.2、1°的弧的定义:1°的圆心角所对的弧叫做1°的弧.如下图,要点诠释:(1)圆心角的度数和它所对的弧的度数相等.注意不是角与弧相等.即不能写成圆心角∠AOB=.CD ⊥ABAE=BE(2)在同圆或等圆中,能够互相重合的弧叫等弧.等弧的长度相等,所含度数相等(即弯曲程度相等).要点二、圆心角定理及推论1、圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.要点诠释:(1)圆心到圆的一条弦的距离叫做弦心距.(2)在同圆或等圆中,相等的圆心角所对两条弦的弦心距相等.(3)注意定理中不能忽视“同圆或等圆”这一前提.2、圆心角定理的推论:(1)在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对量相等,那么它们所对应的其余各对应量都相等.要点诠释:(1)在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等).*如果它们中间有一组量不相等,那么其它各组量也分别不等.五、圆周角要点一、圆周角1、圆周角定义:(1)像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2、圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.(3)圆心与圆周角存在三种位置关系:圆心在圆周角的一边上;圆心在圆周角的内部;圆心在圆周角的外部.(如下图)3、圆周角定理的推论1:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.4、圆周角定理的推论2:在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等.六、圆内接四边形要点一、圆内接四边形(1)如果一个四边形的各个顶点在同一个圆上,那么这个四边形叫做圆的内接四边形,这个圆叫做四边形的外接圆.要点二、圆内接四边形性质定理(1)圆内接四边形的对角互补.(2)圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).要点诠释:圆内接四边形的性质是沟通角相等关系的重要依据,在应用此性质时,要注意与圆周角定理结合起来.在应用时要注意是对角,而不是邻角互补.七、正多边形和圆知识点一、正多边形的概念(1)各边相等,各角也相等的多边形是正多边形.要点诠释:判断一个多边形是否是正多边形,必须满足两个条件:(1)各边相等;(2)各角相等;缺一不可.如菱形的各边都相等,矩形的各角都相等,但它们都不是正多边形(正方形是正多边形).知识点二、正多边形的重要元素1、正多边形的外接圆和圆的内接正多边形(1)正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.2、正多边形的有关概念(1)一个正多边形的外接圆的圆心叫做这个正多边形的中心.(2)正多边形外接圆的半径叫做正多边形的半径.(3)正多边形每一边所对的圆心角叫做正多边形的中心角.(4)正多边形的中心到正多边形的一边的距离叫做正多边形的边心距.3、正多边形的有关计算(1)正n边形每一个内角的度数是;(2)正n边形每个中心角的度数是;(3)正n边形每个外角的度数是.要点诠释:要熟悉正多边形的基本概念和基本图形,将待解决的问题转化为直角三角形.知识点三、正多边形的性质(1)正多边形都只有一个外接圆,圆有无数个内接正多边形.(2)正n边形的半径和边心距把正n边形分成2n个全等的直角三角形.(3)正多边形都是轴对称图形,对称轴的条数与它的边数相同,每条对称轴都通过正n边形的中心;当边数是偶数时,它也是中心对称图形,它的中心就是对称中心.(4)边数相同的正多边形相似。

浙教版九年级上册第三章圆的基本性质 专题:四点共圆

浙教版九年级上册第三章圆的基本性质 专题:四点共圆

专题:四点共圆一.选择题1.如图,在四边形ABCD中,AC、BD为对角线,点M、E、N、F分别为AD、AB、BC、CD边的中点,下列说法:①当AC=BD时,M、E、N、F四点共圆.②当AC⊥BD时,M、E、N、F四点共圆.③当AC=BD且AC⊥BD时,M、E、N、F四点共圆.其中正确的是()A. ①②B. ①③C. ②③D. ①②③2. 如图,四边形ABCD内接于半圆O,已知∠ADC=140°,则∠AOC的大小是()A. 40°B. 60°C. 70°D. 80°3. 如图,已知四边形ABEC内接于⊙O,点D在AC的延长线上,CE平分∠BCD交⊙O于点E,则下列结论中一定正确的是()A. AB=AEB. AB=BEC. AE=BED. AB=AC4. 如图,以△ABC的一边AB为直径的圆交AC边于D,交BC边于E,连接DE,BD与AE交于点F.则sin∠CAE的值为()A.B.C.D.5. 如图,AB是⊙O的直径,C,D在⊙O上,且BC=CD,过点C作CE⊥AD,交AD延长线于E,交AB延长线于F点.若AB=4ED,则cos∠ABC的值是()A. B. C. D.6. 如图,在△ABC中,∠B=75°,∠C=45°,BC=6-2,点P是BC上一动点,PE⊥AB于E,PD⊥AC于D.无论P的位置如何变化,线段DE的最小值为()A. 3-3B.C. 4-6D. 27. 如图,四边形ABCD是⊙O的内接四边形,AB:BC=2:3,AD=DC,点P在对角线BD上,已知△ABP的面积等于6cm2,则△BCP的面积等于()cm2.A. 8B. 9C. 10D. 128.四边形ABCD内接于圆,且CD=1,AB=√2,BC=2,∠ABC=45°,则四边形ABCD的面积是()A. 3+√33B. √3+2√24C. √3+2√23D. 3+√349. 在圆内接四边形ABCD中,∠BAD、∠ADC的角平分线交于点E,过E作直线MN平行于BC,与AB、CD交于M、N,则总有MN=()A. BM+DNB. AM+CNC. BM+CND. AM+DN10. 如图,已知∠A的平分线分别与边BC、△ABC的外接圆交于点D、M,过D任作一条与直线BC不重合的直线l,直线l分别与直线MB、MC交于点P、Q,下列判断错误的是()A. 无论直线l的位置如何,总有直线PM与△ABD的外接圆相切B. 无论直线l的位置如何,总有∠PAQ>∠BACC. 直线l选取适当的位置,可使A、P、M、Q四点共圆D. 直线l选取适当的位置,可使S△APQ<S△ABC11.如图,一副直角三角板满足∠ACB=∠EDF=90°,AC=BC,AB=DF,∠EFD=30°,将三角板DEF的直角顶点D放置于三角板ABC的斜边AB上,再将三角板DEF绕点D旋转,并使边DE 与边AC交于点M,边DF与边BC于点N.当∠EDF在△ABC内绕顶点D旋转时有以下结论:①点C,M,D,N四点共圆;②连接CD,若AD=DB,则△ADM∽△CDN;③若AD=DB,则DN•CM=BN•DM;④若AD=DB,则CM+CN=AD;⑤若DB=2AD,AB=6,则2≤S△DMN≤4.其中正确结论的个数是()A. 2B. 3C. 4D. 5二.填空题12. 如图,已知等腰三角形ABC,∠ACB=120°且AC=BC=4,在平面内任作∠APB=60°,BP最大值为_____.13. 如图,ABCD是⊙O的内接四边形,AB是⊙O的直径.过点D的切线交BA的延长线于点E.若∠ADE=25°,则∠C= ______ .14. 如图,四边形ABCD中,AB=AC=AD,若∠CAD=76°,则∠CBD=______度.15. 如图,四边形ABCD内接于⊙O,AC平分∠BAD交BD于点E,⊙O的半径为4,∠BAD=60°,∠BCA=15°,则AE=______.16. 如图,ABCD、CEFG是正方形,E在CD上,且BE平分∠DBC,O是BD中点,直线BE、DG交于H.BD,AH交于M,连接OH,则OH=______,BM=______.17. 如图,在⊙O内接四边形ABCD中,∠ABC=60°,AB=BC=6,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为11,则△BEF的面积为____.18. 如图,正方形ABCD的中心为O,面积为1 989 ,P为正方形内一点,且∠OPB=45°,PA:PB=5:14,则PB= ______ .19. 已知△ABC为等腰直角三角形,∠C为直角,延长CA至D,以AD为直径作圆,连BD与圆O交于点E,连CE,CE的延长线交圆O于另一点F,那么的值等于.20. 如图,在等腰△ABC中,∠ABC=90°,点D为BC的中点,点E在AC边上,以DE为腰作等腰Rt△DEF,连接CF,BF.若CE=1,△CDF的面积为7.5,则BF的长为____.三.解答题21. (1)已知:如图1,△ABC为等边三角形,CE平分△ABC的外角∠ACM,点在BC上,连接AD、DE,如果∠ADE=60°,求证:AD=DE.(2)如果△ABC为任意三角形,且∠ACB=60°,其他条件不变,这个结论还成立吗?说明你的理由.22. 如图,已知点P是⊙O外一点,PS,PT是⊙O的两条切线,过点P作⊙O的割线PAB,交⊙O于A,B两点,并交ST于点C.求证:.23. 如图,A、B、C、D四点共圆,AB与DC相交于点E,AD与BC交于点F,∠AED的平分线EX与∠AFB的平分线FX交于点X,M、N分别是AC与BD的中点,求证:(1)FX⊥EX;(2)FX、EX分别平分∠MFN与∠MEN.24. 如图,四边形ABCD是⊙O的内接四边形,AD的延长线与BC的延长线相交于点E,DC=DE.(1) 求证:∠A=∠AEB;(2) 如果DC⊥OE,求证:△ABE是等边三角形.25. 如图,已知四边形ABCD内接于⊙O,∠D=90°,P为上一动点(不与点C,D重合).(1)若∠BPC=30°,BC=3,求⊙O的半径;(2)若∠A=90°,=.求证:PB-PD=PC.26. 如图,BD,CE是△ABC的两条高,F和G分别是DE和BC的中点,O是△ABC的外心.求证:AO∥FG.27. 如图,在锐角三角形ABC中,AB上的高CE与AC上的高BD相交于点H,以DE为直径的圆分别交AB、AC于F、G两点,FG与AH相交于点K,已知BC=25,BD=20,BE=7,求AK 的长.28. 如图,O是Rt△ABC斜边AB的中点,CH⊥AB于H,延长CH至D,使得CH=DH,F为CO上任意一点,过B作BE⊥AF于E,连接DE交BC于G.(1)求证:∠CAF=∠CDE;(2)求证:CF=GF.29. 已知:AB是⊙O的直径,BC是⊙O的切线,AC交⊙O于G,∠ACB的平分线交⊙O于D,E在AC上,BE交AD于F,∠CBD=∠EBD.求证:DF=DG.30. 如图,AB是半圆圆O的直径,C是弧AB的中点,M是弦AC的中点,CH⊥BM,垂足为H.求证:CH2=AH•OH.31. 如图,在△ABC中,已知AD⊥BC,BE⊥AC,AD与BE相交于点H,P为边AB的中点,过点C作CQ⊥PH,垂足为Q,求证:PE2=PH•PQ.参考答案1. C.2. D.3.C.4. D.5.A.6. B.7. B.8. D.9.D.10.C.11.D.12. 8.13. 115°14. 38°.15.2.16. ,AB.17. ;18.42cm.19..20. .21. (1)证明:如图1中,∵△ABC是等边三角形,∴∠ACB=60°,∠ACM=120°,∴CE平分∠ACM,∴∠ACE=∠ECM=60°,∵∠ADE=60°,∠ACE=60°,∴∠ADE=∠ACE,∴A、D、C、E四点共圆,∴∠ECM=∠DAE=60°,∠AED=∠ACB=60°,∴∠DAE=∠DEA,∴AD=DE.(2)结论成立.DA=DE.理由:如图2中,连接AE,∵∠ACB=60°,∴∠ACM=180°-∠ACB=120°,∴CE平分∠ACM,∴∠ACE=∠ECM=60°,∵∠ADE=60°,∠ACE=60°,∴∠ADE=∠ACE,∴A、D、C、E四点共圆,∴∠ECM=∠DAE=60°,∠AED=∠ACB=60°,∴∠DAE=∠DEA,∴AD=DE.22.证明:连PO交ST于点D,则PO⊥ST; 连SO,作OE⊥PB于E,则E为AB中点,于是因为C,E,O,D四点共圆,所以PC•PE=PD•PO又因为Rt△SPD∽Rt△OPS所以即PS 2=PD•PO而由切割线定理知PS 2=PA•PB所以即23. 证明:(1)连接AX.由图知:∠FDC是△ACD的一个外角,则有:∠FDC=∠FAE+∠AED;①同理,得:∠EBC=∠FAE+∠AFB;②∵四边形ABCD是圆的内接四边形,∴∠FDC=∠ABC.又∵∠ABC+∠EBC=180°,即:∠FDC+∠EBC=180°,③①+②,得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB),由③,得:2∠FAE+(∠AED+∠AFB)=180°;∵FX、EX分别是∠AFB、∠AED的角平分线,∴∠AFB=2∠AFX,∠AED=2∠AEX,代入上式得:2∠FAE+2(∠AFX+∠AEX)=180°,即∠FAE+∠AFX+∠AEX=180°.由三角形的外角性质知:∠FXE=∠FAE+∠FAX+∠EAX,故FXE=90°,即FX⊥EX.(2)连接MF、FN,ME、NE.∵∠FAC=∠FBD,∠DFB=∠CFA,∴△FCA∽△FDB,∴.∵AC=2AM,BD=2BN,∴.又∵∠FAM=∠FBN,∴△FAM∽△FBNA,得∠AFM=∠BFN.又∵∠AFX=∠BFX,∴∠AFX-∠AFM=∠BFX-∠BFN,即∠MFX=∠NFX.同理可证得∠NEX=∠MEX,故FX、EX分别平分∠MFN与∠MEN.24. (1)证明:∵四边形ABCD是⊙O的内接四边形,∴∠A=∠DCE,∵DC=DE,∴∠DCE=∠DEC,∴∠A=∠AEB(2)证明:∵DC⊥OE,∴DF=CF,∴OE是CD的垂直平分线,∴ED=EC,又DE=DC,∴△DEC为等边三角形,∴∠AEB=60°,又∠A=∠AEB,∴△ABE是等边三角形.25. 解:(1)连接AC.∵∠D=90°,∴AC是⊙O的直径,∴∠ABC=90°.∵∠BAC=∠BPC=30°,∴AC=2BC=6,所以⊙O的半径为3;(2)∵∠BAD=90°,∴∠BCD=90°.∵AC为⊙O直径,∴∠ADC=∠ABC=90°,∴四边形ABCD为矩形.∵=,∴AB=AD,∴矩形ABCD为正方形,∴BC=DC.在BP上截取BE=DP,连接CE,DP.∵BE=DP,∠CBP=∠PDC,BC=DC,∴△BCE≌△DCP,∴∠BCE=∠DCP,PC=CE,又∵∠BCE+∠ECD=∠BCD=90°,∴∠DCP+∠ECD=∠ECP=90°,∴△CPE为等腰直角三角形,∴PE=PC,∴PB-BE=PB-PD=PE=PC.26. 【解答】证明:如图,连接GD和GE.∵∠BDC=∠BEC=90°,BG=GC,∴,又∵DF=EF,∴GF⊥DE,延长OA交DE于H.∵∠BDC=∠BEC=90°∴B,C,E,D四点共圆,,即,又∵OA=OB,∴,∠EAH+∠AEH=90°,∴AD⊥DE,即OA⊥DE∴AO∥FG.27. 解:延长AH交BC于P,连接DF,如图.由题知∠ADB=∠CDB=∠CEB=∠AEC=90°,∵BC=25,BD=20,BE=7,∴CD=15,CE=24.又∵∠DAB=∠EAC,∠ADB=∠AEC,∴△ADB∽△AEC,∴==,①由①得:,解得,∵∠AEC=90°,AD=CD=15,∴DE=AC=15.∵点F在以DE为直径的圆上,∴∠DFE=90°,∵DA=DE,∴AF=EF=AE=9.∵∠CDB=∠CEB=90°,∴D、E、B、C四点共圆,∴∠ADE=∠ABC.∵G、F、E、D四点共圆,∴∠AFG=∠ADE,∴∠AFG=∠ABC,∴GF∥BC.∴=.②∵H是△ABC的垂心,∴AP⊥BC,∴S△ABC=AB•CE=BC•AP,∵BA=BC=25,∴AP=CE=24,由②得AK===8.64.28. 证明:(1)连接BD,∵△ABC是Rt△,BE⊥AF∴∠BEA=∠ACB=90°,∴A,B,C,E四点共圆,且AB是此圆直径, 又∵CH⊥AB,CH=DH,∴D在此圆上,∴A,B,C,D,E五点共圆,∴∠CAF=∠CDE;(2)由(1)得:∠CDB=∠CAO,∠BCD=∠ACO,∴△AOC∽△DCB,同理可证:△AOF∽△DBG,△ACF∽△DCG,∴= , = , = ,∴= ,∴= ,∴GF∥BO,又∵O是AB的中点,∴CF=GF.29. 证明:∵CB是⊙O的切线,∴∠CBD=∠BAD.∵BD平分∠EBC,∴∠CBD=∠EBD.Rt△ABD中,∠EBD+∠BFD=90°,∠BAD+∠ABD=90°,∴∠BFD=∠ABD.又∵四边形AGDB内接于⊙O,∴∠CGD=∠ABD=∠BFD.过D作DM⊥BE于M,DN⊥AC于N,∵点D是∠EBC和∠ECB角平分线的交点,∴点D是△EBC的内心,则DM=DN.又∵∠DMF=∠DNG=90°,∠BFD=∠CGD,∴△DMF≌△DNG.∴DF=DG.30. 解:连接OC、BC,∵C是弧AB的中点,M是弦AC的中点,∴∠BOC=∠BHC=90°,则点O、B、C、H四点共圆,∴∠OHB=∠OCB=45°,∵∠BCM=90°,CH⊥BM,M为AC的中点,∴AM2=CM2=MH•MB,即=,∴△AMH∽△BMA,则∠MAH=∠MBA,∠AHN=∠BAM=45°,∴∠AHM=∠BHO,∴△AMH∽△BOH,∴=,则AH•OH=MH•BH,∵CH2=MH•HB,∴CH2=AH•OH.31.证明:连接CH并延长交AB于K,连接EQ,∵AD⊥BC,BE⊥AC,∴H是△ABC的垂心,∴CK⊥AB,∵∠CEH=∠BKH,∠EHC=∠KHB,∴∠3=∠4,∵∠AEB=Rt∠,P是AB的中点,∴EP=BP,∴∠1=∠4,∴∠1=∠3,∵∠CQH=∠CEH=Rt∠,∴C、H、E、Q四点共圆,∴∠2=∠3,∴∠1=∠2,∵∠EPH=∠QPE,∴△EPH∽△QPE,∴,∴PE2=PH•PQ.。

新浙教版初三上第三章《圆的基本性质》各节知识点及典型例题

新浙教版初三上第三章《圆的基本性质》各节知识点及典型例题

圆的基本性质第一节 圆 第二节 图形的旋转 第三节 垂径定理(选学) 第四节 圆心角 第五节 圆周角 第六节 圆内接四边形第七节 正多边形 第八节 弧长及扇形的面积十二大知识点:1、圆的概念及点与圆的位置关系2、三角形的外接圆3、旋转的概论及性质4、垂径定理5、垂径定理的逆定理及其应用6、圆心角的概念及其性质 【课本相关知识点】1、圆的定义:在同一平面内,线段OP 绕它固定的一个端点O ,另一端点P 所经过的 叫做圆,定点O 叫做 ,线段OP 叫做圆的 ,以点O 为圆心的圆记作 ,读作圆O 。

2、弦和直径:连接圆上任意 叫做弦,其中经过圆心的弦叫做 , 是圆中最长的弦。

3、弧:圆上任意 叫做圆弧,简称弧。

圆的任意一条直径的两个端点把圆分成的两条弧,每一条弧都叫做 。

小于半圆的弧叫做 ,用弧两端的字母上加上“⌒”就可表示出来,大于半圆的弧叫做 ,用弧两端的字母和中间的字母,再加上“⌒”就可表示出来。

4、等圆:半径相等的两个圆叫做等圆;也可以说能够完全重合的两个圆叫做等圆5、点与圆的三种位置关系:若点P 到圆心O 的距离为d ,⊙O 的半径为R ,则: 点P 在⊙O 外⇔ ; 点P 在⊙O 上⇔ ; 点P 在⊙O 内⇔ 。

6、线段垂直平分线上的点 距离相等;到线段两端点距离相等的点在 上7、过一点可作 个圆。

过两点可作 个圆,以这两点之间的线段的 上任意一点为圆心即可。

8、过 的三点确定一个圆。

9、经过三角形三个顶点的圆叫做三角形的 ,外接圆的圆心叫做三角形的 ,这个三角形叫做圆的 。

三角形的外心是三角形三条边的【典型例题】【题型一】证明多点共圆例1、已知矩形ABCD ,如图所示,试说明:矩形ABCD 的四个顶点A 、B 、C 、D 在同一个圆上【题型二】相关概念说法的正误判断 例1、(甘肃兰州中考数学)有下列四个命题:① 直径是弦;② 经过三个点一定可以作圆;③ 三角形的外心到三角形各顶点的距离都相等;④ 半径相等的两个半圆是等弧。

【精品推荐】2020年秋九年级数学上册第三章圆的基本性质3.1圆第1课时b课件新版浙教版

【精品推荐】2020年秋九年级数学上册第三章圆的基本性质3.1圆第1课时b课件新版浙教版
A
B
O
C
D
继续探究
A,B,C三点与圆的位置关系是什么?
⊙O的半径为r =3m. 若A,B,C三位同学分 别站在如图所示的位置.
A
O
B
C
如图,设⊙O的半 径为r,点到圆心的距 离为d.
若点A在圆上,则: d=r
若点B在圆内,则: d<r
若点C在圆外,则: d>r
A
O
B
C
如图,设⊙O的半径为r,A点在圆内,B点在圆上, C点在圆外,那么 OA<r, OB=r, OC>r.
3.1 圆(1)
探究新知
圆是生活中常见的图形,许多物体都给我们以圆的形象.
硬币
月亮
画一画 请在白纸上画一个半径为2cm的圆.
若要在平坦的操场上画一个半径为3m的圆,你 有什么办法?
新知归纳
在同一平面内,线段 OP绕它固定的一个端 点O旋转一周,另一端 点P所经过的封闭曲线 叫做圆.
定点O叫做圆心. 线段OP叫做圆的半径. 表示:以O为圆心的圆,记做“⊙O”,读做“圆O”.
圆上任意两点间的部分叫做圆弧, 简称弧. 以A,B两点为端点的弧.记作A⌒B,读作“弧AB”.
连接圆上任意两点间的线段叫做弦 (如弦AB).
经过圆心的弦叫做直径(如直径AC).
直径将圆分成两部分, 每一部分都叫做半圆
B
(如弧ABC).
A
●O
小于半圆的弧叫做劣弧,如记作
⌒ AB
(用两个字母).
C
大于半圆的弧叫做优弧,
BC 16400 20 41(m) ADቤተ መጻሕፍቲ ባይዱ 1 BC 1 20 41 10 41
22
Q10 41 107

2020浙教版九年级数学上《圆的基本性质》章节知识点复习专题

2020浙教版九年级数学上《圆的基本性质》章节知识点复习专题

- 1 -【文库独家】圆的基本性质章节知识点复习一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;图4图5- 2 -三、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

推论2:圆的两条平行弦所夹的弧相等。

即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD四、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。

九年级数学上册浙教版:第三章-圆的基本性质复习PPT课件

九年级数学上册浙教版:第三章-圆的基本性质复习PPT课件
-
1
知识体系

基本性质





垂 圆心角、 径 弧、弦之 定 间的关系 理 定理
-
圆周角与 圆心角的 关系
弧长、扇形面积和圆锥 的侧面积相关计算
2
圆的定义(运动观点)
在一个平面内,线段OA绕它固 定的一个端点O旋转一周,另一 个端点A随之旋转所形成的图形 叫做圆。
固定的端点O叫做圆心,线段
OA叫做半径,以点O为圆心的圆,
-
5
圆的有关性质
过三点的圆
-
6
思考:确定一条直线的条件是什么?
类比联想:是否也存在由几个点确定一个圆呢? 讨论:经过一个点,能作出多少个圆?
经过两个点,如何作圆,能作多少个? 经过三个点,如何作圆,能作多少个?
-
7
经过三角形的三个顶点的圆叫做三角形的外接圆,
外接圆的圆心叫做三角形的外心,
CCC
B
M
A
P
关于弦的问题,常常需
O
要过圆心作弦的垂线段,
这是一条非常重要的辅 助线。
圆心到弦的距离、半径、 弦长构成直角三角形,
便将问题转化为直角三
角形的问题。
-
15
(1)平分弦(不是直径)的直径垂直 于弦,并且平分弦所对的两条弧;
(2)弦的垂直平分线经过圆心,并 且平分弦所对的两条弧;
(3)平分弦所对的一条弧的直径, 垂直平分弦并且平分弦所对的另一条弧。
A
E
C
O
D
-
16B
圆的两条平行弦所夹的弧相等。
如图,CD为⊙O的直径,AB⊥CD,EF⊥CD, 你能得到什么结论?
E
A

浙教版-9年级-上册-数学-第3章《圆的基本性质》分节知识点

浙教版-9年级-上册-数学-第3章《圆的基本性质》分节知识点

浙教版-9年级-上册-数学-第3章《圆的基本性质》分节知识点一、圆的有关概念及圆的确定要点一、圆的定义1、圆的描述概念(1)如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.要点诠释:(1)圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;(2)圆是一条封闭曲线.2、圆的集合概念(1)圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合.(2)平面上的一个圆,把平面上的点分成三类:圆上的点,圆内的点和圆外的点.(3)圆的内部可以看作是到圆心的距离小于半径的的点的集合;圆的外部可以看成是到圆心的距离大于半径的点的集合.要点诠释:(1)定点为圆心,定长为半径;(2)圆指的是圆周,而不是圆面;(3)强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.要点二、点与圆的位置关系(1)点和圆的位置关系有三种:点在圆内,点在圆上,点在圆外.(2)若⊙O的半径为r,点P到圆心O的距离为d,那么:点P在圆内d<r;点P在圆上d=r;点P在圆外d>r.“”读作“等价于”,它表示从左端可以推出右端,从右端也可以推出左端.要点诠释:(1)点在圆上是指点在圆周上,而不是点在圆面上;要点三、与圆有关的概念1、弦:(1)弦:连结圆上任意两点的线段叫做弦.(2)直径:经过圆心的弦叫做直径.(3)弦心距:圆心到弦的距离叫做弦心距.要点诠释:(1)直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.(2)为什么直径是圆中最长的弦?如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.证明:连结OC、OD∵AB=AO+OB=CO+OD≥CD(当且仅当CD过圆心O时,取“=”号)∴直径AB是⊙O中最长的弦.2、弧(1)弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.(2)半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;(3)优弧:大于半圆的弧叫做优弧;(4)劣弧:小于半圆的弧叫做劣弧.要点诠释:(1)半圆是弧,而弧不一定是半圆;(2)无特殊说明时,弧指的是劣弧.3、等弧:在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:(1)等弧成立的前提条件是在同圆或等圆中,不能忽视;(2)圆中两平行弦所夹的弧相等.4、同心圆与等圆(1)圆心相同,半径不等的两个圆叫做同心圆.(2)圆心不同,半径相等的两个圆叫做等圆.要点诠释:同圆或等圆的半径相等.5、圆心角:顶点在圆心的角叫做圆心角.要点诠释:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,反之也成立.要点四、确定圆的条件(1)经过一个已知点能作无数个圆;(2)经过两个已知点A、B能作无数个圆,这些圆的圆心在线段AB的垂直平分线上;(3)不在同一直线上的三个点确定一个圆.(4)经过三角形各个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.如图:⊙O是△ABC的外接圆,△ABC是⊙O的内接三角形,点O是△ABC的外心.外心的性质:外心是△ABC三条边的垂直平分线的交点,它到三角形的三个顶点的距离相等.要点诠释:(1)不在同一直线上的三个点确定一个圆.“确定”的含义是“存在性和唯一性”.(2)只有确定了圆心和圆的半径,这个圆的位置和大小才唯一确定.二、图形的旋转要点一、旋转的概念(1)一般地,一个图形变为另一个图形,在运动的过程中,原图形上的所有点都绕一个固定的点,按同一个方向,转动同一个角度,这样的图形运动叫做图形的旋转.这个固定的定点叫做旋转中心,转过的角叫做旋转角.如下图,点O为旋转中心,∠AOA′(或∠BOB′或∠COC′)是旋转角.要点诠释:(1)旋转的三个要素:旋转中心、旋转方向和旋转角度.(2)如上图,如果图形上的点A经过旋转变为点A′,那么这两个点叫做这个图形旋转的对应点.点B与点B′,点C与点C′均是对应点,线段AB与A′B′、线段AC与A′C′、线段BC与B′C′均是对应线段.要点二、旋转的性质一般地,图形的旋转有下面的性质:(1)图形经过旋转所得的图形和原图形全等;(2)对应点到旋转中心的距离相等;(3)任意一对对应点与旋转中心连线所成的角度等于旋转的角度.要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.要点三、旋转的作图(1)在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.三、垂径定理知识点一、垂径定理1、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.如图,几何语言为:CD 是直径要点诠释:2、推论(1)定理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.(2)定理2:平分弧的直径垂直平分弧所对的弦.要点诠释:(1)分一条弧成相等的两条弧的点,叫做这条弧的中点.(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(2)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.要点诠释:(1)在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)四、圆心角要点一、圆心角与弧的定义1、圆心角定义:顶点在圆心的角叫做圆心角.如图所示,∠AOB 就是一个圆心角.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)圆心角∠AOB 所对的弦为线段AB,所对的弧为弧AB.2、1°的弧的定义:1°的圆心角所对的弧叫做1°的弧.如下图,要点诠释:(1)圆心角的度数和它所对的弧的度数相等.注意不是角与弧相等.即不能写成圆心角∠AOB=.CD ⊥ABAE=BE(2)在同圆或等圆中,能够互相重合的弧叫等弧.等弧的长度相等,所含度数相等(即弯曲程度相等).要点二、圆心角定理及推论1、圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.要点诠释:(1)圆心到圆的一条弦的距离叫做弦心距.(2)在同圆或等圆中,相等的圆心角所对两条弦的弦心距相等.(3)注意定理中不能忽视“同圆或等圆”这一前提.2、圆心角定理的推论:(1)在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对量相等,那么它们所对应的其余各对应量都相等.要点诠释:(1)在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等).*如果它们中间有一组量不相等,那么其它各组量也分别不等.五、圆周角要点一、圆周角1、圆周角定义:(1)像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2、圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.(3)圆心与圆周角存在三种位置关系:圆心在圆周角的一边上;圆心在圆周角的内部;圆心在圆周角的外部.(如下图)3、圆周角定理的推论1:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.4、圆周角定理的推论2:在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等.六、圆内接四边形要点一、圆内接四边形(1)如果一个四边形的各个顶点在同一个圆上,那么这个四边形叫做圆的内接四边形,这个圆叫做四边形的外接圆.要点二、圆内接四边形性质定理(1)圆内接四边形的对角互补.(2)圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).要点诠释:圆内接四边形的性质是沟通角相等关系的重要依据,在应用此性质时,要注意与圆周角定理结合起来.在应用时要注意是对角,而不是邻角互补.七、正多边形和圆知识点一、正多边形的概念(1)各边相等,各角也相等的多边形是正多边形.要点诠释:判断一个多边形是否是正多边形,必须满足两个条件:(1)各边相等;(2)各角相等;缺一不可.如菱形的各边都相等,矩形的各角都相等,但它们都不是正多边形(正方形是正多边形).知识点二、正多边形的重要元素1、正多边形的外接圆和圆的内接正多边形(1)正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.2、正多边形的有关概念(1)一个正多边形的外接圆的圆心叫做这个正多边形的中心.(2)正多边形外接圆的半径叫做正多边形的半径.(3)正多边形每一边所对的圆心角叫做正多边形的中心角.(4)正多边形的中心到正多边形的一边的距离叫做正多边形的边心距.3、正多边形的有关计算(1)正n边形每一个内角的度数是;(2)正n边形每个中心角的度数是;(3)正n边形每个外角的度数是.要点诠释:要熟悉正多边形的基本概念和基本图形,将待解决的问题转化为直角三角形.知识点三、正多边形的性质(1)正多边形都只有一个外接圆,圆有无数个内接正多边形.(2)正n边形的半径和边心距把正n边形分成2n个全等的直角三角形.(3)正多边形都是轴对称图形,对称轴的条数与它的边数相同,每条对称轴都通过正n边形的中心;当边数是偶数时,它也是中心对称图形,它的中心就是对称中心.(4)边数相同的正多边形相似。

第三章圆的基本性质大单元教学设计浙教版九年级数学上册

第三章圆的基本性质大单元教学设计浙教版九年级数学上册

8.探索弧长计算公式及扇形的面积计算公式,并能利用公式解决问题。
内容分析
本章的主要内容有:圆的定义、弦、弧、弦心距、圆心角、圆周角、扇形和三角形的外接 圆等有关概念.圆属于空间与图形这部分内容,在前面学生已经学习了直线形图形的有关
的性质,会借助于变换、坐标、证明等手段去认识图形的性质,并在小学的基础上,学
学生的数学运用能
力.
1. 经历探 索扇 形面积 1.扇形的概念和扇 推导扇形面积计算
计算公式的过程,培养 形面积的计算公式. 公式的过程.掌握扇
学生的探索能力.
2.弧长与扇形面积 形面积计算公式,会
2. 了解扇 形面 积公式 的关系.
用公式解决问题.
后,能用公式解决问
题,训练学生的数学运
用能力.
图形旋转后的图形的 并且还知道要确定 旋转中心的距离相
作法.
一个三角形旋转后 等,对应点与旋转中
的位置。
心的连线所成的角
垂径定理 2 圆心角 2
彼此相等的性质.
1.通过实验观察,让学 1.了解圆是轴对称 使学生掌握垂径定
生理解圆的轴对称性; 图形,过圆心的任意 理、记住垂径定理的
2.掌握垂径定理,理解 一条直线(或直径所 题设和结论.
其探索和证明过程; 在的直线)都是它的 对垂径定理的探索
运 用垂径 定理 解决有 对称轴.
和证明,在解决问题
关的计算和证明问题. 2.通过猜想,证明, 时想到用垂径定理.
形成垂径定理.
研 究垂径 定理 的逆定 研究垂径定理及其 证明垂径定理,会运
理.
逆定理.
用垂径定理及其逆
2.运用垂径定理的逆 2.解决有关弦的问 定理解决问题.
定理解决问题.

浙教版初中九年级上册数学:第3章 圆的基本性质 复习课件

浙教版初中九年级上册数学:第3章 圆的基本性质 复习课件

∴∠BON=12∠AON=12×60°=30°, 由对称性得∠B′ON=∠BON=30°, ∴∠AOB′=∠AON+∠B′ON=60°+30°=90°, 又∵OA=OB′, ∴△AOB′是等腰直角三角形, ∴AB′= 2OA= 2×1= 2,
即 PA+PB 的最小值为 2。
【点悟】一般来说,在一条直线上确定一点,使其与该直 线同侧两点的线段之和最小的方法是:先确定其中一点关 于这条直线的对称点,再连结对称点与另一点,Hale Waihona Puke 得线段 与这条直线的交点即为所求。
三角形。
解:如答图,作点A关于CD的对称点A′,连结 A′B,交CD于点P,连结AP,则PA+PB最小,连结 OA,OA′,AA′.∵点A与A′关于CD对称,点A是
半圆上的一个三等分点,
∴∠A′OD=∠AOD=60°,PA=PA′,
∵点 B 是A︵D的中点,∴∠BOD=30°, ∴∠A′OB=∠A′OD+∠BOD=90°,
=30°,点B为劣弧AN的中点,P是直径
MN上一动点,则PA+PB的最小值为
()
A
图3-3
A. 2
B.1
C.2
D.2 2
–例2答图
【解析】作点B关于MN的对称点B′,连结AB′, 则AB′与MN的交点即为PA+PB取得最小值的点。 连结OA,OB,OB′。 ∵∠AMN=30°, ∴∠AON=2∠AMN=2×30°=60°。 ∵点B为劣弧AN的中点,
变式跟进4如图3-8,AC是汽车挡风玻璃前
的刮雨刷。如果AO=65cm,CO=15cm,当
刮雨刷AC绕点O旋转90°时,刮雨刷AC扫过
的面积为( B )
A.25πcm2
B.1000πcm2
C.25cm2

(完整版)初三上专题四点共圆

(完整版)初三上专题四点共圆

四点共圆专题讲义例1如图,E、F、G、H分别是菱形ABCD各边的中点.求证:E、F、G、H四点共圆.A1例2. (1)如图,在△ ABC 中,BD、CE 是AC、AB 上的高,/ A=60 ° .求证:ED = _BC 2(2)已知:点0是厶ABC的外心,BE, CD是高.求证:A0丄DE例3.如图,在△ ABC中,AD丄BC, DE丄AB, DF丄AC .求证:B、E、F、C四点共圆.〔、〈* ---- 空R;°7、 / f —*ff A OA=OB=OC/ ADC= / ABC=90°/ ACD= / ABD=90°/ B+ / D=180。

或/A+ / BCD=180。

或/A= / DCE/ A= / D 或/ B= /C1. ______________________________________________________2. _______________________________________________________3.________________________________________________________4.例4•求证:圆内接四边形对边乘积的和等于对角线的乘积,即图中练习1.在△ ABC中,BA BC , BAC , M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2得到线段PQ .(1)若60且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,请补全图形,并写出/ CDB 的度数;(2)在图2中,点P不与点B, M重合,线段CQ的延长线与射线BM交于点D,猜想/ CDB的大小(用含的代数式表示),并加以证明;(3)对于适当大小的,当点P在线段BM上运动到某一位置(不与点B, M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ = QD,请直接写出的范围.AB • CD + BC • AD=AC • BD .练习2.在△ ABC中,/ A=30°, AB=2j3,将△ ABC绕点B顺时针旋转(0° < <90°),得到△ DBE,其中点A的对应点是点D,点C的对应点是点E,AC、DE相交于点F,连接BF.(1)如图1,若=60°,线段BA绕点B旋转得到线段BD.请补全△ DBE,并直接写出/ AFB的度数;(2)如图2,若=90°,求/ AFB的度数和BF的长;(3)如图3,若旋转(0 ° < <90 °),请直接写出/ AFB的度数及BF的长(用含的代数式表示)•练习3 .已知,点P是/ MON的平分线上的一动点,射线PA交射线OM于点A,将射线PA绕点P逆时针旋转交射线ON 于点B,且使/ APB+ / MON=180°.(1)利用图1,求证:PA=PB ;(2)如图2,若点C是AB与OP的交点,当S APOB=3S APCB时,求PB与PC的比值;图1(3)若/ MON=60°, OB=2,射线AP交ON于点D,且满足且/ PBD = Z ABO,请借助图3补全图形,并求OP长. 练习4 .已知,在△ABC中,AB=AC .过A点的直线a从与边AC重合的位置开始绕点A按顺时针方向旋转角0, 直线a交BC边于点P (点P不与点B、点C重合),A RMN的边MN始终在直线a上(点M在点N的上方),且BM = BN,连接CN .(1)当/ BAC=Z MBN=90°时,①如图a,当0=45°时,/ ANC的度数为___________ ;②如图b,当0工45时,①中的结论是否发生变化?说明理由;(2)如图C,当/ BAC= / MBN丰90时,请直接写出/ ANC与/ BAC之间的数量关系,不必证明.练习5.已知:Rt A A'BC'和Rt A ABC 重合,A'C'B = / ACB=90° , BA'C' = / BAC=30° ,现将Rt A A'BC'绕点B按逆时针方向旋转角 a (60°w a 90°),设旋转过程中射线C'C'和线段AA'相交于点D,连接BD .(1)当a=60时时,A'B过点C,如图1所示,判断BD和AA'之间的位置关系,不必证明;(2)当a=90 °时,在图2中依题意补全图形,并猜想(1)中的结论是否仍然成立,不必证明;(3)如图3,对旋转角a (60°v av90° ),猜想(1)中的结论是否仍然成立;若成立,请证明你的结论;若不成立,请说明理由.图1 图2 图3练习6 .在等边厶ABC 外侧作直线 AP ,点B 关于直线AP 的对称点为D ,连接AD , BD , CD ,其中CD 交直线AP 于点 E .设/ PAB = ,/ ACE = ,/ AEC =. (1)依题意补全图1 ;(2)若 =15°,直接写出 和 的度数;⑶ 如图2,若60° < <120。

九年级数学上册 第三章 圆的基本性质 3.1 圆(第1课时)a课件 (新版)浙教版

九年级数学上册 第三章 圆的基本性质 3.1 圆(第1课时)a课件 (新版)浙教版

2020/1/1
精品课件
22
巩教固学提目升

6、如图,已知⊙P的圆心为P(-2,0),与x轴有公共点(-6
,0),(2,0).
(1)求⊙P的半径. (2)求A,B两点的坐标.
2020/1/1
精品课件
23
巩教固学提目升

解: (1)由题意,得⊙P的直径为2-(-6)=8, ∴⊙P的半径为4.
2020/1/1
2020/1/1
精品课件
6
新教课学讲目 解

请同学们将你画的圆和 同桌比较,看看是否可 以重合?想一想,什么 情况下可以重合?
2020/1/1
精品课件
7
新教课学讲目 解

等圆与等弧
半径相等的两个圆叫做等圆。
B
D
r
A
O1
r
C
O2
在同圆或等圆中,能够互相重合的弧叫等弧
注意: 等圆:圆心不同,半径相等; 同心圆:圆心相同,半径不等
2020/1/1
精品课件
3
新教课学讲目 解

圆的概念
在同一平面内,线段OP 绕它固定的一个端点O旋转 一周,另一端点P所经过的 封闭曲线叫做圆.
定点O叫做圆心.
线段OP叫做圆的半径.
表示: 以O为圆心的圆,记做“⊙O” 读做“圆O”.
2020/1/1

精品课件
4
新教课学讲目 解

弦与直径
B
连结圆上任意两点的线段叫做弦,如图AB.
在如何在课件中贯彻案例的设计意图上、如何增强课件的实效性上,既是技术上的进步,也是理论上的深化,通过几个相关案例的制作,课件的概念就 会入心入脑了。 折叠多媒体课件 多媒体教学课件是指根据教师的教案,把需要讲述的教学内容通过计算机多媒体(视频、音频、动画)图片、文字来表述并构成的课堂要件。它可以生动、 形象地描述各种教学问题,增加课堂教学气氛,提高学生的学习兴趣,拓宽学生的知识视野,10年来被广泛应用于中小学教学中的手段,是现代教学发 展的必然趋势。

【精品推荐】2020年秋九年级数学上册第三章圆的基本性质3.1圆第1课时a课件新版浙教版

【精品推荐】2020年秋九年级数学上册第三章圆的基本性质3.1圆第1课时a课件新版浙教版

新教课学讲目 解

例1 如图,在A地正北80m的B处有一幢民房,正西100m的 C处有一变电设施,在BC的中点D处是一古建筑.因施工需要, 必须在A处进行一次爆破.为使民房、变电设施、古建筑都不遭 到破坏,问爆破影响面的半径应控制在什么范围内?
新教课学讲目 解

解:连接AD
由题意我们可知
BC2 AC2 AB2 1002 802 16400
DB
解:从A点作AD⊥BC
C
A
新教课学讲目 解

练一练
如图,一根5m长的绳子,一端拴在柱子上,另一端拴着一只羊, 请画出羊的活动区域
解:由题可知,圆的半径是5m,所以 以柱子为圆心,5米为半径画圆即可。 如图:
巩教固学提目升

1.已知⊙O的直径为4,点P到圆心O的长度OP为4,则点P 与⊙O的位置关系为( C ) A. 点P在⊙O上 B. 点P在⊙O内 C. 点P在⊙O外 D. 不确定
(2) 教学方程的意义,突出概念的内涵与外延。 “含有未知数”与“等式”是方程意义的两点最重要的内涵。“含有未知数”也是方程区别于其他等式的关键特征。在第1页的两道例题里,学生陆续写出了等式,也写出了不等式;写出了不含未知数的等式,也写出了含有未知数的等式。这些都为教学方程的意义提供了鲜明的感知材料。教材首先告诉学生: 像x+50=150、2x=200这样含有未知数的等式叫做方程,让他们理解x+50=150、2x=200的共同特点是“含有未知数”,也是“等式”。这时,如果让学生对两道例题里写出的50+50=100、x+50>100和x+50<200不能称为方程的原因作出合理的解释,那么学生对方程是等式的理解会更深刻。教材接着安排讨论“等式和方程有什么关系”,并通过“练一练”第1题让学生先找出等式,再找出方
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题:四点共圆一.选择题1.如图,在四边形ABCD中,AC、BD为对角线,点M、E、N、F分别为AD、AB、BC、CD边的中点,下列说法:①当AC=BD时,M、E、N、F四点共圆.②当AC⊥BD时,M、E、N、F四点共圆.③当AC=BD且AC⊥BD时,M、E、N、F四点共圆.其中正确的是()A. ①②B. ①③C. ②③D. ①②③2. 如图,四边形ABCD内接于半圆O,已知∠ADC=140°,则∠AOC的大小是()A. 40°B. 60°C. 70°D. 80°3. 如图,已知四边形ABEC内接于⊙O,点D在AC的延长线上,CE平分∠BCD交⊙O于点E,则下列结论中一定正确的是()A. AB=AEB. AB=BEC. AE=BED. AB=AC4. 如图,以△ABC的一边AB为直径的圆交AC边于D,交BC边于E,连接DE,BD与AE交于点F.则sin∠CAE的值为()A.B.C.D.5. 如图,AB是⊙O的直径,C,D在⊙O上,且BC=CD,过点C作CE⊥AD,交AD延长线于E,交AB延长线于F点.若AB=4ED,则cos∠ABC的值是()A. B. C. D.6. 如图,在△ABC中,∠B=75°,∠C=45°,BC=6-2,点P是BC上一动点,PE⊥AB于E,PD⊥AC于D.无论P的位置如何变化,线段DE的最小值为()A. 3-3B.C. 4-6D. 27. 如图,四边形ABCD是⊙O的内接四边形,AB:BC=2:3,AD=DC,点P在对角线BD上,已知△ABP的面积等于6cm2,则△BCP的面积等于()cm2.A. 8B. 9C. 10D. 128.四边形ABCD内接于圆,且CD=1,AB=√2,BC=2,∠ABC=45°,则四边形ABCD的面积是()A. 3+√33B. √3+2√24C. √3+2√23D. 3+√349. 在圆内接四边形ABCD中,∠BAD、∠ADC的角平分线交于点E,过E作直线MN平行于BC,与AB、CD交于M、N,则总有MN=()A. BM+DNB. AM+CNC. BM+CND. AM+DN10. 如图,已知∠A的平分线分别与边BC、△ABC的外接圆交于点D、M,过D任作一条与直线BC不重合的直线l,直线l分别与直线MB、MC交于点P、Q,下列判断错误的是()A. 无论直线l的位置如何,总有直线PM与△ABD的外接圆相切B. 无论直线l的位置如何,总有∠PAQ>∠BACC. 直线l选取适当的位置,可使A、P、M、Q四点共圆D. 直线l选取适当的位置,可使S△APQ<S△ABC11.如图,一副直角三角板满足∠ACB=∠EDF=90°,AC=BC,AB=DF,∠EFD=30°,将三角板DEF的直角顶点D放置于三角板ABC的斜边AB上,再将三角板DEF绕点D旋转,并使边DE 与边AC交于点M,边DF与边BC于点N.当∠EDF在△ABC内绕顶点D旋转时有以下结论:①点C,M,D,N四点共圆;②连接CD,若AD=DB,则△ADM∽△CDN;③若AD=DB,则DN•CM=BN•DM;④若AD=DB,则CM+CN=AD;⑤若DB=2AD,AB=6,则2≤S△DMN≤4.其中正确结论的个数是()A. 2B. 3C. 4D. 5二.填空题12. 如图,已知等腰三角形ABC,∠ACB=120°且AC=BC=4,在平面内任作∠APB=60°,BP最大值为_____.13. 如图,ABCD是⊙O的内接四边形,AB是⊙O的直径.过点D的切线交BA的延长线于点E.若∠ADE=25°,则∠C= ______ .14. 如图,四边形ABCD中,AB=AC=AD,若∠CAD=76°,则∠CBD=______度.15. 如图,四边形ABCD内接于⊙O,AC平分∠BAD交BD于点E,⊙O的半径为4,∠BAD=60°,∠BCA=15°,则AE=______.16. 如图,ABCD、CEFG是正方形,E在CD上,且BE平分∠DBC,O是BD中点,直线BE、DG交于H.BD,AH交于M,连接OH,则OH=______,BM=______.17. 如图,在⊙O内接四边形ABCD中,∠ABC=60°,AB=BC=6,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为11,则△BEF的面积为____.18. 如图,正方形ABCD的中心为O,面积为1 989 ,P为正方形内一点,且∠OPB=45°,PA:PB=5:14,则PB= ______ .19. 已知△ABC为等腰直角三角形,∠C为直角,延长CA至D,以AD为直径作圆,连BD与圆O交于点E,连CE,CE的延长线交圆O于另一点F,那么的值等于.20. 如图,在等腰△ABC中,∠ABC=90°,点D为BC的中点,点E在AC边上,以DE为腰作等腰Rt△DEF,连接CF,BF.若CE=1,△CDF的面积为7.5,则BF的长为____.三.解答题21. (1)已知:如图1,△ABC为等边三角形,CE平分△ABC的外角∠ACM,点在BC上,连接AD、DE,如果∠ADE=60°,求证:AD=DE.(2)如果△ABC为任意三角形,且∠ACB=60°,其他条件不变,这个结论还成立吗?说明你的理由.22. 如图,已知点P是⊙O外一点,PS,PT是⊙O的两条切线,过点P作⊙O的割线PAB,交⊙O于A,B两点,并交ST于点C.求证:.23. 如图,A、B、C、D四点共圆,AB与DC相交于点E,AD与BC交于点F,∠AED的平分线EX与∠AFB的平分线FX交于点X,M、N分别是AC与BD的中点,求证:(1)FX⊥EX;(2)FX、EX分别平分∠MFN与∠MEN.24. 如图,四边形ABCD是⊙O的内接四边形,AD的延长线与BC的延长线相交于点E,DC=DE.(1) 求证:∠A=∠AEB;(2) 如果DC⊥OE,求证:△ABE是等边三角形.25. 如图,已知四边形ABCD内接于⊙O,∠D=90°,P为上一动点(不与点C,D重合).(1)若∠BPC=30°,BC=3,求⊙O的半径;(2)若∠A=90°,=.求证:PB-PD=PC.26. 如图,BD,CE是△ABC的两条高,F和G分别是DE和BC的中点,O是△ABC的外心.求证:AO∥FG.27. 如图,在锐角三角形ABC中,AB上的高CE与AC上的高BD相交于点H,以DE为直径的圆分别交AB、AC于F、G两点,FG与AH相交于点K,已知BC=25,BD=20,BE=7,求AK 的长.28. 如图,O是Rt△ABC斜边AB的中点,CH⊥AB于H,延长CH至D,使得CH=DH,F为CO上任意一点,过B作BE⊥AF于E,连接DE交BC于G.(1)求证:∠CAF=∠CDE;(2)求证:CF=GF.29. 已知:AB是⊙O的直径,BC是⊙O的切线,AC交⊙O于G,∠ACB的平分线交⊙O于D,E在AC上,BE交AD于F,∠CBD=∠EBD.求证:DF=DG.30. 如图,AB是半圆圆O的直径,C是弧AB的中点,M是弦AC的中点,CH⊥BM,垂足为H.求证:CH2=AH•OH.31. 如图,在△ABC中,已知AD⊥BC,BE⊥AC,AD与BE相交于点H,P为边AB的中点,过点C作CQ⊥PH,垂足为Q,求证:PE2=PH•PQ.参考答案1. C.2. D.3.C.4. D.5.A.6. B.7. B.8. D.9.D.10.C.11.D.12. 8.13. 115°14. 38°.15.2.16. ,AB.17. ;18.42cm.19..20. .21. (1)证明:如图1中,∵△ABC是等边三角形,∴∠ACB=60°,∠ACM=120°,∴CE平分∠ACM,∴∠ACE=∠ECM=60°,∵∠ADE=60°,∠ACE=60°,∴∠ADE=∠ACE,∴A、D、C、E四点共圆,∴∠ECM=∠DAE=60°,∠AED=∠ACB=60°,∴∠DAE=∠DEA,∴AD=DE.(2)结论成立.DA=DE.理由:如图2中,连接AE,∵∠ACB=60°,∴∠ACM=180°-∠ACB=120°,∴CE平分∠ACM,∴∠ACE=∠ECM=60°,∵∠ADE=60°,∠ACE=60°,∴∠ADE=∠ACE,∴A、D、C、E四点共圆,∴∠ECM=∠DAE=60°,∠AED=∠ACB=60°,∴∠DAE=∠DEA,∴AD=DE.22.证明:连PO交ST于点D,则PO⊥ST; 连SO,作OE⊥PB于E,则E为AB中点,于是因为C,E,O,D四点共圆,所以PC•PE=PD•PO又因为Rt△SPD∽Rt△OPS所以即PS 2=PD•PO而由切割线定理知PS 2=PA•PB所以即23. 证明:(1)连接AX.由图知:∠FDC是△ACD的一个外角,则有:∠FDC=∠FAE+∠AED;①同理,得:∠EBC=∠FAE+∠AFB;②∵四边形ABCD是圆的内接四边形,∴∠FDC=∠ABC.又∵∠ABC+∠EBC=180°,即:∠FDC+∠EBC=180°,③①+②,得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB),由③,得:2∠FAE+(∠AED+∠AFB)=180°;∵FX、EX分别是∠AFB、∠AED的角平分线,∴∠AFB=2∠AFX,∠AED=2∠AEX,代入上式得:2∠FAE+2(∠AFX+∠AEX)=180°,即∠FAE+∠AFX+∠AEX=180°.由三角形的外角性质知:∠FXE=∠FAE+∠FAX+∠EAX,故FXE=90°,即FX⊥EX.(2)连接MF、FN,ME、NE.∵∠FAC=∠FBD,∠DFB=∠CFA,∴△FCA∽△FDB,∴.∵AC=2AM,BD=2BN,∴.又∵∠FAM=∠FBN,∴△FAM∽△FBNA,得∠AFM=∠BFN.又∵∠AFX=∠BFX,∴∠AFX-∠AFM=∠BFX-∠BFN,即∠MFX=∠NFX.同理可证得∠NEX=∠MEX,故FX、EX分别平分∠MFN与∠MEN.24. (1)证明:∵四边形ABCD是⊙O的内接四边形,∴∠A=∠DCE,∵DC=DE,∴∠DCE=∠DEC,∴∠A=∠AEB(2)证明:∵DC⊥OE,∴DF=CF,∴OE是CD的垂直平分线,∴ED=EC,又DE=DC,∴△DEC为等边三角形,∴∠AEB=60°,又∠A=∠AEB,∴△ABE是等边三角形.25. 解:(1)连接AC.∵∠D=90°,∴AC是⊙O的直径,∴∠ABC=90°.∵∠BAC=∠BPC=30°,∴AC=2BC=6,所以⊙O的半径为3;(2)∵∠BAD=90°,∴∠BCD=90°.∵AC为⊙O直径,∴∠ADC=∠ABC=90°,∴四边形ABCD为矩形.∵=,∴AB=AD,∴矩形ABCD为正方形,∴BC=DC.在BP上截取BE=DP,连接CE,DP.∵BE=DP,∠CBP=∠PDC,BC=DC,∴△BCE≌△DCP,∴∠BCE=∠DCP,PC=CE,又∵∠BCE+∠ECD=∠BCD=90°,∴∠DCP+∠ECD=∠ECP=90°,∴△CPE为等腰直角三角形,∴PE=PC,∴PB-BE=PB-PD=PE=PC.26. 【解答】证明:如图,连接GD和GE.∵∠BDC=∠BEC=90°,BG=GC,∴,又∵DF=EF,∴GF⊥DE,延长OA交DE于H.∵∠BDC=∠BEC=90°∴B,C,E,D四点共圆,,即,又∵OA=OB,∴,∠EAH+∠AEH=90°,∴AD⊥DE,即OA⊥DE∴AO∥FG.27. 解:延长AH交BC于P,连接DF,如图.由题知∠ADB=∠CDB=∠CEB=∠AEC=90°,∵BC=25,BD=20,BE=7,∴CD=15,CE=24.又∵∠DAB=∠EAC,∠ADB=∠AEC,∴△ADB∽△AEC,∴==,①由①得:,解得,∵∠AEC=90°,AD=CD=15,∴DE=AC=15.∵点F在以DE为直径的圆上,∴∠DFE=90°,∵DA=DE,∴AF=EF=AE=9.∵∠CDB=∠CEB=90°,∴D、E、B、C四点共圆,∴∠ADE=∠ABC.∵G、F、E、D四点共圆,∴∠AFG=∠ADE,∴∠AFG=∠ABC,∴GF∥BC.∴=.②∵H是△ABC的垂心,∴AP⊥BC,∴S△ABC=AB•CE=BC•AP,∵BA=BC=25,∴AP=CE=24,由②得AK===8.64.28. 证明:(1)连接BD,∵△ABC是Rt△,BE⊥AF∴∠BEA=∠ACB=90°,∴A,B,C,E四点共圆,且AB是此圆直径, 又∵CH⊥AB,CH=DH,∴D在此圆上,∴A,B,C,D,E五点共圆,∴∠CAF=∠CDE;(2)由(1)得:∠CDB=∠CAO,∠BCD=∠ACO,∴△AOC∽△DCB,同理可证:△AOF∽△DBG,△ACF∽△DCG,∴= , = , = ,∴= ,∴= ,∴GF∥BO,又∵O是AB的中点,∴CF=GF.29. 证明:∵CB是⊙O的切线,∴∠CBD=∠BAD.∵BD平分∠EBC,∴∠CBD=∠EBD.Rt△ABD中,∠EBD+∠BFD=90°,∠BAD+∠ABD=90°,∴∠BFD=∠ABD.又∵四边形AGDB内接于⊙O,∴∠CGD=∠ABD=∠BFD.过D作DM⊥BE于M,DN⊥AC于N,∵点D是∠EBC和∠ECB角平分线的交点,∴点D是△EBC的内心,则DM=DN.又∵∠DMF=∠DNG=90°,∠BFD=∠CGD,∴△DMF≌△DNG.∴DF=DG.30. 解:连接OC、BC,∵C是弧AB的中点,M是弦AC的中点,∴∠BOC=∠BHC=90°,则点O、B、C、H四点共圆,∴∠OHB=∠OCB=45°,∵∠BCM=90°,CH⊥BM,M为AC的中点,∴AM2=CM2=MH•MB,即=,∴△AMH∽△BMA,则∠MAH=∠MBA,∠AHN=∠BAM=45°,∴∠AHM=∠BHO,∴△AMH∽△BOH,∴=,则AH•OH=MH•BH,∵CH2=MH•HB,∴CH2=AH•OH.31.证明:连接CH并延长交AB于K,连接EQ,∵AD⊥BC,BE⊥AC,∴H是△ABC的垂心,∴CK⊥AB,∵∠CEH=∠BKH,∠EHC=∠KHB,∴∠3=∠4,∵∠AEB=Rt∠,P是AB的中点,∴EP=BP,∴∠1=∠4,∴∠1=∠3,∵∠CQH=∠CEH=Rt∠,∴C、H、E、Q四点共圆,∴∠2=∠3,∴∠1=∠2,∵∠EPH=∠QPE,∴△EPH∽△QPE,∴,∴PE2=PH•PQ.。

相关文档
最新文档