复合函数求导试题及答案

合集下载

复合函数求导

复合函数求导
故在 , 两点处的切线斜率必须一个是1,一个是-1.
不妨设在A点处切线的斜率为1,
则有 , ,
则可得 ,
所以 .
故选:B.
【点睛】
关键点睛:解题的关键是利用导数得出切线斜率在 范围内,从而根据垂直得出斜率必须一个是1,一个是-1.
2.(2020·全国高二课时练习)已知函数 的导函数是 ,且 ,则实数 的值为()
C.向左平移 个单位长度,再把各点的纵坐标缩短到原来的 倍
D.向左平移 个单位长度,再把各点的纵坐标伸长到原来的3倍
【答案】D
【分析】
先求得 ,再根据三角函数图像变换的知识,选出正确选项.
【详解】
依题意 ,所以由 向左平移 个单位长度,再把各点的纵坐标伸长到原来的3倍得到 的图像.
故选:D
【点睛】
本小题主要考查复合函数导数的计算,考查诱导公式,考查三角函数图像变换,属于基础题.
6.(2020·河北张家口市·涿鹿中学高二月考)已知下列四个命题,其中正确的个数有()
① ,② ,③ ( ,且 ),④
A.0个B.1个C.2个D.3个
【答案】A
【分析】
由指数,对数,三角函数的求导公式一一判断即可.
【详解】
① ,所以①错误;
② ,所以②错误;
③ ( ,且 ),所以③错误;
④ ,所以④错误.

(Ⅱ)因为 ,所以 , ,
所以 .
故函数 在 上单调递减.
当 时, .
又当 时, , ,
所以函数 在 上的取值范围是 .
[说明:对当 时, 的证法:
因为 (当 时,取等号),
所以 ,
而当 时, ,
所以当 时, .
又 (当,
故当 时, ]

2020高中数学 检测(四)复合函数求导及应用(含解析)2-2

2020高中数学 检测(四)复合函数求导及应用(含解析)2-2

课时跟踪检测(四)复合函数求导及应用一、题组对点训练对点练一简单复合函数求导问题1.y=cos3x的导数是()A.y′=-3cos2x sin x B.y′=-3cos2xC.y′=-3sin2x D.y′=-3cos x sin2x解析:选A 令t=cos x,则y=t3,y′=y t′·t x′=3t2·(-sin x)=-3cos2x sin x。

2.求下列函数的导数.(1)y=ln(e x+x2);(2)y=102x+3;(3)y=sin4x+cos4x。

解:(1)令u=e x+x2,则y=ln u.∴y′x=y′u·u′x=错误!·(e x+x2)′=错误!·(e x+2x)=错误!。

(2)令u=2x+3,则y=10u,∴y′x=y′u·u′x=10u·ln 10·(2x+3)′=2×102x+3ln 10。

(3)y=sin4x+cos4x=(sin2x+cos2x)2-2sin2x·cos2x=1-12sin22x=1-错误!(1-cos 4x)=错误!+错误!cos 4x.所以y′=错误!′=-sin 4x。

对点练二复合函数与导数运算法则的综合应用3.函数y=x2cos 2x的导数为( )A.y′=2x cos 2x-x2sin 2x B.y′=2x cos 2x-2x2sin 2xC.y′=x2cos 2x-2x sin 2x D.y′=2x cos 2x+2x2sin 2x解析:选B y′=(x2)′cos 2x+x2(cos 2x)′=2x cos 2x+x2(-sin 2x)·(2x)′=2x cos 2x-2x2sin 2x。

4.函数y=x ln(2x+5)的导数为()A.ln(2x+5)-错误!B.ln(2x+5)+错误!C.2x ln(2x+5) D.错误!解析:选B y′=[x ln(2x+5)]′=x′ln(2x+5)+x[ln(2x+5)]′=ln(2x+5)+x·12x+5·(2x+5)′=ln(2x+5)+错误!。

复合函数求导公式进阶练习三

复合函数求导公式进阶练习三

《复合函数求导公式》进阶练习一、选择题xsin)xcos(siny?e y( )1 等于′(0),则 D 2C -1 A 0B 19?x y=经过原点且与曲线2 相切的方程是( ) 5x?xx yyxxyy=0=0或 B +A +-=0或+ =0 2525xx yxyyxy=0-C -+=0=0或-=0 D 或2525二、填空题)f(xkf(x?)?00xf =_________3 若)=2,′(lim0k20?k ffxxnxxx(0)=_________ ()=则(+1)(…4 设+2)(′+),三、解答题求函数的导数5x22exxy;+3)2(1)=(-x y =(2)3x?1参考答案B 1、A 2、1 3、-n!、4y 0,注意到两端取对数,得>5、解 (1)x222xxyxxex ln2=ln(=ln(-2+3)+2+3)+ln-22?)2?x?22(x1(x?2x?3)?2x??22???y???222y3??2x2x?3xx?2x?3x?22)2x2)(x?2(x??x?2x22?e?2x?3??y??(x)??y223x?3x?2x?2x?x22e?2)?2(x??x (2)两端取对数,得1xxy|), -|ln||=-ln|1(ln|3x求导,得两边解111?111??(??y)?y3x1?x3x(1?x)x111???y???y3x?x)1)3x(1?3x(1?x【解析】x0sin eyexxxxy0)=1-],coscos(sin(1)-cos1、=′′sin(sin(0)=)[y0kxy, ,=),2、设切点为(则切线的斜率为00x0x?94?y)′另一方面,=′=(, 25x?)?5(xyx?9?4002xkxxy??+45=0或+18故(′即)=,0002xx(x?5))(x?50000?15?93 (2)(1)(1)(2) xxyy?,3,=-对应有=-15,=3,=得0000?15?553BA), 15,或,-因此得两个切点(33)(-5.1?4?4ByyA?? , )= ′ =从而得-′(1)=及(2325)?15?5()5(?3?x yllyx ::-=-=或由于切线过原点,故得切线BA25 A 答案、根据导数的定义3)(x)]?ff[(x?(?k00xf k???x)(′(这时)=lim0k?0k?)x?f(?)f(xk)f(x?k)?f(x10000]??[??limlimk?2k20k?k?0)x?f(f(x?k)1100?1?x)??f?(??lim02k2?0?k1 -答案xxgfxxxxxng),(+1)(则+2)……((+4、设)=(),)=(nnggxgxfgfxgx =·2(0)+0于是·′(·…)=′((0)=)+!′((0)=1),′(0)=n!答案y 0, (1)注意到两端取对数,得>5、解x222xxxyxxe-+3)+ln2ln=ln(=ln(-2+3)+222?)?2?xx?22(1(xx?2?3)x2??22???y???222y3??2x2x?3xx?2x?3x?22)2x2(x?2(x??x?2)x22?e?3)xy??(??2x?y??223??2x?x?2x3x x22e?x2?x?)?2( (2)两端取对数,得1xyx|), ln|1-(ln||ln|-|=3x两边解求导,得111?111??(?y)??y3x1?x3x(1?x)x111??y????y3 x1x1x)?(3x1x3(?)?。

复合函数题

复合函数题

复合函数题一、选择题1. 已知f(x)=x^2,g(x)=2x + 1,则f(g(x))=()- A.(2x + 1)^2- B.2x^2+1- C.4x^2+1- D.4x^2+4x+1解析:f(g(x))就是将g(x)作为f(x)的自变量代入f(x)中。

因为g(x)=2x + 1,f(x)=x^2,所以f(g(x))=(2x + 1)^2=4x^2+4x + 1。

答案为D。

2. 若y = f(u),u=φ(x),且f(u)和φ(x)均可导,y = f(φ(x)),则y^′=() - A.f^′(u)- B.φ^′(x)- C.f^′(u)·φ^′(x)- D.f^′(φ(x))+φ^′(x)解析:根据复合函数求导法则,若y = f(u),u=φ(x),则y^′=f^′(u)·φ^′(x)。

答案为C。

3. 设f(x)=√(x),g(x)=x + 1,则g(f(x))的定义域为()- A.[0,+∞)- B.[-1,+∞)- C.(-1,+∞)- D.(0,+∞)解析:首先求g(f(x))的表达式,g(f(x))=√(x)+1。

对于√(x),要使其有意义,则x≥slant0,所以g(f(x))的定义域为[0,+∞)。

答案为A。

4. 已知f(x)=sin x,g(x)=x^2,则f(g((π)/(2)))=()- A.1- B.0- C.sinfrac{π^2}{4}- D.sin(π)/(2)解析:先求g((π)/(2)),g((π)/(2)) = ((π)/(2))^2=frac{π^2}{4}。

再求f(g((π)/(2)))=f(frac{π^2}{4})=sinfrac{π^2}{4}。

答案为C。

5. 若f(x)=e^x,g(x)=ln x,则f(g(x))=()- A.x- B.e^ln x- C.ln e^x- D.1解析:f(g(x))=e^ln x=x(x>0)。

1.4 复合函数求导解析

1.4 复合函数求导解析

1.4复合函数求导1.指出下列函数是怎样复合而成的.(1)y =(2x +3)2;(2)y =e -0.05x +1;(3)y =sin(πx +φ)(其中π,φ均为常数);(4)y =sin 2(1-1x). 解:(1)函数y =(2x +3)2可以看作函数y =u 2和u =2x +3的复合函数.(2)函数y =e -0.05x +1可以看作函数y =e u 和u =-0.05x +1的复合函数.(3)函数y =sin(πx +φ)可以看作函数y =sin u 和u =πx +φ的复合函数.(4)函数y =sin 2(1-1x )可以看作函数y =u 2和u =sin v 及v =1-1x的复合函数. 2. 求下列函数的导数.(1)y =(3x -2)2;(2)y =ln(3x +2).解:(1)因为函数y =(3x -2)2可以看作函数y =u 2和u =3x -2的复合函数,所以y =(3x -2)2对x 的导数等于y =u 2对u 的导数与u =3x -2对x 的导数的乘积.根据复合函数的求导法则有y x ′=y u ′·u x ′=(u 2)′·(3x -2)′=2u ·3=6u =6(3x -2)=18x -12.(2)因为函数y =ln(3x +2)可以看作函数y =ln u 和u =3x +2的复合函数,所以y x ′=y u ′·u x ′=(ln u )′·(3x +2)′=1u ·3=33x +2.3.求下列函数的导数.(1)y =(2x +3)2;(2)y =e -0.05x +1;(3)y =sin(πx +φ)(其中π,φ均为常数);(4)y =sin 4x +cos 4x ..解:(1)函数y =(2x +3)2可以看作函数y =u 2和u =2x +3的复合函数.根据复合函数的求导法则有y x ′=y u ′·u x ′=(u 2)′(2x +3)′=4u =8x +12.(2)函数y =e -0.05x +1可以看作函数y =e u 和u =-0.05x +1的复合函数.根据复合函数的求导法则有y x ′=y u ′·u x ′=(e u )′(-0.05x +1)′=-0.05e u =-0.05e -0.05x +1.(3)函数y =sin(πx +φ)可以看作函数y =sin u 和u =πx +φ的复合函数.根据复合函数的求导法则有y x ′=y u ′·u x ′=(sin u )′(πx +φ)′=πcos u =πcos(πx +φ).(4)解法一:y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2x cos 2x =1-12sin 2(2x ) =1-14(1-cos4x )=34+14cos4x .y ′=-sin4x . 解法二:y ′=(sin 4x )′+(cos 4x )′=4sin 3x (sin x )′+4cos 3x (cos x )′ =4sin 3x cos x +4cos 3x (-sin x )=4sin x cos x (sin 2x -cos 2x ) =-2sin2x cos2x =-sin4x .4.已知函数f (x )=ln(3x -1),则f ′(1)=________.答案 32解析 ∵f ′(x )=13x -1·(3x -1)′=33x -1,∴f ′(1)=32. 5.函数y =2cos 2x 在x =π12处的切线斜率为________. 答案 -1解析 由函数y =2cos 2x =1+cos 2x ,得y ′=(1+cos 2x )′=-2sin 2x ,所以函数在x =π12处的切线斜率为-2sin ⎝⎛⎭⎫2×π12=-1. 6.曲线y =2e x 在点(4,e 2)处的切线与坐标轴所围三角形的面积为________. 答案 e 2解析 y ′=122e x , 切线的斜率k =12e 2, 则切线方程为y -e 2=e 22(x -4), 令x =0,得y =-e 2,令y =0,得x =2,∴切线与坐标轴围成的面积为12×2×|-e 2|=e 2.。

复合函数求导练习题

复合函数求导练习题

复合函数求导练习题精品资料欢迎下载复合函数求导练题一、选择题(共26小题)1.设$f(x)=\sqrt{\frac{x}{x+1}}$,则$f'(2)=\frac{1}{9}$。

2.设函数$f(x)=g(x)+x+\ln x$,曲线$y=g(x)$在点$(1,g(1))$处的切线方程为$y=2x+1$,则曲线$y=f(x)$在点$(1,f(1))$处的切线方程为$y=2x+2$。

3.下列式子不正确的是$(2sin2x)'=2cos2x$。

4.设$f(x)=sin2x$,则$f''(\frac{\pi}{4})=-1$。

5.函数$y=cos(2x+1)$的导数是$y'=-2sin(2x+1)$。

6.下列导数运算正确的是$(x^2)'=2x$。

7.下列式子不正确的是$(3x^2+xcosx)'=6x+cosx-xsinx$。

8.已知函数$f(x)=e^{2x}-3x$,则$f'(0)=2$。

9.函数$f(x)=\frac{1}{1+e^x}$的导数是$f'(x)=-\frac{e^x}{(1+e^x)^2}$。

10.已知函数$f(x)=sin2x$,则$f'(x)=2cos2x$。

11.$y=e^{sinx\ cosx\ sinx}$,则$y'=\frac{d}{dx}(e^{sinx\ cosx\ sinx})=cosx\ cos^2x\ e^{sinx\ cosx\ sinx}$,所以$y'(-\frac{\pi}{4})=\frac{\sqrt{2}}{4}$。

12.下列求导运算正确的是$(e^{2x})'=2e^{2x}$。

13.若$f(x)=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{1-x}}$,则函数$f(x)$可以是$ln\frac{1+\sqrt{x}}{\sqrt{x}}$。

高一数学简单复合函数的求导法则试题

高一数学简单复合函数的求导法则试题

高一数学简单复合函数的求导法则试题1.(2014•榆林模拟)要得到函数的导函数f′(x)的图象,只需将f(x)的图象()A.向右平移个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变)B.向左平移个单位,再把各点的纵坐标缩短到原来的2倍(横坐标不变)C.向右平移个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变)D.向左平移个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变)【答案】D【解析】由题意可得f'(x)=2cos(2x+)==2sin[2(x+)+],而由y=sin(2x+)y=2sin[2(x+)+]=f′(x),分析选项可判断解:∵的导函数f'(x)=2cos(2x+)==2sin[2(x+)+]而由y=sin(2x+)y=2sin[2(x+)+]=f′(x)故选D点评:本题主要考查三角函数的平移.复合函数的求导的应用,三角函数的平移原则为左加右减上加下减.2.(2012•桂林模拟)设a∈R,函数f(x)=e x+a•e﹣x的导函数是f′(x),且f′(x)是奇函数.若曲线y=f(x)的一条切线的斜率是,则切点的横坐标为()A.ln2B.﹣ln2C.D.【答案】A【解析】已知切线的斜率,要求切点的横坐标必须先求出切线的方程,我们可从奇函数入手求出切线的方程.解:对f(x)=e x+a•e﹣x求导得f′(x)=e x﹣ae﹣x又f′(x)是奇函数,故f′(0)=1﹣a=0解得a=1,故有f′(x)=e x﹣e﹣x,设切点为(x0,y),则,得或(舍去),得x=ln2.点评:熟悉奇函数的性质是求解此题的关键,奇函数定义域若包含x=0,则一定过原点.3.(2012•德阳三模)已知,将函数的图象按向量平移后,所得图象恰好为函数y=﹣f′(x)(f′(x)为f(x)的导函数)的图象,则c的值可以为()A.B.πC.D.【答案】D【解析】先根据辅助角公式进行化简,f(x)=cos(x+),按向量平移后得到y=cos(x﹣c+)的图象.由题意可得cos(x﹣c+)=sin(x+),从而得到c的值.解:∵f(x)==cosx﹣sinx=cos(x+),把函数的图象按向量平移后,所得图象对应的函数为y=cos(x﹣c+).而﹣f′(x)=sin(x+),平移后,所得图象恰好为函数y=﹣f′(x),故cos(x﹣c+)=sin(x+),故可让c=,故选 D.点评:本题主要考查三角函数按照向量进行平移.其关键是要把向量的平移转化为一般的平移,然后根据三角函数的平移原则为左加右减上加下进行平移.4.设函数f(x)=g(x)+x+lnx,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线方程为()A.y=4x B.y=4x﹣8C.y=2x+2D.【答案】A【解析】据曲线在切点处的导数值为曲线切线的斜率,求g′(1)进一步求出f′(1),由点斜式求出切线方程.解:由已知g′(1)=2,而,所以f′(1)=g′(1)+1+1=4,即切线斜率为4,又g(1)=3,故f(1)=g(1)+1+ln1=4,故曲线y=f(x)在点(1,f(1))处的切线方程为y﹣4=4(x﹣1),即y=4x,故选A.点评:本题考查曲线在切点处的导数值为曲线切线的斜率.5.已知y=f(x)=ln|x|,则下列各命题中,正确的命题是()A.x>0时,f′(x)=,x<0时,f′(x)=﹣B.x>0时,f′(x)=,x<0时,f′(x)无意义C.x≠0时,都有f′(x)=D.∵x=0时f(x)无意义,∴对y=ln|x|不能求导【答案】C【解析】利用绝对值的意义将函数中的绝对值去掉转换为分段函数;利用基本的初等函数的导数公式及复合函数的求导法则:外函数的导数与内函数的导数的乘积,分别对两段求导数,两段的导数合起来是f(x)的导数.解:根据题意,f(x)=,分两种情况讨论:(1)x>0时,f(x)=lnx⇒f'(x)=(lnx)'=.(2)x<0时f(x)=ln(﹣x)⇒f'(x)=[ln(﹣x)]'=(这里应用定义求导.)故选C点评:本题考查绝对值的意义、考查分段函数的导数的求法、考查基本初等函数的导数公式及简单的复合函数的求导法则.6.为得到函数y=sin(2x+)的导函数图象,只需把函数y=sin2x的图象上所有点的()A.纵坐标伸长到原来的2倍,横坐标向左平移B.纵坐标缩短到原来的倍,横坐标向左平移C.纵坐标伸长到原来的2倍,横坐标向左平移D.纵坐标缩短到原来的倍,横坐标向左平移【答案】C【解析】求出函数的导数,利用诱导公式化为正弦函数的形式,然后利用函数的平移原则,判断正确选项即可.解:函数y=sin(2x+)的导函数为y=2cos(2x+)=2sin(2x+),所以只需把函数y=sin2x的图象上所有点的纵坐标伸长到原来的2倍,得到y=2sin2x的图象,横坐标向左平移,得到y=2sin2(x+)的图象,即y=2sin(2x+)=2cos(2x+).故选C.点评:本题主要考查复合函数的导数,诱导公式以及三角函数的平移.三角函数的平移原则为左加右减上加下减.7.函数y=sin(2x2+x)导数是()A.y′=cos(2x2+x)B.y′=2xsin(2x2+x)C.y′=(4x+1)cos(2x2+x)D.y′=4cos(2x2+x)【答案】C【解析】设H(x)=f(u),u=g(x),则H′(x)=f′(u)g′(x).解:设y=sinu,u=2x2+x,则y′=cosu,u′=4x+1,∴y′=(4x+1)cosu=(4x+1)cos(2x2+x),故选C.点评:牢记复合函数的导数求解方法,在实际学习过程中能够熟练运用.8.函数f(x)=sin2x的导数f′(x)=()A.2sinx B.2sin2x C.2cosx D.sin2x【答案】D【解析】将f(x)=sin2x看成外函数和内函数,分别求导即可.解:将y=sin2x写成,y=u2,u=sinx的形式.对外函数求导为y′=2u,对内函数求导为u′=cosx,故可以得到y=sin2x的导数为y′=2ucosx=2sinxcosx=sin2x故选D点评:考查学生对复合函数的认识,要求学生会对简单复合函数求导.9.已知函数f(x﹣1)=2x2﹣x,则f′(x)=()A.4x+3B.4x﹣1C.4x﹣5D.4x﹣3【答案】A【解析】令x﹣1=t求出f(x)的解析式;利用导函数的运算法则求出f′(x).解:令x﹣1=t,则x=t+1所以f(t)=2(t+1)2﹣(t+1)=2t2+3t+1所以f(x)=2x2+3x+1∴f′(x)=4x+3故选A点评:本题考查通过换元法求出函数的解析式、考查导数的四则运算法则.10.若函数f(x)=,则f′(x)是()A.仅有最小值的奇函数B.仅有最大值的偶函数C.既有最大值又有最小值的偶函数D.非奇非偶函数【答案】C【解析】先求导,转化为二次函数型的函数并利用三角函数的单调性求其最值,再利用函数的奇偶性的定义进行判断其奇偶性即可.解:∵函数f(x)=,∴f′(x)=cos2x+cosx=2cos2x+cosx﹣1=,当cosx=时,f′(x)取得最小值;当cosx=1时,f′(x)取得最大值2.且f′(﹣x)=f′(x).即f′(x)是既有最大值,又有最小值的偶函数.故选C.点评:熟练掌握复合函数的导数、二次函数型的函数的最值、三角函数的单调性及函数的奇偶性是解题的关键.。

复合函数求导练习题

复合函数求导练习题
将y=sin2x写成,
y=u2,u=sinx的形式.
对外函数求导为y′=2u,
对内函数求导为u′=cosx,
故可以得到y=sin2x的导数为
y′=2ucosx=2sinxcosx=sin2x
故选D
22.(2010春•朝阳区期末)函数 的导函数是( )
A.f'(x)=2e2xB.
C. D.
【解答】解:对于函数 ,
C. D.
8.已知函数f(x)=e2x+1﹣3x,则f′(0)=( )
A.0B.﹣2C.2e﹣3D.e﹣3
9.函数 的导数是( )
A. B.
C. D.
10.已知函数f(x)=sin2x,则f′(x)等于( )
A.cos2xB.﹣cos2xC.sinxcosxD.2cos2x
11.y=esinxcosx(sinx),则y′(0)等于( )
【解答】解:函数的导数y′=﹣sin(2x+1)(2x+1)′=﹣2sin(2x+1),
故选:C
6.(2014春•福建月考)下列导数运算正确的是( )
A.(x+ )′=1+ B.(2x)′=x2x﹣1C.(cosx)′=sinxD.(xlnx)′=lnx+1
【解答】解:根据导数的运算公式可得:
A,(x+ )′=1﹣ ,故A错误.
B,(2x)′=lnx2x,故B错误.
C,(cosx)′=﹣sinx,故C错误.
D.(xlnx)′=lnx+1,正确.
故选:D
7.(2013春•海曙区校级期末)下列式子不正确的是( )
A.(3x2+xcosx)′=6x+cosx﹣xsinxB.(sin2x)′=2cos2x

专升本求导练习题及答案

专升本求导练习题及答案

专升本求导练习题及答案### 专升本求导练习题及答案#### 练习题一:基本求导公式题目:求函数 \( f(x) = 3x^2 + 2x - 5 \) 的导数。

解答:根据求导的基本公式,\( (x^n)' = nx^{n-1} \),我们可以逐项求导:- 对于 \( 3x^2 \),导数为 \( 2 \times 3x = 6x \)。

- 对于 \( 2x \),导数为 \( 1 \times 2 = 2 \)。

- 对于常数项 \( -5 \),导数为 \( 0 \)。

因此,\( f'(x) = 6x + 2 \)。

#### 练习题二:复合函数求导题目:求函数 \( g(x) = (2x^3 - 1)^4 \) 的导数。

解答:使用链式法则求导,设 \( u(x) = 2x^3 - 1 \),则 \( g(x) = u^4 \)。

- 首先求 \( u(x) \) 的导数:\( u'(x) = 6x^2 \)。

- 然后应用链式法则:\( g'(x) = 4u^3 \cdot u'(x) \)。

- 代入 \( u(x) \) 和 \( u'(x) \) 的值:\( g'(x) = 4(2x^3 -1)^3 \cdot 6x^2 \)。

#### 练习题三:隐函数求导题目:已知 \( xy^3 + y\sin(x) = 1 \),求 \( y \) 关于 \( x \) 的导数 \( \frac{dy}{dx} \)。

解答:首先对等式两边同时对 \( x \) 求导:- 对 \( xy^3 \) 求导,使用乘积法则:\( y^3 + 3xy^2 \cdot\frac{dy}{dx} \)。

- 对 \( y\sin(x) \) 求导,同样使用乘积法则:\( \sin(x) +y\cos(x) \cdot \frac{dy}{dx} \)。

将求导结果代入原方程,得到:\[ y^3 + 3xy^2 \cdot \frac{dy}{dx} + \sin(x) + y\cos(x) \cdot \frac{dy}{dx} = 0 \]将含有 \( \frac{dy}{dx} \) 的项移到方程一边,解出\( \frac{dy}{dx} \):\[ \frac{dy}{dx} (3xy^2 + y\cos(x)) = -y^3 - \sin(x) \]\[ \frac{dy}{dx} = \frac{-y^3 - \sin(x)}{3xy^2 + y\cos(x)} \]#### 练习题四:参数方程求导题目:已知参数方程 \( x = t^2 \),\( y = \sin(t) \),求 \( y \) 关于 \( x \) 的导数 \( \frac{dy}{dx} \)。

复合函数求导例题

复合函数求导例题

复合函数求导例题问题描述考虑函数y=f(g(x)),其中f(x)和g(x)均可导。

现给定 $f(x)=\\sqrt{x}$ 和g(x)=x2,求复合函数y=f(g(x))的导数。

解法分析要求复合函数的导数,一种有效的方法是使用链式法则。

根据链式法则,如果有函数y=f(u)和u=g(x),那么y对于x的导数可表示为:$$ \\frac{{\\mathrm{d}y}}{{\\mathrm{d}x}}=\\frac{{\\mathrm{d}y}}{{\\mat hrm{d}u}}\\cdot\\frac{{\\mathrm{d}u}}{{\\mathrm{d}x}} $$应用链式法则,我们可以得到复合函数的导数。

解法步骤根据链式法则,我们可以按以下步骤求解复合函数y=f(g(x))的导数:1.先求f(x)对u的导数 $\\frac{{\\mathrm{d}f}}{{\\mathrm{d}u}}$2.再求u=g(x)对x的导数$\\frac{{\\mathrm{d}u}}{{\\mathrm{d}x}}$3.最后将两个导数乘积,得到复合函数的导数$\\frac{{\\mathrm{d}y}}{{\\mathrm{d}x}}=\\frac{{\\mathrm{d}f}}{{\\mathr m{d}u}}\\cdot\\frac{{\\mathrm{d}u}}{{\\mathrm{d}x}}$解法推导首先,求 $f(x)=\\sqrt{x}$ 对u的导数$\\frac{{\\mathrm{d}f}}{{\\mathrm{d}u}}$:$$ \\frac{{\\mathrm{d}f}}{{\\mathrm{d}u}}=\\frac{1}{{2\\sqrt{u}}} $$然后,求u=g(x)=x2对x的导数$\\frac{{\\mathrm{d}u}}{{\\mathrm{d}x}}$:$$ \\frac{{\\mathrm{d}u}}{{\\mathrm{d}x}}=2x $$将导数相乘,得到复合函数的导数$\\frac{{\\mathrm{d}y}}{{\\mathrm{d}x}}$:$$ \\frac{{\\mathrm{d}y}}{{\\mathrm{d}x}}=\\frac{{\\mathrm{d}f}}{{\\math rm{d}u}}\\cdot\\frac{{\\mathrm{d}u}}{{\\mathrm{d}x}}=\\frac{1}{{2\\sqrt{u}}} \\cdot2x $$最后,将u=g(x)=x2带入,并化简导数表达式,得到:$$ \\frac{{\\mathrm{d}y}}{{\\mathrm{d}x}}=\\frac{1}{{2\\sqrt{x^2}}}\\cdot 2x=\\frac{x}{{\\sqrt{x^2}}}=\\frac{x}{|x|} $$结论经过推导,我们得到复合函数 $y=f(g(x))=\\sqrt{x^2}$ 的导数为$\\frac{{\\mathrm{d}y}}{{\\mathrm{d}x}}=\\frac{x}{|x|}$。

高中数学选择性必修二 5 2 3简单复合函数的导数(知识梳理+例题+变式+练习)(含答案)

高中数学选择性必修二 5 2 3简单复合函数的导数(知识梳理+例题+变式+练习)(含答案)

5.2.3简单复合函数的导数要点一 复合函数的定义一般地,对于两个函数y =f (u )和u =g (x ),如果通过中间变量u ,y 可以表示成x 的函数,那么称这个函数为函数y =f (u )和u =g (x )的复合函数,记作y =f(g(x)) 要点二 复合函数的求导法则复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积,即若y =f (g (x )),则y ′=[f (g (x ))]′=f ′(g (x ))·g ′(x ) 【重点小结】(1)复合函数对自变量的导数,等于已知函数对中间变量的导数乘以中间变量对自变量的导数.(2)中学阶段不涉及较复杂的复合函数的求导问题,只研究y =f(ax +b)型复合函数的求导,不难得到y ′=(ax +b) ′·f ′(ax +b)=af ′(ax +b). 【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)函数y =log 3(x +1)是由y =log 3t 及t =x +1两个函数复合而成的.( ) (2)函数f (x )=e -x 的导数是f ′(x )=e -x .( ) (3)函数f (x )=ln (1-x )的导数是f ′(x )=11-x .( )(4)函数f (x )=sin 2x 的导数是f ′(x )=2 cos 2x .( ) 【答案】(1)√(2)×(3)×(4)√ 2.(多选题)下列所给函数为复合函数的是( ) A .y =ln (x -2) B .y =ln x +x -2 C .y =(x -2)ln x D .y =ln 2x 【答案】AD【解析】函数y =ln(x -2)是由函数y =ln u 和u =g (x )=x -2复合而成的,A 符合;函数y =ln 2x 是由函数y =ln u 和u =2x 复合而成的,D 符合,B 与C 不符合复合函数的定义.故选AD. 3.若函数f (x )=3cos(2x +π3),则f ′(π2)等于( )A .-3 3B .33C .-6 3D .63 【答案】B【解析】f ′(x )=-6sin(2x +π3)∴f ′(π2)=-6sin ⎝⎛⎭⎫2×π2+π3=6sin π3=6×32=3 3.故选B.4.曲线y =e -x 在点(0,1)的切线方程为________.【答案】x +y -1=0 【解析】∵y =e -x ∴y ′=-e -x ∴y ′|x =0=-1∴切线方程为y -1=-x 即x +y -1=0题型一 求复合函数的导数【例1】写出下列各函数的中间变量,并利用复合函数的求导法则,求出函数的导数. (1)y =1(3-4x )4;(2)y =cos(2 008x +8); (3)y =21-3x;(4)y =ln(8x +6).【解析】(1)引入中间变量u =φ(x )=3-4x .则函数y =1(3-4x )4是由函数f (u )=1u 4=u -4 与u =φ(x )=3-4x 复合而成的.查导数公式表可得f ′(u )=-4u -5=-4u 5,φ′(x )=-4.根据复合函数求导法则可得⎣⎡⎦⎤1(3-4x )4′=f ′(u )φ′(x )=-4u 5·(-4)=16u 5=16(3-4x )5.(2)引入中间变量u =φ(x )=2 008x +8,则函数y =cos(2 008x +8)是由函数f (u )=cos u 与u =φ(x )=2 008x +8复合而成的,查导数公式表可得 f ′(u )=-sin u ,φ′(x )=2 008. 根据复合函数求导法则可得[cos(2 008x +8)]′=f ′(u )φ′(x )=(-sin u )·2 008 =-2 008sin u =-2 008sin(2 008x +8). (3)引入中间变量u =φ(x )=1-3x , 则函数y =21-3x是由函数f (u )=2u 与u =φ(x )=1-3x 复合而成的,查导数公式表得f ′(u )=2u ln 2,φ′(x )=-3, 根据复合函数求导法则可得 (21-3x)′=f ′(u )φ′(x )=2u ln 2·(-3)=-3×2u ln 2=-3×21-3xln 2.(4)引入中间变量u =φ(x )=8x +6,则函数y =ln(8x +6)是由函数f (u )=ln u 与u =φ(x )=8x +6复合而成的,查导数公式表可得f ′(u )=1u ,φ′(x )=8.根据复合函数求导法则可得[ln(8x +6)]′=f ′(u )·φ′(x )=8u =88x +6=44x +3.选取中间变量,确定原函数复合方式,写出内层,外层函数表达式,利用复合函数求导法则求解 【方法归纳】复合函数求导的步骤【跟踪训练】求下列函数的导数. (1)y =e 2x +1. (2)y =1(2x -1)3.(3)y =5log 2(1-x ). (4)y =sin 3x +sin 3x .【解析】(1)函数y =e 2x +1可看作函数y =e u 和u =2x +1的复合函数,所以y ′x =y ′u ·u ′x =(e u )′(2x +1)′=2e u =2e 2x +1.(2)函数y =1(2x -1)3可看作函数y =u -3和u =2x -1的复合函数,所以y ′x =y ′u ·u ′x =(u -3)′(2x -1)′=-6u -4=-6(2x -1)-4=-6(2x -1)4.(3)函数y =5log 2(1-x )可看作函数y =5log 2u 和u =1-x 的复合函数,所以y ′x =y ′u ·u ′x =(5log 2u )′·(1-x )′=-5u ln 2=5(x -1)ln 2.(4)函数y =sin 3 x 可看作函数y =u 3和u =sin x 的复合函数,函数y =sin 3x 可看作函数y =sin v 和v =3x 的复合函数.所以y ′x =(u 3)′·(sin x )′+(sin v )′·(3x )′=3u 2·cos x +3cos v =3 sin 2 x cos x +3cos 3x . 题型二 复合函数求导法则的综合应用 【例2】(1)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是________.【答案】(1)2x -y =0【解析】(1)设x >0,则-x <0,因为x ≤0时,f (x )=e-x -1-x ,所以f (-x )=e x -1+x ,又因为f (x )为偶函数,所以f (x )=e x -1+x ,f ′(x )=e x -1+1,f ′(1)=e 1-1+1=2,所以切线方程为y -2=2(x -1),即:2x -y =0. (2)已知函数f (x )=ax 2+2ln(2-x )(a ∈R ),设曲线y =f (x )在点(1,f (1))处的切线为l ,若直线l 与圆C :x 2+y 2=14相切,则实数a 的值为__________.【解析】(2)因为f (1)=a ,f ′(x )=2ax +2x -2(x <2),所以f ′(1)=2a -2,所以切线l 的方程为2(a -1)x -y +2-a =0.因为直线l 与圆相切,所以圆心到直线l 的距离等于半径,即d =|2-a |4(a -1)2+1=12,解得a =118【方法归纳】准确利用复合函数求导法则求出导函数是解决此类问题的第一步,也是解题的关键,务必做到准确. 【跟踪训练2】(1)设曲线y =e ax 在点(0,1)处的切线与直线x +2y +1=0垂直,则a =________. 【答案】(1)2 【解析】(1)令y =f (x )则曲线y =e ax 在点(0,1)处的切线的斜率为f ′(0),又切线与直线x +2y +1=0垂直,所以f ′(x )=(e ax )′=a e ax . 所以f ′(0)=a e 0=a 故a =2.(2)已知函数f (x )=ax 2+2ln(2-x )设曲线y =f (x )在点(1,f (1))处的切线为l ,则切线l 的方程为________;若直线l 与圆 C :x 2+y 2=14相交,则实数u 的取值范围为________.【答案】(2)2(a -1)x -y +2-a =0 (118,+∞)【解析】(2)f ′(x )=2ax +2x -2(x <2)∴f ′(1)=2a -2 又f (1)=a∴切线l 的方程为:y -a =(2a -2)(x -1) 即2(a -1)x -y +2-a =0.若直线l 与圆C :x 2+y 2=14相交则圆心到直线l 的距离d =|2-a |4(a -1)2+1<12.解得a >118,即实数a 的取值范围为(118,+∞).【易错辨析】对复合函数求导不完全致错 例3 函数y =x e 1-2x的导数y ′=________. 【答案】(1-2x )e 1-2x【解析】y ′=e 1-2x+x (e 1-2x)′=e 1-2x +x e 1-2x ·(1-2x )′ =e 1-2x+x e 1-2x(-2)=(1-2x )e 1-2x.【易错警示】 出错原因 对e 1-2x的求导没有按照复合函数的求导法则进行,导致求导不完全致错纠错心得复合函数对自变量的导数等于已知函数对中间变量的导数乘以中间变量对自变量的导数,分步计算时,每一步都要明确是对哪个变量求导一、单选题1.随着科学技术的发展,放射性同位素技术已经广泛应用于医学、航天等众多领域,并取得了显著的经济效益.假设在放射性同位素钍234的衰变过程中,其含量N (单位:贝克)与时间t (单位:天)满足函数关系()242tN t N -=,其中0N 为0=t 时钍234的含量.已知24t =时,钍234含量的瞬时变化率为8ln2-,则()96N =( )A .12B .12ln2C .24D .24ln2【答案】C 【分析】对()N t 求导得()24012ln 224t N t N -⎛⎫'=⨯⨯- ⎪⎝⎭,根据已知有()248ln 2N '=-即可求0N ,进而求()96N .【解析】 由()242tN t N -=,得()24012ln 224t N t N -⎛⎫'=⨯⨯- ⎪⎝⎭,∵当24t =时,()242401242ln 28ln 224N N -⎛⎫'=⨯⨯-=- ⎪⎝⎭,解得02824384N =⨯⨯=,∵()243842t N t -=⨯,∵当96t =时,()96424963842384224N --=⨯=⨯=.故选:C.2.已知()f x '是函数()f x 的导数,且对任意的实数x 都有()()()e 22xf x x f x -'=--,()08f =则不等式()0f x <的解集是( )A .()2,4-B .()(),02,-∞+∞C .()(),42,-∞-+∞D .()(),24,-∞-+∞【答案】D 【分析】构造新函数()()x g x e f x =,求出()'g x 后由导函数确定()g x ,注意可得(0)8g =,从而得出()f x 的解析式,然后解不等式即可.设()()x g x e f x =,000)e )8((f g ==,因为()()()e 22xf x x f x -'=--,所以()()e (22)x f x f x x -'+=-,所以()e ()e ()e (()())22x x x g x f x f x f x f x x '''=+=+=-. 因此2()2g x x x c =-+,(0)8g c ==,所以2()28g x x x =-++, 228()e xx x f x -++=, 不等式()0f x <即为2280exx x -++< ,2280x x -->,解得2x <-或4x >. 故选:D .3.已知0a b >>,函数axy e =在0x =处的切线与直线20x by -=平行,则22a b a b+-的最小值是( ) A .2 B .3 C .4 D .5【答案】C 【分析】结合复合函数求导求出函数的导函数,进而求出切线的斜率,然后根据两直线平行斜率相等得到2ab =,进而结合均值不等式即可求出结果. 【解析】因为ax y e =,则ax y ae '=,因为切点为()0,1,则切线的斜率为k a =,又因为切线与直线20x by -=平行,所以2a b=,即2ab =, 所以()()222244a b ab a b a b a b a b a b-++==-+≥---, 当且仅当24ab a b a b =⎧⎪⎨-=⎪-⎩,即11a b ⎧=⎪⎨=⎪⎩时,等号成立,则22a b a b +-的最小值是4, 故选:C.4.已知函数()f x 在R 上可导,函数()()()2244F x f x f x =-+-,则()2F '等于( )A .1-B .0C .1D .2【答案】B 【分析】利用复合函数求导法则运算即可.∵()()()2244F x f x f x =-+-,∵()()()222424F x xf x xf x '''=---,∵()()()240400F f f '''=-=. 故选:B.5.已知()2ln 2f x x x =,若()00f x x '=,则0x 等于( )A .12 B .1e 2C .ln 2D .1【答案】A 【解析】因为()2ln 2f x x x =,所以()2ln2f x x x x '=+,又()00f x x '=,所以002ln 20x x =,因为00x >,所以0ln 20x =,所以012x =. 故选:A.6.下列关于函数()21ny x =-的复合过程与导数运算正确的是( )A .()1n y u =-,2u x =,()21ny nx u '=- B .n y t =,()21nt x =-,()121n y nx t -'=-C .n y u =,21u x =-,()1221n y nx x -'=-D .n y u =,21u x =-,()121n y n x -'=-【答案】C 【分析】直接根据函数()21ny x =-的结构,找到内层函数和外层函数,即可得解.【解析】由复合函数求导法则,知函数()21ny x =-由基本初等函数n y u =,21u x =-复合而成,所以()112221n n u x y y u nux nx x --'''=⋅=⋅=-.故选:C.7.函数2sin y x =的导数是( ) A .2sin x B .22sin xC .2cos xD .sin 2x【答案】D 【分析】利用复合函数进行求导,即可得到答案; 【解析】2sin y x =,令sin u x =,则2y u =,从而cos 2cos 2sin cos x u y y x u x x x ''=⨯== sin 2x =.故选:D.8.函数e sin 2x y x =的导数为( ) A .2e cos2x y x '=B .()e sin22cos2xy x x '=+C .()2e sin22cos2xy x x '=+D .()e 2sin2cos2xy x x '=+【答案】B 【分析】结合导数的运算法则即可求出结果. 【解析】由题意结合导数的运算法则可得()()()e sin 2e sin 2e sin 22cos2x x x y x x x x '''=⋅+⋅=+. 故选:B.二、多选题9.以下函数求导正确的是( ) A .若()2211x f x x -=+,则()()2241x f x x '=+ B .若()2e x f x =则()2e xf x '=C .若()f x ()f x '=D .设()f x 的导函数为()f x ',且()()232ln f x x xf x '=++,则()924f '=-【答案】ACD 【分析】利用求导法则逐项检验即可求解. 【解析】对于A ,()()()()()2222222112411x x x xxf x xx+--⋅'==++,故A 正确;对于B ,()22e 22e x xf x =⋅=',故B 错误;对于C ,()()()()111222121212212f x x x x --'⎡⎤'=-=⋅-⋅=-⎢⎥⎣⎦C 正确; 对于D ,()()1232f x x f x''=++,所以()924f '=-,故D 正确.故选:ACD.10.(多选)函数()x f x x =(0x >),我们可以作变形:()ln ln e e xx x x x f x x ===,所以()xf x x =可看作是由函数()e t p t =和()ln g x x x =复合而成的,即()x f x x =(0x >)为初等函数.对于初等函数()1x h x x =(0x >)的说法正确的是( ) A .无极小值 B .有极小值1 C .无极大值 D .有极大值1e e【答案】AD 【分析】根据材料,把函数改写为复合函数的形式()111ln ln e exx x xxh x x ===,求导,分析导函数正负,研究极值,即得解【解析】根据材料知()111ln ln e exx x xxh x x ===,所以()ln ln 111ee ln x x xx x h x x '⎛⎫'=⋅=⋅ ⎪⎝⎭()1ln 222ln ln 111e 1x x x x x x x ⎛⎫-+=⋅- ⎪⎝⎭. 令()0h x '=,得e x =,当0e x <<时,()0h x '>,此时函数()h x 单调递增, 当e x >时,()0h x '<,此时函数()h x 单调递减, 所以()h x 有极大值()1e e e h =,无极小值 故选:AD .11.函数()y g x =在区间[a ,]b 上连续,对[a ,]b 上任意二点1x 与2x ,有1212()()()22x x g x g x g ++<时,我们称函数()g x 在[a ,]b 上严格上凹,若用导数的知识可以简单地解释为原函数的导函数的导函数(二阶导函数)在给定区间内恒为正,即()0g x ''>.下列所列函数在所给定义域中“严格上凹”的有( ) A .2()log (0)f x x x => B .()2x f x e x -=+C .3()2(0)f x x x x =-+<D .2()sin (0)f x x x x π=-<<【答案】BC 【分析】根据题目中定义,逐个判断各函数是否满足条件二阶导函数大于零,即可解出. 【解析】由题意可知,若函数在所给定义域中“严格上凹”,则满足()0f x ''>在定义域内恒成立. 对于A ,2()log (0)f x x x =>,则2111()()0ln 2ln 2f x x x '''==-⋅<在0x >时恒成立, 不符合题意,故选项A 错误;对于B ,()2x f x e x -=+,则()(21)20x x f x e e --'''=-+=>恒成立, 符合题意,故选项B 正确;对于C ,3()2(0)f x x x x =-+<,则2()(32)60f x x x '''=-+=->在0x <时恒成立, 符合题意,故选项C 正确;对于D ,2()sin (0)f x x x x π=-<<,则()(cos 2)sin 20f x x x x ''=-'=--<在0πx <<时恒成立,不符合题意,故选项D 错误. 故选:BC.第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题12.若定义在R 上的函数()f x 满足()()30f x f x '->,13f e ⎛⎫= ⎪⎝⎭,则不等式()3xf x e >的解集为________________. 【答案】1,3⎛+∞⎫⎪⎝⎭【分析】 构造()3()xf x F e x =,由已知结合导数判断函数的单调性,利用函数的单调性解不等式. 【解析】构造()3()x f x F e x =,则()3363()3()()3()x x x x e f x e f x F f x f x e x e''-=-=', 函数()f x 满足()()30f x f x '->,则()0F x '>,故()F x 在R 上单调递增.又∵13f e ⎛⎫= ⎪⎝⎭,则113F ⎛⎫= ⎪⎝⎭, 则不等式3()x f x e >∵3()1x f x e >,即1()3F x F ⎛⎫> ⎪⎝⎭, 根据()F x 在R 上单调递增,可知1,3x ⎛⎫∈+∞ ⎪⎝⎭. 故答案为:1,3⎛+∞⎫ ⎪⎝⎭13.已知函数())()cos0f x θθπ=+<<,若()()f x f x '+是奇函数,则θ=______. 【答案】6π【分析】首先利用复合函数求导法则求出()f x ',然后利用辅助角公式化简()()f x f x '+,根据奇函数性质可得到()6k k Z πθπ-=∈,最后结合θ的范围即可求解.【解析】因为())f x θ'=+,所以()()))cos 2sin 6f x f x πθθθ⎫'+=++=-+-⎪⎭, 若()()f x f x '+为奇函数,则()()000f f '+=,即2sin 06πθ⎛⎫-= ⎪⎝⎭, 所以()6k k Z πθπ-=∈,又因为()0,θπ∈,所以6πθ=. 故答案为:6π.14.设()f x =()2f '=______. 【答案】2##0.45【分析】利用复合函数求导求出'()f x 即可求解.【解析】令ln y u =,12u t ==,21t x =+, 从而'1yu =,1'212u t -=='2t x =, 故'21()21x f x x u x ==+, 所以()225f '=. 故答案为:25.四、解答题 15.求下列函数的导数.(1)()991y x =+(2)y =(3)()()23sin 25y x x =-+;(4)cos(32)2x y x-= (5)()()231ln 3y x x =+(6)33x x y e -=.【答案】(1)9899(1)y x '=+(2)()122121x x y x -+'=+(3)()()()2sin 2c 6os 5425y x x x +'=+-+(4)()()26sin 322cos 324x x x y x ----'=(5)()()()236311ln 3x x x x y ++=+(6)333ln 333x x x x y e e --'=-⋅【分析】直接利用导数的运算法则、基本初等函数的导数公式以及简单复合函数的导数计算法则求解. (1)解:99(1)y x =+,989899(1)(1)99(1)y x x x ∴'=++'=+;(2)解:因为y =()()1222121x x x x y x -''⋅-+'==+(3)解:因为()()23sin 25y x x =-+,所以()()()()()()()23sin 2523sin 2552sin 2546cos 2x y x x x x x x '''+=-=⎤-+++⎡⎣+-+⎦(4) 解:因为cos(32)2x y x -=,所以[]()()()()()22cos(32)22cos 326sin 322cos 3242x x x x x x x y x x ''-------'== (5)解:因为()()231ln 3y x x =+,所以()()()()()()()222ln ln 31313313631ln 3x x x x y x x x x '+'⎡⎤+=⎣+=+++⎡⎤⎣⎦⎦ (6)解:因为33x x y e -=,所以()()3333333ln 333x x x x x x x x y e e e e ----'''=+=-⋅16.求下列函数的导数.(1)()sin 23y x =+;(2)21e x y -+=;(3)()22log 21y x =-. 【答案】(1)()2cos 23x +(2)212e x -+-(3)()2421ln 2x x -⋅【分析】(1)函数()sin 23y x =+可以看作函数sin y u =和23u x =+的复合函数,由复合函数的求导法则即可求出结果;(2)函数21e x y -+=可以看作函数u y e =和21u x =-+的复合函数,由复合函数的求导法则即可求出结果;(3)函数()22log 21y x =-可以看作函数2log y u =和221u x =-的复合函数,由复合函数的求导法则即可求出结果.(1)函数()sin 23y x =+可以看作函数sin y u =和23u x =+的复合函数,由复合函数的求导法则可得()()()sin 23cos 22cos 2cos 23x u x y y u u x u u x ''⋅'''=⋅=+=⋅==+. (2)函数21e x y -+=可以看作函数u y e =和21u x =-+的复合函数,由复合函数的求导法则可得()()()21e 21e 22eu u x x u x y y u x -+''''=⋅=⋅-+=⋅-=-'. (3)函数()22log 21y x =-可以看作函数2log y u =和221u x =-的复合函数,由复合函数的求导法则可得()2144ln 221ln 2x u x x y y u x u x '''=⋅=⋅=-⋅.。

知识点18 复合函数的求导

知识点18 复合函数的求导

e lim
x 0
1 ln(1 x ) 1 x
x
e . 2
2sin x 1 2 2sin x 1 2 sin x 1 2 sin x 1

2 sin x 2cos x 2 sin x cos x 2sin x 1 ( x 时, cos x 0 ) 2 2 2 3cos x 2 sin x
例18.6(难度系数0.4) 求函数 y x x 的导数. 解析:此函数既不是指数函数也不是幂函数,而是“幂指函数”,对幂指函数 可以两边取对数后再求导.这也是“对数求导法”适合的类型.
解:两边取对数,得 ln y x ln x ,两边求导
y 1 ln x x 1 ln x ,故有 y x
学科:高等数学
第二章 导数与微分
知识点18 复合函数的求导 精选习题 作者:邹群
例18.1(难度系数0.2) y = arcsin e x ,求 y . 解析:基础题型.对于复合函数的求导要注意分析函数的结构,搞清楚中间变 量(必要时可以设出中间变量),详细步骤是:分解—求导—相乘— 回代.具体操作时可省略“回代”. 解: y
f x x 1 x x 1 , g x , f x , 2 2 1 x 1 f x 1 x 1 x
1
f x f x 1 x 1 . 1 f x f x f x g x 2 2 2 2 x 2 x 1 1 f x 1 f x 1 1 x
当 x 0 时,
1 1 ln(1 x ) 1 (1 x ) x 1 f x f 0 (1 x ) e ex 1 e f 0 lim lim e lim e lim x 0 x 0 x 0 x 0 x x x x

第一章1.2第3课时复合函数的求导问题

第一章1.2第3课时复合函数的求导问题

第一章导数及其应用
导数的计算
导数的运算法则
第二课时
复合函数的导数及导数计算的综合问题
级基础巩固
一、选择题
.函数= (-)的导数是( )
..-.-.
解析:′=-(-)(-)′=- .
答案:
.函数=(+)(-)在=处的导数等于( )
....解析:′=[(+)]′(-)+(+)(-)′=(+)·(-)+(+)=+-.所以′==.
答案:.设曲线=- (+)在点(,)处的切线方程为=,则=( )
....解析:令=-(+),则′()=-.所以()=,且′()=.联立解得=.
答案:
.=的导数是( )
.′=-
.′=-
.′=-
.′=-
解析:令=,则=,′=′·′=·(-)=- .
答案:
.已知二次函数()的图象如图所示,则其导函数′()的图象大致形
状是( )
解析:依题意可设()=+(<,且>),于是′()=,显然′()的图象
为直线,且过原点,斜率<.
答案:
二、填空题
.函数=的图象在处的切线的斜率是.
解析:因为′=,
所以=′===.
答案:.设曲线=在点(,)处的切线与直线++=垂直,则=.
解析:令=(),则曲线=在点(,)处的切线的斜率为′(),又切线
与直线++=垂直,所以′()=.因为()=,所以′()=()′=·()′=,所以′()
==,故=.
答案:
.若函数为=-,则′=.
解析:因为=-=(+)·(-)=-,
所以′=(-)′=-(-)·()′= .
答案:
三、解答题
.求下列函数的导数:
()=(-);。

复合函数求导练习题

复合函数求导练习题

复合函数求导练习题一.选择题(共26小题)1.设,则f′(2)=()A.B.C.D.2.设函数f(x)=g(x)+x+lnx,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线方程为()A.y=4x B.y=4x﹣8 C.y=2x+2 D.3.下列式子不正确的是()A.(3x2+cosx)′=6x﹣sinx B.(lnx﹣2x)′=ln2C.(2sin2x)′=2cos2x D.()′=4.设f(x)=sin2x,则=()A.B.C.1 D.﹣15.函数y=cos(2x+1)的导数是()A.y′=sin(2x+1)B.y′=﹣2xsin(2x+1)C.y′=﹣2sin(2x+1)D.y′=2xsin(2x+1)6.下列导数运算正确的是()A.(x+)′=1+B.(2x)′=x2x﹣1C.(cosx)′=sinx D.(xlnx)′=lnx+17.下列式子不正确的是()A.(3x2+xcosx)′=6x+cosx﹣xsinx B.(sin2x)′=2cos2xC.D.8.已知函数f(x)=e2x+1﹣3x,则f′(0)=()A.0 B.﹣2 C.2e﹣3 D.e﹣39.函数的导数是()A. B.C.D.10.已知函数f(x)=sin2x,则f′(x)等于()A.cos2x B.﹣cos2x C.sinxcosx D.2cos2x11.y=e sinx cosx(sinx),则y′(0)等于()A.0 B.1 C.﹣1 D.212.下列求导运算正确的是()A. B.C.((2x+3)2)′=2(2x+3)D.(e2x)′=e2x13.若,则函数f(x)可以是()A.B.C.D.lnx14.设,则f2013(x)=()A.22012(cos2x﹣sin2x)B.22013(sin2x+cos2x)C.22012(cos2x+sin2x)D.22013(sin2x+cos2x)15.设f(x)=cos22x,则=()A.2 B.C.﹣1 D.﹣216.函数的导数为()A.B.C.D.17.函数y=cos(1+x2)的导数是()A.2xsin(1+x2)B.﹣sin(1+x2)C.﹣2xsin(1+x2)D.2cos(1+x2)18.函数y=sin(﹣x)的导数为()A.﹣cos(+x)B.cos(﹣x)C.﹣sin(﹣x)D.﹣sin(x+)19.已知函数f(x)在R上可导,对任意实数x,f'(x)>f(x);若a为任意的正实数,下列式子一定正确的是()A.f(a)>e a f(0)B.f(a)>f(0)C.f(a)<f(0)D.f(a)<e a f(0)20.函数y=sin(2x2+x)导数是()A.y′=cos(2x2+x)B.y′=2xsin(2x2+x)C.y′=(4x+1)cos(2x2+x)D.y′=4cos(2x2+x)21.函数f(x)=sin2x的导数f′(x)=()A.2sinx B.2sin2x C.2cosx D.sin2x22.函数的导函数是()A.f'(x)=2e2x B.C.D.23.函数的导数为()A.B.C.D.24.y=sin(3﹣4x),则y′=()A.﹣sin(3﹣4x)B.3﹣cos(﹣4x)C.4cos(3﹣4x)D.﹣4cos(3﹣4x)25.下列结论正确的是()A.若,B.若y=cos5x,则y′=﹣sin5xC.若y=sinx2,则y′=2xcosx2D.若y=xsin2x,则y′=﹣2xsin2x26.函数y=的导数是()A.B.C.D.二.填空题(共4小题)27.设y=f(x)是可导函数,则y=f()的导数为.28.函数y=cos(2x2+x)的导数是.29.函数y=ln的导数为.30.若函数,则的值为.参考答案与试题解析一.选择题(共26小题)1.(2015春•拉萨校级期中)设,则f′(2)=()A.B.C.D.【解答】解:∵f(x)=ln,令u(x)=,则f(u)=lnu,∵f′(u)=,u′(x)=•=,由复合函数的导数公式得:f′(x)=•=,∴f′(2)=.故选B.2.(2014•怀远县校级模拟)设函数f(x)=g(x)+x+lnx,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线方程为()A.y=4x B.y=4x﹣8 C.y=2x+2 D.【解答】解:由已知g′(1)=2,而,所以f′(1)=g′(1)+1+1=4,即切线斜率为4,又g(1)=3,故f(1)=g(1)+1+ln1=4,故曲线y=f(x)在点(1,f(1))处的切线方程为y﹣4=4(x﹣1),即y=4x,故选A.3.(2014春•永寿县校级期中)下列式子不正确的是()A.(3x2+cosx)′=6x﹣sinx B.(lnx﹣2x)′=ln2C.(2sin2x)′=2cos2x D.()′=【解答】解:由复合函数的求导法则对于选项A,(3x2+cosx)′=6x﹣sinx成立,故A正确对于选项B,成立,故B正确对于选项C,(2sin2x)′=4cos2x≠2cos2x,故C不正确对于选项D,成立,故D正确故选C4.(2014春•晋江市校级期中)设f(x)=sin2x,则=()A.B.C.1 D.﹣1【解答】解:因为f(x)=sin2x,所以f′(x)=(2x)′cos2x=2cos2x.则=2cos(2×)=﹣1.故选D.5.(2014秋•阜城县校级月考)函数y=cos(2x+1)的导数是()A.y′=sin(2x+1)B.y′=﹣2xsin(2x+1)C.y′=﹣2sin(2x+1)D.y′=2xsin(2x+1)【解答】解:函数的导数y′=﹣sin(2x+1)(2x+1)′=﹣2sin(2x+1),故选:C6.(2014春•福建月考)下列导数运算正确的是()A.(x+)′=1+B.(2x)′=x2x﹣1C.(cosx)′=sinx D.(xlnx)′=lnx+1 【解答】解:根据导数的运算公式可得:A,(x+)′=1﹣,故A错误.B,(2x)′=lnx2x,故B错误.C,(cosx)′=﹣sinx,故C错误.D.(xlnx)′=lnx+1,正确.故选:D7.(2013春•海曙区校级期末)下列式子不正确的是()A.(3x2+xcosx)′=6x+cosx﹣xsinx B.(sin2x)′=2cos2xC.D.【解答】解:因为(3x2+xcosx)′=6x+cosx﹣xsinx,所以选项A正确;(sin2x)′=2cos2x,所以选项B正确;,所以C正确;,所以D不正确.故选D.8.(2013春•江西期中)已知函数f(x)=e2x+1﹣3x,则f′(0)=()A.0 B.﹣2 C.2e﹣3 D.e﹣3【解答】解:∵f′(x)=2e2x+1﹣3,∴f′(0)=2e﹣3.故选C.9.(2013春•黔西南州校级月考)函数的导数是()A. B.C.D.【解答】解:∵函数,∴y′=3cos(3x+)×3=,故选B.10.(2013春•东莞市校级月考)已知函数f(x)=sin2x,则f′(x)等于()A.cos2x B.﹣cos2x C.sinxcosx D.2cos2x【解答】解:由f(x)=sin2x,则f′(x)=(sin2x)′=(cos2x)•(2x)′=2cos2x.所以f′(x)=2cos2x.故选D.11.(2013秋•惠农区校级月考)y=e sinx cosx(sinx),则y′(0)等于()A.0 B.1 C.﹣1 D.2【解答】解:∵y=e sinx cosx(sinx),∴y′=(e sinx)′cosx(sinx)+e sinx(cosx)′(sinx)+e sinx(cosx)(sinx)′=e sinx cos2x(sinx)+e sinx(﹣sin2x)+e sinx(cos2x)∴y′(0)=0+0+1=1故选B12.(2012秋•珠海期末)下列求导运算正确的是()A. B.C.((2x+3)2)′=2(2x+3)D.(e2x)′=e2x【解答】解:因为,所以选项A不正确;,所以选项B正确;((2x+3)2)′=2(2x+3)•(2x+3)′=4(2x+3),所以选项C不正确;(e2x)′=e2x•(2x)′=2e2x,所以选项D不正确.故选B.13.(2012秋•朝阳区期末)若,则函数f(x)可以是()A.B.C.D.lnx【解答】解:;;;.所以满足的f(x)为.故选A.14.(2012秋•庐阳区校级月考)设,则f2013(x)=()A.22012(cos2x﹣sin2x)B.22013(sin2x+cos2x)C.22012(cos2x+sin2x)D.22013(sin2x+cos2x)【解答】解:∵f0(x)=sin2x+cos2x,∴f1(x)==2(cos2x﹣sin2x),f2(x)==22(﹣sin2x﹣cos2x),f3(x)==23(﹣cos2x+sin2x),f4(x)==24(sin2x+cos2x),…通过以上可以看出:f n(x)满足以下规律,对任意n∈N,.∴f2013(x)=f503×4+1(x)=22012f1(x)=22013(cos2x﹣sin2x).故选:B.15.(2011•潜江校级模拟)设f(x)=cos22x,则=()A.2 B.C.﹣1 D.﹣2【解答】解:∵f(x)=cos22x=∴=﹣2sin4x∴故选D.16.(2011秋•平遥县校级期末)函数的导数为()A.B.C.D.【解答】解:∵∴∴=故选D17.(2011春•南湖区校级月考)函数y=cos(1+x2)的导数是()A.2xsin(1+x2)B.﹣sin(1+x2)C.﹣2xsin(1+x2)D.2cos(1+x2)【解答】解:y′=﹣sin(1+x2)•(1+x2)′=﹣2xsin(1+x2)故选C18.(2011春•瑞安市校级月考)函数y=sin(﹣x)的导数为()A.﹣cos(+x)B.cos(﹣x)C.﹣sin(﹣x)D.﹣sin(x+)【解答】解:∵函数y=sin(﹣x)可看成y=sinu,u=﹣x复合而成且y u′=(sinu)′=cosu,∴函数y=sin(﹣x)的导数为y′=y u′u x′=﹣cos(﹣x)=﹣sin[﹣(﹣x)]=﹣sin(+x)故答案选D19.(2011春•龙港区校级月考)已知函数f(x)在R上可导,对任意实数x,f'(x)>f (x);若a为任意的正实数,下列式子一定正确的是()A.f(a)>e a f(0)B.f(a)>f(0)C.f(a)<f(0)D.f(a)<e a f(0)【解答】解:∵对任意实数x,f′(x)>f(x),令f(x)=﹣1,则f′(x)=0,满足题意显然选项A成立故选A.20.(2010•永州校级模拟)函数y=sin(2x2+x)导数是()A.y′=cos(2x2+x)B.y′=2xsin(2x2+x)C.y′=(4x+1)cos(2x2+x)D.y′=4cos(2x2+x)【解答】解:设y=sinu,u=2x2+x,则y′=cosu,u′=4x+1,∴y′=(4x+1)cosu=(4x+1)cos(2x2+x),故选C.21.(2010•祁阳县校级模拟)函数f(x)=sin2x的导数f′(x)=()A.2sinx B.2sin2x C.2cosx D.sin2x【解答】解:将y=sin2x写成,y=u2,u=sinx的形式.对外函数求导为y′=2u,对内函数求导为u′=cosx,故可以得到y=sin2x的导数为y′=2ucosx=2sinxcosx=sin2x故选D22.(2010春•朝阳区期末)函数的导函数是()A.f'(x)=2e2x B.C.D.【解答】解:对于函数,对其求导可得:f′(x)===;故选C.23.(2009春•房山区期中)函数的导数为()A.B.C.D.【解答】解:令y=3sint,t=2x﹣,则y′=(3sint)′•(2x﹣)′=3cos(2x﹣)•2=,故选A.24.(2009春•瑞安市校级期中)y=sin(3﹣4x),则y′=()A.﹣sin(3﹣4x)B.3﹣cos(﹣4x)C.4cos(3﹣4x)D.﹣4cos(3﹣4x)【解答】解:由于y=sin(3﹣4x),则y′=cos(3﹣4x)×(3﹣4x)′=﹣4cos(3﹣4x)故选D25.(2006春•珠海期末)下列结论正确的是()A.若,B.若y=cos5x,则y′=﹣sin5xC.若y=sinx2,则y′=2xcosx2D.若y=xsin2x,则y′=﹣2xsin2x【解答】解:函数的导数为,,∴A错误函数y=cos5x的导数为:y′=﹣5sin5x,∴B错误函数y=sinx2的导数为:y′=2xcosx,,∴C正确函数y=xsin2x的导数为:y′=sin2x+2xcos2x,∴D错误故选C26.函数y=的导数是()A.B.C.D.【解答】解:由复合函数的求导法则可得,•[ln(x2+1)]′ln2=(1+x2)′ln2=•ln2故选A二.填空题(共4小题)27.(2013春•巨野县校级期中)设y=f(x)是可导函数,则y=f()的导数为y′=f′().【解答】解:设y=f(u),u=,则y′=f'(u),u′=,∴y′=f′()故答案为:y′=f′().28.(2013春•吴兴区校级月考)函数y=cos(2x2+x)的导数是﹣(4x+1)sin(2x2+x).【解答】解:y′=﹣(4x+1)sin(2x2+x),故答案为﹣(4x+1)sin(2x2+x).29.(2012•洞口县校级模拟)函数y=ln的导数为.【解答】解:y′=()′=•()′=•.=•=故答案为:30.(2009春•雁塔区校级期中)若函数,则的值为.【解答】解:由故故答案为:.Welcome !!! 欢迎您的下载,资料仅供参考!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档