三星DDR2内存SPD芯片说明
DDR2内存芯片解读
韩国三星(SAMSUNG):韩国三星(SAMSUNG)DDR2内存芯片以三星K4T1G084QA-ZCE6为例,K代表内存芯片,4代表DRAM,T代表DDR2内存,1G代表容量(51代表512MB),08代表位宽,4代表逻辑Bank数量,Q代表1.8V工作电压,A代表产品版本号,Z代表封装类型为FBGA-LF(G为FBGA,S为小尺寸FBGA),C代表普通能耗(L为低能耗),E6代表运行速度为DDR2-667·CL=5(D6为DDR2-667·CL=4,F7为DDR2-800·CL=6,E7为DDR2-800·CL=5)。
韩国海力士/现代(Hynix):韩国海力士/现代(Hynix)DDR2内存芯片以现代HY5PS12821E FP-Y5为例,HY代表现代,5P代表DDR2内存,S代表1.8V工作电压,12代表芯片容量为512Mb(56为256Mb,1G为1Gb),8代表位宽,2代表逻辑Bank数量,1代表接口类型为SSTL_2,E代表版本号,F代表封装类型为FBGA,P代表无铅,Y5代表速度为DDR2-667·CL=5(S6为DDR2-800·CL=6,S5为DDR2-800·CL=5,Y4为DDR2-667·CL=4)。
日本尔必达(ELPIDA):日本尔必达(ELPIDA)DDR2内存芯片以尔必达E2508AB-GE-E为例,E代表DDR2内存,25代表芯片容量为256Mb(51为512Mb,11为1Gb),08代表位宽,A代表1.8V工作电压,B代表内核版本,GE代表DDR2-800·CL=5(6C代表DDR2-667·CL=4,6E代表DDR2-667·CL=5),E代表无铅。
德国奇梦达(Qimonda):德国奇梦达(Qimonda)DDR2内存芯片奇梦达就是原来的英飞凌,以奇梦达HYB18T512800AF37为例,HYB代表奇梦达,18代表工作电压为1.8V(25为2.5V),T代表DDR2内存,512代表芯片容量为512Mb(1G 为1Gb,256为256Mb),80代表位宽,0代表产品系列,A代表版本号,F代表FBGA封装,37运行频率为DDR2-533(3为DDR2-667)。
三星颗粒介绍
三星DDR内存颗粒的编号共分为四段数字或字母,19个部分组成。
请看下面的三星内存编号示意图,图中有A、B、C、D、E和F为四段数字或字母,而19部分则是指包含在A、B、C、D、E和F四段数字或字母组成的编号,主要对内存规格进行说明。
下面,就给大家分别解释。
首先来解释一下四段号码的大概含义。
A部分我想不用解释了吧,标明的是生产企业的名称——SAMSUNG。
B部分说明的是该内存模组的生产日期,以三个阿拉伯数字的形式表现。
其中第一个阿拉伯数字表明,生产的年份,后面两位数字表明是在该年的第XX周生产的。
例如,上图中的446就该表示该模组是在04年的第46周生产的。
如果三位数字是532,则表明该内存模组是05年第32周生产的。
C部分说明的是该内存的封装类型,由一个英文字母表示。
该部分将分别以T、U、N、V、G、Z几个字母来代表不同的封装类型。
其中T代表是TSOP2封装,U表示TOSP2(Lead-Free)封装,N表示sTSOP2封装,V表示sTOSP2(Lead -Free)封装,G表示FBGA封装,Z表示FBGA(Lead-Free)封装。
D部分说明是该内存模组的工作温度与功耗,由一个英文字母表示。
该部分将以C和L两个字母来表示该内存颗粒的不同工作温度与功耗。
其中C表示该内存模组为大众商用型内存,普通功耗,工作温度在0 °C~70 °C之间;L表示该内存模组也属于大众商业型,但却是低功耗,工作温度也在0 °C~70 °C之间。
这部分标注为L的模组,在笔记本内存中比较常见。
E部分说明的是该内存模组的频率和各项延迟(即CL-tRCD-tRP),由两个英文字母或数字组成。
该部分分别以A0、B 0、A2、B3和CC这五个字母/数字组合来代表不同频率和延迟的DDR内存模组。
其中,A0代表该模组的工作做频率为DDR-200(100MHz),延迟为2-2-2;B0代表DDR 266(133MHz),延迟为2.5-3-3;A2代表DDRDDR 266(133MH z),延迟为2-3-3;B3代表DDR333(166MHz),延迟为2.5-3-3;CC代表DDR400(200MHz),延迟为3-3-3。
主流DDR2编号识别方法
随着内存技术的进步,现在DDR2已经渐成主流,虽然在很多人的眼中,DDR2仍然有着这样或那样的不足,但在业界主力厂商的大力推广下,在CPU平台不断向更高频率冲刺的时候,DDR2代替原有的DDR已经不可避免。
以下为各大品牌的DDR内存的测评报告。
三星(SAMSUNG)三星电子DDR2内存芯片外观三星电子有关DDR2内存芯片的编号规则如下:三星的编号还第16、17、18三位,我们没在此说明。
因此,这三位编号并不常见,一般用于OEM与特殊的领域,因而在此就不介绍了。
以前面的芯片照片为例,可以看出这是一枚容量为512Mbits、位宽为8bit、4个逻辑Bank、SSTL/1.8V接口、采用FBGA封装的DDR2-400芯片,并且是第三代产品。
海力士(Hynix)海力士DDR2内存芯片外观海力士的DDR2内存芯片的编号规则如下:这里需要指出的是,欧盟将从2006年7月1月起实施“有害物质限制(RoHS,Restriction Of Hazardous Substances)”法,所以目前几乎所有的电子设备生产厂商都努力生产出符合这一要求的产品。
因此,在海力士的封装材料中也特别注明了这一点。
根据编号规则,我们可以看出上面那枚芯片的规格是512Mbits容量、8bit位宽、4个逻辑Bank、SSTL_18接口(1.8V)、FBGA封装、普通封装材料、速度为DDR2-533(4-4-4),该产品内核版本为第一代。
尔必达(ELPIDA)海力士DDR2内存芯片外观海力士的DDR2内存芯片的编号规则如下:这里需要指出的是,欧盟将从2006年7月1月起实施“有害物质限制(RoHS,Restriction Of Hazardous Substances)”法,所以目前几乎所有的电子设备生产厂商都努力生产出符合这一要求的产品。
因此,在海力士的封装材料中也特别注明了这一点。
根据编号规则,我们可以看出上面那枚芯片的规格是512Mbits容量、8bit位宽、4个逻辑Bank、SSTL_18接口(1.8V)、FBGA封装、普通封装材料、速度为DDR2-533(4-4-4),该产品内核版本为第一代。
强刷SPD!让内存“双管齐下”
龙源期刊网 强刷SPD!让内存“双管齐下”作者:ALi来源:《电脑知识与技术·经验技巧》2010年第04期我是2005年组装的电脑,配置为映泰915GV-M7主板、512MB内存、160GB硬盘,虽然配置并不高,但最近添加了一条512MB内存后,改装Windows 7还能应付,上网、看电影还算流畅,唯一遗憾的是,内存没有工作在双通道模式下,性能没有发挥到极致。
经查询得知,这台电脑的主板采用了Intel 915GV芯片组,提供了两个DIMM内存插槽,且支持双通道DDR2 533内存,用CPU-Z软件检测,原来的512MB内存为三星DDR2 533,而后面升级的512MB内存则为现代DDR2 667(如图1),由于品牌和规格的不同,怪不得无法开启双通道模式。
从技术角度看,内存运行参数由主板BIOS决定,内存参数被写入了内存SPD芯片里,且可通过软件修改SPD信息,这就是为何JS为了赚钱更多利润,通常会通过刷写SPD方式,将杂牌内存变成品牌内存,或将低频率内存刷成高频率内存来销售。
借助JS的造假思路,我们可以借助SPD Tool或Thaiphoon Burner等内存SPD修改工具,通过刷写内存SPD信息,让两条内存的品牌和规格一样,从而骗过BIOS开启双通道模式。
由于Intel 915GV芯片组只支持DDR2 533双通道模式,此时需要将现代DDR2 667刷成三星DDR2 533,由于是“降频”刷写,笔者并不担心刷写后的稳定性问题。
以SPD Tool工具为例(/soft/softdown.asp?softid=38725),下载并运行SPD Tool工具,在“文件→读取”菜单下选择DDR2 533内存,例如该内存安装在插槽1里,此时应选择“模块1:已安装”,然后软件会自动读取DDR2 533内存的SPD信息,在“文件”菜单下选择“保存”,将内存SPD信息到硬盘里(如图2)。
在“文件→读取”菜单下选择“模块2:已安装”,将DDR2 667内存的SPD信息保存起来,以便刷写失败后恢复应急之用,此时进入“文件→写入”菜单,选择“模块2:已安装”(如图3),刷写内存SPD后重启系统,如果能开机,且不会出现蓝屏、黑屏等现象,说明内存SPD刷写成功,再次运行CPU-Z软件,进入“内存”窗口,如果“通道数”显示为“双”(如图4),说明内存已经工作在DDR2双通道模式下,笔者经过测试,系统运行速度有明显提升。
ddr2芯片
ddr2芯片DDR2芯片是一种动态随机访问存储器(DRAM)的类型,它是DDR(双倍数据速率)技术的升级版本之一。
DDR2芯片在计算机的内存子系统中起着至关重要的作用。
接下来,我将为您解释关于DDR2芯片的一些重要特点和功能。
首先,DDR2芯片具有更高的传输速率和更大的带宽。
与DDR芯片相比,DDR2芯片的传输速率可以提高到两倍,这意味着数据可以更快地传输到CPU和其他设备。
同时,DDR2芯片的带宽也更大,这意味着它可以在一定时间内处理更多的数据。
其次,DDR2芯片相比DDR芯片有更低的功耗。
DDR2芯片采用了低电压技术,可以在较低的电压下工作,从而减少了能源消耗。
这使得DDR2芯片在节能和延长电池寿命方面具有显著优势,特别是对于笔记本电脑和移动设备来说尤为重要。
此外,DDR2芯片还具有更高的稳定性和可靠性。
DDR2芯片有更强大的误差检测和纠正机制,可以自动检测和修复内存中的错误。
这使得DDR2芯片在数据存储和处理方面更加可靠,提高了整个系统的稳定性。
此外,DDR2芯片还具有更大的容量。
通过DDR2技术的提升,芯片的存储容量也得到了增加。
DDR2芯片可以提供更多的内存空间,允许用户存储更多的数据和程序。
这对于需要处理大型文件和运行多个应用程序的用户来说非常重要。
最后,DDR2芯片具有较长的生命周期。
与其他技术相比,DDR2芯片有较长的可用时间,因为它在市场上被广泛使用,并且许多计算机和移动设备仍然支持DDR2芯片。
这使得DDR2芯片成为一种可靠和稳定的选择,特别是对于需要维护和更新老旧设备的用户来说。
综上所述,DDR2芯片作为一种内存技术,具有更高的传输速率、更大的带宽、更低的功耗、更高的稳定性和可靠性、更大的容量以及较长的生命周期等优点。
这些特点使得DDR2芯片在计算机和移动设备领域得到广泛应用,并为用户提供更快、更低功耗和更可靠的存储和处理能力。
三星DDR2内存电路资料
DDR2 Unbuffered SODIMM200pin Unbuffered SODIMM based on 1Gb Q-die64-bit Non-ECC60FBGA & 84FBGA with Lead-Free and Halogen-Free(RoHS compliant)INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS, AND IS SUBJECT TO CHANGE WITHOUT NOTICE. NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHER-WISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOL-OGY. ALL INFORMATION IN THIS DOCUMENT IS PROVIDED ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND.1. For updates or additional information about Samsung products, contact your nearest Samsung office.2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similarapplications where Product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply.* Samsung Electronics reserves the right to change products or specification without notice.Table of Contents1.0 DDR2 Unbuffered SODIMM Ordering Information (4)2.0 Features (4)3.0 Address Configuration (4)4.0 Pin Configurations (Front side/Back side) (5)5.0 Pin Description (5)6.0 Input/Output Function Description (6)7.0 Functional Block Diagram : (7)7.1 2GB, 256Mx64 Module - M470T5663QZ(H)3 (7)7.2 1GB, 128Mx64 Module - M470T2864QZ(H)3 (8)7.3 512MB, 64Mx64 Module - M470T6464QZ(H)3 (9)8.0 Absolute Maximum DC Ratings (10)9.0 AC & DC Operating Conditions (10)9.1 Recommended DC Operating Conditions (SSTL - 1.8) (10)9.2 Operating Temperature Condition (11)9.3 Input DC Logic Level (11)9.4 Input AC Logic Level (11)9.5 AC Input Test Conditions (11)10.0 IDD Specification Parameters Definition (12)11.0 Operating Current Table : (13)11.1 M470T5663QZ(H)3 : 256Mx64 2GB Module (13)11.2 M470T2864QZ(H)3 : 128Mx64 1GB Module (13)11.3 M470T6464QZ(H)3 : 64Mx64 512MB Module (13)12.0 Input/Output Capacitance (14)13.0 Electrical Characteristics & AC Timing for DDR2-800/667 (14)13.1 Refresh Parameters by Device Density (14)13.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin (14)13.3 Timing Parameters by Speed Grade (15)14.0 Physical Dimensions : (17)14.1 128Mbx8 based 256Mx64 Module (2 Rank) (17)14.2 64Mbx16 based 128Mx64 Module (2 Rank) (18)14.3 64Mbx16 based 64Mx64 Module (1 Rank) (19)Revision HistoryRevision Month Year History1.0September2007 - Initial Release1.01April2008 - Typo Correction1.1July2008 - Applied JEDEC update(JESD79-2E) on AC timing table1.0 DDR2 Unbuffered SODIMM Ordering InformationPart Number Density Organization Component Composition Number of Rank Height M470T5663QZ(H)3-C(L)E7/F7/E62GB256Mx64128Mx8(K4T1G084QQ-HC(L)E7/F7/E6)*16230mm M470T2864QZ(H)3-C(L)E7/F7/E61GB128Mx6464Mx16(K4T1G164QQ-HC(L)E7/F7/E6)*8230mm M470T6464QZ(H)3-C(L)E7/F7/E6512MB64Mx6464Mx16(K4T1G164QQ-HC(L)E7/F7/E6)*4130mm Note :1. “Z” of Part number(12th digit) stands for Lead-Free products.2. “H” of Part number(12th digit) stands for Lead-Free, Halogen-Free, and RoHS compliant products.3. “3” of Part number(13th digit) stands for Dummy Pad PCB products.2.0 Features•Performance rangeE7 (DDR2-800)F7 (DDR2-800)E6 (DDR2-667)UnitSpeed@CL3400-400MbpsSpeed@CL4533533533MbpsSpeed@CL5800667667MbpsSpeed@CL6-800-MbpsCL-tRCD-tRP5-5-56-6-65-5-5CK•JEDEC standard V DD = 1.8V ± 0.1V Power Supply•V DDQ = 1.8V ± 0.1V•333MHz f CK for 667Mb/sec/pin, 400MHz f CK for 800Mb/sec/pin•8 Banks•Posted CAS•Programmable CAS Latency: 3, 4, 5, 6•Programmable Additive Latency: 0, 1 , 2 , 3, 4, 5•Write Latency(WL) = Read Latency(RL) -1•Burst Length: 4 , 8(Interleave/Nibble sequential)•Programmable Sequential / Interleave Burst Mode•Bi-directional Differential Data-Strobe (Single-ended data-strobe is an optional feature)•Off-Chip Driver(OCD) Impedance Adjustment•On Die Termination with selectable values(50/75/150 ohms or disable)•Average Refresh Period 7.8us at lower than a T CASE 85°C, 3.9us at 85°C < T CASE < 95 °C- Support High Temperature Self-Refresh rate enable feature•Package: 60ball FBGA - 128Mx8 and 84ball FBGA - 64Mx16•All of base components are Lead-Free, Halogen-Free, and RoHS compliantNote : For detailed DDR2 SDRAM operation, please refer to Samsung’s Device operation & Timing diagram.3.0 Address ConfigurationOrganization Row Address Column Address Bank Address Auto Precharge 128Mx8(1Gb) based Module A0-A13A0-A9BA0-BA2A1064Mx16(1Gb) based Module A0-A12A0-A9BA0-BA2A10Note : NC = No Connect; NC, TEST(pin 163)is for bus analysis tool and is not connected on normal memory modules.Pin Front Pin Back Pin Front Pin Back Pin Front Pin Back Pin Front Pin Back 1V REF 2V SS 51DQS252DM2101A1102A0151DQ42152DQ463V SS 4DQ453V SS 54V SS 103V DD 104V DD 153DQ43154DQ475DQ06DQ555DQ1856DQ22105A10/AP 106BA1155V SS 156V SS 7DQ18V SS 57DQ1958DQ23107BA0108RAS 157DQ48158DQ529V SS 10DM059V SS 60V SS 109WE 110S0159DQ49160DQ5311DQS012V SS 61DQ2462DQ28111V DD 112V DD 161V SS 162V SS 13DQS014DQ663DQ2564DQ29113CAS 114ODT0163NC, TEST 164CK115V SS 16DQ765V SS 66V SS 115NC/S1116A13165V SS 166CK117DQ218V SS 67DM368DQS3117V DD 118V DD 167DQS6168V SS 19DQ320DQ1269NC 70DQS3119NC/ODT1120NC 169DQS6170DM621V SS 22DQ1371V SS 72V SS 121V SS 122V SS 171V SS 172V SS 23DQ824V SS 73DQ2674DQ30123DQ32124DQ36173DQ50174DQ5425DQ926DM175DQ2776DQ31125DQ33126DQ37175DQ51176DQ5527V SS 28V SS 77V SS 78V SS 127V SS 128V SS 177V SS 178V SS 29DQS130CK079CKE080NC/CKE1129DQS4130DM4179DQ56180DQ6031DQS132CK081V DD 82V DD131DQS4132V SS 181DQ57182DQ6133V SS 34V SS 83NC 84NC 133V SS 134DQ38183V SS 184V SS 35DQ1036DQ1485BA286NC 135DQ34136DQ39185DM7186DQS737DQ1138DQ1587V DD 88V DD 137DQ35138V SS 187V SS 188DQS739V SS 40V SS 89A1290A11139V SS 140DQ44189DQ58190V SS 41V SS 42V SS 91A992A7141DQ40142DQ45191DQ59192DQ6243DQ1644DQ2093A894A6143DQ41144V SS 193V SS 194DQ6345DQ1746DQ2195V DD 96V DD 145V SS 146DQS5195SDA 196V SS 47V SS 48V SS 97A598A4147DM5148DQS5197SCL 198SA049DQS250NC99A3100A2149V SS150V SS199V DDSPD200SA15.0 Pin Description*The V DD and V DDQ pins are tied to the single power-plane on PCB.Pin Name DescriptionPin Name DescriptionCK0,CK1Clock Inputs, positive line SDA SPD Data Input/OutputCK0,CK1Clock Inputs, negative line SA1,SA0SPD address CKE0,CKE1Clock Enables DQ0~DQ63Data Input/Output RAS Row Address Strobe DM0~DM7Data Masks CAS Column Address Strobe DQS0~DQS7Data strobesWE Write Enable DQS0~DQS7Data strobes complement S0,S1Chip Selects TEST Logic Analyzer specific test pin (No connect on So-DIMM)A0~A9, A11~A13Address InputsV DD Core and I/O Power A10/AP Address Input/Autoprecharge V SS GroundBA0~BA2SDRAM Bank Address V REF Input/Output Reference ODT0,ODT1On-die termination controlV DDSPD SPD PowerSCL Serial Presence Detect(SPD) Clock Input NC Spare pins, No connect CK0,CK1Clock Inputs, positive lineSDASPD Data Input/Output4.0 Pin Configurations (Front side/Back side)Symbol Type DescriptionCK0-CK1CK0-CK1Input The system clock inputs. All address and command lines are sampled on the cross point of the rising edge of CK and falling edge of CK . A Delay Locked Loop (DLL) circuit is driven from the clock input and output timing for read operations is synchronized to the input clock.CKE0-CKE1Input Activates the DDR2 SDRAM CK signal when high and deactivates the CK signal when low, By deactivating the clocks, CKE low initiates the Power Down mode or the Self Refesh mode.S0-S1Input Enables the associated DDR2 SDRAM command decoder when low and disables the command decoder when high. When the command decoder is disabled, new commands are ignored but previous operations continue. Rank 0 is selected by S0, Rank 1 is selected by S1. Ranks are also called “Physical banks”.RAS, CAS, WE Input When sampled at the cross point of the rising edge of CK and falling edge of CK, CAS, RAS, and WE define the operation to be executed by the SDRAM.BA0~BA2Input Selects which DDR2 SDRAM internal bank is activated.ODT0~ODT1Input Asserts on-die termination for DQ, DM, DQS, and DQS signals if enabled via the DDR2 SDRAM Extended Mode Register Set (EMRS).A0~A9, A10/AP, A11~A13InputDuring a Bank Activate command cycle, defines the row address when sampled at the cross point of the rising edge of CK and falling edge of CK. During a Read or Write command cycle, defines the column address when sampled at the cross point of the rising edge of CK and falling edge of CK. In addition to the column address, AP is used to invoke autoprecharge operation at the end of the burst read or write cycle. If AP is high, autoprecharge is selected and BA0-BAn defines the bank to be precharged. If AP is low, auto-precharge is disabled. During a Precharge command cycle, AP is used in conjunction with BA0-BAn to con-trol which bank(s) to precharge. If AP is high, all banks will be pecharged regardiess of the state of BA0-BAn inputs. If AP is low, then BA0-BAn are used to define which bank to precharge.DQ0~DQ63In/Out Data Input/Output pins.DM0~DM7Input The data write masks, associated with one data byte. In Write mode, DM operates as a byte mask by allowing input data to be written if it is low but blocks the write operation if it is high. In Read mode, DM lines have no effect.DQS0~DQS7 DQS0~DQS7In/OutThe data strobes, associated with one data byte, sourced with data transfers. In Write mode, the datastrobe is sourced by the controller and is centered in the data window. In Read mode, the data strobe issourced by the DDR2 SDRAMs and is sent at the leading edge of the data window. DQS signals are com-plements, and timing is relative to the crosspoint of respective DQS and DQS If the module is to be oper-ated in single ended strobe mode, all DQS signals must be tied on the system board to V SS and DDR2SDRAM mode registers programmed appropriately.V DD,V DDSPD,V SS Supply Power supplies for core, I/O, Serial Presence Detect, and ground for the module.SDA In/Out This is a bidirectional pin used to transfer data into or out of the SPD EEPROM. A resistor must be con-nected to V DD to act as a pull up.SCL Input This signal is used to clock data into and out of the SPD EEPROM. A resistor may be connected from SCL to V DD to act as a pull up.SA0~SA1Input Address pins used to select the Serial Presence Detect base address.TEST In/Out The TEST pin is reserved for bus analysis tools and is not connected on normal memory modules(SO-DIMMs).6.0 Input/Output Function DescriptionNote : There is no specific device V DD supply voltage requirement for SSTL-1.8 compliance. However under all conditions V DDQ must be less than or equalto V DD .1. The value of V REF may be selected by the user to provide optimum noise margin in the system. Typically the value of V REF is expected to be about 0.5 x V DDQ of the transmitting device and V REF is expected to track variations in V DDQ .2. Peak to peak AC noise on V REF may not exceed +/-2% V REF (DC).3. V TT of transmitting device must track V REF of receiving device.4. AC parameters are measured with V DD , V DDQ and V DDL tied together.5. SODIMMs that include an optional temperature sensor may require a restricted V DDSPD operating voltage range for proper operation of the temperature sensor. Refer to the thermal sensor specification for details regarding the supported voltage range. All other functions of the SODIMM SPD are supported across the full V DDSPD range.Symbol ParameterRatingUnits NotesMin.Typ. Max.V DD Supply Voltage 1.7 1.8 1.9V V DDL Supply Voltage for DLL 1.7 1.8 1.9V 4V DDQ Supply Voltage for Output 1.7 1.8 1.9V 4V REF Input Reference Voltage 0.49*V DDQ 0.50*V DDQ0.51*V DDQ mV 1,2V TTTermination VoltageV REF -0.04V REFV REF +0.04V3Symbol ParameterRatingUnits Notes Min.Max.V DDSPDCore Supply Voltage1.73.6V5Note :1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.Symbol ParameterRating Units Notes V DD Voltage on V DD pin relative to V SS - 1.0 V ~ 2.3 V V 1V DDQ Voltage on V DDQ pin relative to V SS - 0.5 V ~ 2.3 V V 1V DDL Voltage on V DDL pin relative to V SS - 0.5 V ~ 2.3 V V 1V IN, V OUT Voltage on any pin relative to V SS- 0.5 V ~ 2.3 V V1T STGStorage Temperature-55 to +100°C 1, 29.0 AC & DC Operating Conditions9.1 Recommended DC Operating Conditions (SSTL - 1.8)8.0 Absolute Maximum DC RatingsNote:1. Input waveform timing is referenced to the input signal crossing through the V IH/IL (AC) level applied to the device under test.2. The input signal minimum slew rate is to be maintained over the range from V REF to V IH (AC) min for rising edges and the range from V REF to V IL (AC)max for falling edges as shown in the below figure.3. AC timings are referenced with input waveforms switching from V IL (AC) to V IH (AC) on the positive transitions and V IH (AC) to V IL (AC) on the negative transitions.Symbol ConditionValue Units Notes V REF Input reference voltage0.5 * V DDQV 1V SWING(MAX)Input signal maximum peak to peak swing 1.0V 1SLEWInput signal minimum slew rate1.0V/ns2, 3V DDQ V IH (AC) minV IH (DC) min V REFV IL (DC) max V IL (AC) maxV SS< AC Input Test Signal Waveform >V SWING(MAX)delta TRdelta TFV REF - V IL (AC) maxdelta TFFalling Slew =Rising Slew =V IH (AC) min - V REFdelta TRNote :1. Operating Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51.2 standard.2. At 85 - 95 °C operation temperature range, doubling refresh commands in frequency to a 32ms period ( tREFI=3.9 us ) is required, and to enter to self refresh mode at this temperature range, an EMRS command is required to change internal refresh rate.Symbol Parameter Rating UnitsNotesT OPEROperating Temperature0 to 95°C 1, 29.3 Input DC Logic LevelSymbol Parameter Min.Max.Units NotesV IH (DC)DC input logic high V REF + 0.125V DDQ + 0.3V V IL (DC)DC input logic low- 0.3V REF - 0.125V9.4 Input AC Logic LevelSymbol Parameter DDR2-667, DDR2-800Units Min.Max.V IH (AC)AC input logic high V REF + 0.200V V IL (AC)AC input logic lowV REF - 0.200V9.5 AC Input Test Conditions 9.2 Operating Temperature Condition(IDD values are for full operating range of Voltage and Temperature)Symbol Proposed Conditions Units NoteIDD0Operating one bank active-precharge current;tCK = tCK(IDD), tRC = tRC(IDD), tRAS = tRASmin(IDD); CKE is HIGH, CS is HIGH between valid commands;Address bus inputs are SWITCHING; Data bus inputs are SWITCHINGmAIDD1Operating one bank active-read-precharge current;IOUT = 0mA; BL = 4, CL = CL(IDD), AL = 0; tCK = tCK(IDD), tRC = tRC (IDD), tRAS = tRASmin(IDD), tRCD =tRCD(IDD); CKE is HIGH, CS is HIGH between valid commands; Address bus inputs are SWITCHING; Data patternis same as IDD4WmAIDD2P Precharge power-down current;All banks idle; tCK = tCK(IDD); CKE is LOW; Other control and address bus inputs are STABLE; Data bus inputs are FLOATINGmAIDD2Q Precharge quiet standby current;All banks idle; tCK = tCK(IDD); CKE is HIGH, CS is HIGH; Other control and address bus inputs are STABLE; Databus inputs are FLOATINGmAIDD2N Precharge standby current;All banks idle; tCK = tCK(IDD); CKE is HIGH, CS is HIGH; Other control and address bus inputs are SWITCHING;Data bus inputs are SWITCHINGmAIDD3P Active power-down current;All banks open; tCK = tCK(IDD); CKE is LOW; Other control and addressbus inputs are STABLE; Data bus inputs are FLOATINGFast PDN Exit MRS(12) = 0mASlow PDN Exit MRS(12) = 1mAIDD3N Active standby current;All banks open; tCK = tCK(IDD), tRAS = tRASmax(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHINGmAIDD4W Operating burst write current;All banks open, Continuous burst writes; BL = 4, CL = CL(IDD), AL = 0; tCK = tCK(IDD), tRAS = tRASmax(IDD), tRP= tRP(IDD); CKE is HIGH, CS is HIGH between valid commands; Address bus inputs are SWITCHING; Data businputs are SWITCHINGmAIDD4R Operating burst read current;All banks open, Continuous burst reads, IOUT = 0mA; BL = 4, CL = CL(IDD), AL = 0; tCK = tCK(IDD), tRAS = tRAS-max(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands; Address bus inputs are SWITCH-ING; Data pattern is same as IDD4WmAIDD5B Burst auto refresh current;tCK = tCK(IDD); Refresh command at every tRFC(IDD) interval; CKE is HIGH, CS is HIGH between valid commands;Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHINGmAIDD6Self refresh current;CK and CK at 0V; CKE ≤ 0.2V; Other control and address bus inputs areFLOATING; Data bus inputs are FLOATINGNormal mALow Power mAIDD7Operating bank interleave read current;All bank interleaving reads, IOUT = 0mA; BL = 4, CL = CL(IDD), AL = tRCD(IDD)-1*tCK(IDD); tCK = tCK(IDD), tRC =tRC(IDD), tRRD = tRRD(IDD), tFAW = tFAW(IDD), tRCD = 1*tCK(IDD); CKE is HIGH, CS is HIGH between valid com-mands; Address bus inputs are STABLE during DESELECTs; Data pattern is same as IDD4R; Refer to the followingpage for detailed timing conditionsmA10.0 IDD Specification Parameters Definition11.2 M470T2864QZ(H)3 : 128Mx64 1GB Module11.3 M470T6464QZ(H)3: 64Mx64 512MB Module(T A =0o C, V DD = 1.9V)* Module IDD was calculated on the basis of component IDD and can be differently measured according to DQ loading cap.Symbol 800@CL=5800@CL=6667@CL=5Units NotesCE7LE7CF7LF7CE6LE6IDD0500500480mA IDD1540540520mA IDD2P 120641206412064mA IDD2Q 240240240mA IDD2N 280280280mA IDD3P-F 280280280mA IDD3P-S 144144144mA IDD3N 360360340mA IDD4W 660660600mA IDD4R 840840760mA IDD5720720700mA IDD6120641206412064mA IDD71,2001,2001,120mA(T A =0o C, V DD = 1.9V)* Module IDD was calculated on the basis of component IDD and can be differently measured according to DQ loading cap.Symbol 800@CL=5800@CL=6667@CL=5Units NotesCE7LE7CF7LF7CE6LE6IDD0360360340mA IDD1400400380mA IDD2P 603260326032mA IDD2Q 120120120mA IDD2N 140140140mA IDD3P-F 140140140mA IDD3P-S 727272mA IDD3N 220220200mA IDD4W 520520460mA IDD4R 700700620mA IDD5580580560mA IDD6603260326032mA IDD71,0601,060980mA11.0 Operating Current Table :11.1 M470T5663QZ(H)3 : 256Mx64 2GB Module(T A =0o C, V DD = 1.9V)* Module IDD was calculated on the basis of component IDD and can be differently measured according to DQ loading cap.Symbol800@CL=5800@CL=6667@CL=5Units NotesCE7LE7CF7LF7CE6LE6IDD0880880840mA IDD1960960920mA IDD2P 240128240128240128mA IDD2Q 480480480mA IDD2N 560560560mA IDD3P-F 560560560mA IDD3P-S 288288288mA IDD3N 720720680mA IDD4W 1,2001,2001,120mA IDD4R 1,3601,3601,240mA IDD51,4401,4401,400mA IDD6240128240128240128mA IDD72,2802,2802,120mA(V DD =1.8V, V DDQ =1.8V, TA=25o C)* DM is internally loaded to match DQ and DQS identically.Parameter Symbol Min Max Min Max Min Max UnitsNon-ECCM470T5663QZ(H)3M470T2864QZ(H)3M470T6464QZ(H)3Input capacitance, CK and CKCCK -48-32-24pF Input capacitance, CKE , CS, Addr, RAS, CAS, WE CI -42-34-34Input/output capacitance, DQ, DM, DQS, DQSCIO-9-9- 5.5ParameterSymbol256Mb 512Mb 1Gb 2Gb 4Gb Units Refresh to active/Refresh command time tRFC 75105127.5195327.5ns Average periodic refresh intervaltREFI0 °C ≤ T CASE ≤ 85°C 7.87.87.87.87.8µs 85 °C < T CASE ≤ 95°C 3.93.93.93.93.9µs(0 °C < T OPER < 95 °C; V DDQ = 1.8V + 0.1V; V DD = 1.8V + 0.1V)13.1 Refresh Parameters by Device DensitySpeedDDR2-800(E7)DDR2-800(F7)DDR2-667(E6)UnitsBin (CL - tRCD - tRP) 5 - 5 - 56 - 6- 6 5 - 5 - 5Parameter min max min max min max tCK, CL=358--58ns tCK, CL=4 3.758 3.758 3.758ns tCK, CL=5 2.583838ns tCK, CL=6-- 2.58--ns tRCD 12.5-15-15-ns tRP 12.5-15-15-ns tRC 57.5-60-60-ns tRAS457000045700004570000ns13.2 Speed Bins and CL, tRCD, tRP , tRC and tRAS for Corresponding Bin13.0 Electrical Characteristics & AC Timing for DDR2-800/66712.0 Input/Output Capacitance(Refer to notes for informations related to this table at the component datasheet)Parameter SymbolDDR2-800DDR2-667Units Notes min max min maxDQ output access time from CK/CK tAC-400400- 450450ps40 DQS output access time from CK/CK tDQSCK-350350- 400400ps40 Average clock HIGH pulse width tCH(avg)0.480.520.480.52tCK(avg)35,36 Average clock LOW pulse width tCL(avg)0.480.520.480.52tCK(avg)35,36CK half pulse period tHP Min(tCL(abs),tCH(abs))xMin(tCL(abs),tCH(abs))x ps37Average clock period tCK(avg)2500800030008000ps35,36DQ and DM input hold time tDH(base)125x175x ps6,7,8,21,28,31 DQ and DM input setup time tDS(base)50x100x ps6,7,8,20,28,31 Control & Address input pulse width for each input tIPW0.6x0.6x tCK(avg)DQ and DM input pulse width for each input tDIPW0.35x0.35x tCK(avg)Data-out high-impedance time from CK/CK tHZ x tAC(max)x tAC(max)ps18,40 DQS/DQS low-impedance time from CK/CK tLZ(DQS)tAC(min)tAC(max)tAC(min)tAC(max)ps18,40DQ low-impedance time from CK/CK tLZ(DQ)2*tAC(min)tAC(max)2*tAC(min)tAC(max)ps18,40 DQS-DQ skew for DQS and associated DQ signals tDQSQ x200x240ps13DQ hold skew factor tQHS x300x340ps38DQ/DQS output hold time from DQS tQH tHP - tQHS x tHP - tQHS x ps39 DQS latching rising transitions to associated clock edges tDQSS- 0.250.25-0.250.25tCK(avg)30 DQS input HIGH pulse width tDQSH0.35x0.35x tCK(avg)DQS input LOW pulse width tDQSL0.35x0.35x tCK(avg)DQS falling edge to CK setup time tDSS0.2x0.2x tCK(avg)30 DQS falling edge hold time from CK tDSH0.2x0.2x tCK(avg)30 Mode register set command cycle time tMRD2x2x nCKMRS command to ODT update delay tMOD012012ns32 Write postamble tWPST0.40.60.40.6tCK(avg)10 Write preamble tWPRE0.35x0.35x tCK(avg)Address and control input hold time tIH(base)250x275x ps5,7,9,23,29 Address and control input setup time tIS(base)175x200x ps5,7,9,22,29 Read preamble tRPRE0.9 1.10.9 1.1tCK(avg)19,41 Read postamble tRPST0.40.60.40.6tCK(avg)19,42 Activate to activate command period for 1KB page size products tRRD7.5x7.5x ns4,32 Activate to activate command period for 2KB page size products tRRD10x10x ns4,32 13.3 Timing Parameters by Speed GradeParameter SymbolDDR2-800DDR2-667Units Notes min max min maxFour Activate Window for 1KB page size products tFAW35x37.5x ns32 Four Activate Window for 2KB page size products tFAW45x50x ns32 CAS to CAS command delay tCCD2x2x nCKWrite recovery time tWR15x15x ns32 Auto precharge write recovery + precharge time tDAL WR + tnRP x WR + tnRP x nCK33 Internal write to read command delay tWTR7.5x7.5x ns24,32 Internal read to precharge command delay tRTP7.5x7.5x ns3,32 Exit self refresh to a non-read command tXSNR tRFC + 10x tRFC + 10x ns32 Exit self refresh to a read command tXSRD200x200x nCKExit precharge power down to any command tXP2x2x nCKExit active power down to read command tXARD2x2x nCK1 Exit active power down to read command(slow exit, lower power)tXARDS8 - AL x7 - AL x nCK1,2 CKE minimum pulse width (HIGH and LOW pulse width)tCKE3x3x nCK27 ODT turn-on delay tAOND2222nCK16 ODT turn-on tAON tAC(min)tAC(max)+0.7tAC(min)tAC(max)+0.7ns6,16,40ODT turn-on (Power-Down mode)tAONPD tAC(min)+22*tCK(avg)+tAC(max)+1tAC(min)+22*tCK(avg)+tAC(max)+1nsODT turn-off delay tAOFD 2.5 2.5 2.5 2.5nCK17,45 ODT turn-off tAOF tAC(min)tAC(max)+0.6tAC(min)tAC(max)+0.6ns17,43,45ODT turn-off (Power-Down mode)tAOFPD tAC(min)+22.5*tCK(avg)+tAC(max)+1tAC(min)+22.5*tCK(avg)+tAC(max)+1nsODT to power down entry latency tANPD3x3x nCKODT power down exit latency tAXPD8x8x nCKOCD drive mode output delay tOIT012012ns32Minimum time clocks remains ON after CKE asynchronously drops LOW tDelaytIS+tCK(avg)+tIHxtIS+tCK(avg)+tIHx ns1514.1 128Mbx8 based 256Mx64 Module (2 Rank)The used device is 128M x8 DDR2 SDRAM, FBGA.DDR2 SDRAM Part NO : K4T1G084QQUnits : Millimeters14.0 Physical Dimensions :- M470T5663QZ(H)33.8 mm 1.1mm maxmax67.60 ± 0.15 mm4.00 ± 0.1020.00 ± 0.15 m m30.00 ± 0.15 m m119911.40 ± 0.15 mm 47.40 ± 0.15 mm6.00 ± 0.15 m m63.00 ± 0.15 mm16.25 ± 0.15 mmmin 2.0067.60 ± 0.15 mm30.00 ± 0.15 m m2200SPDaba4.20 ± 0.152.70 ± 0.104.00 ± 0.101.0 ± 0.051.50 ± 0.10FRONT SIDE 4.20 ± 0.151.80 ± 0.104.00 ± 0.101.0 ± 0.052.40 ± 0.10BACK SIDE0.60 ± 0.150.45 ± 0.032.55 ± 0.150.20 ± 0.15DETAIL a DETAIL bThe used device is 64M x16 DDR2 SDRAM, FBGA.DDR2 SDRAM Part NO : K4T1G164QQUnits : Millimeters67.60 ± 0.15 mm4.00 ± 0.1020.00 ± 0.15 m m30.00 ± 0.15 m m119911.40 ± 0.15 mm 47.40 ± 0.15 mm6.00 ± 0.15 m mS P D3.8 mmMax1.1 mmMaxa 63.00 ± 0.15 mm16.25 ± 0.15 mmmin 2.0067.60 ± 0.15 mm30.00 ± 0.15 m m22004.20 ± 0.152.70 ± 0.104.00 ± 0.101.0 ± 0.051.50 ± 0.10FRONT SIDE 4.20 ± 0.151.80 ± 0.104.00 ± 0.101.0 ± 0.052.40 ± 0.10BACK SIDE0.60 ± 0.150.45 ± 0.032.55 ± 0.150.20 ± 0.15DETAIL a DETAIL bab- M470T2864QZ(H)314.2 64Mbx16 based 128Mx64 Module (2 Rank)The used device is 64M x16 DDR2 SDRAM, FBGA.DDR2 SDRAM Part NO : K4T1G164QQUnits : Millimeters67.60 ± 0.15 mm4.00 ± 0.1020.00 ± 0.15 m m30.00 ± 0.15 m m119911.40 ± 0.15 mm 47.40 ± 0.15 mm6.00 ± 0.15 m mS P Da 63.00 ± 0.15 mm16.25 ± 0.15 mmmin 2.0067.60 ± 0.15 mm30.00 ± 0.15 m m2200a b4.20 ± 0.152.70 ± 0.104.00 ± 0.101.0 ± 0.051.50 ± 0.10FRONT SIDE 4.20 ± 0.151.80 ± 0.104.00 ± 0.101.0 ± 0.052.40 ± 0.10BACK SIDE0.60 ± 0.150.45 ± 0.032.55 ± 0.150.20 ± 0.15DETAIL a DETAIL b3.8 mm Max1.1 mm Max- M470T6464QZ(H)314.3 64Mbx16 based 64Mx64 Module (1 Rank)。
DDR2内存详解——从原理到测试
DDR2内存详解——从原理到测试作为PC不可缺少的重要核心部件——内存,它伴随着DIY硬件走过了多年历程。
从286时代的30pin SIMM内存、486时代的72pin SIMM 内存,到Pentium时代的EDO DRAM内存、PII时代的SDRAM内存,到P4时代的DDR内存和目前9X5、AM2平台的DDR2内存。
内存从规格、技术、总线带宽等不断更新换代。
不过我们有理由相信,内存的更新换代可谓万变不离其宗,目的在于提高内存的带宽,以满足CPU不断攀升的带宽要求、避免成为高速CPU的运算瓶颈。
随着CPU 性能不断提高,我们对内存性能的要求也逐步升级。
不可否认,紧紧依靠高频率提升带宽的DDR已经力不从心,因此JEDEC 组织提出了DDR2 标准,加上LGA775接口的主板以及最新的965、AM2 940等新平台全面对DDR2内存的支持,所以DDR2内存已经步入了它的春天。
DDR2(Double Data Rate 2) SDRAM是由JEDEC(电子设备工程联合委员会)进行开发的新生代内存技术标准,它与上一代DDR 内存技术标准最大的不同就是,虽然同是采用了在时钟的上升/下降中同时进行数据传输的基本方式,但DDR2内存却拥有两倍于上一代DDR内存预读取能力(即:4bit数据读预取)。
换句话说,DDR2内存每个时钟能够以4倍外部总线的速度读/写数据,并且能够以内部控制总线4倍的速度运行。
此外,由于DDR2标准规定所有DDR2内存均采用FBGA封装形式,而不同于目前广泛应用的TSOP/TSOP-II封装形式,FBGA封装可以提供了更为良好的电气性能与散热性,为DDR2内存的稳定工作与未来频率的发展提供了坚实的基础。
而在DDR参数基础上加入了新的三项参数标准我们首先来温习一下DDR内存参数标准。
(1)CAS(Column Address Strobe) Latency:列地址选通脉冲延迟时间,即DDR-RAM内存接收到一条数据读取指令后要延迟多少个时钟周期才执行该指令。
内存SPD芯片替换及修改
内存SPD芯片替换及修改说起内存,相信大家都不陌生。
不过,大家的目光除了更多地投放在内存芯片颗粒上之外,很少会注意到内存PCB(印刷电路板)边上还有一颗体积较小(大约为3mm×4mm×1.5mm)的芯片,这就是SPD芯片.SPD是什么?SPD(Serial Presence Detect): SPD是一颗8针的EEPROM(Electrically Erasable Programmable ROM 电可擦写可编程只读存储器), 容量为256字节,里面主要保存了该内存的相关资料,如容量、芯片厂商、内存模组厂商、工作速度等。
SPD的内容一般由内存模组制造商写入。
支持SPD的主板在启动时自动检测SPD中的资料,并以此设定内存的工作参数。
启动计算机后,主板BIOS就会读取SPD中的信息,主板北桥芯片组就会根据这些参数信息来自动配置相应的内存工作时序与控制寄存器,从而可以充分发挥内存条的性能。
上述情况实现的前提条件是在BIOS设置界面中,将内存设置选项设为“By SPD”。
当主板从内存条中不能检测到SPD信息时,它就只能提供一个较为保守的配置。
从某种意义上来说,SPD芯片是识别内存品牌的一个重要标志。
如果SPD内的参数值设置得不合理,不但不能起到优化内存的作用,反而还会引起系统工作不稳定,甚至死机。
因此,很多普通内存或兼容内存厂商为了避免兼容性问题,一般都将SPD中的内存工作参数设置得较为保守,从而限制了内存性能的充分发挥。
更有甚者,一些不法厂商通过专门的读写设备去更改SPD信息,以骗过计算机的检测,得出与实际不一致的数据,从而欺骗消费者。
即然SPD芯片与主板BIOS有相似的功能,那么我们是否可以将不同生产厂家,相同数据的内存SPD互换,以达到升级内存性能的目的呢。
答案是肯定的,下面我们使用Hyundai DDR266散装内存条及Ramaxel DDR266内存做一详细说明(注意:这里所用的内存,必须是生产厂家不同,但是内存使用的内存颗粒的编号及内存使用内存颗粒的数量必须一样,这也是修改的关键;在此文内,只是介绍SPD替换及修改的方法)即然要对SPD芯片进行读写,因此就要用到编程器;而且由于SPD芯片是焊接在内存电路板上的。
DDR2 SPD规范rev1.0
1. IntroductionThis application note describes the Serial Presence Detect assignments for SPD revision 1.0(initial release) used on Double Data Rate Synchronous DRAM 2 Modules.Chapter 1 summarizes the byte assignments. Chapter 2 gives the details of each of these bytes. Included are serial PD tables for DDR2 Modules which have been JEDEC approved. This information may be changed based on further JEDEC activities. Please refer to product datasheets for the most current informa-tion2. Address mapThe following is the SPD address map for DDR2 SDRAM. It describes where the individual LUT-entries will be held in the serial EEPROM.Byte Number Function Described Notes 0Number of Serial PD Bytes written during module production11Total number of Bytes in Serial PD device22Fundamental Memory Type (FPM, EDO, SDRAM, DDR, DDR2…)3Number of Row Addresses on this assembly4Number of Column Addresses on this assembly5Number of DIMM Ranks6Data Width of this assembly7Reserved8Voltage Interface Level of this assembly9SDRAM Cycle time at Maximum Supported CAS Latency (CL), CL=X3 10SDRAM Access from Clock11DIMM configuration type (Non-parity, Parity or ECC)12Refresh Rate3, 4 13Primary SDRAM Width14Error Checking SDRAM Width15Reserved16SDRAM Device Attributes: Burst Lengths Supported17SDRAM Device Attributes: Number of Banks on SDRAM Device3 18SDRAM Device Attributes: CAS Latency3 19Reserved3 20DIMM Type Information3 21SDRAM Module Attributes22SDRAM Device Attributes: General3 23Minimum Clock Cycle at CLX-13 24Maximum Data Access Time (tAC) from Clock at CLX-13 25Minimum Clock Cycle at CLX-23 26Maximum Data Access Time (tAC) from Clock at CLX-23 27Minimum Row Precharge Time (tRP)3 28Minimum Row Active to Row Active delay (tRRD)3 29Minimum RAS to CAS delay (tRCD)3 30Minimum Active to Precharge Time (tRAS)3 31Module Rank Density32Address and Command Input Setup Time Before Clock (tIS)3 33Address and Command Input Hold Time After Clock (tIH)3 34Data Input Setup Time Before Clock(tDS)3Byte Number Function Described Notes 35Data Input Hold Time After Clock (tDH)3 36Write recovery time (tWR)3 37Internal write to read command delay (tWTR)3 38Internal read to precharge command delay (tRTP)3 39Memory Analysis Probe Characteristics40Extension of Byte 41 tRC and Byte 42 tRFC41SDRAM Device Minimum Active to Active/Auto Refresh Time (tRC)3 42SDRAM Device Minimum Auto-Refresh to Active/Auto-Refresh Command Period (tRFC)3 43SDRAM Device Maximum device cycle time (tCKmax)3 44SDRAM Device maximum skew between DQS and DQ signals (tDQSQ)3 45SDRAM Device Mazimum Read DataHold Skew Facktor (tQHS)3 46PLL Relock Time47-xx IDD in SPD(IDD in SPD TG is working to defiene this standard, and a discussion result will be added laterxx-61Reserved62SPD Revision63Checksum for Bytes 0-6264-71Manufacturer’s JEDEC ID Code72Module Manufacturing Location5 73-90Module Part Number5 91-92Module Revision Code5 93-94Module Manufacturing Date5 95-98Module Serial Number99-127Manufacturer’s Specific Data5 128-255Open for customer use1.This will typically be programmed as 128 Bytes.2.This will typically be programmed as 256 Bytes.3.From Datasheet.4.High order bit is Self Refresh “flag”. If set to “1”, the assembly supports self refresh.5.These are optional, in accordance with the JEDEC spec.3. Details of each byteByte 0: Number of Bytes Utilized by Module ManufacturerThis field describes the total number of bytes used by the module manufacturer for the SPD data and any (optional) specific supplier information. The byte count includes the fields for all required and optional data.Line #Number SPD Bytes Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0Hex 0Undefined0000000000 110000000101 220000001002 330000001103 440000010004 550000010105 660000011006 ----------------------1281281000000080 ---------------------------------25425411111110FE 25525511111111FFByte 1: Total Number of Bytes in Serial PD DeviceThis field describes the total size of the serial memory used to hold the Serial Presence Detect data. The fol-lowing lookup table describes the possible serial memory densities (in bytes) along with the corresponding descriptor.Line #Serial Memory Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0Hex 0Undefined0000000000 12Bytes0000000101 24Bytes0000001002 38Bytes0000001103 416Bytes0000010004 532Bytes0000010105 664Bytes0000011006 7128Bytes0000011107 8256Bytes0000100008 9512Bytes0000100109 101024Bytes000010100A 112048Bytes000010110B 124096Bytes000011000C 138192Bytes000011010D 1416384 Bytes000011100E ----------------------254-11111110FE 255-11111111FFByte 2: Memory TypeThis byte describes the fundamental memory type (or technology) implemented on the module.Line #Fundamental Memory Type Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0Hex 0Reserved0000000000 1Standard FPM DRAM0000000101 2EDO0000001002 3Pipelined Nibble0000001103 4SDRAM0000010004 5ROM0000010105 6SGRAM DDR0000011006 7SDRAM DDR0000011107 8DDR-II SDRAM0000100008 -----------253TBD11111101FD 254TBD11111110FE 255TBD11111111FFByte 3: Number of Row AddressesThis field describes the Row addressing on the module. bit 0-3 are used to represent the number of row addresses, bit 4-7 are reserved and should be coded as ‘0’Examples of Byte 3 implementation include:Number of RowAddressesModule Organization Device Used Byte 3 Contents13, RA0-RA1232M x 6432M x 160000 110114, RA0-RA1364M x 6464M x 80000 1110Line #Number of RowAddressesBit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0Hex0Undefined0000000000 110000000101 220000001002 330000001103 440000010004 550000010105 660000011006 770000011107 880000100008 990000100109 1010000010100A 1111000010110B 1212000011000C 1313000011010D 1414000011100E 1515000011110F -----------25425411111110FE 25525511111111FFByte 4: Number of Column AddressesThis field describes the Column addressing on the module. bit 0-3 are used to represent the number of col-umn addresses, bit 4-7 are reserved and should be coded as ‘0’For example:Number of ColumnAddressesModule Organization Device Used Byte 4 Contents10, CA0-CA932M x 6432M x 160000 101010, CA0-CA964M x 6464M x 80000 1010Line #Number of ColumnAddressesBit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0Hex0Undefined0000000000 110000000101 220000001002 330000001103 440000010004 550000010105 660000011006 770000011107 880000100008 990000100109 1010000010100A 1111000010110B 1212000011000C 1313000011010D 1414000011100E 1515000011110F -----------25425411111110FE 25525511111111FFByte 5: Module Attributes - Number of Ranks, Package and HeightThis field describes the number of ranks (Rank: any DRAMs connected to same physical CS) and package on the SDRAM module, and module height. The number of logical banks for the SDRAM device is defined in Byte 17.Bit 7 ~ Bit 5Bit 4Bit 3Bit 2 ~ Bit 0Module Height DRAM Packgage Card on Card# of RanksBit[ 7, 6, 5]000 = less than 25.4mm001 = 25.4mm 010 =g reater t han 25.4mm a nd l ess t han 30 m m011 = 30.0mm100 = 30.5mm101 = greater than 30.5 mm others :reserved 1 = stack0 = planar1 = yes0 = noBit [2, 1, 0] :000 = 1rank001 = 2ranks010 = 3ranks011 = 4 ranks......111 = 8ranksByte 6: Module Data WidthByte 6 is used to designate the module’s data width. For example:If the module’s Data Width is:and Byte 6 is:640100 0000720100 1000Line #Data Width Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0Hex 000000000000 -----------32320010000020 33330010000121 -----------36360010010024 -----------64640100000040 -----------72720100100048 -----------80800101000050 -----------1281281000000080 -----------1441441001000090 -----------25425411111110FE 25525511111111FFByte 7: ReservedByte 8: Voltage Interface Level of this assemblyThis field describes the module’s voltage interface.Line #Interface Levels Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0Hex 0TTL/5V tolerant00000000001 LVTTL (not 5V tolerant)00000001012HSTL1.5V0000001002 3SSTL3.3V0000001103 4SSTL2.5V0000010004 5SSTL1.8V0000010105 6TBD0000011006 -----------Byte 9: SDRAM Cycle TimeThis byte defines the minimum cycle time for the SDRAM module at the highest CAS Latency, CAS Latency =X, defined in byte 18. If other CAS latencies are supported, then the associated minimum cycle times are not related in this version of the SPD standard. Byte 9, Cycle time for CAS Latency=X, is split into two nib-bles: the higher order nibble (bits 4-7) designates the cycle time to a granularity of 1ns; the value presented by the lower order nibble (bits 0-3) has a granularity of .1ns and is added to the value designated by the higher nibble. In addition, four lines of the lower order nibble are assigned to support +.25,+.33, +.66 and +.75. For example:If bits 7:4 areand bits 3:0 arethen the total time is:00111101(3ns)+ (.75ns)= 3.75nsByte 9, SDRAM Cycle Time, Subfield A: Whole Nanoseconds (Bits 4-7)Line #Cycle Time Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0Hex 0A Undefined 00000_1A 1ns 00011_2A 2ns 00102_3A 3ns 00113_4A 4ns 01004_5A 5ns 01015_6A 6ns 01106_7A 7ns 01117_8A 8ns 10008_9A 9ns 10019_10A 10ns 1010A_11A 11ns 1011B_12A 12ns 1100C_13A 13ns 1101D_14A 14ns 1110E_15A 15ns 1111F_-Undefined11111111FFByte 9, SDRAM Cycle Time Subfield B: Tenths of Nanoseconds (Bits 0-3)Line #Cycle Time Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0Hex 0B +0ns ----0000_01B +.1ns 0001_12B +.2ns 0010_23B +.3ns 0011_34B +.4ns 0100_45B +.5ns 0101_56B +.6ns 0110_67B +.7ns 0111_78B +.8ns 1000_89B +.9ns 1001_910B +.25ns 1010_A 11B +.33ns 1011_B 12B +.66ns 1100_C 13B +.75ns 1101_D ------------Undefined11111111FFSee Subfield Table BSee Subfield Table BByte 10: SDRAM Access from Clock (t AC )This byte defines the maximum clock to data out for the SDRAM module. This is the Clock to data out speci-fication at the highest given CAS Latency specified in byte 18 of this SPD specification. If other CAS latencies are supported, then the associated Maximum Clock Access times are not related in this version of the SPD standard. The byte is split into two nibbles: the higher order nibble (bits 4-7) designate the access time to a granularity of 0.1ns; the value presented by the lower order nibble (bits 0-3) has the granularity of .01ns and is added to the value designated by the higher nibble. For example:if bits 7:4 areand bits 3:0 are then the total time is:00110101(0.3ns)+ (0.05ns)= 0.35nsByte 10: SDRAM Access from Clock, Subfield A: Tenths of Nanoseconds (Bits 4-7)Line #Access from ClockBit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0Hex 0A Undefined 00000_1A .1ns 00011_2A .2ns 00102_3A .3ns 00113_4A .4ns 01004_5A .5ns 01015_6A .6ns 01106_7A .7ns 01117_8A .8ns 10008_9A .9ns 10019_10A RFU 1010A_11A -1011--Undefined11111111FFByte 10: SDRAM Access from Clock Subfield B: Hundredths of Nanoseconds (Bits 0-3)Line #Access from ClockBit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0Hex 0B +0ns 0000_01B +.01ns 0001_12B +.02ns 0010_23B +.03ns 0011_34B +.04ns 0100_45B +.05ns 0101_56B +.06ns 0110_67B +.07ns 0111_78B +.08ns 1000_89B +.09ns 1001_910B RFU 1010_A 11B –----------Undefined11111111FFSee Subfield BSee Subfield AByte 11: DIMM Configuration TypeThis byte describes the module’s error detection and/or correction scheme.Line #Error Detection/Correction Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0Hex 0None0000000000 1Parity0000000101 2ECC0000001002 3TBD0000001103 4TBD0000010004 5TBD0000010105 6TBD0000011006 ----------------------Byte 12: Refresh RateThis byte describes the module’s refresh rate.Line #Refresh Period Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0Hex 0Normal (15.625 us)0000000000 1Reduced (.25x)...3.9us0000000101 2Reduced (.5x)...7.8us0000001002 3Extended (2x)...31.3us0000001103 4Extended (4x)...62.5us0000010004 5Extended (8x)...125us0000010105 6TBD0000011006 7TBD0000011107 ----------------------Byte 13: Primary SDRAM WidthBits 0-7 of this byte indicate the width of the primary data SDRAM. The primary SDRAM is that which is used for data; examples of primary (data) SDRAM widths are x4, x8, x16, and x32. Note that if the module is made with SDRAMs which provide for data and error checking, e.g. x9, x18, and x36, then it is also designated in this field.This table contains examples of SDRAM DIMMModule Width Primary SDRAMWidthError CheckingSDRAM WidthPossible (512Mbbased) ModuleDensityByte 13Contentsx72x8x8512MB0000 1000x72x16x16256MB0001 0000x72x8x161024MB0000 1000Line #SDRAM Data Width Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0Hex 0Undefined0000000000 110000000101 220000001002 330000001103 440000010004 550000010105 660000011006 770000011107 880000100008 990000100109 1010000010100A 1111000010110B 1212000011000C 1313000011010D 1414000011100E 1515000011110F -----------25425411111110FE 25525511111111FFByte 14: Error Checking SDRAM WidthIf the module incorporates error checking and if the primary data SDRAM does not include these bits — i.e. there are separate error checking SDRAMs — then the error checking SDRAM’s width is expressed in this byte. Bits 0-7 of this byte relate the error checking SDRAM’s width.The following table contains examples of error checking SDRAM widthsModule Width Primary SDRAMWidthError CheckingSDRAM WidthPossible (512Mbbased) ModuleDensityByte 14Contentsx72x8x8512MB0000 1000 x72x16x16256MB0001 0000 x72x8x161024MB0001 0000Line #Error CheckingSDRAM WidthBit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0Hex0Undefined0000000000 110000000101 220000001002 330000001103 440000010004 550000010105 660000011006 770000011107 880000100008 990000100109 1010000010100A 1111000010110B 1212000011000C 1313000011010D 1414000011100E 1515000011110F -----------25425411111110FE 25525511111111FFByte 15: ReservedByte 16: SDRAM Device Attributes – Burst Lengths SupportedThis byte describes which various programmable burst lengths are supported by the devices on the module. If the bit is “1”, then that Burst Length is supported on the module; if the bit is “0”, then that Burst Length is not supported by the module.Byte 17: SDRAM Device Attributes – Number of Banks on SDRAM DeviceThis byte details how many banks are on each SDRAM installed onto the module.Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0TBD TBD TBD TBD Burst Length= 8Burst Length= 4TBD TBD 01 or 01 or 01 = Supported on this assembly, 0 = Not supported on this assembly.Line #Number of BanksBit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0Hex 0Undefined0000000000----------------------440000010004-----------880000100008-----------25525511111111FFByte 18: SDRAM Device Attributes – CAS LatencyThis byte describes which of the programmable CAS latencies are acceptable for the module. If the bit is “1”, then that CAS latency is supported on the module; if the bit is “0”, then that CAS latency is not supported by the module.Byte 19: ReservedByte 20: DIMM type informationThis byte describes the DIMM type information of DDR2 SDRAM .Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0TBD TBD CAS Latency= 5CAS Latency= 4CAS Latency= 3CAS Latency= 2TBD TBD 01 or 01 or 01 or 01 or 01 = Supported on this assembly; 0 = Not supported on this assembly.Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0TBD TBD Mini-UDIMM (82.0 mm)*Mini-RDIMM (82.0 mm)*Micro-DIMM (45.5 mm)*SO-DIMM (67.6 mm)*Regular UDIMM (133.35 mm)*Regular RDIMM (133.35 mm)*1 or 01 or 01 or 01 or 01 or 01 or 01 = Supported on this assembly; 0 = Not supported on this assembly.* numbers shown are module widthByte 21: SDRAM Modules AttributesThis byte depicts various aspects of the module. It details various unrelated but critical elements pertinent to the module. A given module characteristic is detailed in the designated bit; if the aspect is TRUE, then the bit is “1”. Conversely, if the aspect is FALSE, the designated bit is “0”.Byte 22: SDRAM Device Attributes – GeneralThis byte depicts various aspects of the SDRAMs on the module. It details various unrelated but critical ele-ments pertinent to the SDRAMs. A given SDRAM characteristic is detailed in the designated bit; if the aspect is TRUE, then the bit is “1”. Conversely, if the aspect is FALSE, the designated bit is “0”.Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0TBD *Analysis probeinstalledTBD FET Switch External Enable TBD TBD TBD TBD 01 or 01 or 01 = Included on this assembly; 0 = Not included on this assembly.* All normal DIMMs will set bit 6 to 0. If bit 6 is set to a 1 this indicates that a memory bus analysis probe is installed in the slot. The BIOS should ensure that Address and Command bus clocks remain turned for that slot and byte 39 may be optionally consulted todetermine probe characteristicsBit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0TBD TBD TBD TBD TBD TBD TBD Supports Weak Driver 01 or 0Byte 23: Minimum Clock Cycle Time at Reduced CAS Latency, X- 1The highest CAS latency identified in byte 18 is X and the timing values associated with CAS latency ‘X’ are found at byte locations 9 and 10. Byte 23 denotes the minimum cycle time at CAS latency X- 1.For example, if byte 18 denotes CAS latencies of 3 to 4, then X is 4 and X-1 is 3. Byte 23 then denotes the minimum cycle time at CAS latency 3.Byte 23 is split into two nibbles: the higher order nibble (bits 4-7) designate the cycle time to a granularity of 1ns; the value presented by the lower order nibble (bits 0-3) has a granularity of .1ns and is added to the value designated by the higher nibble. In addition, four lines of the lower order nibble are assigned to support +0.25,+.33, +.66 and +.75. For example:if bits 7:4 areand bits 3:0 arethen the total time is00111011(3ns)+ (.75ns)=3.75nsByte 23, SDRAM Minimum Cycle Time @ CL X-1, Subfield A: Whole Nanoseconds (Bits 4-7)Line #Access from ClockBit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0Hex 0A Undefined 00000_1A 1ns/16ns 00011_2A 2ns/17ns 00102_3A 3ns 00113_4A 4ns 01004_5A 5ns 01015_6A 6ns 01106_7A 7ns 01117_8A 8ns 10008_9A 9ns 10019_10A 10ns 1010A_11A 11ns 1011B_12A 12ns 1100C_13A 13ns 1101D_14A 14ns 1110E_15A15ns1111F_Byte 23, SDRAM Minimum Cycle Time @ CL X-1, Subfield B: Tenths of Nanoseconds (Bits 0-3)Line #Access from ClockBit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0Hex 0B +0ns 0000_01B +.1ns 0001_12B +.2ns 0010_23B +.3ns 0011_34B +.4ns 0100_45B +.5ns 0101_56B +.6ns 0110_67B +.7ns 0111_78B +.8ns 1000_89B +.9ns 1001_910B +.25ns 1010_A 11B +.33ns 1011_B 12B +.66ns 1100_C 13B +.75ns 1101_D -..........-Undefined11111111FFSee Subfield BSee Subfield AByte 24: Maximum Data Access Time (t AC ) from Clock at CL X- 1The highest CAS latency identified in byte 18 is X. Byte 23 denotes the maximum access time from Clock at CAS latency X- 1.For example, if byte 18 denotes supported CAS latencies of 3 to 4, then X is 4 and X-1 is 3. Byte 24 then denotes the maximum clock access time from CK at CAS latency 3.Byte 24 is split into two nibbles: the higher order nibble (bits 4-7) designate the access time to a granularity of 0.1ns; the value presented by the lower order nibble (bits 0-3) has the granularity of .01ns and is added to the value designated by the higher nibble. For example:if bits 7:4 are and bits 3:0 are then the total time is:00110101(0.3 ns)+ (0.05 ns)= 0.35 nsByte 24: SDRAM Access from Clock @ X-1, Subfield A: Tenths of Nanoseconds (Bits 4-7)Line #Access from ClockBit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0Hex 0A Undefined 00000_1A .1ns 00011_2A .2ns 00102_3A .3ns 00113_4A .4ns 01004_5A .5ns 01015_6A .6ns 01106_7A .7ns 01117_8A .8ns 10008_9A .9ns 10019_10A RFU 1010A_11A -1011--Undefined11111111FFByte 24: SDRAM Access from Clock @ X-1, Subfield B: Hundredths of Nanoseconds (Bits 0-3)Line #Access from ClockBit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0Hex 0B +0ns 0000_01B +.01ns 0001_12B +.02ns 0010_23B +.03ns 0011_34B +.04ns 0100_45B +.05ns 0101_56B +.06ns 0110_67B +.07ns 0111_78B +.08ns 1000_89B +.09ns 1001_910B RFU 1010_A 11B –----------Undefined11111111FFSee Subfield BSee Subfield AByte 25: Minimum Clock Cycle Time at CL X-2The highest CAS latency identified in byte 18 is X. Byte 25 denotes the minimum cycle time at CAS latency X-2.For example, if byte 18 denotes CAS latencies of 3 to 5, then X is 5 and X-2 is 3. Byte 25 then denotes the minimum cycle time at CAS latency 3.Byte 25 is split into two nibbles: the higher order nibble (bits 4-7) designates the cycle time to a granularity of 1ns; the value presented by the lower order nibble (bits 0-3) has a granularity of .1ns and is added to the value designated by the higher order nibble. In addition, four lines of the lower order nibble are assigned to support +0.25,+.33, +.66 and +.75. For example:if bits 7:2 areand bits 1:0 arethen the total time is00111011(3 ns)+ (.75 ns)= 3.75 nsByte 25, SDRAM Minimum Cycle Time @ CL X-2, Subfield A: Whole Nanoseconds (Bits 4-7)Line #Access from ClockBit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0Hex 0A Undefined 00000_1A 1ns/16ns 00011_2A 2ns/17ns 00102_3A 3ns 00113_4A 4ns 01004_5A 5ns 01015_6A 6ns 01106_7A 7ns 01117_8A 8ns 10008_9A 9ns 10019_10A 10ns 1010A_11A 11ns 1011B_12A 12ns 1100C_13A 13ns 1101D_14A 14ns 1110E_15A15ns1111F_Byte 25, SDRAM Minimum Cycle Time @ CL X-2, Subfield B: Tenths of Nanoseconds (Bits 0-3)Line #Access from ClockBit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0Hex 0B +0ns 0000_01B +.1ns 0001_12B +.2ns 0010_23B +.3ns 0011_34B +.4ns 0100_45B +.5ns 0101_56B +.6ns 0110_67B +.7ns 0111_78B +.8ns 1000_89B +.9ns 1001_910B +.25ns 1010_A 11B +.33ns 1011_B 12B +.66ns 1100_C 13B +.75ns 1101_D -..........-Undefined11111111FFSee Subfield BSee Subfield AByte 26: Maximum Data Access Time (t AC ) from Clock at CL X-2The highest CAS latency identified in byte 18 is X. Byte 26 denotes the maximum access time from Clock at CAS latency X-2.For example, if byte 18 denotes supported CAS latencies of 3 to 5, then X is 5 and X-2 is 3. Byte 26 then denotes the maximum data access time from CK at CAS latency 3.Byte 26 is split into two nibbles: the higher order nibble (bits 4-7) designate the access time to a granularity of 0.1ns; the value presented by the lower order nibble (bits 0-3) has the granularity of .01ns and is added to the value designated by the higher nibble. For example:if bits 7:4 areand bits 3:0 are then the total time is:00110101(0.3ns)+ (0.05ns)= 0.35nsByte 26: SDRAM Access from Clock @ CL = X-2, Subfield A: Tenths of Nanoseconds (Bits 4-7)Line #Access from ClockBit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0Hex 0A Undefined 00000_1A .1ns 00011_2A .2ns 00102_3A .3ns 00113_4A .4ns 01004_5A .5ns 01015_6A .6ns 01106_7A .7ns 01117_8A .8ns 10008_9A .9ns 10019_10A RFU 1010A_11A -1011--Undefined11111111FFByte 26: SDRAM Access from Clock @ CL = X-2, Subfield B: Hundredths of Nanoseconds (Bits 0-3)Line #Access from ClockBit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0Hex 0B +0ns 0000_01B +.01ns 0001_12B +.02ns 0010_23B +.03ns 0011_34B +.04ns 0100_45B +.05ns 0101_56B +.06ns 0110_67B +.07ns 0111_78B +.08ns 1000_89B +.09ns 1001_910B RFU 1010_A 11B –----------Undefined11111111FFSee Subfield BSee Subfield AByte 27: Minimum Row Precharge Time (t RP )Byte 27 is used to designate the module’s minimum Row Precharge time.Byte 27 is split into two pieces: the higher order bits (bits 2-7) designate the time to a granularity of 1ns; the value presented by the lower order bits (bits 0-1) has a granularity of .25ns and is added to the value desig-nated by the higher bits. For example:if bits 7:2 are and bits 1:0 arethen the total time is001111(15ns)00+(0.0ns)= 15.0ns 010010(18ns)11+(.75ns)= 18.75nsByte 27, SDRAM Minimum t RP Time, Subfield A: Whole Nanoseconds (Bits 2-7)Nanoseconds Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0Undefined 0000001ns 0000012ns 0000103ns 0000114ns 0001005ns 0001016ns 0001107ns 0001118ns 0010009ns 00100110ns 001010::::::::::::::61ns 11110162ns 11111063ns111111Byte 27, SDRAM Minimum t RP Time, Subfield B: Quarters of Nanoseconds (Bits 0-1)Access from ClockBit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0+0ns 00+.25ns 01+.50ns 10+.75ns11See Subfield B See Subfield AByte 28: Minimum Row Active to Row Active Delay (t RRD )This field describes the minimum required delay between different row activations.Byte 28 is split into two pieces: the higher order bits (bits 2-7) designate the time to a granularity of 1ns; the value presented by the lower order bits (bits 0-1) has a granularity of .25ns and is added to the value desig-nated by the higher bits. For example:if bits 7:2 are and bits 1:0 arethen the total time is000111(7ns)10+(0.5ns)= 7.5ns 001010(10ns)00+(0.0ns)= 10nsByte 28, SDRAM Minimum t RRD Time, Subfield A: Whole Nanoseconds (Bits 2-7)Nanoseconds Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0Undefined 0000001ns 0000012ns 0000103ns 0000114ns 0001005ns 0001016ns 0001107ns 0001118ns 0010009ns 00100110ns 001010::::::::::::::61ns 11110162ns 11111063ns111111Byte 28, SDRAM Minimum t RRD Time, Subfield B: Quarters of Nanoseconds (Bits 0-1)Access from ClockBit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0+0ns 00+.25ns 01+.50ns 10+.75ns11See Subfield B See Subfield AByte 29: Minimum RAS to CAS Delay (t RCD )This byte describes the minimum delay required between assertions of RAS and CAS.Byte 29 is split into two pieces: the higher order bits (bits 2-7) designate the time to a granularity of 1ns; the value presented by the lower order bits (bits 0-1) has a granularity of .25ns and is added to the value desig-nated by the higher bits. For example:if bits 7:2 are and bits 1:0 arethen the total time is001111(15ns)00+(0.0ns)= 15.0ns 010010(18ns)11+(.75ns)= 18.75nsByte 29, SDRAM Minimum t RCD Time, Subfield A: Whole Nanoseconds (Bits 2-7)Nanoseconds Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0Undefined 0000001ns 0000012ns 0000103ns 0000114ns 0001005ns 0001016ns 0001107ns 0001118ns 0010009ns 00100110ns 001010::::::::::::::61ns 11110162ns 11111063ns111111Byte 29, SDRAM Minimum t RCD Time, Subfield B: Quarters of Nanoseconds (Bits 0-1)Access from ClockBit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0+0ns 00+.25ns 01+.50ns 10+.75ns11See Subfield B See Subfield AByte 30: Minimum Active to Precharge Time (t RAS)This byte identifies the minimum active to precharge time.Minimum Active toBit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0Hex Precharge Time (ns)00000 Undefined00001000000010120000001002....................25000110011926000110101A27000110111B28000111001C29000111011D30000111101E31000111111F320010000020330010000121340010001022350010001123360010010024....................127011111117F1281000000080....................25411111110FE25511111111FF。
三星内存颗粒规格指标详解
三星内存颗粒规格指标详解尽管市面上的内存品牌十分繁杂,但采用的内存颗粒不外乎三星、现代、英飞凌等这几家,其中三星的内存颗粒所占比重是极大的。
搞清楚三星内存颗粒的规格参数与性能指标,在内存的选购中是极为重要的。
当然,对内存而言,并不是只要采用同样型号的颗粒,内存的性能指标就会相同。
因为即便对同一型号的内存颗粒而言,也有等级之分,不同等级的颗粒,其性能也会有所区别,同时,更重要的,内存生产厂商的设计能力与生产工艺也会在很大程度上影响内存的性能与指标。
因此,对内存颗粒的性能指标,只能在我们选购内存时作为参考,而不要将其绝对化。
三星DDR内存颗粒面向中低端市场的内存颗粒三星TCB3颗粒TCB3是三星早期推出的6ns DDR颗粒,可以稳定地工作在PC2700,2-2-2-X 的时序,参数非常优秀。
此外它同样可以工作在PC3200,但时序需要相应地调低,200MHz时的时序为2-3-3-6,虽不能说优秀但表现尚可。
TCB3颗粒的频率极限大致在230MHz左右,这对于一款默认为166MHz的内存来说,超频幅度很大。
TCB3对于电压并不太敏感,3.0V电压下频率提升也不是很大。
目前该款颗粒多见于低端内存。
三星TCCC颗粒TCCC是三星TCC系列(PC3200)里面编号为“C”的颗粒,表示其PC3200时预设CAS值为3。
TCCC可以工作在250-260MHz,3-4-4-8的时序,而默认200MHz 时可以保持2.5-3-3-6的时序,由于TCCC颗粒的售价比较便宜,因此和现代的D43一起成为性价比出色的代表。
此外也有不少DDR 500内存同样采用了TCCC颗粒,不过由于已经接近极限频率,留下的超频空间很小。
电压对于TCCC颗粒的超频有一定的影响,但在2.8V时已经基本可以达到最高频率。
三星TCC4颗粒TCC4是三星的另外一款5ns的DDR400内存颗粒,不过并不常见,在一些品牌的PC3200低端内存甚至是PC2700内存上面可以看到它。
内存SPD的介绍和刷新
SPD简介SPD是SERIAL PRESENCE DETECT的缩写,中文意思是模组存在的串行检测。
也即是通过上面讲的IIC串行接口的EEPROM堆内存插槽中的模组存在的信息检查。
这样的话,模组有关的信息都必须纪录在EEPROM中.习惯的,我们把这颗EEPROM IC就称为SPD了。
为Serial Presence Detect 的缩写,它是烧录在EEPROM内的码,以往开机时BIOS必须侦测memory,但有了SPD就不必再去作侦测的动作,而由BIOS直接读取SPD取得内存的相关资料。
当计算机开机时,串行存在检查(SPD)为存储在同步动态随机访问存储器(SDRAM)内存模块中电可擦除可编程只读存储器(EEPROM)芯片上的信息,它告诉基本输入/输出系统(BIOS)模块的大小、数据宽度、速度以及电压。
BIOS使用该信息来合适配置内存以达到最好的可靠性和性能。
如果内存模块没有SPD,BIOS则假定内存模块的信息,在一些内存中,这么处理不会有问题,但是SDRAM存储器必须具有SPD,否则计算机可能根本不启动,如果启动了,假定的信息可能导致致命异常错误。
SPD是一组关于内存模组的配置信息,如P-Bank数量、电压、行地址/列地址数量、位宽、各种主要操作时序(如CL、tRCD、tRP、tRAS等)……它们存放在一个容量为256字节的EEPROM(Electrically Erasable Programmable Read Only Memory,电擦除可编程只读存储器)中。
实际上在SPD中,JEDEC规定的标准信息只用了128个字节(还有128字节,属于厂商自己的专用区)。
一般的,一个字节至少对应一种参数,有的参数需要多个字节来表述(如产品续列号,生产商在JEDEC组织中的代码)。
其中,一个字节中的每个bit都可能用来表示这一参数的具体数值。
由于SPD的信息很多,在此就不一一列出了,有兴趣的读者可以参阅相关文档。
DDR2百度百科解析说明
DDR2 百度百科解析说明DDR2内存的频率目录DDR2了在时钟的上升延和下降延同时进行数据传输的基本方式,但DDR2拥有两倍于DDR的预读取系统命令数据的能力。
也就是说,在同样100MHz的工作频率下,DDR的实际频率为200MHz,而DDR2则可以达到400MHz。
这样也就出现了另一个问题:在同等工作频率的DDR和DDR2内存中,后者的内存延时要慢于前者。
举例来说,DDR 400和DDR2-400具有相同的延迟,而后者具有高一倍的带宽。
实际上,DDR2-400和DDR 400具有相同的带宽,它们都是3.2GB/s,但是DDR400的核心工作频率是200MHz,而DDR2-400的核心工作频率是100MHz,也就是说DDR2-400的延迟要高于DDR400。
封装和发热量DDR2内存技术最大的突破点其实不在于用户们所认为的两倍于DDR的传输能力,属龙的和什么属相最配,而是在采用更低发热量、更低功耗的情况下,DDR2可以获得更快的频率提升,突破标准DDR 的400MHZ限制。
DDR内存通常采用TSOP芯片封装形式,这种封装形式可以很好的工作在200MHz上,当频率更高时,它过长的管脚就会产生很高的阻抗和寄生电容,这会影响它的稳定性和频率提升的难度。
这也就是DDR 的核心频率很难突破275MHZ的原因。
而DDR2内存均采用FBGA封装形式。
不同于目前广泛应用的TSOP封装形式,FBGA封装提供了更好的电气性能与散热性,为DDR2内存的稳定工作与未来频率的发展提供了良好的保障。
DDR2内存采用1.8V电压,相对于DDR标准的2.5V,降低了不少,从而提供了明显的更小的功耗与更小的发热量,这一点的变化是意义重大的。
双通道内存的搭建需要INTEL芯片组的支持,内存的CAS延迟、容量需要相同。
不过,INTEL的弹性双通道的出现使双通道的形成条件更加宽松,不同容量的内存甚至都能组建双通道除了以上所说的区别外,DDR2还引入了三项新的技术,它们是OCD、ODT和Post CAS。
内存SPD芯片替换及修改
rammable ROM 电可擦写可编程只读存储器), 容量为256
字节,里面主要保存了该内存的相关资料,如容量、芯 片厂商、内存模组厂商、工作速度等。SPD的内容一般由 内存模组制造
商写入。支持SPD的主板在启动时自动检测SPD中的资料, 并以此设定内存的工作参数。 启动计算机后,主板BIOS 就会读取SPD中的信息,主板北桥芯片组就会根据这些参 数信息来自动配置
换,以达到升级内存性能的目的呢。答案是肯定的,下 面我们使用Hyundai DDR266散装内存条及Ramaxel DDR266 内存做一详细说明(注意:这里所用的内存,必须是生 产厂家
不同,但是内存使用的内存颗粒的编号及内存使用内存
颗粒的数量必须一样,这也是修改的关键;在此文内, 只是介绍SPD替换及修改的方法,其它请网友自行测试) 即然要对SPD芯片进行读写,因
稳定,甚至死机。因此,很多普通内存或兼容内存厂商 为了避免兼容性问题,一般都将SPD中的内存工作参数设 置得较为保守,从而限制了内存性能的充分发挥。更有 甚者,一些不法厂商通过专门的读写
设备去更改SPD信息,以骗过计算机的检测,得出与实际 不一致的数据,从而欺骗消费者。 即然SPD芯片与主板 BIOS有相似的功能,那么我们是否可以将不同生产厂家, 相同数据的内存SPD互
说起内存,相信大家都不陌生。不过,大家的目光除了
更多地投放在内存芯片颗粒上之外,很少会注意到内存 PCB(印刷电路板)边上还有一颗体积较小(大约为 3mm×4mm×1.5mm)的芯片
,这就是SPD芯片. SPD是什么?SPD(Serial Presence Detect): SPD是一颗8针的EEPROM(Electrically Erasable
! 当然,SPD信息,并不是只能单纯的修改相应的厂家标 识,下面我们使用一个标准的SPD信息,介绍一下其相应 的字节所代表的含义。点击图片可看大图 其上是代表SPD 中各字段的含义。 D
内存SPD芯片替换及修改
内存SPD芯片替换及修改说起内存,相信大家都不陌生。
不过,大家的目光除了更多地投放在内存芯片颗粒上之外,很少会注意到内存PCB(印刷电路板)边上还有一颗体积较小(大约为3mm×4mm×1.5mm)的芯片,这就是SPD芯片.SPD是什么?SPD(Serial Presence Detect内存内部序号检测), SPD是一颗8针的EEPROM(Electrically Erasable Programmable ROM 电可擦写可编程只读存储器), 容量为256字节。
SPD信息一般都是在出厂前,由内存制造商根据内存芯片的实际性能写入到ROM芯片中,记录了该内存的许多重要信息,诸如内存的芯片及模组厂商、工作频率、工作电压、速度、容量、电压与行、列地址带宽等参数。
若在BIOS设置界面中,将内存设置选项设为“By SPD”,启动计算机后,主板BIOS就会读取SPD中的信息,主板北桥芯片组就会根据这些参数信息来自动配置相应的内存工作时序与控制寄存器,从而可以充分发挥内存条的性能。
当主板从内存条中不能检测到SPD信息时,它就只能提供一个较为保守的配置。
从某种意义上来说,SPD芯片是识别内存品牌的一个重要标志。
如果SPD内的参数值设置得不合理,不但不能起到优化内存的作用,反而还会引起系统工作不稳定,甚至死机。
因此,很多普通内存或兼容内存厂商为了避免兼容性问题,一般都将SPD中的内存工作参数设置得较为保守,从而限制了内存性能的充分发挥。
更有甚者,一些不法厂商通过专门的读写设备去更改SPD信息,以骗过计算机的检测,得出与实际不一致的数据,从而欺骗消费者。
即然SPD芯片与主板BIOS有相似的功能,那么我们是否可以将不同生产厂家,相同数据的内存SPD互换,以达到升级内存性能的目的呢,答案是肯定的。
下面我们将使用Hyundai DDR266散装内存条及Ramaxel DDR266内存做一下详细说明(注意:这里所用的内存,必须是生产厂家不同,但是内存使用的内存颗粒的编号及内存使用内存颗粒的数量必须一样,这也是修改的关键;在此文内,只是介绍SPD替换及修改的方法,其它请网友自行测试)即然要对SPD芯片进行读写,因此就要用到编程器;而且由于SPD芯片是焊接在内存电路板上的。
三星金条内存 编码完全攻略之DDR2
编者按:我们并非硬件的芯片级玩家,所以我们并不了解硬件的核心技术;我们并非DIY超级发烧友,所以我们并不追求更高端的DIY硬件。
对于一款硬件产品,我们要掌握其性能指标,才能让其在我们的应用中发挥较好的效果。
内存,大家在选购时考虑最多的就是容量、频率,很少从编码上去核对是否与标准的参数相同。
说实话,很多内存的经销商都不了解内存编码每一个字母、每一个数字代表的含义,往往他们也是告知购买者也只是容量和频率。
难道经销商告知的和卖出的就是原创内存吗?不销售假冒、打磨的内存吗?今天小编就给大家完全攻略全球最大的内存制造、OEM品牌厂商三星的金条内存编码,因为三星除了自有品牌外,也销售颗粒,这样市场原装内存与贴牌或使用三星颗粒的其他品牌内存很难识别,要知道三星金条可是品质过硬的中高端内存,商家为谋取暴利,往往会用一些欺骗手段的。
一、内存颗粒的编码排序结构三星金条DDR2内存编码结构上图是目前主流的三星金条DDR2内存的颗粒编码排序,一长串的字母+字符,让大家很难去理解各编码代表的含义,从整体看,所有的字母、数字组合分成了11段,下面小编就一一解释。
在三星金条的内存颗粒上我们会看到两类品牌标识:SAMSUNG和SEC(“三星电子”的英文缩写),这都是三星官方英文标识。
SAMSUNG由于字母较多,一般用在TSOP封装的长方形颗粒上,而SEC为缩写,多用在mBGA封装的小正方形颗粒上。
第一段字母是每个内存颗粒品牌的标识,“K”为三星半导体存储颗粒的标识,只要是采用三星制造、销售的内存颗粒,编码均以K开头;第二段数字是“4”,这个位置永远是数字4,表示这是DRAM内存;第三段字母是内存颗粒的类型,“S”表示SDRAM、“H”表示DDR、“T”表示DDR2 DRAM、“D”表示GDDR1(显存颗粒);第四段含两个字符,表示单颗内存颗粒的容量。
56:256Mb、51:512Mb、1G:1Gb、2G:2Gb,注意这是小写的“b”(位),芯片级多以“b”表示容量,换算成我们熟悉的“B”(字节)时,需要除以8;第五段含两个数字,表示芯片位数,有04:×4、06:×4 Stack、07:×8 Stack、08:×8、16:×16、26:×4 Stack(JEDEC)、27:×8 Stack(JEDEC)几种规格。
常用内存命名规则
常见内存芯片命名2010-06-08 21:13:23| 分类:个人日记| 标签:|字号大中小订阅三星(Samsung)内存具体含义解释:例:SAMSUNGK4S283232E-TC60 SDRAMK4H280838B-TCB0 DDRK4T51163QE-HCE6 DDR2K4B1G164E-HCE7 DDR3主要含义:第1位——芯片功能K,代表是内存芯片。
第2位——芯片类型4,代表DRAM。
9代表NAND FLASH第3位——芯片的更进一步的类型说明,S代表SDRAM、H代表DDR、T代表DDR2、B代表DDR3、G代表SGRAM。
第4、5位——容量和刷新速率,容量相同的内存采用不同的刷新速率,也会使用不同的编号。
64、62、63、65、66、67、6A代表64Mbit的容量;28、27、2A 代表128Mbit的容量;56、55、57、5A代表256Mbit的容量;51代表512Mbit 的容量。
第6、7位——数据线引脚个数,08代表8位数据;16代表16位数据;32代表32位数据;64代表64位数据。
第11位——连线“-”。
第14、15位——芯片的速率,如60为6ns;70为7ns;7B为7.5ns(CL=3);7C 为7.5ns(CL=2);80为8ns;10为10ns(66MHz)。
知道了内存颗粒编码主要数位的含义,拿到一个内存条后就非常容易计算出它的容量。
例如一条三星DDR内存,使用18片SAMSUNGK4H280838B-TCB0颗粒封装。
颗粒编号第4、5位“28”代表该颗粒是128Mbits,第6、7位“08”代表该颗粒是8位数据带宽,这样我们可以计算出该内存条的容量是128Mbits(兆数位)×16片/8bits=256MB(兆字节)。
注:“bit”为“数位”,“B”即字节“byte”,一个字节为8位则计算时除以8。
关于内存容量的计算,文中所举的例子中有两种情况:一种是非ECC内存,每8片8位数据宽度的颗粒就可以组成一条内存;另一种ECC内存,在每64位数据之后,还增加了8位的ECC校验码。
DDR2操作时序规范(三星)
DDR2 SDRAM
DDR2 SDRAM 操作时序规范
Device Operations
基本功能
简单状态转换图:
DDR2 SDRAM
OCD 校准
设定 MRS EMRS
初始化
CKEL
自我刷新
SRF CKEH PR
(E)MRS
空闲
所有蔟已 预充电完成
REF
ACT
CKEL CKEH
(为了发布DLL 复位命令, 需要将 A8拉高 并使 BA0-1为低) 9. 发布预充电所有簇命令。 10. 至少发布两次自动刷新命令 . 11. 将 A8拉低,发布模式寄存器设定命令(MRS)对芯片进行初始化操作. (也就是不对 DLL复位,编程芯片的操作参数) 12.在第8步之后至少过200个时钟周期,执行OCD 校准 ( 片外驱动电阻调校 ).
tIS
MRS
EMRS
EMRS
ANY CMD
tMRD
Follow OCD
tOIT
Flowchart
OCD Default
OCD CAL. MODE EXIT
编程(扩展)模式寄存器
为了增强使用灵活性, 突发长度, 突发类型, /CAS延迟, DLL 复位功能, 写恢复时间(WR) 都是可以定义的变量。通过预先编程模式寄存器就可以设定它们 . 除 此之外, DLL 禁止功能, 驱动电阻, 附加 CAS 延迟, ODT(终结电阻), 单线选通, 和 OCD(片外驱动电阻调整) 同样也是可以定义的变量,通过预先编程扩展 模式寄存器就可以设定它们 . 模式寄存器或者扩展模式寄存器的内容可以通过对他们进行重新设定来改变它们 .如果用户只是想改变寄存器中某些特定的位 , 也必须通过MRS或EMRS命令对全部寄存器位进行重新设定 。 MRS, EMRS和t DLL 复位这些命令并不会影响存储阵列的内容 ,这意味着上电后的任意时间执行初始化操作不会改变存储的内容 。
详解芯片颗类, SPD好坏及刷写 ,RST下载和详解 金手指的焊接
详解芯片颗类,SPD好坏及刷写,RST下载和详解金手指的焊接三星:K4H280838F—TCB3第一位数字是K理解为:内存第二位数字是4理解为:(俺也不知道)第三位数字是H理解为:DDR类型第四位加第五位理解为:128M容量第6位加第7位理解为:8位第14位加第15位理解为:DDR333 (DDR266的AA或A0或BO)DDR400的CC来表示V58C2256804SAT5第一位V :茂矽第二三位:DDR25680 :代换颗类必须前四位一致。
估计是:256M 8位。
我这种内存是不修的。
修也没颗类代换。
我们那里市场占有率太小。
茂矽(图式是:有个大半园,左上角有几个方框组成正方形)HY5DU56822BT-JHY:现代的颗类56:256M8:8位J:DDR333 <H:266 K:DDR266 DDR266 L:DDR200 D4:DDR400 D43:DDR400 D43市场上不怎么常见,一般ECC用的多此为HY内存。
HYB25D256800BT-6HYB:我一看到颗类是HYB的就认定为英飞零(字忘了怎么打的了)的别把他当成HY的了!25:此内存的工作电压:2。
5V 3。
3V的中39 18的是:1。
8VD:DDR (T代表DDR2,S代表SD)256: 256M80: 8位(16就代表16位)-6: DDR333 (7和7F和7。
5都代表DDR266(这三个颗类更换内存时都可以随便代换))英飞凌代号:Infineon注:此信息为英飞凌颗类的基本信息镁光我接触它的时候都是DDR2的,没有怎么见到过DDR1代的产品。
安徽合肥所代理也是这一年才开始受理。
所以占场在我们那占有律比较低(纯属个人观点)镁光的DDR颗类上只有两排文字,一排是:颗类的代码:通过这个代码可以打800电话或上官网查询真假,可以得到一个内存编号下面讲一下SPD信息如何判断问题:SPD信息的判断很简单:我想问一下大家你们修内存用什么主板?我用的是SIS芯片组的。
三星DDR2内存SPD芯片说明
Hex Value CCC CE7 CF7 CE6
80h 08h 08h 0Eh 0Ah 61h 40h 00h 05h 30h 45h 00h 82h 08h 00h 00h 0Ch 08h 3Dh 50h 50h 60h
CD5
CD5
CCC
Note
1 2
+/-0.45ns +/-0.5ns Non parity/ECC 7.8us x8 N/A 4,8 8 banks
Function Supported CE7 CF7 CE6
128bytes 256bytes(2k bit) DDR2 SDRAM 14 10 2 Row, Planar, 30.0mm 64bits SSTL 1.8V 2.5ns +/-0.40ns 3.0ns 3.75ns 5.0ns +/-0.6ns 25h 40h
3,4
5,4,3
6,5,4 X =< 3.80 SODIMM
5,4,3
38h
70h 01h 04h 00h 07h
38h
Analysis probe not installed, FET switch external not enable Supports weak driver, 50Ohm ODT, PASR 3.75ns +/-0.5ns 5.0ns +/-0.6ns 12.5ns 3.0ns +/- 0.45ns 3.75ns +/-0.5ns 15ns 7.5ns 12.5ns 15ns 45ns 1GB 0.175ns 0.25ns 0.05ns 0.125ns 0.20ns 0.27ns 0.10ns 0.17ns 15ns 0.22ns 0.25ns 0.37ns 0.35ns 0.47ns 0.15ns 0.27ns 17h 25h 05h 12h 40ns 32h 3.75ns +/-0.5ns 5.0ns +/-0.6ns 5.0ns +/-0.6ns 3Dh 50h 50h 60h 32h 3Dh 50h 30h 45h
KINGMAX Mars DDRⅡ
KINGMAX Mars DDRⅡ
王丁
【期刊名称】《个人电脑》
【年(卷),期】2005(11)3
【摘要】双通道主板的盛行让内存厂商也获得了更大的商机,从我们近期评测的产品上也可以看出,很多内存厂商也乐于推出两条捆绑在一起的内存套装,KINGMAX Mars DDRⅡ是一款面向Intel 915/925系列芯片组平台的内存套装产品,它包含两条512MB的DDR2-533内存。
该内存为单面设计,采用并不常见的ELPIDA颗粒(64MB×8),默认SPD参数为4-4-12-4,
【总页数】1页(P178-178)
【关键词】KINGMAX;Mars;DDR;Ⅱ;内存;单面设计;主板;存储容量;电脑
【作者】王丁
【作者单位】
【正文语种】中文
【中图分类】TP333
【相关文献】
1.绿色环保独创防伪卓越性能--Kingmax推出"极速战神"Mars系列DDR2内存[J],
2.绿色环保卓越性能——Kingmax“极速战神”Mars 系列DDR2内存 [J], ;
3.Kingmax推出“极速战神”Mars系列DDR2内存 [J], 海子
4.Mars出击:Kingm ax DDRⅡ667全面上市 [J],
5.DDR400价格,DDR433效能:Kingmax DDR433乐透版内存模块 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3,4
5,4,3
6,5,4 X =< 3.80 SODIMM
5,4,3
38h
70h 01h 04h 00h 07h
38h
Analysis probe not installed, FET switch external not enable Supports weak driver, 50Ohm ODT, PASR 3.75ns +/-0.5ns 5.0ns +/-0.6ns 12.5ns 3.0ns +/- 0.45ns 3.75ns +/-0.5ns 15ns 7.5ns 12.5ns 15ns 45ns 1GB 0.175ns 0.25ns 0.05ns 0.125ns 0.20ns 0.27ns 0.10ns 0.17ns 15ns 0.22ns 0.25ns 0.37ns 0.35ns 0.47ns 0.15ns 0.27ns 17h 25h 05h 12h 40ns 32h 3.75ns +/-0.5ns 5.0ns +/-0.6ns 5.0ns +/-0.6ns 3Dh 50h 50h 60h 32h 3Dh 50h 30h 45h
Function described
Internal write to read command delay(=tWTR) Internal read to precharge command delay(=tRTP) Memory analysis probe characteristics Extension of Byte41 tRC and Byte42 tRFC DDR2 SDRAM device min. active to active/auto refresh time(=tRC) DDR2 SDRAM device min. auto-refresh to active/auto-refresh command period(=tRFC) DDR2 SDRAM device max. device cycle time(=tCK max) DDR2 SDRAM device max. skew for DQS and associated DQ signals(=tDQSQ max) DDR2 SDRAM read data hold skew factor(=tQHS) PLL Relock Time DT in SPD High Temp. Self Refresh IDD in SPD SPD data revision code Checksum for Bytes 0 ~ 62 Manufacturer JEDEC ID code ......Manufacturer JEDEC ID code Manufacturing location Manufacturer Part #(Memory module) Manufacturer part # (DIMM configuration) Manufacturer part # (Data bits & Module type) ......Manufacturer part # (Data bits & Module type) ......Manufacturer part # (Data bits & Module type) Manufacturer part # (Operating Voltage) Manufacturer part # (Module depth) Manufacturer part # (Module depth) Manufacturer Part # (Refresh. # of rows in comp. & interface) Manufacturer part # (composition component) Manufacturer part # (Component revision) Manufacturer part # (Package type) Manufacturer part # (PCB revision) Manufacturer part # (Hyphen) Manufacturer part # (Power) Manufacturer part # (Minimum cycle time) Manufacturer part # (Minimum cycle time) Manufacturer part # (T.B.D) Manufacturer Revision Code(For PCB) Manufacturer Revision Code (For component) Manufacturing Date (Year) Manufacturing date (week) Assembly serial # Manufacturer specific data(may be used in future) Open for customer use 1 . This will typically be programmed as 128 Bytes. 2 . This will typically be programmed as 256 Bytes. 3 . From Datasheet
Hex Value CCC CE7 CF7 CE6
80h 08h 08h 0Eh 0Ah 61h 40h 00h 05h 30h 45h 00h 82h 08h 00h 00h 0Ch 08h 3Dh 50h 50h 60h
CD5
CD5
CCC
Note
1 2
+/-0.45ns +/-0.5ns Non parity/ECC 7.8us x8 N/A 4,8 8 banks
SERIAL PRESENCE DETECT
M470T5663QZ3-CE7/CF7/CE6/CD5/CCC
Organization :256M x 64 Composition :128M x 8 * 16ea Used component part # :K4T1G084QQ-HCE7/F7/E6/D5/CC # of rows in module Row :2 # of banks in component :8 banks Feature :30mm height & double sided component Refresh :8K/64ms Bin Sort : E7(DDR2-800@CL=5), F7(DDR2-800@CL=6), E6(DDR2-667@CL=5), D5(DDR2-533@CL=4), CC(DDR2-400@CL=3) Contents :
Byte #
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Function described
# of Serial PD Bytes written during module production Total Number of SPD memory device Fundameatal memory type # of row address on this assembly # of column address on this assembly # of module rows on this assembly Data width of this assembly Reserved Voltage interface level of this assembly DDR2 SDRAM cycle time at Max. Supported CAS latency=X DDR2 SDRAM Access time from clock at CL=X DIMM configuration type (address&command parity, data parity, ECC) Refresh rate Primary DDR2 SDRAM width Error checking DDR2 SDRAM data width Reserved DDR2 SDRAM device attributes : Burst lengths supported DDR2 SDRAM device attributes : # of banks on each DDR2 SDRAM device DDR2 SDRAM device attributes : CAS latency supported DIMM Mechanical Characteristics DIMM type information DDR2 SDRAM module attributes DDR2 SDRAM device attributes : General DDR2 SDRAM cycle time at CL= X-1 DDR2 SDRAM access time from clock at CL= X-1 DDR2 SDRAM cycle time at CL= X-2 DDR2 SDRAM access time from clock at CL= X-2 Minimum row precharge time(=tRP) Minimum row active to row active delay(=tRRD) Minimum RAS to CAS delay(=tRCD) Minimum active precharge time(=tRAS) Module rank density Command and address setup time before clock(=tIS) Command and address hold time after clock(=tIH) Data input setup time before strobe(=tDS) Data input hold time after strobe(=tDH) Write recovery time(=tWR)