排列组合公式

合集下载

排列组合公式(全)

排列组合公式(全)

排列组合公式排列定义从n个不同的元素中,取r个不重复的元素,按次序排列,称为从n个中取r个的无重排列。

排列的全体组成的集合用 P(n,r)表示.排列的个数用P(n,r)表示。

当r=n时称为全排列。

一般不说可重即无重。

可重排列的相应记号为 P(n,r),P(n,r)。

组合定义从n个不同元素中取r个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n个中取r个的无重组合.组合的全体组成的集合用C(n,r)表示,组合的个数用C(n,r)表示,对应于可重组合有记号C(n,r),C(n,r).一、排列组合部分是中学数学中的难点之一,原因在于(1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力;(2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;(3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;(4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。

二、两个基本计数原理及应用(1)加法原理和分类计数法1.加法原理2.加法原理的集合形式3.分类的要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)(2)乘法原理和分步计数法1.乘法原理2.合理分步的要求任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同例1:用1、2、3、4、5、6、7、8、9组成数字不重复的六位数集合A为数字不重复的九位数的集合,S(A)=9!集合B为数字不重复的六位数的集合。

把集合A分为子集的集合,规则为前6位数相同的元素构成一个子集。

显然各子集没有共同元素。

每个子集元素的个数,等于剩余的3个数的全排列,即3!这时集合B的元素与A的子集存在一一对应关系,则S(A)=S(B)*3!S(B)=9!/3!这就是我们用以前的方法求出的P(9,6)例2:从编号为1-9的队员中选6人组成一个队,问有多少种选法?设不同选法构成的集合为C,集合B为数字不重复的六位数的集合。

排列组合公式排列组合计算公式

排列组合公式排列组合计算公式

排列组合公式/排列组合计算公式2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。

公式C是指组合,从N个元素取R个,不进行排列。

N-元素的总个数R 参与选择的元素个数!-阶乘,如9!= 9*8*7*6*5*4*3*2*1从N 倒数r 个,表达式应该为n* ( n-1)*(n-2)..(n-r+1);因为从n到(n-叶1)个数为n—(n-叶1) = r举例:Q1: 有从1 到9 共计9个号码球,请问,可以组成多少个三位数?A1: 123 和213是两个不同的排列数。

即对排列顺序有要求的,既属于“排列P'计算范畴。

上问题中,任何一个号码只能用一次,显然不会出现988,997 之类的组合,我们可以这么看,百位数有9 种可能,十位数则应该有9-1 种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。

计算公式=P(3,9) = 9*8*7,(从9 倒数 3 个的乘积)Q2: 有从1 到9 共计9 个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?A2: 213 组合和312组合,代表同一个组合,只要有三个号码球在一起即可。

即不要求顺序的,属于“组合C”计算范畴。

上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合的概念和公式典型例题分析例 1 设有3 名学生和4 个课外小组.( 1)每名学生都只参加一个课外小组;( 2 )每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?解( 1)由于每名学生都可以参加 4 个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.点评由于要让 3 名学生逐个选择课外小组,故两问都用乘法原理进行计算.例 2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?解依题意,符合要求的排法可分为第一个排、、中的某一个,共 3 类,每一类中不同排法可采用画“树图”的方式逐一排出:•••符合题意的不同排法共有9种.点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.例3 判断下列问题是排列问题还是组合问题?并计算岀结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?(4)有8盆花:①从中选岀2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选岀2盆放在教室有多少种不同的选法?分析 (1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.1) ①是排列问题,共用了封信;②是组合问题,共需握手(次)•2) ①是排列冋题,共有(种)不同的选法;②是组合问题,共有种不同的选法.3) ①是排列冋题,共有种不同的商;②是组合问题,共有种不同的积.4) ①是排列冋题,共有种不同的选法;②是组合问题,共有种不同的选法.证明.证明左式右式.等式成立.点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.例 5 化简.解法一原式解法二原式点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化.例 6 解方程:(1 );(2).解(1)原方程解得.( 2 )原方程可变为* 5 5•••原方程可化为•即,解得第六章排列组合、二项式定理一、考纲要求1. 掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.2. 理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.3. 掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.二、知识结构三、知识点、能力点提示(一)加法原理乘法原理说明加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排组合中列、有关问题提供了理论根据.例 1 5 位高中毕业生,准备报考 3 所高等院校,每人报且只报一所,不同的报名方法共有多少种?解: 5 个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3 种不同的报名方法,根据乘法原理,得到不同报名方法总共有3X 3X 3X 3X 3=35(种)(二)排列、排列数公式说明排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研究的对象以及研究问题的方法都和前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都是选择题或填空题考查.例 2 由数字1、2、3、4、5 组成没有重复数字的五位数,其中小于50 000 的偶数共有()A.60 个B.48 个C.36 个D.24 个解因为要求是偶数,个位数只能是2或4的排法有P12;小于50 000的五位数,万位只能是1、3或2、4中剩下的一个的排法有P13;在首末两位数排定后,中间3个位数的排法有6,得P13F33P12= 36(个)由此可知此题应选 C.例 3 将数字1、2、3、 4 填入标号为1、2、3、 4 的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种?解:将数字 1 填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即214 3,3142,4123;同样将数字1 填入第3方格,也对应着3种填法;将数字 1 填入第4方格,也对应3种填法,因此共有填法为3P;=9(种).例四例五可能有问题,等思考三)组合、组合数公式、组合数的两个性质说明历届高考均有这方面的题目出现,主要考查排列组合的应用题,且基本上都是由选择题或填空题考查.例 4 从 4 台甲型和 5 台乙型电视机中任意取出 3 台,其中至少有甲型与乙型电视机各1 台,则不同的取法共有()A.140 种B.84 种C.70 种D.35 种解:抽出的3台电视机中甲型1台乙型2台的取法有C4・C25种;甲型2台乙型1 台的取法有C •C15种根据加法原理可得总的取法有氏•C25+C24 ・「5=40+30=70(种)可知此题应选C.例5 甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1项, 丙、丁公司各承包2项,问共有多少种承包方式?解:甲公司从8项工程中选出3项工程的方式C;种;乙公司从甲公司挑选后余下的5项工程中选出1项工程的方式有C5种;丙公司从甲乙两公司挑选后余下的4项工程中选出2项工程的方式有C4种;丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程的方式有C?2种.根据乘法原理可得承包方式的种数有C3 8XC15XC24XC22= X仁1680(种).(四)二项式定理、二项展开式的性质说明二项式定理揭示了二项式的正整数次幕的展开法则,在数学中它是常用的基础知识,从1985年至1998年历届高考均有这方面的题目出现,主要考查二项展开式中通项公式等,题型主要为选择题或填空题.例6 在(x- )10的展开式中,x6的系数是()A.-27C610B.27C410C.-9C610D.9C:。

排列组合公式大全

排列组合公式大全

排列组合公式大全在组合数学中,排列和组合是两个重要的概念。

排列指的是从一组元素中选择出一些元素按照一定的顺序排列,而组合则是从一组元素中选择出一些元素,不考虑顺序。

排列和组合在概率论、统计学、计算机科学等领域都有广泛的应用。

本文将介绍一些常见的排列和组合公式,供读者参考。

排列公式1. 排列的定义在数学中,从n个元素中选取r个元素进行排列,记为P(n, r)。

排列的结果是有序的,具体的排列方式有nPr种。

2. 全排列公式当r等于n时,即从n个元素中选取n个元素进行排列,这种排列方式称为全排列。

全排列的总数为n!(n的阶乘),即:P(n, n) = n!3. 部分排列公式当r小于n时,即从n个元素中选取r个元素进行排列,这种排列方式称为部分排列。

部分排列的总数为:P(n, r) = n! / (n - r)!4. 循环排列公式循环排列是一种特殊的排列方式,它指的是把元素排列成一个环状。

对于n个元素的循环排列,总数为(n - 1)!。

P(n, 1) = (n - 1)!5. 有限排列公式在排列中,如果元素可以重复使用,则称为有限排列。

从n个元素中选取r个元素进行有限排列的总数为nr。

组合公式1. 组合的定义在数学中,从n个元素中选取r个元素进行组合,记为C(n, r)。

组合的结果是无序的,具体的组合方式有Cnr种。

2. 组合公式组合的总数可以使用下列公式计算:C(n, r) = n! / (r! * (n - r)!)3. 组合与排列的关系组合数与排列数之间存在一定的关系。

具体来说,C(n, r)可以通过P(n, r)除以r!来计算,即:C(n, r) = P(n, r) / r!4. 二项式系数公式二项式系数是组合数学中常见的概念,它对应于二项式展开中各项的系数。

n 个元素的二项式系数可以使用组合公式计算:C(n, 0) = 1C(n, n) = 1C(n, r) = C(n - 1, r - 1) + C(n - 1, r)总结本文介绍了一些常见的排列和组合公式。

排列组合公式公式总结

排列组合公式公式总结

排列组合公式公式总结
1.排列及计算公式
从n个不同元素中,任取m(m_le;n)个元素按照一定的顺序排成一列,叫做从n 个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m_le;n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示.
p(n,m)=n(n-1)(n-2)_hellip;_hellip;(n-m+1)= n!/(n-m)!(规定0!=1).
2.组合及计算公式
从n个不同元素中,任取m(m_le;n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m_le;n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号
c(n,m) 表示.
c(n,m)=p(n,m)/m!=n!/((n-m)!_m!);c(n,m)=c(n,n-m);
3.其他排列与组合公式
从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.
n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!_n2!_..._nk!).
k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).
排列(Pnm(n为下标,m为上标))
Pnm=n_times;(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n
组合(Cnm(n为下标,m为上标))
Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m。

排列组合公式排列组合计算公式

排列组合公式排列组合计算公式

排列组合公式排列组合计算公式Revised as of 23 November 2020排列组合公式/排列组合计算公式2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。

公式C是指组合,从N个元素取R个,不进行排列。

N-元素的总个数 R参与选择的元素个数!-阶乘,如?9!=9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);因为从n到(n-r+1)个数为n-(n-r+1)=r举例:Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数A1: 123和213是两个不同的排列数。

即对排列顺序有要求的,既属于“排列P”计算范畴。

上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。

计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。

即不要求顺序的,属于“组合C”计算范畴。

上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合的概念和公式典型例题分析例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:∴ 符合题意的不同排法共有9种.点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.例3判断下列问题是排列问题还是组合问题并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信②每两人互握了一次手,共握了多少次手(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法②从中选2名参加省数学竞赛,有多少种不同的选法(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商②从中任取两个求它的积,可以得到多少个不同的积(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法②从中选出2盆放在教室有多少种不同的选法分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.(1)①是排列问题,共用了封信;②是组合问题,共需握手(次).(2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.(3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.(4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.例4证明.证明左式右式.∴ 等式成立.点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.例5化简.解法一原式解法二原式点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化.例6解方程:(1);(2).解(1)原方程解得.(2)原方程可变为∵ ,,∴ 原方程可化为.即,解得第六章?排列组合、二项式定理一、考纲要求1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.二、知识结构三、知识点、能力点提示(一)加法原理乘法原理说明加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排列、组合中有关问题提供了理论根据.例15位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有多少种解:5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的报名方法,根据乘法原理,得到不同报名方法总共有3×3×3×3×3=35(种)(二)排列、排列数公式说明排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研究的对象以及研究问题的方法都和前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都是选择题或填空题考查.例2由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50 000的偶数共有()个?个?个?个解?因为要求是偶数,个位数只能是2或4的排法有P12;小于50 000的五位数,万位只能是1、3或2、4中剩下的一个的排法有P13;在首末两位数排定后,中间3个位数的排法有P33,得P13P33P12=36(个)由此可知此题应选C.例3将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种解:将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即214 3,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为=9(种).3P13例四例五可能有问题,等思考三)组合、组合数公式、组合数的两个性质说明历届高考均有这方面的题目出现,主要考查排列组合的应用题,且基本上都是由选择题或填空题考查.例4从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有()种?种?种?种解:抽出的3台电视机中甲型1台乙型2台的取法有C14·C25种;甲型2台乙型1台的取法有C24·C15种根据加法原理可得总的取法有C24·C25+C24·C15=40+30=70(种 )可知此题应选C.例5甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1 项,丙、丁公司各承包2项,问共有多少种承包方式解:甲公司从8项工程中选出3项工程的方式 C38种;乙公司从甲公司挑选后余下的5项工程中选出1项工程的方式有C15种;丙公司从甲乙两公司挑选后余下的4项工程中选出2项工程的方式有C24种;丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程的方式有C22种.根据乘法原理可得承包方式的种数有C38×C15×C24×C22=×1=1680(种).(四)二项式定理、二项展开式的性质说明二项式定理揭示了二项式的正整数次幂的展开法则,在数学中它是常用的基础知识,从1985年至1998年历届高考均有这方面的题目出现,主要考查二项展开式中通项公式等,题型主要为选择题或填空题.例6在(x-)10的展开式中,x6的系数是()-27CB.27C410-9CD.9C410解?设(x-)10的展开式中第γ+1项含x6,因Tγ+1=Cγ10x10-γ(-)γ,10-γ=6,γ=4于是展开式中第5项含x 6,第5项系数是C410(-)4=9C410故此题应选D.例7(x-1)-(x-1)2+(x-1)3-(x-1)+(x-1)5的展开式中的x2的系数等于解:此题可视为首项为x-1,公比为-(x-1)的等比数列的前5项的和,则其和为在(x-1)6中含x3的项是C36x3(-1)3=-20x3,因此展开式中x2的系数是-2 0. (五)综合例题赏析例8若(2x+)4=a0+a1x+a2x 2+a3x3+a4x4,则(a+a2+a4)2-(a1+a3)2的值为()解:A.例92名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2 名护士,不同的分配方法共有()种?种?种?种解?分医生的方法有P22=2种,分护士方法有C24=6种,所以共有6×2=12种不同的分配方法。

排列组合公式(全)

排列组合公式(全)

排列组合公式(一)排列定义从n个不同的元素中,取r个不重复的元素,按次序排列,称为从n个中取r个的无重排列。

排列的全体组成的集合用 P(n,r)表示。

排列的个数用P(n,r)表示。

当r=n时称为全排列。

一般不说可重即无重。

可重排列的相应记号为 P(n,r),P(n,r)。

组合定义从n个不同元素中取r个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n个中取r个的无重组合。

组合的全体组成的集合用C(n,r)表示,组合的个数用C(n,r)表示,对应于可重组合有记号C(n,r),C(n,r)。

一、排列组合部分是中学数学中的难点之一,原因在于(1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力;(2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;(3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;(4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。

二、两个基本计数原理及应用(1)加法原理和分类计数法1.加法原理2.加法原理的集合形式3.分类的要求每一类中的每一种方法都可以地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)(2)乘法原理和分步计数法1.乘法原理2.合理分步的要求任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同例1:用1、2、3、4、5、6、7、8、9组成数字不重复的六位数集合A为数字不重复的九位数的集合,S(A)=9!集合B为数字不重复的六位数的集合。

把集合A分为子集的集合,规则为前6位数相同的元素构成一个子集。

显然各子集没有共同元素。

每个子集元素的个数,等于剩余的3个数的全排列,即3!这时集合B的元素与A的子集存在一一对应关系,则S(A)=S(B)*3!S(B)=9!/3!这就是我们用以前的方法求出的P(9,6)例2:从编号为1-9的队员中选6人组成一个队,问有多少种选法?设不同选法构成的集合为C,集合B为数字不重复的六位数的集合。

常用排列组合公式

常用排列组合公式

常用排列组合公式2. 组合公式n 个相异物件取 r 个( 1 \leq r \leq n )个的不同组合总数,为C_r^n = \binom{n}{r} = \frac{P_r^n}{r!} =\frac{n!}{r!(n-r)!} = \frac{n(n-1) \cdots (n-r+1)}{r!}\\当 r=0 时,按 0!=1 的约定,算出 \binom{n}{0} = 1,这可看作一个约定。

只要 r 为非负整数,n 不论为任何实数,都有意义。

故 n 可不必限制为自然数。

例如:\binom{-1}{r} = (-1)(-2) \cdots (-r) / r! = (-1)^r\\ 3. 组合系数与二项式展开的关系组合系数 \binom{n}{m} 又常称为二项式系数,因为它出现在下面熟知的二项式展开的公式中:(a+b)^n = \sum_{i=0}^n \dbinom{n}{i}a^i b^{n-i}\\利用这个关系式,可得出许多有用的组合公式。

例如,令a=b=1,得\dbinom{n}{0} + \dbinom{n}{1} + \cdots + \dbinom{n}{n} = 2^n\\令 a = -1,b = 1 ,则得:\dbinom{n}{0} - \dbinom{n}{1} + \dbinom{n}{2} - \cdots + (-1)^n\dbinom{n}{n} = 0\\另一个有用的公式是\dbinom{m+n}{k} =\sum_{i=0}^{k}\dbinom{m}{i}\dbinom{n}{k-i}\\它是由恒等式 (1+x)^{m+n} = (1+x)^m(1+x)^n 即\sum_{j=0}^{m+n} \dbinom{m+n}{j} x^j = \sum_{j=0}^{m} \dbinom{m}{j} x^j \sum_{j=0}^{n} \dbinom{n}{j}x^j \\比较两边的 x^k 项的系数得到的。

排列组合技巧公式

排列组合技巧公式

排列组合技巧有以下几个公式:
排列公式:对于给定的n个不同元素中,取出m个元素进行排列的方案数为:$$P(n, m) = \frac{n!}{(n-m)!}$$
组合公式:对于给定的n个不同元素中,取出m个元素进行组合的方案数为:$$C(n, m) = \frac{n!}{m!(n-m)!}$$
全排列公式:对于给定的n个不同元素进行全排列的方案数为:$$P(n, n) = n!$$
二项式展开公式:对于任意非负整数n和实数a、b,二项式展开公式可表示为:$$(a+b)^n = C(n, 0) \cdot a^n \cdot b^0 + C(n, 1) \cdot a^{n-1} \cdot b^1 + \ldots + C(n, n) \cdot a^0 \cdot b^n$$
这些公式在计算排列组合问题时非常有用。

其中,排列公式用于计算有序排列的方案数,组合公式用于计算无序组合的方案数,全排列公式用于计算全排列的方案数,二项式展开公式用于展开二项式的n次方。

排列组合公式排列组合计算公式

排列组合公式排列组合计算公式

<<排列组合公式/排列组合计算公式>>公式P是指排列,从N个元素取R个进行排列。

公式C是指组合,从N个元素取R个,不进行排列。

N-元素的总个数R参与选择的元素个数“!”-阶乘,如 9!=9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);因为从n到(n-r+1)个数为n-(n-r+1)=r举例:Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?A1: 123和213是两个不同的排列数。

即对排列顺序有要求的,既属于“排列P”计算范畴。

上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。

计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。

即不要求顺序的,属于“组合C”计算范畴。

上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合的概念和公式典型例题分析例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:∴ 符合题意的不同排法共有9种.点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.例3判断下列问题是排列问题还是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.(1)①是排列问题,共用了封信;②是组合问题,共需握手(次).(2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.(3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.(4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.例4证明.证明左式右式.∴ 等式成立.点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.例5 化简.解法一原式解法二原式点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化例6 解方程:(1);(2).解(1)原方程解得.(2)原方程可变为∵ ,,∴ 原方程可化为.即,解得第六章排列组合、二项式定理一、考纲要求1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.二、知识结构三、知识点、能力点提示(一)加法原理乘法原理说明加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排列、组合中有关问题提供了理论根据.例1 5位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有多少种?解: 5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的报名方法,根据乘法原理,得到不同报名方法总共有3×3×3×3×3=35(种)(二)排列、排列数公式说明排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研究的对象以及研究问题的方法都和前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都是选择题或填空题考查.例2由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50 000的偶数共有( )A.60个B.48个C.36个D.24个解因为要求是偶数,个位数只能是2或4的排法有P12;小于50 000的五位数,万位只能是1、3或2、4中剩下的一个的排法有P13;在首末两位数排定后,中间3个位数的排法有P33,得P13P33P12=36(个)由此可知此题应选C.例3将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种?解:将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即214 3,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为3P13=9(种).例四例五可能有问题,等思考三)组合、组合数公式、组合数的两个性质说明历届高考均有这方面的题目出现,主要考查排列组合的应用题,且基本上都是由选择题或填空题考查.例4从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有( )A.140种B.84种C.70种D.35种解:抽出的3台电视机中甲型1台乙型2台的取法有C14·C25种;甲型2台乙型1台的取法有C24·C15种根据加法原理可得总的取法有C24·C25+C24·C15=40+30=70(种 )可知此题应选C.例5甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1 项,丙、丁公司各承包2项,问共有多少种承包方式?解:甲公司从8项工程中选出3项工程的方式 C38种;乙公司从甲公司挑选后余下的5项工程中选出1项工程的方式有C15种;丙公司从甲乙两公司挑选后余下的4项工程中选出2项工程的方式有C24种;丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程的方式有C22种.根据乘法原理可得承包方式的种数有C38×C15×C24×C22=×1=1680(种).(四)二项式定理、二项展开式的性质说明二项式定理揭示了二项式的正整数次幂的展开法则,在数学中它是常用的基础知识,从1985年至1998年历届高考均有这方面的题目出现,主要考查二项展开式中通项公式等,题型主要为选择题或填空题.例6在(x-)10的展开式中,x6的系数是( )A.-27C610B.27C410C.-9C610D.9C410解设(x-)10的展开式中第γ+1项含x6,因Tγ+1=Cγ10x10-γ(-)γ,10-γ=6,γ=4于是展开式中第5项含x 6,第5项系数是C410(-)4=9C410故此题应选D.例7 (x-1)-(x-1)2+(x-1)3-(x-1)+(x-1)5的展开式中的x2的系数等于解:此题可视为首项为x-1,公比为-(x-1)的等比数列的前5项的和,则其和为在(x-1)6中含x3的项是C36x3(-1)3=-20x3,因此展开式中x2的系数是-2 0.(五)综合例题赏析例8若(2x+)4=a0+a1x+a2x 2+a3x3+a4x4,则(a0+a2+a4)2-(a1+a3)2的值为( )A.1B.-1C.0 D .2解:A.例9 2名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2 名护士,不同的分配方法共有( )A.6种B.12种C.18种D.24种解分医生的方法有P22=2种,分护士方法有C24=6种,所以共有6×2=12种不同的分配方法。

高中数学排列组合公式大全_高中数学排列组合重点知识

高中数学排列组合公式大全_高中数学排列组合重点知识

高中数学排列组合公式大全_高中数学排列组合重点知识排列组合是高中数学教学内容中的重要组成部分,在高考试卷中排列组合的占分比越来越高,且出现的形式多种多样。

下面店铺给你分享高中数学排列组合公式大全,欢迎阅读。

高中数学排列组合公式大全1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m高中数学排列组合公式记忆口诀加法乘法两原理,贯穿始终的法则。

排列组合公式

排列组合公式

排列组合公式
排列A(和顺序有关)
组合C(和顺序无关)
1、排列及计算公式
从n个不同元素中,任取m(m≤n)个元素按照一定顺序排成一列,叫做从n 个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数。

用符号A(n,m)或A m
n
A(n,m)=A m
n =
!
m
-n
!n


(规定0!=1)
2、组合及计算公式
从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。

用符号C(n,m)或C m
n
C(n,m)=C m
n =
!m
)
m
,n(
A=
!m
)
m
-n(
!n


=
()
[]()!m-n
!
m
-n
-n
!n

= C(n,n-m)。

排列组合常用公式

排列组合常用公式

排列组合常用公式排列和组合是数学中常用的两个概念,用于计算对象的不同排序和选择方式。

在组合数学和概率论中,排列和组合公式是非常重要的工具。

本文将介绍常用的排列和组合公式,帮助我们更好地理解和应用这些概念。

排列公式排列是指从给定元素中选择一组有序的元素的方式。

在排列中,元素的顺序是重要的。

以下是常用的排列公式:1.全排列公式:当从n个不同元素中选择r个进行排列时,全排列的总数可以表示为P(n, r)。

全排列的计算方式为:P(n, r) = n! / (n - r)!其中,n! 表示n的阶乘,即n! = n * (n-1) * (n-2) * … * 2 * 1。

2.循环排列公式:当从n个不同元素中选择r个进行循环排列时,循环排列的总数可以表示为P(n, r) / r。

循环排列的计算方式与全排列类似,只是需要除以r,因为循环排列相同的元素被认为是相同的。

循环排列数 = P(n, r) / r组合公式组合是指从给定元素中选择一组无序的元素的方式。

在组合中,元素的顺序是不重要的。

以下是常用的组合公式:1.组合公式:当从n个不同元素中选择r个进行组合时,组合的总数可以表示为C(n, r)。

组合的计算方式为:C(n, r) = n! / (r! * (n - r)!)其中,n! 表示n的阶乘,r! 表示r的阶乘,(n-r)! 表示(n-r)的阶乘。

2.二项式定理:二项式定理是组合公式的一个重要推论。

当计算表达式(x + y)^n 的展开式时,其中x和y为变量,n为非负整数,展开式中每一项的系数可以表示为C(n, k)。

展开式的计算方式为:(x + y)^n = C(n, 0) * x^n * y^0 + C(n, 1) * x^(n-1) * y^1 + ... + C(n, n) * x^0 * y^n其中,C(n, k) 表示从n个元素中选择k个进行组合的总数。

示例下面通过几个示例展示如何应用排列和组合公式:1.例1:有8个人排成一队,请问一共有多少种不同的队形可以排列?解:我们可以将问题转化为计算全排列的问题。

排列组合cn公式

排列组合cn公式

排列组合cn公式
排列组合Cn的计算公式是C(n,m)=A(n,m)/m!=n(n-1)(n-2)(n-m+1)/m。

扩展资料:
排列组合是组合学最基本的概念。

所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。

组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。

排列组合的中心问题是研究给定要求的排列和组合可能出现的
情况总数。

排列组合与古典概率论关系密切。

排列的定义:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A(n,m)表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例题
• 五条短划和八个点可以安排成多少种不同 的方式? 13! 5!8! • 如果只用这十三个短划和点中的七个,则 有多少种不同的方式?
7! 7! 7! 7! 7! 7! + + + + + 5!2! 4!3! 3!4! 2!5! 1!6! 0!7!
例题
• 证明对任意正整数k,(k!)!能被(k!)(k-1)!整除。 • 提示:k!个物体,其中k个物体属于第一类 ,k个物体属于第二类,… ,k个物体属于 第(k-1)!类。
2、可重排列
• n个元素的r-可重排列数 • 计算(乘法原理)
例题
• 在1和10,000,000,000之间的一百亿个数中 ,有多少个数含有数码1?又有多少个数不 含数码1? • 不含1:910 • 含1:1010-910+1
放球问题
• 设n≥r,把r个不同的球放入n个不同的盒子, 这里每一盒最多只能装一物,允许空盒。放 球的方法数为多少? • 第一个球有n种选法,第二个球有n-1种,等 等,乘法原理 • P(n,r)
有约束条件的排列:引例
• 用两面红旗、三面黄旗依次悬挂在一根旗杆 上,问可以组成多少种不同的标志?
5、有约束条件的排列
• 设有k个元素a1,a2,…,ak,由它们组成一 个n-长的排列,其中对1≤i≤k,ai出现的次数 为ni,n1+n2 +… +nk=n,求排列的总数。 • 求解方法1 • 求解方法2
放球问题
• 把r个不同的球放入n个不同的盒子,一个盒 中可以放多个球,也允许空盒。放球的方法 数为多少? • 第一个球有n种选法,第二个球有n种,等等 ,乘法原理 • nr • 这里n和r的大小没有限制
例子
• 将3封信向2个信箱投寄,有多少种投寄方 法? • 23=8 • 无序占位模型:不考虑盒子中的排列次序
例题
• 从为数众多的一分币、二分币、一角币和二 角币中,可以有多少种方法选出六枚来? • F(4,6)=C(4+6-1,6)=C(9,6)=84
例题
• 某糕点厂将8种糕点装盒,若每盒有一打糕 点,求市场上能买到多少种该厂出品的盒 装糕点? • 某糕点厂将8种糕点装盒,若每盒有一打糕 点,且要求每种糕点至少放一块。求市场 上能买到多少种该厂出品的盒装糕点?
例题
• 摇三个不同的骰子的时候,可能的结果的个数是多 少? • 63=216。 • 如果这三个骰子是没有区别的,则可能结果的个数 是多少? • 从1,2,3,4,5,6这六个数中允许重复地选出三个数。 • F(6,3)=C(6+3-1,3)=56 • 将r个骰子掷一次,总共可以掷出多少种不同结果? • F(6,r)=C(6+r-1,r)=C(r+5,r)=C(r+5,5)
例子
• 某车站有6个进站口,今有9人进站,有多 少种不同的进站方法? • [6]9=6×7×…×14 • 七部汽车通过五间收费亭的方式数? • 今欲在五根旗杆上悬挂七面不同的旗子, 全部旗都得展示出来,但并非所有的旗杆 都得使用,问有多少种安排的方法?
组合
• 无重组合 • 可重组合 • 从{a,b,c}中选取2个不同元素,选法数是多 少? • 从{a,b,c}中选取5个元素,元素可以相同, 选法数是多少?
可重排列与可重组合
• n个元素{a1,a2, …,an}的r-无重组合(排列)可以看做多重集 {1· a1, 1·a2, …, 1·an}的r-组合(排列) 。 • n个元素{a1,a2, …,an}的r-可重组合(排列)可以看做多重集 {∞ · a1, ∞·a2, …, ∞·an}的r-组合(排列) 。 • 有限制的排列问题可以看做多重集{n1· a1, n2·a2, …,nk·ak} 的全排列。
排列
• 无重排列 • 可重排列 • 从{1,2,…,9}中选取数字构成四位数,使得 每位数字都不同,有多少个? • 从{1,2,…,9}中选取数字构成四位数,使得 不同数位上的数字可以相同,有多少个?
1、 无重排列
• • • • • • n个元素的r-无重排列数: 排列的长度r 计算(一般情形):乘法原理 r=n时,n个元素的全排列 r=0时 r>n时
分组与分堆
限距组合:引例
• 书架上有1-24共24卷百科全书,从其中选5 卷使得任何两卷都不相继,这样的选法有 多少种?
6、限距组合
• 设A={1,2,…,n},它的任一r-无重组合均可以依自 然顺序排出a1,a2, …,ar,其中a1<a2< …<ar 。设k 是非负整数,用f(k,n,r)表示A的一切满足条件ai+1ai≥k+1(1≤i≤r-1)的r-无重组合数,求f(k,n,r)。 • 求解思想:一一对应 • k=0时
3、无重组合(Combination)
• • • • • • n个元素的r-无重组合数 无重组合数与无重排列数的关系 计算 r=0时 r=n时 r>n时
组合数的推广
n(n 1) (n r 1) n n! C r r! r!(n r )!
例题
C(4,2)-4+C(4,4) × 2=4 C(10,2)-10+C(10,4) × 2=455
C(5,2)-5+C(5,4) × 2=15
4、可重组合
• • • • n个元素的r-可重组合 例子 计算 一一对应的思想
推论
• 方程x1+x2+…+xn=r 的非负整数解的个数。 • n≤r时,此方程的正整数解的个数 • n元集合的r-可重组合数,要求每个元素至少 出现一次。 • 正整数r的n-长有序分拆的个数 • 求x1+x2+x3+x4=20的整数解的数目,其中x1 ≥ 3, x2 ≥ 1,x3 ≥ 0,x4 ≥ 5。
r n
R, r Z
( 1) ( r 1) ,r 0 r! 1, r0 r 0, r0
计算
1 2 3 1 2 3 1 2 0
放球问题
• 把r个相同的球放入n个不同的盒子,每盒可 以装任意多个球,方法数? • 放这r个球,等价于从n个盒中选出r个来装 这r个球而允许诸盒重复选取。 • F(n,r)=C(n+r-1,r)
放球问题
• 把r个相同的球放入n个不同的盒子,每盒可 以装任意多个球,方法数? • 另解:把分配这r个球入n个盒子设想为这r 个球和n-1个隔板的一个排列。球是相同的 ,隔板也是相同的。 • C(n+r-1,r)
项链问题
例 从1到300间取出3个不同的数,使它们的和被 3整除,有多少种取法? 提示:将1到300这300个整数按照除以3的余数分 成3组,考虑选出的3个数属于哪些组。
例 下图中有多少个矩形?
映射
• 设映射f:{1,2, …,n} →{1,2, …,m}(n≤m) • (1) 若f是严格递增的,则不同的f有多少个? • (2) 若f是不减的,则不同的f有多少个?
• A(10,10)A(11,5)
• 安排10个男生和5个女生围成圆圈入座,使任意2 个女生都不相邻的坐法有多少种?
例 从给定的6种不同的颜色中选不同的颜色将一 个正方体的六个面染色,要求每个面染一种颜色, 具有相同棱的面染成不同的颜色,则不同的染色 方案有多少种?
分析: 一种颜色?
多重集合
• 通常的“集合”具有无重性。 • 在多重集中,同一个元素可以出现多次。 • {1,2,3}是一个集合,而{1,1,1,2,2,3}不是一个集合 ,而是一个多重集,简记为{3· 1,2· 2,1· 3}。 • 计算多重集的势时,出现多次的元素则需要按出 现的次数计算。上面多重集的势为6。 • 可重组合与可重排列可以看作是多重集的组合与 排列问题。
n n1 n2 nr n n n x1 x2 xr r 1 2
例题
• 数1400有多少个正因数? • 1400=23 × 52 × 7 • (3+1)(2+1)(1+1)=24
放球问题
• 设n≥r,把r个相同的球放入n个不同的盒子 使得每盒至多装一个球,方法数? • 选盒子即可 • C(n,r)
推论
• 多项式(x1+x2+…+xn)r的展开式中有 项 x1k1 x2 k2 xn kn的系数为 。
(2x1 3x2 5x3 )6Fra bibliotek项,其中
x xx
3 2 1 2 3
( x1 x2 xr )n

n1 n2 nr n n1 , n2 ,, nr 为非负整数

例题
• 求26个英文字母的全排列中,任意两个元音字母 都不相邻的方案数?
例题
• Banach火柴盒问题:某数学家随身携带A,B两盒火柴,要 用火柴时就随意从其中一盒中取出一根。假定开始两个火 柴盒各放有n根火柴,问在某一次当数学家发现拿出的那 一个火柴盒变空时,另一盒中尚剩p(p<n)根火柴的概率是 多少?
例题
• 10个人排成一排,其中有2个人不愿彼此挨着, 求所有不同的排列的数目。
• 10!-2×9!或 8!A(9,2)=2903040
• 10个人围一圆桌入座,其中有2个人不愿彼此挨 着就座,求所有不同的圆排列的数目。
• 9!-2×8!或7!A(8,2)=282240
例题
• 安排10个男生和5个女生排成一排,使任意2个女 生都不相邻的排法有多少种?
例题
• 书架上有1-24共24卷百科全书,从其中选5 卷使得任何两卷都不相继,这样的选法有 多少种?
7、圆排列
• n个元素的r-无重圆排列数 • 圆排列与线排列的区别 • 计算
例题
例1 把20个不同的钉子钉在鼓表面一周,订钉子 的方式有 种。 例2 把20个不同的珍珠串成项链,串项链的方式 有 种。
相关文档
最新文档