北京邮电大学高等数学(全)答案解析
北京邮电大学 高等数学(全)参考答案
北京邮电大学高等数学答案一、单项选择题(共20道小题,共100.0分)设的定义域为则的定义域为___________.函数是定义域内的____________.A.周期函数B.单调函数C.有界函数D.无界函数设,则__________.函数设与分别是同一变化过程中的两个无穷大量,则时与无穷小时,与为等价无穷小则__________.____________._________.M.0N. 1下列计算极限的过程,正确的是____________.设在处连续,则_________.Q. 2设 ,则()设且可导,则()已知,则()R. 1设,则()设设则曲线处的切线方程为设存在,则等于(设函数可导,则(函数函数的周期是___________.是____________.A.单调函数B.周期函数C.D.函数是___________.E.F.G.非奇非偶函数H.既是奇函数又是偶函数设(为常数),则___________.设,则__________.下列各对函数相同的是________.I.与J.与与设与分别是同一变化过程中的两个无穷大量,则存在是W.无关的条件设在处连续,且时,,则_________.AA.2设函数,则的连续区间为______________.设且可导,则()设,则()设则( )设,则()设,且,则( )设设则的定义域为函数函数F.周期函数G.H.函数是___________.I.J.K.L.既是奇函数又是偶函数下列函数中为奇函数的是__________.设(为常数),则___________.函数的定义域是____________._____________.O. 2____________.设在处连续,且,则_________.设函数,则的连续区间为设且可导,则(设则(设,且,则( )W. 1设,则( )X.99Y.99!曲线在点(0,1)处的切线方程为( )设曲线在点M处的切线斜率为3,则点M的坐标为()CC.(1,1)设函数可导,则()一、单项选择题(共20道小题,共100.0分)1.若设则的定义域为2.函数G.有界函数3.(错误)下列函数中为奇函数的是__________.4.(错误)当时,与比较是______________.A.高阶无穷小C.非等价的同阶无穷小D.低阶无穷小5._________.A.0B. 16.(错误)下列计算极限的过程,正确的是____________.7.(错误)下列变量在给定的变化过程中为无穷小量的是_____________.8.(设9.(存在是在处连续的10.(错误)设函数,则的连续区间为______________.11.(错误)函数的连续区间为___________.12.设且可导,则()13.(错误)设则()14.(错误)设则( )15.(错误)16.(设存在,则等于(17.设在点可导,则(1.(若,,则___________.2.函数的反函数是____________.3.(错误)函数的周期是___________.4.(错误)函数是定义域内的____________.A.周期函数5.下列函数中为奇函数的是__________.6.(错误)设(为常数),则___________.7.(错误)8.(的定义域为9.(与与与与10.(_____________.C. 211.(错误)____________.A. 112.(错误)___________.A.0B. 113.存在是在处连续的_________.D.无关的条件14.(错误)设 ,则()15.(错误)设则( )16.(17.(设则18.(处的切线方程为(19.(设曲线在点20.(设函数可导,则()。
复变函数与积分变(北京邮电大学)课后的习题答案
复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i ① :∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y-⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭.⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+==2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z wz w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--==其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e ii =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根.⑴i 的三次根. 解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=+z .2551cos πisin πi 662=+=+z3991cos πisin πi 662=+=-z⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos isin 332=+=z2cos πisin π1=+=-z35513cos πisin πi 3322=+=--z⑶33i +的平方根.解: πi 42233i=6i 6e 22⎛⎫+⋅+=⋅ ⎪ ⎪⎝⎭∴()()1π12i 44ππ2π2π4433i 6e6cos isin 0,122k k k ⎛⎫++ ⎪+=⋅=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2 解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。
北京邮电大学高等数学第一册答案
北京邮电大学高等数学第一册答案北京邮电大学双语高等数学教学组 2011 年第一版?1.1 Part?A?1. (1) A ∪ B = {1, 2,3, 4,5, 6, 7,8} , A ∩ B = {8} , A \ B = {1,3,5, 7} , B \ A = {2, 4, 6} . (2) A ∪ B = {all parallelograms} , A∩ B = {all rectangles} , A \ B = {all parallelograms except rectangles} , B \ A = ? . (3) A ∪ B = {1, 2,3,2. . ∩ Aic = {5, 9} .i =1 5},A ∩B = {2, 4, 6,},A \B = {1,3,5,},B \ A = ?.3.A ∪B = {1 < x ≤ 3} A ∩ B = ? .1? ? ? ?∞, ? . 2? ?5. (1)(2) (α , β ) ∪ ( γ , +∞ ) .π 2π ? ? (3) ? 2kπ + , 2kπ + . 3 3 ? ? ?(4)( 0, +∞ ) .(5) ( ?4, ?2 ) .(6) ( ?3, ?2] . (1, +∞ ) .2 ? (7) (1, 2 ) ∪ ( 2, 4] . (8) ? ? ,1? . (9) ? 2 ?( 0, +∞ ) .(10) [ 0, 2 ) .(11)6.1 ? ? a ≤ x ≤ 1 ? a, 0 < a ≤2 ? . (1) [ ?1,0] .(2) [ 0,1] .(3) ? 2kπ , ( 2k + 1) π ? , k ∈ Z .(4) ? ? ? ?? , a > 1 ? 2 ?7. (1) No. (2) No.(3) 8. (1) Yes.(2) Yes.(3)No. (4)Yes.(5) No. (6) Yes.(7) No. (8)Yes.(9) No. (10) Yes. Yes.5 ? 3x, x < 1 ? 11. f ( x ) = ?3 ? x, 1 ≤ x < 2 . ?3x ? 5 x ≥ 2 ?12. (1) y = u 3 , u = sin v , v = w and w = 1 ? 2 x .(2) y = arccos u , u =x?2 1 .(3) y = , u = 1 + v , v = arctan w , w = 2 x . u 2(4) y = u10 , u = 1 + 2 x .(5) y = u 2 , u = arcsin v , v = x 2 .(6) y = ln (1 + u ) , u = 1 + v , v = x 2 .(7) y = 2u , u = v 3 , v = sin x .13.( f φ )( x ) = sin 3 2 x ? sin 2 x,x ∈ ( ?∞, +∞ ) , (φ f )( x ) = sin 2 ( x 3 ? x ) ,x ∈ ( ?∞, +∞ ) ,(ff )( x ) = x ? 2 x3 + 3x5 ? 3x 7 + x9 , x ∈ ( ?∞, +∞ ) .1/ e, | x |< 1 ? ( g f )( x ) = ?1, | x |= 1 ?e, | x |> 1 ?1, x < 0 ? 14. ( f g )( x ) = ?0, x = 0 ?1, x>0 ?Advanced?MathematicsSchool?of?Science,?BUPT?Oct.?2011?北京邮电大学双语高等数学教学组 2011 年第一版?0, x >1 ? 15. f ( x ) = ?h ( x + 1) , ?1 ≤ x < 0 ?? h ( x ? 1) , 0 ≤ x ≤ 1 ?0, x < ?1 ? ? g ( x ) = ? 1 ? x2 , ?1 ≤ x ≤ 1 . ? ? 3 ( x ? 1) , x > 1 ? 3 ? 1 y x = e y ?1 ? 2 .(3) x = arcsin , 3 217. (1) x = ? 1 ? y 2 ,2( 0 ≤ y ≤ 1) .(2)( ?2 ≤ y ≤ 2 ) .(4)x = log 3(1 ? y )y,( 0 < y < 1) .y +1? ?∞ < y < 1 ? y, ? ? ?1 ? ? 1? y ? 1≤ y ≤ 2 . (5) x = y ∈ [ ?1,1) .(6) x = ? y , 2 ?log y, 2 < y < +∞ ? 2Part?B?1. (1)(fg )( x ) = 0,( x = 0) , ( gf )( x ) = 2 ? x 2 ,(1 ≤ x ≤ 2 ) .x ? (2) ( f g )( x ) = arcsin ? ? 1? , ?2 ? 1 ? 2 x 2 + 2 x3 , ?1 + x1 0 ≤ x ≤1 ?2 arcsin ( x ? 1) , ? . ( 0 ≤ x ≤ 4 ) , ( g f )( x ) = ? ?2 ? ? 1 arcsin ? x ? 1 ? , 1 < x ≤ 2 ?2 ? 2 ? ?2.f ( x) =( ?∞ < x < 0 ) .3.x + 1, x ∈ ( ?1, 0] ? f ?1 ( x ) = ? x ∈ [1, 2] ? x ? 1, ?6. 8.f ( x) = x +1 .1? ? 1? 1 ? f ( x ) = x2 ? 2 . f ? x ? ? = ? x ? ? ? 2 = x 2 + 2 ? 4 . x? ? x? x ?21.2 Part?A?1. (1) No. (2) Yes. (3) Yes,.(4) No.2. (1) wrong.(2) wrong(3) wrong.. 5. wrong 6. wrong1 9. (1) . 21 (2) . 3(3) 2 . (4) 2 .(5)1 . 3(6)1 . eAdvanced?MathematicsSchool?of?Science,?BUPT?Oct.?2011?北京邮电大学双语高等数学教学组 2011 年第一版?0, l m ?l l ?113. (1) convergent. (2) divergent. (3) convergent.1.3 Part?A?1. (1) ?ε >0 , ?X > 0 ,f ( x ) ? A < ε holds for all x > X . (2) ?ε > 0 , ?δ > 0 ,f ( x ) ? A < ε holds for all x0 ? x < δ .(3) ?M < 0 , ?δ > 0 , f ( x ) < M holds for all x ? 2 < δ . 2. (1) wrong. (2) right. 3. (1) wrong. (2) right. (2) right. (2) wrong.(2)wrong. (2) wrong. (7) Yes. (8) No.5. (1) No. (2) No. (3) No. (4) No. (5) No. (6) No.6. (1) ?37. (1)1 2(2) 1 (2)1 4(3) 1 (3) ?1(4) 3 (4)1 2(5)33 4 (6) cos x (7) ? sin x (8) 0 22π(5) e ?6(6) e ?2(7) π(8) e 28. (1) a = ?1 b = ?2(2) a =Part?B?1. (1)4 3(2) e ?2(3) e ?1/ 22(4) e πf ( x ) ? A > ε holds for all x ∈ U ( x0 , δ ) .3. some ε > 0 , there exists a δ > 0 , such that24.eπ1.4 Part?A?1. 2.ε > 0 , there exists a δ > 0 ,such that α ( x ) < ε holds for all x ∈ U ( x0 , δ ) . ?M > 0, there exists a X > 0, such that f ( x ) > Mholds for all x > X .3. (1)wrong. (2) wrong. (3)wrong. (4) wrong. (5) wrong.Advanced?Mathematics School?of?Science,?BUPT Oct.?2011?北京邮电大学双语高等数学教学组 2011 年第一版?4. (1)wrong. (2) wrong.5. (1) x (2) x (3) x (4) x 4 / 3 7. (1) 2 (2) 1 3 (3) ?1 2Part?B?1. (2) y = x ? 1a = ±1 ? 2. (1) ?b = ± 1 ? ? 2(2) a =3 1 , b= c=2 16 21.5 Part?A?2. Wrong 5. (1) x = 2 is a removable discontinuous point or discontinuous point of the first type.x = ?2 is an essential discontinuous point or discontinuous point of the second type.(2) x = 1 is an essential discontinuous point. (3) x = 0 is a jump discontinuous point or discontinuous point of first type. (4) x = ±1 are both jump discontinuous point or discontinuous point of the first type. 6. (1) x = 0 is an essential discontinuous point or discontinuous point of second type. (2) x = 1 is an essential discontinuous point or discontinuous point of second type. (3) x = 0 is a continuous point. (4) x = 0 is a jump discontinuous or a discontinuous of the first type. (5) x = ?1 x = 2k + 1 , ( k ∈ N + )are essential discontinuous points or discontinuous points of second type. x = 0 is a jump discontinuous or a discontinuous point of the first kind.. x = 1 is a continuous point. 7. (1) π2(2) 1(3) ?2(4) e1 2(5) 03 29. (1) a = 0(2) a = 3(3) a = 2 b = ? Advanced?Mathematics School?of?Science,?BUPT? Oct.?2011?。
北邮高数考试题库及答案
北邮高数考试题库及答案一、选择题(每题4分,共20分)1. 函数f(x)=x^2+2x+1的导数为:A. 2x+2B. 2x+1C. 2xD. x^2+2答案:A2. 极限lim(x→0) (sin(x)/x)的值为:A. 1B. 0C. -1D. ∞答案:A3. 以下哪个函数是偶函数:A. f(x) = x^2B. f(x) = x^3C. f(x) = x^2 + xD. f(x) = x^2 - x答案:A4. 定积分∫(0,1) x^2 dx的值为:A. 1/3B. 1/2C. 1D. 2答案:A5. 以下哪个级数是收敛的:A. 1 + 1/2 + 1/4 + 1/8 + ...B. 1 + 1/2 + 1/3 + 1/4 + ...C. 1 - 1/2 + 1/4 - 1/8 + ...D. 1 + 2 + 3 + 4 + ...答案:C二、填空题(每题4分,共20分)6. 函数f(x)=x^3-3x的二阶导数为______。
答案:6x-37. 极限lim(x→∞) (x^2-3x+2)/(x^3+2x^2-5)的值为______。
答案:08. 函数f(x)=e^x的不定积分为______。
答案:e^x + C9. 定积分∫(-1,1) (x^2-2x+1) dx的值为______。
答案:2/310. 级数1/2 + 1/4 + 1/8 + ...的和为______。
答案:1三、计算题(每题10分,共30分)11. 求函数f(x)=x^2-4x+3的极值点。
解:首先求导数f'(x)=2x-4,令f'(x)=0,解得x=2。
将x=2代入原函数,得到极小值点(2, -1)。
12. 计算极限lim(x→0) (x^2+3x-2)/(x^3-x+1)。
解:分子分母同时除以x^3,得到lim(x→0) (1+3/x^2-2/x^3)/(1-1/x^2+1/x^3)。
当x→0时,极限不存在。
高等数学b北京邮电大学教材答案
高等数学b北京邮电大学教材答案高等数学B 北京邮电大学教材答案[注意:本文所提供的答案仅供参考,具体结果请以教材及教师为准。
]第一章微积分基础1. 概念与方法(a) 函数的定义:设A和B是非空实数集合。
对于每一个x∈A,一个确定的实数y与之对应,称之为函数f:X→B,在此情况下,称A为f的定义域,B是f的值域。
y=f(x)(x∈A)表示x与y之间的关系。
(b) 常用函数:- 常函数:f(x) = C;- 幂函数:f(x) = x^m(m∈N*);- 指数函数:f(x) = a^x(a>0,且a≠1);- 对数函数:f(x) = loga x(a>0,且a≠1);- 三角函数:正弦函数sin(x),余弦函数cos(x),正切函数tan(x)等。
(c) 梯度与导数:函数f(x)在点x=a处的导数(记作f'(a)或df(x)/dx|x=a)表示函数曲线在该点的切线斜率,反映了函数在该点的变化率。
2. 极限与连续(a) 极限的定义:设函数f(x)在点x=a的某一去心邻域内有定义,如果存在一个常数A,使得对于任意给定的正数ε(ε>0),都存在另一个正数δ(δ>0),使得当0<|x-a|<δ(0<|x-a|<δ并且x∈D)时,都有|f(x)-A|<ε,则称数A是函数f(x)在x=a处的极限,记作limf(x)=A(x→a)。
(b) 连续函数:设函数f(x)在点x=a处有定义,在该点的邻域内有定义。
如果limf(x)=f(a)(x→a),则称函数f(x)在点x=a处连续。
3. 导数与微分(a) 导数的计算:- 基本运算法则:常数法则、幂函数法则、指数函数法则、对数函数法则、三角函数法则等;- 高阶导数:表示导数的导数,如f''(x)、f'''(x)等。
(b) 微分的计算:- 定义:设函数y=f(x)在点x=a处有定义且可微,dx是x的增量,dy是对应的y的增量,当dx→0时,引入一个新的变量Δx=dx,Δy=dy,则有Δy=f'(a)Δx+o(Δx),称Δy为y的微分。
北京邮电大学高等数学阶段作业二答案
北京邮电大学高等数学阶段作业二答案一、单项选择题(共20道小题,共100.0分)1. 设,则曲线在区间内沿X轴正向( )A. 下降且为凹B. 下降且为凸C. 上升且为凹D. 上升且为凸知识点: 第五章导数的应用学生答[A;] 案:试题分得分: [5] 5.0 值:提示:2.3. 若曲线有拐点,则一定有( )A.B.C. 不存在D. 或不存在知识点: 第五章导数的应用学生答[D;] 案:试题分得分: [5] 5.0 值:提示:4.5. 当时,;当时,,则必定是的( )A. 驻点B. 极大值点C. 极小值点D. 以上都不对知识点: 第五章导数的应用学生答[D;] 案:试题分得分: [5] 5.0 值:提示:6.7. 在区间(0,1)内为单调减少函数的是( )A.B.C.D.知识点: 第五章导数的应用学生答[D;] 案:试题分得分: [5] 5.0 值:提示:8.9. ( )A. 1B.C.D.知识点: 第五章导数的应用学生答[C;] 案:试题分得分: [5] 5.0 值:提示:10.11.若存在有穷极限,则的值为( )A. 1B. 2C. 3D. 4知识点: 第五章导数的应用学生答[C;] 案:试题分得分: [5] 5.0 值: 提示:12.13.已知,则( )A.B.C.D.知识点: 第五章导数的应用学生答[C;] 案:试题分得分: [5] 5.0 值: 提示:14.15.下列分部积分中,选择正确的是( )A. ,令B. ,令C. ,令D. ,令知识点: 第六章不定积分学生答[A;] 案:得分: [5] 试题分5.0值:提示:16.17.设是的一个原函数,则( )A.B.C.D.知识点: 第六章不定积分学生答[B;] 案:试题分得分: [5] 5.0 值:提示:18.19.若,则( )A.B.C.D.知识点: 第六章不定积分学生答[D;] 案:试题分得分: [5] 5.0 值:提示:20.21.设函数的导数是,则的全体原函数是( )A.B.C.D.知识点: 第六章不定积分学生答[C;] 案: 试题分得分: [5] 5.0 值: 提示:22.23.是( )的一个原函数.A.B.C.D.知识点: 第六章不定积分学生答[B;] 案:试题分得分: [5] 5.0 值: 提示:24.25.设,则( )A.B.C.D.知识点: 第七章定积分及其应用学生答[B;] 案: 得分: [5] 试题分值: 5.0提示:26.27.( )A. 0B.C.D.知识点: 第七章定积分及其应用学生答[C;] 案:得分: [5] 试题分值: 5.0提示:28.29.若,则常数( )A. 1B.C. 0D.知识点: 第七章定积分及其应用学生答[B;] 案:得分: [5] 试题分值: 5.0提示:30.31.极限( )A.B. 0C. 1D. 2知识点: 第七章定积分及其应用学生答[C;] 案: 得分: [5] 试题分值: 5.0提示:32.33.( )A. 0B.C.D.知识点: 第七章定积分及其应用学生答[B;] 案: 得分: [5] 试题分值: 5.0提示:34.35.(错误)设,则有( )A. .极小值B. 极小值C. 极大值D. 极大值知识点: 第七章定积分及其应用学生答[C;] 案: 得分: [0] 试题分值: 5.0 提示:36.设函数在上是连续的,下列等式中正确的是( )A.B.C.D.知识点: 第七章定积分及其应用学生答[C;] 案:得分: [5] 试题分值: 5.0 提示:37.38.设函数在闭区间上连续,则曲线与直线所围成的平面图形的面积等于( )A.B.C.D.知识点: 第七章定积分及其应用学生答[D;] 案:得分: [5] 试题分值: 5.0 提示:39.一、单项选择题(共20道小题,共100.0分)1. 设存在二阶导数,如果在区间内恒有( ),则在内曲线上凹.A.B.C.D.知识点: 第五章导数的应用学生答[C;] 案:试题分得分: [5] 5.0 值:提示:2.3. 若点(1,3)是曲线的拐点,则的值分别为( )A.B.C.D. 以上都不对知识点: 第五章导数的应用学生答[C;] 案:试题分得分: [5] 5.0 值:提示:4.5. 若曲线有拐点,则一定有( )A.B.C. 不存在D. 或不存在知识点: 第五章导数的应用学生答[D;] 案: 试题分得分: [5] 5.0 值: 提示:6.7. 设,则为在上的( )A. 极小值点但不是最小值点B. 极小值点也是最小值点C. 极大值点但不是最大值点D. 极大值点也是最大值点知识点: 第五章导数的应用学生答[B;] 案: 试题分得分: [5] 5.0 值: 提示:8.9. 若函数在点处可导,则它在点处得到极值的必要条件为( )A.B.C.D.知识点: 第五章导数的应用学生答[D;] 案:试题分得分: [5] 5.0 值: 提示:10.11.当时,;当时,,则必定是的( )A. 驻点B. 极大值点C. 极小值点D. 以上都不对知识点: 第五章导数的应用学生答[D;] 案:试题分得分: [5] 5.0 值:提示:12.13.函数的单调增加区间为( )A.B.C.D.知识点: 第五章导数的应用学生答[A;] 案:试题分得分: [5] 5.0 值:提示:14.15.在区间(0,1)内为单调减少函数的是( )A.B.C.D.知识点: 第五章导数的应用学生答[D;] 案:试题分得分: [5] 5.0 值: 提示:16.17.( )A. 1B.C.D.知识点: 第五章导数的应用学生答[C;] 案:试题分得分: [5] 5.0 值: 提示:18.19.若,则( )A.B.C.D.知识点: 第六章不定积分学生答[C;] 案:试题分得分: [5] 5.0 值:提示:20.21.若,则下列各式中正确的是( )A.B.C.D. 知识点: 第六章不定积分学生答[B;] 案: 试题分得分: [5] 5.0 值: 提示:22.23.设函数的导数是,则的全体原函数是( )A.B.C.D. 知识点: 第六章不定积分学生答[C;] 案: 试题分得分: [5] 5.0 值: 提示:24.25.设,则( )A.B.C.D.知识点: 第七章定积分及其应用学生答[B;] 案:得分: [5] 试题分值: 5.0提示:26.27.设函数为上连续函数,则定积分( )A. 0B.C.D.知识点: 第七章定积分及其应用学生答[D;] 案:得分: [5] 试题分值: 5.0提示:28.29.已知是的一个原函数,则( )A.B.C.D.知识点: 第七章定积分及其应用学生答[B;] 案:得分: [5] 试题分值: 5.0提示:30.31.极限( )A.B. 0C. 1D. 2知识点: 第七章定积分及其应用学生答[C;] 案:得分: [5] 试题分值: 5.0提示:32.33.设,则有( )A. .极小值B. 极小值C. 极大值D. 极大值知识点: 第七章定积分及其应用学生答[A;] 案:得分: [5] 试题分值: 5.0提示:34.35.( )A.B.C. 0D.知识点: 第七章定积分及其应用学生答[C;]案:得分: [5] 试题分值: 5.0提示:36.37.设(为常数),则( )A.B.C.D.知识点: 第七章定积分及其应用学生答[D;] 案:得分: [5] 试题分值: 5.0提示:38.39.设在闭区间上连续,( )A. 等于零B. 小于零C. 大于零D. 不能确定知识点: 第七章定积分及其应用学生答[A;] 案:得分: [5] 试题分值: 5.0提示:40.。
北京邮电大学出版社-高等数学第3版(张卓奎)第一章习题选解
习题选解第一章 习题选解.习 题 1-11.若2(+1)x +3x 5f x =+,求 ()f x .解: 因为 ()22(+1)x +3x 5=1(1)3f x x x =+++++, 所以 2()3f x x x =++.2.下列各题中,函数)(x f 与)(x g 是否相同?为什么?(1) 24)(2--=x x x f ,2)(+=x x g ; 解:因为)(x f 的定义域为(,2)(2,)-∞⋃+∞,而()g x 的定义域为(,)-∞+∞,所以()f x 与()g x 定义域不同,因此()f x 与()g x 不相同.(2) 2)13()(-=x x f ,13)(-=x x g ;解:因为()f x 与()g x 定义域相同,对应法则相同,故()f x 与()g x 相同.(3) 11ln )(-+=x x x f ,)1ln()1ln()(--+=x x x g ; 解:由10101x x x -≠⎧⎪+⎨>⎪-⎩解出()f x 的定义域为(,1)(1,)-∞-⋃+∞,而由1010x x +>⎧⎨->⎩解出()g x 的定义域为(1,)+∞,所以()f x 与()g x 定义域不同,因此()f x 与()g x 不相同. (4) 11ln )(2++=x x x f ,)1ln()1ln()(2+-+=x x x g . 解:因为()f x 与()g x 定义域相同,对应法则相同,故()f x 与()g x 相同.3.设⎩⎨⎧>+≤-=11121)(2x x x x x f , , ,求 )0(f ,)1(f ,)1(-f ,)23(f ,)23(-f . 解:(0)1f =,(1)1f =-,(1)3f -=,313()24f =,313()24f -=. 4.设函数y()f x =是以T>0为周期的周期函数,证明(a )(0为常数)f x a >是以a T为周期的周期函数,并求出函数y sin 3cos 2x x =+的周期.证:因为 a (+)()()=+=⎡⎤⎣⎦T f a x f ax T f ax ,所以(a )f x 是以aT 为周期的周期函数。
新编高等数学主编尹光答案解析北京邮电大学
新编高等数学主编尹光答案解析北京邮电大学1、下列各式中,计算过程正确的是( ) [单选题] *A. x3+x3=x3?3=x6B. x3·x3=2x3C. x·x3·x?=x??3??=x?D. x2·(-x)3=-x2?3=-x?(正确答案)2、13.在海上,一座灯塔位于一艘船的北偏东40°方向,那么这艘船位于灯塔()[单选题] *A.南偏西50°方向B.南偏西40°方向(正确答案)C.北偏东50°方向D.北偏东40°方向3、两数之和为负数,则这两个数可能是? [单选题] *A.都是负数B.0和负数(正确答案)C.一个正数与一个负数D.一正一负或同为负数或0和负数4、已知2x=8,2y=4,则2x+y=()[单选题] *A 、32(正确答案)B 、33C、16D、45、3.如图,OC为∠AOB内的一条射线,下列条件中不能确定OC平分∠AOB的()[单选题] *A.∠AOC=∠BOCB.∠AOC+∠COB=∠AOB(正确答案)C.∠AOB=2∠BOCD.6、要使多项式不含的一次项,则与的关系是()[单选题] *A. 相等(正确答案)B. 互为相反数C. 互为倒数D. 乘积为17、9.一棵树在离地5米处断裂,树顶落在离树根12米处,问树断之前有多高()[单选题] *A. 17(正确答案)B. 17.5C. 18D. 208、-120°是第()象限角?[单选题] *第一象限第二象限第三象限(正确答案)第四象限9、15.已知命题p:“?x∈R,ex-x-1≤0”,则?p为()[单选题] * A.?x∈R,ex-x-1≥0B.?x∈R,ex-x-1>0C.?x∈R,ex-x-1>0(正确答案)D.?x∈R,ex-x-1≥010、已知5m-2n-3=0,则2??÷22?的值为( ) [单选题] *A. 2B. 0C. 4D. 8(正确答案)11、37、已知A(3,﹣2),B(1,0),把线段AB平移至线段CD,其中点A、B分别对应点C、D,若C(5,x),D(y,0),则x+y的值是()[单选题] *A.﹣1B.0C.1(正确答案)D.212、下列运算正确的是()[单选题] *A. a2?a3=a?B. (﹣a3)2=﹣a?C. (ab)2=ab2D. 2a3÷a=2a2(正确答案)13、设函数在闭区间[0,1]上连续,在开区间(0,1)上可导,且(x)>0 则()[单选题] *A、f(0)<0B、f(0)<1C、f(1)>f(0)D、f(1)<f(0)(正确答案)14、10. 已知方程组的解为,则、对应的值分别为()[单选题] *A、1,2B、1,5C、5,1(正确答案)D、2,415、的单调递减区间为()[单选题] *A、(-1,1)(正确答案)B、(-1,2)C、(-∞,-1)D、(-∞,+∞)16、6.方程x2=3x的根是()[单选题] *A、x = 3B、x = 0C、x1 =-3, x2 =0D、x1 =3, x2 = 0(正确答案)17、49.若(x+2)(x﹣3)=7,(x+2)2+(x﹣3)2的值为()[单选题] *A.11B.15C.39(正确答案)D.5318、手表倒拨1小时20分,分针旋转了多少度?[单选题] * -480°120°480°(正确答案)-120°19、16.5-(-3)-2的计算结果为()[单选题] *A.3B.4C.0D.6(正确答案)20、下列表示正确的是()[单选题] *A、0={0}B、0={1}C、{x|x2 =1}={1,-1}(正确答案)D、0∈φ21、300°用弧度制表示为()[单选题] *5π/3(正确答案)π/62π/32π/522、45、下列说法错误的是()[单选题] *A.三角形的高、中线、角平分线都是线段B.三角形的三条中线都在三角形内部C.锐角三角形的三条高一定交于同一点D.三角形的三条高、三条中线、三条角平分线都交于同一点(正确答案)23、9.已知关于x,y的二元一次方程组的解满足x+y=8,则k的值为( ) [单选题] * A.4B.5C.-6D.-8(正确答案)24、7.已知点A(-2,y1),B(3,y2)在一次函数y=-x+b的图象上,则( ) [单选题]* A.y1 > y2(正确答案)B.y1 < y2C.y1 ≤y2D.y1 ≥y225、下列各式中能用平方差公式的是()[单选题] *A. (x+y)(y+x)B. (x+y)(y-x)(正确答案)C. (x+y)(-y-x)D. (-x+y)(y-x)26、下列说法正确的是[单选题] *A.绝对值最小的数是0(正确答案)B.绝对值相等的两个数相等C.-a一定是负数D.有理数的绝对值一定是正数27、1、方程x2?-X=0 是(? ? )? ? ? ? ? ? 。
2022年北京邮电大学版线性代数课后题答案
习题 三 (A 类)1. 设α1=(1,1,0),α2=(0,1,1),α3=(3,4,0).求α1-α2及3α1+2α2-α3. 解:α1-α2=(1,1,0)-(0,1,1)=(1,0,-1),3α1+2α2-α3=(3,3,0)+(0,2,2)-(3,4,0)=(0,1,2)2. 设3(α1-α)+2(α2+α)=5(α3+α),其中α1=(2,5,1,3),α2=(10,1,5,10),α3=(4,1,-1,1).求α.解:由3(α1-α)+2(α2+α)=5(α3+α)整顿得:α=16(3α1+2α2-5α3),即α=16 (6,12,18,24)=(1,2,3,4)3.(1)× (2)× (3)√ (4)× (5)×4. 鉴别下列向量组旳线性有关性.(1)α1=(2,5), α2=(-1,3);(2) α1=(1,2), α2=(2,3), α3=(4,3); (3) α1=(1,1,3,1),α2=(4,1,-3,2),α3=(1,0,-1,2);(4) α1=(1,1,2,2,1),α2=(0,2,1,5,-1),α3=(2,0,3,-1,3),α4=(1,1,0,4,-1). 解:(1)线性无关;(2)线性有关;(3)线性无关;(4)线性有关.5. 设α1,α2,α3线性无关,证明:α1,α1+α2,α1+α2+α3也线性无关. 证明:设112123123()()0,k k k αααααα+++++=即123123233()()0.k k k k k k ααα+++++=由123,,ααα线性无关,有1232330,0,0.k k k k k k ++=⎧⎪+=⎨⎪=⎩因此1230,k k k ===即112123,,αααααα+++线性无关.6.问a 为什么值时,向量组'''123(1,2,3),(3,1,2),(2,3,)a ααα==-=线性有关,并将3α用12,αα线性表达.解:1322137(5),32A a a=-=-当a =5时,312111.77ααα=+7. 作一种以(1,0,1,0)和(1,-1,0,0)为行向量旳秩为4旳方阵. 解:因向量(1,0,0,0)与(1,0,1,0)和(1,-1,0,0)线性无关,因此(1,0,0,0)可作为方阵旳一种行向量,因(1,0,0,1)与(1,0,1,0),(1,-1,0,0),(1,0,0,0)线性无关,因此(1,0,0,1)可作为方阵旳一种行向量.因此方阵可为1010110010001001⎛⎫⎪- ⎪ ⎪⎪⎝⎭.8. 设12,,,sααα旳秩为r 且其中每个向量都可经12,,,rααα线性表出.证明:12,,,rααα为12,,,sααα旳一种极大线性无关组.【证明】若 12,,,rααα (1)线性有关,且不妨设12,,,tααα (t <r ) (2)是(1)旳一种极大无关组,则显然(2)是12,,,sααα旳一种极大无关组,这与12,,,sααα旳秩为r 矛盾,故12,,,rααα必线性无关且为12,,,sααα旳一种极大无关组.9. 求向量组1α=(1,1,1,k ),2α=(1,1,k ,1),3α=(1,2,1,1)旳秩和一种极大无关组.【解】把123,,ααα按列排成矩阵A ,并对其施行初等变换.1111111111111120010010101101001000111011001000k k k k kk k k ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥=→→→⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦A当k =1时,123,,ααα旳秩为132,,αα为其一极大无关组.当k ≠1时,123,,ααα线性无关,秩为3,极大无关组为其自身.10. 拟定向量3(2,,)a b =β,使向量组123(1,1,0),(1,1,1),==βββ与向量组1α=(0,1,1),2α=(1,2,1),3α=(1,0,-1)旳秩相似,且3β可由123,,ααα线性表出.【解】由于123123011120(,,);120011111000112112(,,),110101002a b b a ⎡⎤⎡⎤⎢⎥⎢⎥==→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥==→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦A B αααβββ而R (A )=2,要使R (A )=R (B )=2,需a -2=0,即a =2,又12330112120(,,,),12001121110002a a b b a ⎡⎤⎡⎤⎢⎥⎢⎥==→⎢⎥⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦c αααβ要使3β可由123,,ααα线性表出,需b -a +2=0,故a =2,b =0时满足题设规定,即3β=(2,2,0).11. 求下列向量组旳秩与一种极大线性无关组. (1) α1=(1,2,1,3),α2=(4,-1,-5,-6),α3=(1,-3,-4,-7);(2) α1=(6,4,1,-1,2),α2=(1,0,2,3,-4),α3=(1,4,-9,-6,22),α4=(7,1,0,-1,3);(3) α1=(1,-1,2,4),α2=(0,3,1,2),α3=(3,0,7,14),α4=(1,-1,2,0),α5=(2,1,5,6).解:(1)把向量组作为列向量构成矩阵Α,应用初等行变换将Α化为最简形矩阵B ,则1114110141141913951115409500000036701810000000A B ⎛⎫-⎛⎫ ⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪---- ⎪ ⎪ ⎪=→→→= ⎪ ⎪ ⎪ ⎪---- ⎪ ⎪⎪ ⎪ ⎪----⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭⎝⎭ 52 0 50 0 99可知:R (Α)=R (B )=2,B 旳第1,2列线性无关,由于Α旳列向量组与B 旳相应旳列向量有相似旳线性组合关系,故与B 相应旳Α旳第1,2列线性无关,即α1,α2是该向量组旳一种极大无关组. (2)同理,61701714010810111201201312438⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪→→ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭ 1 -1 55 2 -9 0 4 40 - 55 7 -9 -9 0 -8 40 1 -6 0 5 -15 -10 5 -15 22 0 40 1111010101⎛⎫ ⎪ ⎪ ⎪→ ⎪ ⎪ ⎪⎝⎭⎛⎫ ⎪⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪→→ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪⎝⎭⎪ ⎪⎝⎭-10 0 0 0 2 -9 07 2 -9 0 0 0 0 -5 -11 -5 0 0 0450 0 0 -0 0 10 00 0 1 0110 0 0 10 0 0 240 0 10 0 0 0 0110 0 0 0B⎛⎫⎪⎪ ⎪= ⎪ ⎪ ⎪⎝⎭10 0 0 0可知R(Α)=R(B)=4,Α旳4个列向量线性无关,即α1,α2,α3,α4是该向量组旳极大无关组. (3)同理,A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪=→→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1 0 3 1 2 1 0 3 1 2 1 0 3 1 2 1 0 3 1 2-1 3 0 -1 10 3 3 0 30 1 1 0 10 1 1 0 12 1 7 2 50 1 1 0 10 0 0 -4 -40 0 0 1 14 2 14 0 60 2 2 -4 -20 0 0 0 00 ⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭0 0 0,可知R(Α)=R(B)=3,取线性无关组α1,α3,α5为该向量组旳一种极大无关组.12.求下列向量组旳一种极大无关组,并将其他向量用此极大无关组线性表达.(1) α1=(1,1,3,1),α2=(-1,1,-1,3),α3=(5,-2,8,-9),α4=(-1,3,1,7);(2) α1=(1,1,2,3),α2=(1,-1,1,1),α3=(1,3,3,5),α4=(4,-2,5,6),α5=(-3,-1,-5,-7). 解:(1)以向量组为列向量构成Α,应用初等行变换化为最简形式.11111100101A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=→→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3 -1 5 -1 0 11 - 5 -1 -1 5 -127 -2 3 2 -7 47 - 2 - 2223 -1 8 10 2 -7 40 0 0 00 0 0 01 3 -9 70 4 -14 8 0 0 0 00 0 0 0B ⎛⎫ ⎪⎪ ⎪= ⎪ ⎪⎪ ⎪⎝⎭,可知,α1,α2为向量组旳一种极大无关组.设α3=x 1α1+x 2α2,即12121212523839x x x x x x x x -=⎧⎪+=-⎪⎨-=⎪⎪+=-⎩解得,1237,22x x ==- 设α4=x 3α1+x 4α2,即12121212133137x x x x x x x x -=-⎧⎪+=⎪⎨-=⎪⎪+=⎩解得,121,2x x ==因此31241237,2.22a a a a a a =-=+(2)同理, 1111111A B ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪=→→= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1 1 4 -3 1 1 4 -3 1 0 2 1 -21 - 3 -2 -10 -2 2 -6 20 -1 3 -12 3 5 -50 - 1 -3 10 0 0 0 03 5 6 -70 -2 2 -6 20 0 0 0 0可知, α1、α2可作为Α旳一种极大线性无关组,令α3=x 1α1+x 2α2可得:121213x x x x +=⎧⎨-=⎩即x 1=2,x 2=-1,令α4=x 3α1+x 4α2, 可得:121242x x x x +=⎧⎨-=-⎩即x 1=1,x 2=3,令α5=x 5α1+x 6α2,可得:121231x x x x +=-⎧⎨-=-⎩即x 1=-2,x 2=-1,因此α3=2α1-α2α4=α1+3α2,α5=-2α1-α213. 设向量组12,,,mααα与12,,,sβββ秩相似且12,,,mααα能经12,,,sβββ线性表出.证明12,,,mααα与12,,,sβββ等价.【解】设向量组12,,,mααα (1)与向量组12,,,sβββ (2)旳极大线性无关组分别为12,,,rααα (3)和12,,,rβββ (4)由于(1)可由(2)线性表出,那么(1)也可由(4)线性表出,从而(3)可以由(4)线性表出,即1(1,2,,).ri ij jj a i r ===∑αβ因(4)线性无关,故(3)线性无关旳充足必要条件是|a ij |≠0,可由(*)解出(1,2,,)j j r =β,即(4)可由(3)线性表出,从而它们等价,再由它们分别同(1),(2)等价,因此(1)和(2)等价.14. 设向量组α1,α2,…,αs 旳秩为r 1,向量组β1,β2,…,βt 旳秩为r 2,向量组α1,α2,…,αs ,β1,β2,…,βt 旳秩为r 3,试证:max{r 1,r 2}≤r 3≤r 1+r 2.证明:设αs1,…,1r Sα为α1,α2,…,αs 旳一种极大线性无关组, βt1,βt2,…,2r tβ为β1,β2,…,βt 旳一种极大线性无关组. μ1,…,3rμ为α1, α2,…,αs ,β1,β2,…,βt 旳一种极大线性无关组,则αs1, …,1r Sα和βt1,…,βtr2可分别由μ1,…,3rμ线性表达,因此,r 1≤r 3,r 2≤r 3即max{r 1,r 2}≤r 3,又μ1,…,3rμ可由αs1, …,αsr1,βt1,…,βtr2线性表达及线性无关性可知:r 3≤r 1+r 2.15. 已知向量组α1=(1,a ,a ,a )′,α2=(a ,1,a ,a )′,α3=(a ,a ,1,a )′,α4=(a ,a ,a ,1)′旳秩为3,试拟定a 旳值.解:以向量组为列向量,构成矩阵A ,用行初等变换化为最简形式:1113110a a a a a a a a a a a a a a a a a a a a a a a a a a a a +⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ -1 0 0 1- 0 0 1 -1 0 1- 00 0 1- 0 1-1 0 0 1-0 0 0 1-由秩A=3.可知a ≠1,从而1+3a =0,即a =-13.16. 求下列矩阵旳行向量组旳一种极大线性无关组.(1)2531174375945313275945413425322048⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (2)11221021512031311041⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦.【解】(1) 矩阵旳行向量组1234⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦αααα旳一种极大无关组为123,,ααα;(2) 矩阵旳行向量组1234⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦αααα旳一种极大无关组为124,,ααα.17. 集合V 1={(12,,,nx x x )|12,,,nx x x ∈R 且12n+++x x x =0}与否构成向量空间?为什么?【解】由(0,0,…,0)∈V 1知V 1非空,设121122(,,,),(,,,),n n V V k =∈=∈∈x x x y y y αβR)则112212(,,,)(,,,).n n n x y x y x y k kx kx kx +=+++=αβα由于112212121212()()()()()0,()0,n n n n n n x y x y x y x x x y y y kx kx kx k x x x ++++++=+++++++=+++=+++=因此11,V k V +∈∈αβα,故1V 是向量空间.18. 试证:由123(1,1,0),(1,0,1),(0,1,1)===ααα,生成旳向量空间恰为R 3.【证明】把123,,ααα排成矩阵A =(123,,ααα),则11020101011==-≠A ,因此123,,ααα线性无关,故123,,ααα是R 3旳一种基,因而123,,ααα生成旳向量空间恰为R 3.19. 求由向量12345(1,2,1,0),(1,1,1,2),(3,4,3,4),(1,1,2,1),(4,5,6,4)=====ααααα所生旳向量空间旳一组基及其维数. 【解】由于矩阵12345(,,,,)113141131411314214150121301213,113260001200012024140241400000=⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥--------⎢⎥⎢⎥⎢⎥=→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A ααααα∴124,,ααα是一组基,其维数是3维旳.20. 设1212(1,1,0,0),(1,0,1,1),(2,1,3,3),(0,1,1,1)===-=--ααββ,证明:1212(,)(,)L L =ααββ.【解】由于矩阵1212(,,,)1120112010110131,0131000001310000=⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥=→⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦A ααββ由此知向量组12,αα与向量组12,ββ旳秩都是2,并且向量组12,ββ可由向量组12,αα线性表出.由习题15知这两向量组等价,从而12,αα也可由12,ββ线性表出.因此1212(,)(,)L L =ααββ.21. 在R 3中求一种向量γ,使它在下面两个基123123(1)(1,0,1),(1,0,0)(0,1,1)(2)(0,1,1),(1,1,0)(1,0,1)==-==-=-=αααβββ下有相似旳坐标.【解】设γ在两组基下旳坐标均为(123,,x x x ),即111232123233112233(,,)(,,),110011001110101101x x x x x x x x x x x x ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦-⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦γαααβββ即1231210,111000x x x --⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ 求该齐次线性方程组得通解123,2,3x k x k x k===- (k 为任意实数)故112233(,2,3).x x x k k k =++=-γεεε22. 验证123(1,1,0),(2,1,3),(3,1,2)=-==ααα为R 3旳一种基,并把1(5,0,7),=β2(9,8,13)=---β用这个基线性表达.【解】设12312(,,),(,),==A B αααββ又设11112123132121222323,x x x x x x =++=++βαααβααα,即11121212321223132(,)(,,),x x x x x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ββααα记作 B =AX .则2321231235912359()111080345170327130327131235910023032713010330022400112r r r r r r -+↔--⎡⎤⎡⎤⎢⎥⎢⎥=−−−→−−−→---⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦-⎡⎤⎡⎤⎢⎥⎢⎥−−−−−→--⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦A B 作初等行变换因有↔A E ,故123,,ααα为R 3旳一种基,且1212323(,)(,,),3312⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦ββααα即1123212323,332=+-=--βαααβααα.(B 类)1.A2.B3.C4.D5.a=2,b=46.a bc≠07.设向量组α1,α2,α3线性有关,向量组α2,α3,α4线性无关,问:(1) α1能否由α2,α3线性表达?证明你旳结论.(2) α4能否由α1,α2,α3线性表达?证明你旳结论.解:(1)由向量组α1,α2,α3线性有关,知向量组α1, α2, α3旳秩不不小于等于2,而α2, α3, α4线性无关,因此α2, α3线性无关,故α2, α3是α1, α2, α3旳极大线性无关组,因此α1能由α2, α3线性表达.(2)不能.若α4可由α1,α2,α3线性表达,而α2,α3是α1,α2,α3旳极大线性无关组,因此α4可由α2,α3线性表达.与α2,α3,α4线性无关矛盾.8.若α1,α2,…,αn,αn+1线性有关,但其中任意n个向量都线性无关,证明:必存在n+1个全不为零旳数k1,k2,…,k n,k n+1,使k1α1+k2α2+…+k n+1αn+1=0.证明:由于α1,α2,…,αn,αn+1线性有关,因此存在不全为零旳k1,k2,…,k n,k n+1使k1α+k2α2+…+k n+1αn+1=01若k1=0,则k2α2+…+k n+1αn+1=0,由任意n个向量都性线无关,则k2=…=k n+1=0,矛盾.从k1≠0,同理可知k i≠0,i=2, …,n+1,因此存在n+1个全不为零旳数k1,k2,…,k n,k n+1,使k1a1+k2a2+…+k n+1a n+1=0.9. 设A是n×m矩阵,B是m×n矩阵,其中n<m,E为n阶单位矩阵.若AB=E,证明:B旳列向量组线性无关.证明:由第2章知识知,秩A≤n,秩B≤n,可由第2章小结所给矩阵秩旳性质,n=秩E≤min{秩A,秩B}≤n,因此秩B=n,因此B旳列向量旳秩为n,即线性无关.。
北邮新编高等数学教材答案
北邮新编高等数学教材答案第一章:导数和微分1.求下列函数的导数:(1) f(x) = x^3 + 2x^2 - 3x + 1(2) f(x) = sin(x) + cos(x)(3) f(x) = e^x / (1 + e^x)第二章:定积分1.计算下列定积分:(1) ∫(0 to π) sin(x) dx(2) ∫(-∞ to ∞) e^(-x^2) dx(3) ∫(1 to 2) ln(x) dx第三章:多元函数微分学1.求下列函数的偏导数:(1) f(x, y) = x^2 + y^2 - xy(2) f(x, y) = e^x sin(y)第四章:多元函数的极限与连续性1.计算下列函数的极限:(1) lim (x, y)→(0, 0) (x^2 + y^2) / sqrt(x^2 + y^2)(2) lim (x, y)→(1, 1) (x^2 + y^2) / (x + y - 2)第五章:一阶常微分方程1.求解下列一阶常微分方程:(1) dy/dx + y = x(2) dy/dx = y/x第六章:多元函数的极值与条件极值1.求函数 f(x, y) = x^2 + xy + y^2 在D={(x,y)|x^2 + y^2 ≤ 4} 上的极值。
第七章:重积分1.计算下列二重积分:(1) ∬(D) x^2 + y^2 dA, D = { (x, y) | x^2 + y^2 ≤ 1 }(2) ∬(D) e^(-x^2-y^2) dA, D = { (x, y) | x^2 + y^2 ≤ 2, x ≥ 0, y ≥ 0 }第八章:二阶常微分方程1.求解二阶常微分方程:(1) d^2y/dx^2 + 2dy/dx + 2y = 0(2) d^2y/dx^2 + 4dy/dx + 4y = sin(x)第九章:无穷级数1.求下列级数的和:(1) ∑(n=1 to ∞) 2^n / 3^n(2) ∑(n=0 to ∞) n/(n^2+4)第十章:傅里叶级数与傅里叶变换1.求函数 f(x) = x 在[-π, π] 上的傅里叶级数展开式。
复变函数与积分变(北京邮电大学)课后的习题答案
z
0
i
(2)、|z-1|=|z|.表示直线 z=
1 . 2
11.设 是圆周 {z : z c r}, r 0, a c re . 令
za L z : Im 0 , b
其中 b ei .求出 L 在 a 切于圆周 的关于 的充 分必要条件. 解:如图所示. (3)、1<|z+i|<2 解: 表示以-i 为圆心, 以 1 和 2 为半径的周圆所组成 的圆环域。
复变函数与积分变换课后答案(北京邮电大学出版社)
复变函数与积分变换 (修订版)
主编:马柏林 (复旦大学出版社)
——课后习题答案
1 / 37
复变函数与积分变换课后答案(北京邮电大学出版社)
习题一
1. 用复数的代数形式 a+ib 表示下列复数
1 8 0i 1 8
eiπ / 4 ;
①解 e
1 i 1 i 1 i 2 2 2
4、证明:当且仅当 z z 时,z 才是实数.
3
1 1 3 1 8
3 1 3
2
2
3
3
3
证明:若 z z ,设 z x iy ,
3 3 2 2
z2 cos π i sin π 1
3 / 37
复变函数与积分变换课后答案(北京邮电大学出版社)
5 5 1 3 z3 cos π i sin π i 3 3 2 2
是 α-β=90° . 12.指出下列各式中点 z 所确定的平面图形,并作出 草图.
⑶ 3 3i 的平方根.
北京邮电大学版_线性代数_课后题答案2
⎤ ⎡ 3⎤ − x4 ⎥ ⎢− 2 ⎥ ⎡ −1⎤ ⎥ ⎢ ⎥ ⎢ −2 ⎥ 7 −2 x4 ⎥ = x3 ⎢ ⎥ + x4 ⎢ ⎥ ⎥ ⎢ 2 ⎥ ⎢0⎥ ⎥ ⎢ 1 ⎥ ⎢ ⎥ ⎥ ⎢ ⎥ ⎣1⎦ ⎢ 0 ⎦ ⎥ x4 ⎥ ⎣ ⎦
⎡ 3⎤ ⎢− 2 ⎥ ⎢ ⎥ ⎢ 7 ⎥, ⎢ 2 ⎥ ⎢ 1 ⎥ ⎢ ⎥ ⎢ ⎣ 0 ⎥ ⎦
⎡ 1 2 −2 2 −1⎤ ⎡ 1 2 −2 2 −1⎤ r2 − r1 ⎢ ⎥ ⎥ A = 1 2 −1 3 −2 ⎯⎯⎯ →⎢ ⎢ ⎥ r3 −2 r1 ⎢ 0 0 1 1 −1⎥ ⎢ ⎢ ⎣ 2 4 −7 1 1 ⎥ ⎦ ⎣ 0 0 −3 −3 3 ⎥ ⎦ ⎡1 2 −2 2 −1⎤ r3 + 3r2 ⎥ ⎯⎯⎯ →⎢ R( A) = 2, ⎢0 0 1 1 −1⎥ ⎢ ⎣0 0 0 0 0 ⎥ ⎦
习题四 (A类)
1. 用消元法解下列方程组.
⎧ x1 + 4 x2 − 2 x3 + 3 x4 = 6 , ⎪ 2 x + 2 x + 4 x = 2, ⎪ 1 2 4 ⎨ ⎪3 x1 + 2 x2 + 2 x3 − 3 x4 = 1, ⎪ x + 2 x2 + 3x3 − 3x4 = 8; (1) ⎩ 1
⎧ x1 − x2 + 5 x3 − x4 = 0, ⎪ x + x − 2 x + 3x = 0, ⎪ 1 2 3 4 ⎨ 3 x − x + 8 x + x 2 3 4 = 0, ⎪ 1 ⎪ x + 3x2 − 9 x3 + 7 x4 = 0; (2) ⎩ 1 ⎧ x1 + 2 x2 − 2 x3 + 2 x4 − x5 = 0, ⎪ ⎨ x1 + 2 x2 − x3 + 3x4 − 2 x5 = 0, ⎪ 2 x + 4 x − 7 x + x + x = 0. ⎩ 1 2 3 4 5
复变函数课后答案 北京邮电大学版1
(3)|sinz|2=sin2x+sh2y
证明:
(4)|cosz|2=cos2x+sh2y
证明:
21.证明当y→∞时,|sin(x+iy)|和|cos(x+iy)|都趋于无穷大.
证明:
∴
而
当y→+∞时,e-y→0,ey→+∞有|sinz|→∞.
当y→-∞时,e-y→+∞,ey→0有|sinz|→∞.
从而f(z)在 处可导,在全平面不解析.
(4) .
解:设 ,则
所以只有当z=0时才满足C-R方程.
从而f(z)在z=0处可导,处处不解析.
7.证明区域D内满足下列条件之一的解析函数必为常数.
(1) ;
证明:因为 ,所以 , .
所以u,v为常数,于是f(z)为常数.
(2) 解析.
证明:设 在D内解析,则
(2)
(3)
16.求下列积分的值,其中积分路径C均为|z|=1.
(1) (2) (3)
解(1)
(2)
(3)
17.计算积分 ,其中积分路径 为
(1)中心位于点 ,半径为 的正向圆周
(2)中心位于点 ,半径为 的正向圆周
解:(1) 内包含了奇点
∴
(2) 内包含了奇点 ,
∴
19.验证下列函数为调和函数.
解(1)设 ,
解:表示直线y=x的右下半平面
5、Imz>1,且|z|<2.
解:表示圆盘内的一弓形域。
习题二
1.求映射 下圆周 的像.
解:设 则
因为 ,所以
所以 ,
所以 即 ,表示椭圆.
2.在映射 下,下列z平面上的图形映射为w平面上的什么图形,设 或 .
高等数学第3版(张卓奎)第二章习题选解-北京邮电大学出版社
习题选解(第二章)习 题 2-13.设 25x y =,根据导数的定义求 1d d -=x x y. 解:2111()(1)55lim lim (1)1x x x dyf x f x dx x x =-→-→----==--+ 15lim(1)10x x →-=-=- 4.用导数的定义证明x x sin )(cos -='. 解:002sin()sin cos()cos 22(cos )lim lim x x x x x x x x x x x ∆→∆→∆∆-++∆-'==∆∆ 0sin 2lim sin()sin 22x xx x x x ∆→∆∆=-+=-∆. 5.已知)(0x f '存在,求下列极限(1) x x f x x f x ∆-∆+→∆)()2(lim 000; (2) xx f x x f x ∆-∆-→∆)()(lim 000; (3) hh x f h x f h )()(lim 000--+→. 解:(1) x x f x x f x ∆-∆+→∆)()2(lim 000=0000(2)()2lim 2()2x f x x f x f x x∆→+∆-'=∆. (2) 0000000()()()()lim lim ()x x f x x f x f x x f x f x x x∆→∆→-∆--∆-'=-=-∆-∆; (3) 000()()lim h f x h f x h h→+-- 00000()()()()lim[]h f x h f x f x h f x h h→+---=-02()f x '=. 6.求下列函数的导数 (1) 5x y =; (2) 3x y =; (3) 8.1x y =;(4) x y 1=; (5) 21x y =; (6)2y =. 解:)1(45x y =';)2(32()y x ''==;)3(8.08.1x y ='; )4(12()y x -''==)5(232()y x x -''==-; )6(137325210107()()10y x x x +--'''=== . 7.讨论下列函数在0=x 处的连续性和可导性. (1) x y sin =; (2) ⎪⎩⎪⎨⎧=≠=0001sin )(2x x x x x f . 解:(1)因为 )0(0sin lim )(lim0f x x f x x ===→→,所以)(x f 在0=x 处连续;又因为 1sin lim 0sin lim 0)0()(lim)0(000-=-=--=--='-→-→-→-xx x x x f x f f x x x 1sin lim 0sin lim 0)0()(lim )0(000==-=--='+→+→+→+xx x x x f x f f x x x 所以)(x f 在0=x 处不可导.(2)因为)0(01sin lim )(lim 200f x x x f x x ===→→, 所以)(x f 在0=x 处连续;又因为01sin lim 01sin lim 0)0()(lim )0(0200==-=--='→→→xx x x x x f x f f x x x 所以)(x f 在0=x 处可导,且0)0(='f 。
北京邮电大学高等数学(全)答案解析
北京邮电大学高等数学答案一、单项选择题(共20道小题,共100.0分)设的定义域为则的定义域为___________.A.B.C.D.函数是定义域内的____________.E.周期函数F.单调函数G.有界函数H.无界函数设,则__________.I.J.K.L.函数的定义域是____________.M.N.O.P.设与分别是同一变化过程中的两个无穷大量,则是____________.Q.无穷大量R.无穷小量下列函数中当时与无穷小相比是高阶无穷小的是_________.U.V.W.X.时,与为等价无穷小,则__________.Y. 1BB.____________.CC.DD.EE.FF.1_________.GG.HH.II.JJ.1下列计算极限的过程,正确的是____________.KK.LL.MM.NN.设在处连续,则_________.RR.设 ,则()SS.TT.UU.VV.设且可导,则()WW.XX.YY.ZZ.已知,则()AAA.1CCC.DDD.设,则()EEE.FFF.设,且,则( ) III.1JJJ.设,则( )MMM.99NNN.PPP.曲线在点(0,1)处的切线方程为( )QQQ.RRR.SSS.TTT.设,且存在,则等于()UUU.VVV.WWW.XXX.设函数可导,则()YYY.ZZZ.AAAA.BBBB.一、单项选择题(共20道小题,共100.0分)函数的反函数是____________.A.B.C.D.函数的周期是___________.E.F.G.H.是____________.I.单调函数J.周期函数K.L.奇函数2.函数是___________.A.B.奇函数C.D.既是奇函数又是偶函数设(为常数),则___________.E.F.G.H.设,则__________.I.J.K.L.下列各对函数相同的是________.M.与N.与与P.与设与分别是同一变化过程中的两个无穷大量,则是____________.Q.无穷大量R.无穷小量S.T.不能确定____________.U.V.W.X. 1_________.Y.Z.AA.BB.1下列变量在给定的变化过程中为无穷小量的是_____________.CC.DD.EE.FF.存在是在处连续的_________.HH.必要条件JJ.无关的条件设在处连续,且时,,则_________.NN.2设函数,则的连续区间为______________.OO.PP.QQ.RR.设且可导,则()SS.TT.UU.VV.设,则()WW.XX.YY.ZZ.设则( )AAA.BBB.设,则()EEE.FFF.GGG.HHH.设,且,则( )III.1JJJ.KKK.LLL.设,且存在,则等于()MMM.NNN.OOO.PPP.一、单项选择题(共20道小题,共100.0分)设的定义域为则的定义域为___________.A.B.C.D.函数的周期是___________.E.F.G.H.函数是定义域内的____________.I.周期函数K.有界函数是____________.M.单调函数N.周期函数O.P.奇函数函数是___________.Q.R.奇函数S.T.既是奇函数又是偶函数下列函数中为奇函数的是__________.U.V.W.X.设(为常数),则___________.Y.Z.AA.BB.函数的定义域是____________.CC.DD.EE.FF._____________.GG.0II.2JJ.____________.KK.LL.MM.NN.1_________.OO.QQ.RR.1设在处连续,且时,,则_________.SS.TT.UU.VV.2设函数,则的连续区间为______________.WW.XX.YY.ZZ.设且可导,则()AAA.BBB.设则( )EEE.FFF.设,且,则( )III.1JJJ.KKK.LLL.设,则( )MMM.99NNN.PPP.曲线在点(0,1)处的切线方程为( )QQQ.RRR.SSS.TTT.设曲线在点M处的切线斜率为3,则点M的坐标为()VVV.(1,0)XXX.(1,1)设函数可导,则()YYY.ZZZ.AAAA.BBBB.一、单项选择题(共20道小题,共100.0分)1.若,,则___________.A.B.C.D.设的定义域为则的定义域为___________.E.F.G.H.2.函数的反函数是____________.A.B.C.D.函数是定义域内的____________.E.周期函数F.单调函数H.无界函数是____________.I.单调函数J.周期函数K.有界函数下列函数中为奇函数的是__________.A.B.C.D.4.(错误)当时,与比较是______________.A.高阶无穷小C.非等价的同阶无穷小D.低阶无穷小5._________.A.0B.C.D. 16.(错误)下列计算极限的过程,正确的是____________.A.B.C.D.下列变量在给定的变化过程中为无穷小量的是_____________.B.C.D.8.(错误)设,则_________________.A. 1B.0C. 29.(错误)存在是在处连续的_________.A.充分条件C.充分必要条件D.无关的条件10.(错误)设函数,则的连续区间为______________.A.B.C.D.11.(错误)函数的连续区间为___________.A.B.C.D.12.设且可导,则()A.B.C.D.13.14.(错误)设则()A.B.C.D.15.(错误)设则( )A.B.C.D.16.(错误)设曲线在点M处的切线斜率为3,则点M的坐标为()A.(0,1)C.(0,0)D.(1,1)17.(错误)设,且存在,则等于()A.B.C.D.18.设在点可导,则()A.B.C.D.一、单项选择题(共20道小题,共100.0分)1.(错误)若,,则___________.A.B.C.D.2.函数的反函数是____________.A.B.C.D.3.(错误)函数的周期是___________.A.B.C.D.4.(错误)函数是定义域内的____________.A.周期函数C.有界函数5.下列函数中为奇函数的是__________.A.B.C.D.6.(错误)设(为常数),则___________.A.B.C.D.7.(错误)函数的定义域是____________.A.B.C.D.8.(错误)函数的定义域为____________.A.B.C.D.9.(错误)下列各对函数相同的是________.A.与B.与与与10.(_____________.C. 2D.11.(错误)____________.A.B.C.D. 112.(错误)___________.A.B.C.D. 113.存在是在处连续的_________.B.必要条件D.无关的条件14.15.(错误)设 ,则()A.B.C.D.16.(错误)设则( )A.B.C.D.17.(错误)已知,则()A. 1B.C.D.18.(错误)设,则( )A.99B.C.D.19.(错误)曲线在点(0,1)处的切线方程为( )A.B.C.D.20.(错误)设曲线在点M处的切线斜率为3,则点M的坐标为()D.(1,1)21.(错误)设函数可导,则()word 格式整理版范文范例 学习指导 A.B.C.D.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京邮电大学高等数学答案一、单项选择题(共20道小题,共100.0分)设的定义域为则的定义域为___________.A.B.C.D.函数是定义域内的____________.E.周期函数F.单调函数G.有界函数H.无界函数设,则__________.I.J.K.L.函数的定义域是____________.M.N.O.P.设与分别是同一变化过程中的两个无穷大量,则是____________.Q.无穷大量R.无穷小量下列函数中当时与无穷小相比是高阶无穷小的是_________.U.V.W.X.时,与为等价无穷小,则__________.Y. 1BB.____________.CC.DD.EE.FF.1_________.GG.HH.II.JJ.1下列计算极限的过程,正确的是____________.KK.LL.MM.NN.设在处连续,则_________.RR.设 ,则()SS.TT.UU.VV.设且可导,则()WW.XX.YY.ZZ.已知,则()AAA.1CCC.DDD.设,则()EEE.FFF.设,且,则( ) III.1JJJ.设,则( )MMM.99NNN.PPP.曲线在点(0,1)处的切线方程为( )QQQ.RRR.SSS.TTT.设,且存在,则等于()UUU.VVV.WWW.XXX.设函数可导,则()YYY.ZZZ.AAAA.BBBB.一、单项选择题(共20道小题,共100.0分)函数的反函数是____________.A.B.C.D.函数的周期是___________.E.F.G.H.是____________.I.单调函数J.周期函数K.L.奇函数2.函数是___________.A.B.奇函数C.D.既是奇函数又是偶函数设(为常数),则___________.E.F.G.H.设,则__________.I.J.K.L.下列各对函数相同的是________.M.与N.与与P.与设与分别是同一变化过程中的两个无穷大量,则是____________.Q.无穷大量R.无穷小量S.T.不能确定____________.U.V.W.X. 1_________.Y.Z.AA.BB.1下列变量在给定的变化过程中为无穷小量的是_____________.CC.DD.EE.FF.存在是在处连续的_________.HH.必要条件JJ.无关的条件设在处连续,且时,,则_________.NN.2设函数,则的连续区间为______________.OO.PP.QQ.RR.设且可导,则()SS.TT.UU.VV.设,则()WW.XX.YY.ZZ.设则( )AAA.BBB.设,则()EEE.FFF.GGG.HHH.设,且,则( )III.1JJJ.KKK.LLL.设,且存在,则等于()MMM.NNN.OOO.PPP.一、单项选择题(共20道小题,共100.0分)设的定义域为则的定义域为___________.A.B.C.D.函数的周期是___________.E.F.G.H.函数是定义域内的____________.I.周期函数K.有界函数是____________.M.单调函数N.周期函数O.P.奇函数函数是___________.Q.R.奇函数S.T.既是奇函数又是偶函数下列函数中为奇函数的是__________.U.V.W.X.设(为常数),则___________.Y.Z.AA.BB.函数的定义域是____________.CC.DD.EE.FF._____________.GG.0II.2JJ.____________.KK.LL.MM.NN.1_________.OO.QQ.RR.1设在处连续,且时,,则_________.SS.TT.UU.VV.2设函数,则的连续区间为______________.WW.XX.YY.ZZ.设且可导,则()AAA.BBB.设则( )EEE.FFF.设,且,则( )III.1JJJ.KKK.LLL.设,则( )MMM.99NNN.PPP.曲线在点(0,1)处的切线方程为( )QQQ.RRR.SSS.TTT.设曲线在点M处的切线斜率为3,则点M的坐标为()VVV.(1,0)XXX.(1,1)设函数可导,则()YYY.ZZZ.AAAA.BBBB.一、单项选择题(共20道小题,共100.0分)1.若,,则___________.A.B.C.D.设的定义域为则的定义域为___________.E.F.G.H.2.函数的反函数是____________.A.B.C.D.函数是定义域内的____________.E.周期函数F.单调函数H.无界函数是____________.I.单调函数J.周期函数K.有界函数下列函数中为奇函数的是__________.A.B.C.D.4.(错误)当时,与比较是______________.A.高阶无穷小C.非等价的同阶无穷小D.低阶无穷小5._________.A.0B.C.D. 16.(错误)下列计算极限的过程,正确的是____________.A.B.C.D.下列变量在给定的变化过程中为无穷小量的是_____________.B.C.D.8.(错误)设,则_________________.A. 1B.0C. 29.(错误)存在是在处连续的_________.A.充分条件C.充分必要条件D.无关的条件10.(错误)设函数,则的连续区间为______________.A.B.C.D.11.(错误)函数的连续区间为___________.A.B.C.D.12.设且可导,则()A.B.C.D.13.14.(错误)设则()A.B.C.D.15.(错误)设则( )A.B.C.D.16.(错误)设曲线在点M处的切线斜率为3,则点M的坐标为()A.(0,1)C.(0,0)D.(1,1)17.(错误)设,且存在,则等于()A.B.C.D.18.设在点可导,则()A.B.C.D.一、单项选择题(共20道小题,共100.0分)1.(错误)若,,则___________.A.B.C.D.2.函数的反函数是____________.A.B.C.D.3.(错误)函数的周期是___________.A.B.C.D.4.(错误)函数是定义域内的____________.A.周期函数C.有界函数5.下列函数中为奇函数的是__________.A.B.C.D.6.(错误)设(为常数),则___________.A.B.C.D.7.(错误)函数的定义域是____________.A.B.C.D.8.(错误)函数的定义域为____________.A.B.C.D.9.(错误)下列各对函数相同的是________.A.与B.与与与10.(_____________.C. 2D.11.(错误)____________.A.B.C.D. 112.(错误)___________.A.B.C.D. 113.存在是在处连续的_________.B.必要条件D.无关的条件14.15.(错误)设 ,则()A.B.C.D.16.(错误)设则( )A.B.C.D.17.(错误)已知,则()A. 1B.C.D.18.(错误)设,则( )A.99B.C.D.19.(错误)曲线在点(0,1)处的切线方程为( )A.B.C.D.20.(错误)设曲线在点M处的切线斜率为3,则点M的坐标为()D.(1,1)21.(错误)设函数可导,则()word 格式整理版范文范例 学习指导 A.B.C.D.。