相似三角形综合复习测试题及答案

合集下载

天津市中考一轮《相似三角形》复习试卷及答案

天津市中考一轮《相似三角形》复习试卷及答案

中考数学一轮复习专题相似三角形综合复习一选择题:1.下列说法正确的是()(A)两个矩形一定相似.(B) 两个菱形一定相似.(C)两个等腰三角形一定相似.(D) 两个等边三角形一定相似.2.如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是()A.4 B.4.5 C.5 D.5.53.若两个扇形满足弧长的比等于它们半径的比,则这称这两个扇形相似。

如图,如果扇形AOB与扇形是相似扇形,且半径(为不等于0的常数)。

那么下面四个结论:①∠AOB=∠;②△AOB∽△;③;④扇形AOB与扇形的面积之比为.成立的个数为()A.1个B.2个C.3个D.4个4.如图,在长为8cm、宽为4cm的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是()A.2cm2 B.4cm2 C.8cm2 D.16cm25.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A. B. C. D.6.如图,矩形ABCD∽矩形ADFE,AE=1,AB=4,则AD=()A. 2B. 2.4C. 2.5D. 37.如图是测量小玻璃管口径的量具ABC,AB的长为12 cm,AC被分为60等份.如果小玻璃管口DE正好对着量具上20等份处(DE∥AB),那么小玻璃管口径DE是( )A.8 c m B.10 cm C.20 cm D.60 cm8.如图,在平行四边形ABCD 中,点E在CD上,若DE:CE =1:2,则△CEF与△ABF的周长比为()A.1:2 B.1:3 C.2:3 D.4︰99.如图,AB是⊙O的直径,D,E是半圆上任意两点,连接AD,DE,AE与BD相交于点C,要使△ADC与△BDA相似,可以添加一个条件.下列添加的条件中错误的是( )A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD·CD10.如图,D是△ABC一边BC上一点,连接AD,使△ABC∽△DBA的条件是( )A.AC:BC=AD:BDB.AC:BC=AB:ADC.AB2=CD·BCD.AB2=BD·BC11.如图所示,四边形ABCD是正方形,E是CD的中点,P是BC边上的一点,下列条件:①∠APB=∠EPC;②∠APE=∠APB;③P是BC的中点;④BP:BC=2:3.其中能推出△ABP∽△ECP的有( )A.4个 B.3个 C.2个 D.1个12.如图,在▱ABCD中,AB=4,AD=3,过点A作AE⊥BC于E,且AE=3,连结DE,若F为线段DE上一点,满足∠AFE=∠B,则AF=()A.2 B. C.6 D.213.已知( )A. B. C. D.14.如图,小明晚上由路灯A下的点B处走到点C处时,测得自身影子CD的长为1米,他继续往前走3米到达点E处(即CE=3米),测得自己影子EF的长为2米,已知小明的身高是1.5米,那么路灯A的高度AB是()A.4.5米 B.6米 C.7.2米 D.8米15.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3 B. C. D.416.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是( )A. B. C. D.17.如图,AB=AC=4,P是BC上异于B,C的一点,则AP2+BP·PC的值是( )A.16 B.20 C.25 D.3018.如图,在△ABC中,AB=AC=10,BC=16,点D是边BC上(不与B,C重合)一动点,∠ADE=∠B=α,DE交AC于点E.下列结论:①AD2=AE•AB;②3.6≤AE<10;③当AD=2时,△ABD≌△DCE;④△DCE为直角三角形时,BD 为8或12.5.其中正确的结论个数是().A.1个B. 2个C. 3个D. 4个19.如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于()A.3:2:1 B.5:3:1 C.25:12:5 D.51:24:1020.如图,小明作出了边长为1的第1个正△A1B1C1,算出了正△A1B1C1的面积.然后分别取△A1B1C1三边的中点A2、B2、C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积.用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积…,由此可得,第10个正△A10B10C10的面积是()A. B. C. D.二填空题:21.若,则= .22.若a:b:c=1:3:2,且a+b+c=24,则a+b﹣c= .23.如图,边长12的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上.若BF=3,则小正方形的边长为.24.如图,上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子恰好在甲的影子里边,已知甲,乙同学相距1米,甲身高1.8米,乙身高1.5米,则甲的影长是_ 米.25.如图,正方形ABCD的边长为2,AE=EB,MN=1,线段MN的两端在CB,CD上滑动,当CM=_________时,△AED与以M,N,C为顶点的三角形相似.26.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,则窗口底边离地面的高BC=______m.27.如图,小阳发现电线杆AB的影子落在土坡的坡面CD和地面BC上,量得CD=8米,BC=20米,CD与地面成30°角,且此时测得1米杆的影长为2米,则电线杆的高度为米.28.如图,在四边形中,,如果边AB上的点P,使得以为顶点的三角形与为顶点的三角形相似,这样的点P有个.29.如图,△ABC是边长为a的等边三角形,将三角板的30°角的顶点与A重合,三角板30°角的两边与BC交于D、E两点,则DE长度的取值范围是_________.30.如图,△ABC是一张直角三角形彩色纸,AC=15cm,BC=20cm.若将斜边上的高CD 分成n等分,然后裁出(n ﹣1)张宽度相等的长方形纸条.则这(n﹣1)张纸条的面积和是cm2.三简答题:31.如图,等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,使AE=CF,连接AF,BE相交于点P.(1)求证:AF=BE,并求∠APB的度数;(2)若AE=2,试求AP·AF的值.32.已知:如图,△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.(1)求证:△ABD∽△CBA;(2)若DE∥AB交AC于点E,请再写出另一个与△ABD相似的三角形,并直接写出DE的长.33.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC 于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.34.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与底面保持平行并使边DE与旗杆顶点A在同一直线上,已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,求旗杆的高度.35.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图23-12,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).36.如图,Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,一动点P从点A出发沿边AC向点C以1cm/s的速度运动,另一动点Q同时从点C出发沿CB边向点B以2cm/s的速度运动.问:(1)运动几秒时,△CPQ的面积是8cm2?(2)运动几秒时,△CPQ与△ABC相似?37.如图,AD是△ABC的高,点E,F在边BC上,点H在边AB上,点G在边AC上,AD=80cm,BC=120cm.(1)若四边形EFGH是正方形,求正方形的面积.(2)若四边形EFGH是长方形,长方形的面积为y,设EF=x,则y=______.(含x的代数式),当x=______时,y最大,最大面积是______.38.如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个动点到达终点时,另一个动点也随之停止运动.(1)AC= cm,BC= cm;(2)当t=5 (s)时,试在直线PQ上确定一点M,使△BCM的周长最小,并求出该最小值.(3)设点P的运动时间为t (s),△PBQ的面积为y (cm2),当△PBQ存在时,求y与t的函数关系式,并写出自变量t的取值范围;(4)探求(3)中得到的函数y有没有最大值?若有,求出最大值;若没有,说明理由.39.在等腰△ABC中,AB=AC=10,BC=12,D为底边BC的中点,以D为顶点的角∠PDQ=∠B.(1)如图1,若射线DQ经过点A,DP交AC边于点E,直接写出与△CDE相似的三角形;(2)如图2,若射线DQ交AB于点F,DP交AC边于点E,设AF=x,AE为y,试写出y与x的函数关系式;(不要求写出自变量的取值范围)40.在平面直角坐标系中,二次函数的图象与轴交于A(-3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的解析式;(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;(3)点Q是直线AC上方的抛物线上一动点,过点Q作QE垂直于轴,垂足为E.是否存在点Q,使以点B、Q、E为顶点的三角形与△AOC相似?若存在,直接写出点Q的坐标;若不存在,说明理由;参考答案1、D2、B.3、D4、C5、B6、A7、A8、C9、C 10、D 11、C 12、D.13、B 14、B 15、C 16、B 17、A 18、D;19、D 20、A.21、.22、8.23、.24、6 25、或 26、4 m. 27、14+2 28、329、(2﹣3)a≤DE≤a..30、cm2.31、解:(1)∵△ABC为等边三角形,∴AB=AC,∠C=∠CAB=60°,又∵AE=CF,∴△ABE≌△CAF(SAS),∴AF=BE,∠ABE=∠CAF.又∵∠APE=∠BPF=∠ABP+∠BAP,∴∠APE=∠BAP+∠CAF=60°,∴∠APB=180°-∠APE=120°(2)∵∠C=∠APE=60°,∠PAE=∠CAF,∴△APE∽△ACF,∴=,即=,∴AP·AF=12 32、【解答】(1)证明:∵AB=2,BC=4,BD=1,∴,∵∠ABD=∠CBA,∴△ABD∽△CBA;(2)解:∵DE∥AB,∴△CDE∽△CBA,∴△ABD∽△CDE,∴DE=1.5.33、【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=90°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=90°,∴∠B=∠AFE,∴△ABM∽△EFA;(2)解:∵∠B=90°,AB=12,BM=5,∴AM==13,AD=12,∵F是AM的中点,∴AF=AM=6.5,∵△ABM∽△EFA,∴,即,∴AE=16.9,∴DE=AE﹣AD=4.9.34、根据题意,得∠DEF=∠DCA=90°,∠EDF=∠ADC,∴△DEF∽△DCA.∴=.已知DE=0.5米,EF=0.25米,DC=20米.∴=.解得AC=10米.∵四边形BCDG是矩形,∴BC=DG,而DG=1.5米,则BC=1.5米.35、答案:设CD长为x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA∴MA∥CD∥BN ∴EC=CD=x∴△ABN∽△ACD,解得:x=6.125≈6.1.经检验,x=6.125是原方程的解,∴路灯高CD约为6.1米36、【解答】解:(1)设x秒后,可使△CPQ的面积为8cm2.由题意得,AP=xcm,PC=(6﹣x)cm,CQ=2xcm,则(6﹣x)•2x=8,整理,得x2﹣6x+8=0,解得x1=2,x2=4.则P、Q同时出发,2秒或4秒后可使△CPQ的面积为8cm2(2)设运动y秒时,△CPQ与△ABC相似.若△CPQ∽△CAB,则=,即=,解得y=2.4秒;若△CPQ∽△CBA,则=,即=,解得y=秒.综上所述,运动2.4秒或秒时,△CPQ与△ABC相似.37、【解答】解:(1)∵四边形EFGH是正方形,∴HG∥EF,GH=HE=ID,∴△AHG∽△ABC,∴AI:AD=HG:BC,∵BC=120cm,AD=80cm,∴,解得:HG=48cm,∴正方形EFGH的面积=HG2=482=2304(cm2);(2)∵四边形EFGH是长方形,∴HG∥EF,∴△AEF∽△ABC,∴AI:AD=HG:BC,即,解得:HE=﹣x+80,∴长方形EFGH的面积y=x(﹣x+80)=﹣2+80x=﹣(x﹣60)2+240,∵﹣<0,∴当x=60,即EF=60cm时,长方形EFGH有最大面积,最大面积是240cm2;故答案为:﹣x2+80x,60cm,240cm2.38、解:(1)设AC=4x,BC=3x,在Rt△ABC中,AC 2 +BC 2 =AB 2,即:(4x)2 +(3x)2 =10 2,解得:x=2,∴AC=8cm,BC=6cm;(2)存在,理由:∵AQ=14-2x=14-10=4,AP=x=5,∵AC=8,AB=10,∴PQ是△ABC的中位线,∴PQ∥AB,∴PQ⊥AC,∴PQ是AC的垂直平分线,∴PC=AP=5,∴当点M与P重合时,△BCM的周长最小,∴△BCM的周长为:MB+BC+MC=PB+BC+PC=5+6+5=16,∴△BCM的周长最小值为16.(3)①当点Q在边BC上运动时,过点Q作QH⊥AB于H,∵AP=x,∴BP=10-x,BQ=2x,∵△QHB∽△ACB,②当点Q在边CA上运动时,过点Q作QH′⊥AB于H′,∵AP=x,∴BP=10-x,AQ=14-2x,∵△AQH′∽△ABC,39、【解答】解:(1)与△CDE相似的三角形为△ABD,△ACD,△ADE;理由如下:∵AB=AC,D为底边BC的中点,∴∠B=∠C,AD⊥BC,∴∠ADB=∠ADC=90°,∴△ABD∽△ACD,∵∠PDQ=∠B,∴∠PDQ=∠C,又∵∠DAE=∠CAD,∴△ADE∽△ACD;∵∠CDE+∠PDQ=90°,∴∠C+∠PDQ=90°,∴∠CED=90°=∠ADC,又∵∠C=∠C,∴△CDE∽△CAD,∴△△ABD∽△ACD∽△ADE∽△CDE;(2)∵∠FDC=∠B+∠BDF,∠FDC=∠FDE+∠EDC,∴∠EDC=∠BDF,∴△BDF∽△CDE,∴,∵D为BC的中点,∴BD=CD=6,∴∴y=;(3)△DEF与△CDE相似.理由如下:如图所示:由(2)可知:△BDF∽△CDE,则,∵BD=CD,∴,又∵∠EDF=∠C,∴△DEF∽△CED.40.解:(1)由抛物线过点A(-3,0),B(1,0),则解得∴二次函数的关系解析式.(2)连接PO,作PM⊥x轴于M,PN⊥y轴于N.设点P坐标为(m,n),则.PM =,,AO=3.当时,=2.∴OC=2.===.8分∵=-1<0,∴当时,函数有最大值.此时=.∴存在点,使△ACP的面积最大.(3)存在点Q,坐标为:,.分△BQE∽△AOC,△EBQ∽△AOC,△QEB∽△AOC三种情况讨论可得出.。

三角形相似测试题及答案

三角形相似测试题及答案

三角形相似测试题及答案1. 已知三角形ABC和三角形DEF相似,且AB/DE = 2/3,求AC/DF的比值。

答案:AC/DF = 2/3。

2. 若三角形ABC与三角形DEF相似,且∠A = ∠D,∠B = ∠E,那么∠C与∠F的关系是什么?答案:∠C = ∠F。

3. 在一个三角形中,如果两个角的度数分别为50度和60度,那么第三个角的度数是多少?答案:第三个角的度数是70度。

4. 一个三角形的三边长分别为3cm,4cm,5cm,另一个三角形的三边长分别为6cm,8cm,10cm,这两个三角形是否相似?答案:这两个三角形相似,因为它们的边长比相等,即3/6 = 4/8 = 5/10 = 1/2。

5. 已知三角形ABC与三角形DEF相似,且AB = 6cm,DE = 9cm,那么AC与DF的比值是多少?答案:AC/DF = AB/DE = 6/9 = 2/3。

6. 如果一个三角形的两边长分别为8cm和15cm,且这两个边的夹角为90度,那么这个三角形的第三边长是多少?答案:根据勾股定理,第三边长为17cm。

7. 两个相似三角形的对应高的比为3:4,那么它们的周长比是多少?答案:周长比也是3:4。

8. 一个三角形的三个内角的度数分别为30度,60度,90度,那么这个三角形与另一个三角形相似,其三个内角的度数分别为15度,30度,45度,这两个三角形是否相似?答案:这两个三角形不相似,因为它们的内角不相等。

9. 已知三角形ABC与三角形DEF相似,且BC = 2cm,EF = 4cm,那么AB与DE的比值是多少?答案:AB/DE = BC/EF = 2/4 = 1/2。

10. 一个三角形的三边长分别为2cm,3cm,4cm,另一个三角形的三边长分别为4cm,6cm,8cm,这两个三角形是否相似?答案:这两个三角形相似,因为它们的边长比相等,即2/4 = 3/6 = 4/8 = 1/2。

相似三角形试题及答案

相似三角形试题及答案

相似三角形试题及答案
一、选择题
1. 已知两个三角形相似,下列说法正确的是()
A. 对应角相等
B. 对应边成比例
C. 对应角相等且对应边成比例
D. 面积相等
答案:C
2. 若两个三角形的相似比为2:3,则下列说法正确的是()
A. 周长比为2:3
B. 周长比为3:2
C. 面积比为4:9
D. 面积比为9:16
答案:C
二、填空题
1. 若三角形ABC与三角形DEF相似,且AB:DE=2:3,则BC:EF=______。

答案:2:3
2. 若三角形ABC与三角形DEF相似,且相似比为1:2,则三角形ABC
的面积是三角形DEF面积的______。

答案:1/4
三、解答题
1. 已知三角形ABC与三角形DEF相似,AB=6cm,DE=9cm,求BC和EF 的长度。

答案:由于三角形ABC与三角形DEF相似,根据相似三角形的性质,对应边成比例。

因此,BC:EF=AB:DE=6:9=2:3。

设BC=2x,则EF=3x。

由于AB:DE=2:3,所以2x/3x=6/9,解得x=3cm。

因此,BC=6cm,
EF=9cm。

2. 已知三角形ABC与三角形DEF相似,且三角形ABC的面积为24平方厘米,三角形DEF的面积为36平方厘米,求相似比。

答案:设相似比为k,则三角形ABC与三角形DEF的面积比为k^2。

因此,k^2=24/36=2/3,解得k=√(2/3)。

所以相似比为√(2/3)。

人教九下数学 第27章 相似三角形的判定及有关性质综合测试(含答案)

人教九下数学 第27章 相似三角形的判定及有关性质综合测试(含答案)

人教九下数学 第27章 相似三角形的判定及有关性质综合测试(含答案)一、选择题(每小题6分,共48分)1.在△ABC 中,D 、F 是AB 上的点,E 、H 是AC 上的点,直线DE//FH//BC ,且DE 、FH 将△ABC 分成面积相等的三部分,若线段FH=65,则BC 的长为( ) A .15 B .10 C.6215 D .15322.在△ABC 中,DE//BC ,DE 交AB 于D ,交AC 于E ,且S △ADE :S 四边形DBCE=1:2,则梯形的高与三角形的边BC 上的高的比为( )A .1:2B .1:)12(-C .1:)13(-D .)13(-:33.在Rt △ABC 中,∠C=90°,CD 是斜边AB 上的高,AC=5,BC=8,则S △ACD :S △CBD 为( ) A .85B .6425 C .3925 D .8925 4.如图1—5—1,D 、E 、F 是△ABC 的三边中点,设△DEF 的面积为4,△ABC 的周长为9,则△DEF 的周长与△ABC 的面积分别是( )A.29,16 B. 9,4 C. 29,8 D. 49,165.如图1—5—2,在△ABC 中,AD ⊥BC 于D ,下列条件:(1)∠B+∠DAC=90°;(2)∠B=∠DAC ; (3)ABAC AD CD =;(4)AB 2=BD ·BC 。

其中一定能够判定△ABC 是直角三角形的共有( ) A .3个B .2个C .1个D .0个6.如图1—5—3,在正三角形ABC 中,D ,E 分别在AC ,AB 上,且31AC AD =,AE=BE ,则有( )A. △AED ∽△BED B .△AED ∽△CBD C. △AED ∽△ABD D .△BAD ∽△BCD7.如图1—5—4,PQ//RS//AC ,RS=6,PQ=9,SC 31QC =,则AB 等于( ) A. 415B. 436C. 217D. 58.如图1—5—5,平行四边形ABCD 中,O 1、O 2、O 3是BD 的四等分点,连接AO 1,并延长交BC 于E ,连接EO 2,并延长交AD 于F ,则FDAD等于( )A .3:1B .3:1C .3:2 D. 7:39.如果一个三角形的一条高分这个三角形为两个相似三角形,那么这个三角形必是( ) A .等腰三角形 B. 任意三角形C .直角三角形D .直角三角形或等腰三角形10.在△ABC 和△A'B'C'中,AB : AC=A'B':A'C',∠B=∠B',则这两个三角形( ) A .相似,但不全等 B .全等C .一定相似D .无法判断是否相似11.如图1—6—1,正方形ABCD 中,E 是AB 上的任一点,作EF ⊥BD 于F ,则BEEF为( )A .22B .21C .36D .2图1—6—112.如图1—6—2,把△ABC 沿边AB 平移到△A'B'C'的位置,它们的重叠部分(图中阴影部分)的面积是△ABC 的面积的一半,若2AB =,则此三角形移动的距离AA'是( )A .12-B .22C .1D .21 图1—6—213.如图1—6—3,在四边形ABCD 中,∠A=135°,∠B=∠D=90°,BC=32,AD=2,则四边形ABCD 的面积是( )A .24B .34C .4D .6 图1—6—314.如图1—6—4,平行四边形ABCD 中,G 是BC 延长线上一点,AG 与BD 交于点E ,与DC 交于点F ,则图中相似三角形共有( )A .3对B .4对C .5对D .6对15.在直角三角形中,斜边上的高为6cm ,且把斜边分成3:2两段,则斜边上的中线的长为( )A.265cm B .64cm C .65cmD .325cm16.AD 为Rt △ABC 斜边BC 上的高,作DE ⊥AC 于E ,45AC AB =,则EACE=( ) A .2516 B .54C .45D .162517.如图1—6—5,△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC ,已知AB=m ,BC=n ,求CD 的长。

完整版)九年级数学相似三角形综合练习题及答案

完整版)九年级数学相似三角形综合练习题及答案

完整版)九年级数学相似三角形综合练习题及答案1.填空题:1) 若$a=8$cm,$b=6$cm,$c=4$cm,则$a$、$b$、$c$的第四比例项$d=\underline{12}$;$a$、$c$的比例中项$x=\underline{5}$。

2) $(2-x):x=x:(1-x)$。

则$x=\underline{1}$。

3) 在比例尺为1:的地图上,距离为3cm的两地实际距离为\underline{30}公里。

4) 圆的周长与其直径的比为\underline{$\pi$}。

5) $\frac{a^5-ab}{b^3}=\frac{a^4}{b^2}$,则$\frac{a}{b}=\underline{a^2}$。

6) 若$a:b:c=1:2:3$,且$a-b+c=6$,则$a=\underline{2}$,$b=\underline{1}$,$c=\underline{3}$。

7) 如图1,则$\frac{AB}{AC}=\frac{BC}{CE}=\underline{\frac{3}{2}}$;若$BD=10$cm,则$AD=\underline{6}$cm;若$\triangle ADE$的周长为16cm,则$\triangle ABC$的周长为\underline{24}cm。

8) 若点$c$是线段$AB$的黄金分割点,且$AC>CB$,则$\frac{AC}{AB}=\underline{\frac{1+\sqrt{5}}{2}}$,$\frac{CB}{AB}=\underline{\frac{\sqrt{5}-1}{2}}$。

2.选择题:1) 根据$ab=cd$,共可写出以$a$为第四比例项的比例式的个数是()A.$1$,B.$2$,C.$3$,D.$4$。

答案:B。

2) 若线段$a$、$b$、$c$、$d$成比例,则下列各式中一定能成立的是()A.$abcd=1$,B.$a+b=c+d$,C.$\frac{a}{b}=\frac{c}{d}$,D.$a^2+b^2=c^2+d^2$。

中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)

中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)

中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________1.三个等角的顶点在同一条直线上,称一线三等角模型(角度有锐角、直角、钝角,若为直角,则又称一线三垂直模型).解决此模型问题的一般方法是利用三等角关系找全等或相似三角形所需角的相等条件,利用全等或相似三角形解决问题.【证明体验】如图1,在四边形ABCD 中点P 为AB 上一点90DPC A B ∠=∠=∠=︒,求证:AD BC AP BP ⋅=⋅. 【思考探究】(2)如图2,在四边形ABCD 中点P 为AB 上一点,当DPC A B β∠=∠=∠=时,上述结论是否依然成立?说明理由. 【拓展延伸】(3)请利用(1)(2)获得的经验解决问题:如图3,在ABC 中22AB =45B ∠=︒以点A 为直角顶点作等腰Rt ADE △,点D 在BC 上,点E 在AC 上,点F 在BC 上,且45EFD ∠=︒,若5CE =CD 的长.2.综合实践问题背景:借助三角形的中位线可构造一组相似三角形,若将它们绕公共顶点旋转,对应顶点连线的长度存在特殊的数量关系,数学小组对此进行了研究.如图1,在ABC 中90,4B AB BC ∠=︒==分别取AB ,AC 的中点D ,E ,作ADE .如图2所示,将ADE 绕点A 逆时针旋转,连接BD ,CE .(1)探究发现旋转过程中线段BD 和CE 的长度存在怎样的数量关系?写出你的猜想,并证明. (2)性质应用如图3,当DE 所在直线首次经过点B 时,求CE 的长. (3)延伸思考如图4,在Rt ABC △中90,8,6ABC AB BC ∠=︒==,分别取AB ,BC 的中点D ,E .作BDE ,将BDE 绕点B 逆时针旋转,连接AD ,CE .当边AB 平分线段DE 时,求tan ECB ∠的值.3.如图,M 为线段AB 的中点,AE 与BD 交于点C ,DME A B α∠=∠=∠=且DM 交AC 于F ,ME 交BC 于G .(1)写出图中两对相似三角形;(2)连接FG ,如果45α=︒,42AB =3AF =,求FG 的长.4.如图,在ABC 中6cm AB =,12cm BC =和90B .点P 从点A 开始沿AB 边向点B 以1cm /s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 分别从A 、B 同时出发,设移动时间为()s t .(1)当2t =时,求PBQ 的面积; (2)当t 为多少时,PBQ 的面积是28cm ? (3)当t 为多少时,PBQ 与ABC 是相似三角形?5.下面是小新同学在“矩形折叠中的相似三角形”主题下设计的问题,请你解答.如图,已知在矩形ABCD 中点E 为边AB 上一点(不与点A 、点B 重合),先将矩形ABCD 沿CE 折叠,使点B 落在点F 处,CF 交AD 于点H .(1)观察发现:写出图1中一个与AEG △相似的三角形:______.(写出一个即可)(2)迁移探究:如图2,若4AB =,6BC =当CF 与AD 的交点H 恰好是AD 的中点时,求阴影部分的面积. (3)如图③,当点F 落在边AD 上时,延长EF ,与FCD ∠的角平分线交于点M ,CM 交AD 于点N ,当FN AF ND =+时,请直接写出ABBC的值.6.【阅读】如图1,若ABD ACE ∽,且点B 、D 、C 在同一直线上,则我们把ABD △与ACE △称为旋转相似三角形.(1)【理解】如图2,ABC 和ADE 是等边三角形,点D 在边BC 上,连接CE .求证:ABD △与ACE △是旋转相似三角形.(2)【应用】如图3,ABD △与ACE △是旋转相似三角形AD CE ,求证:③ABC ADE △△∽;③AC DE =;(3)【拓展】如图4,AC 是四边形ABCD 的对角线90,D B ACD ∠=︒∠=∠,25,20BC AC ==和16AD =,试在边BC 上确定一点E ,使得四边形AECD 是矩形,并说明理由.7.综合与实践如图1,已知纸片Rt ABC △中90BAC ∠=︒,AD 为斜边BC 上的高(AD BC ⊥于点D ). 观察发现(1)请直接写出图中的一组相似三角形.(写出一组即可)实践操作第一步:如图2,将图1中的三角形纸片沿BE 折叠(点E 为AC 上一点),使点A 落在BC 边上的点F 处; 第二步:BE 与AD 交于点G 连接GF ,然后将纸片展平. 猜想探究(2)猜想四边形AEFG 是哪种特殊的四边形,并证明猜想. (3)探究线段GF ,BE ,GE 之间的数量关系,并说明理由.8.如图1,已知AD 是ABC 的角平分线,可证AB BDAC CD=.证明思路是如图2,过点C 作CE AB ∥,交AD 的延长线于点E ,构造相似三角形来证明AB BDAC CD=.(1)利用图2证明AB BDAC CD=; (2)如图3,在Rt ABC △中90BAC ∠=︒,D 是边BC 上一点.连接AD ,将ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.若1AC =,AB=2,求DE 的长.9.【教材原题】如图③,在ABC 中DE BC ∥,且3AD =,2DB =图中的相似三角形是__________,它们的相似比为__________ ;【改编】将图③中的ADE 绕点A 按逆时针方向旋转到如图③所示的位置,连接BD 、CE .求证:ABD ACE ∽△△;【应用】如图③,在ABC 和ADE 中90BAC DAE ∠=∠=︒,30ABC ADE ∠=∠=︒点D 在边BC 上,连接CE ,则ACE △与ABD △的面积比为__________.10.问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD 是ABC 的角平分线,可证AB BDAC CD=小慧的证明思路是:如图2,过点C 作CE AB ∥,交AD 的延长线于点E ,构造相似三角形来证明.(1)尝试证明:请参照小慧提供的思路,利用图2证明AB BDAC CD=; (2)基础训练:如图3,在Rt ABC △中90BAC ∠=︒,D 是边BC 上一点.连接AD ,将ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.若1AC =,2AB =求DE 的长;(3)拓展升华:如图4,ABC 中6AB = ,AC=4,AD 为BAC ∠的角平分线,AD 的中垂线EF 交BC 延长线于F ,当3BD =时,求AF 的长.11.定义:两个相似三角形,如果它们的一组对应角有一个公共的顶点,那么把这两个三角形称为“阳似三角形”、如图1,在ABC 与AED △中ABC AED ∽△△.所以称ABC 与AED △为“阳似三角形”,连接EB DC ,,则DCEB为“阳似比”.(1)如图1,已知R ABC 与Rt AED △为“阳似三角形”,其中90CBA DEA ∠=∠=︒,当30BAC ∠=︒时,“阳似比”DCEB=______; (2)如图2,二次函数234y x x =-++交x 轴于点A 和B 两点,交y 轴于点C .点M 为直线12y x =在第一象限上的一个动点,且OMB △与CNB 为“阳似三角形”,连接CM ③当点N 落在二次函数图象上时,求出线段OM 的长度; ③若32CN =34BM MC +的最小值.12.已知在Rt ABC △中90ACB ∠=︒,CD AB ⊥于点D .(1)在图1中写出其中的两对相似三角形.(2)已知1BD =,DC=2,将CBD △绕着点D 按顺时针方向进行旋转得到C BD ',连接AC ',BC . ③如图2,判断AC '与BC 之间的位置及数量关系,并证明; ③在旋转过程中当点A ,B ,C '在同一直线上时,求BC 的长.13.定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“和谐四边形”,这条对角线叫“和谐线”.(1)如图1,在44⨯的正方形网格中有一个网格Rt ABC △和两个网格四边形ABCD 与四边形ABCE ,其中是被AC 分割成的“和谐四边形”的是______.(2)如图2,BD 平分ABC ∠,43BD =10BC =,四边形ABCD 是被BD 分割成的“和谐四边形”,求AB 长; (3)如图3,A 为抛物线24y x =-+的顶点,抛物线与x 轴交于点B ,C .在线段AB 上有一个点P ,在射线BC 上有一个点Q .P 、Q 5/秒,5个单位/秒的速度同时从B 出发分别沿BA ,BC 方向运动,设运动时间为t ,当其中一个点停止运动时,另一个点也随之停止运动.在第一象限的抛物线上是否存在点M ,使得四边形BQMP 是以PQ 为和谐线分割的“和谐四边形”,若存在,请直接写出t 的值;若不存在,请说明理由.14.【阅读理解】小白同学遇到这样一个问题:ABC 中D 是BC 的中点,E 是AB 上一点,延长DE 、CA 交于点F ,DE=EF ,AB=5,求AE 的长.小白的想法是:过点E 作EH BC ∥交AC 于H ,再通过相似三角形的性质得到AE 、BE 的比,从而得出AE 的长.请你按照小白的思路完成解答.【解决问题】请借助小白的解题经验,完成下面问题:ABC 中AD 平分BAC ∠交BC 于D ,E 为AB 边上一点,AE=AD ,H 、Q 为BC 上两点,CQ DH =和DQ mDH =,G 为AC 上一点,连接EQ 交HG 、AD 于F 、P ,180EFG EAD ∠+∠=︒猜想并验证EP 与GH的数量关系.15.【温故知新】(1)九(1)班数学兴趣小组认真探究了课本P 91第13题:如图1,在正方形ABCD 中E 是AD 的中点,F 是CD 上一点,且3CF DF =,图中有哪几对相似三角形?把它们表示出来,并说明理由.③小华很快找出ABE DEF △△∽,他的思路为:设正方形的边长4AB a =,则2,AE DE a DF a ===,利用“两边分别成比例且夹角相等的两个三角形相似”即可证明,请你结合小华的思路写出证明过程; ③小丽发现图中的相似三角形共有三对,而且可以借助于ABE 与DEF 中的比例线段来证明EBF △与它们都相似.请你根据小丽的发现证明其中的另一对三角形相似;【拓展创新】(2)如图2,在矩形ABCD 中E 为AD 的中点,EF EC ⊥交AB 于F ,连结FC .()AB AE > ③求证:AEF ECF ∽△△;③设2,BC AB a ==,是否存在a 值,使得AEF △与BFC △相似.若存在,请求出a 的值;若不存在,请说明理由.参考答案:1.(3)52.(1)2BD CE =(2)6CE =(3)1tan 2ECB ∠=3.(1)DMG ③DBM △,EMF ③EAM △ (2)53FG =4.(1)8(2)2秒或4秒(3)当t 为3或1.2秒钟,使PBQ 与ABC 相似.5.(1)FHG △或DHC (写出一个即可)(2)阴影部分的面积是23 (3)AB BC 的值为357.(1)ABC DBA ∽ ABC CAD ∽ DBA DAC ∽(其中一个即可,答案不唯一);(2)四边形AEFG是菱形,(3)212GF GE BE =⋅ 8. 5 9.【教材原题】ADE ABC △△∽,35【应用】13 10.5(3)611.23105337 12.(1)BCD ACD ∽ BCD BAC ∽△△ CAD BAC △∽△(任写两对即可)(2)③2AC BC '= AC BC '⊥ ③BC 2595+2595-+13.(1)四边形ABCE ;(2)10AB =或245; (3)1118t = 2881t = 1825t = 180169t =.14.阅读理解 54AE =;解决问题,猜想:12EP m GH m +=+. 15.③存在 3。

相似三角形综合题锦(含标准答案)

相似三角形综合题锦(含标准答案)

一、相似三角形中的动点问题1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC 方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.2.如图,在△ABC 中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.(1)①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式;(2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.3.如图1,在Rt△ABC 中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE 平分CDB交边BC于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,△BME与△CNE相似?4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x.(1)当x为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由.5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P 沿AB边从A开始向点B以2cm/s的速度移动;点Q 沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0<t <6)。

《相似三角形》能力测试题及参考答案

《相似三角形》能力测试题及参考答案

《相似三角形》能力测试题及参考答案一、选择题1.如图,在△ABC 中,点D,E,F 分别在AB,AC,BC 边上,DE//BC,EF//AB,则下列比例式中错误的是( ) A.AE EC=BF FCB.AD BF=AB BCC.CE CF=EA BFD.EFAB=DE BC第1题 第2题 第3题 第4题2.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB,垂足为D,下列结论中,错误的是( ) A.ADAC =ACAB B.ADAC =CDBCC.AD AC =BDBCD.AD CD =CDBD 3.如图,已知矩形ABCD 中,E 为BC 边上一点,DF ⊥AE 于点F,且AB =6,AD=12,AE =10,则DF 的长为( ) A.5 B.113 C.365 D.84.如图,正方形ABCD 的对角线AC 与BD 相交于点O,∠ACB 的角平分线分别交AB 、BD 于M 、N 两点.若 AM = 2,则线段ON 的长为( )A.√22B.√32C.1D.√625.如图,在平面直角坐标系中,A(3,0),B(0,4),将△AOB 绕点O 顺时针旋转一定角度得△COD,点A,B 的对应点分别为点C,D,若OD 恰好经过AB 的中点E,则点D 的坐标为( ) A.(125,165)B.(165,125) C.(125,185) D.(185,125)第5题 第6题第7题 第8题6.如图,平面直角坐标系中,A(-8,0),B(-8,4),C(0,4),反比例函数y=KX 的图象分别与线段AB,BC 交于点D,E,连接DE,若点B 关于DE 的对称点恰好在OA 上,则k 的值是( ) A.-20 B.-16 C.-12 D.-87.如图,在△ABC 中,点D 、E 在AC 、BC 边上,连接DE 并延长交AB 延长线于点G.过D 作DF ⊥AG 于F.若 2∠ADF=∠G,CE;BE=2;1,AD=2√10,AF=2,GE=4,则BA 的长度为( ) A.2√103B.4√103C.9D. 128.如图,矩形ABCD 是由三个全等矩形拼成的,AC 与DE,EF,FG,HG,HB 分别交于点P,Q, K,M,N.设EPQ,GKM,BNC 的面积依次为S 1,S 2,S 3.若S 1+S 3=30,则S 2的值为( ) A.6 B.8 C.10 D.129.如图,在平行四边形ABCD 中,点E 在边AB 上,连接DE,交对角线AC 于点F,如果S △ADF S △DFC=23,CD=6,那么BE 的值为( )A.2B.3C.4D.5第9题 第10题第11题 第12题10.如图,已知四边形ABCD 是矩形,点E 在BA 的延长线上,AE=AD,EC 分别交AD,BD 于点F,G,若AF=AB,则AD:AB 的值为( ) A.32 B.√5+12 C.2 D.√3+1211.如图,AB//GH//CD,点H 在BC 上,AC 与BD 交于点G,AB=4,CD=6,则线段GH 长为( )A.5B.3C.2.5D.2.412.锐角△ABC 中,BC=6,S △ABC =12,两动点M,N 分别在边AB,AC 上滑动,且MN/ /BC, MP ⊥BC,NQ ⊥BC 得矩形MPQN,设MN 的长为x,矩形MPQN 的面积为y,则y 关于x 的函数图象大致形状是( )A.B. C. D.13.如图,矩形ABCD 中,点E,F 分别是BC,CD 的中点,AE 交对角线BD 于点G,BF 交AE 于点H.则GH HE的值是( )A.12 B.23 C.√22 D.√32第13题 第14题 第15题14.如图,在正方形ABCD 中,△BPC 是等边三角形,BP 、CP 的延长线分别交AD 于点E,F,连接BD 、DP,BD 与CF 相交于点H,给出下列结论:①∠DPC=75°②CF=2AE ③DFBC =23④△FPD ∽△PHB ⑤AF 2=EF ·EB.其中正确结论的个数是( )A.5B.4C.3D.215.在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C;延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1,按这样的规律进行下去,第2025个正方形(正方形ABCD 看作第1个)的面积为( ) A.5×(32)2022B.5×(94)2025C.5×(94)2024D.5×(32)2023二、填空题16.如图,在△ABC 中,点D,E 分别是BC,AC 上一点,连接AD,BE 交于点G,若AG AD=34,BD BC=25,则AEAC的值为___.第16题 第17题 第18题17.如图,Rt △ABC 中,∠C=90°,∠A=30°,BC=2,点P,Q 分别为AB,BC 上一个动点,将△PQB 沿PQ 折叠得到△PQD,点B 的对应点是点D,若点D 始终在边AC 上,当△APD 与△ABC 相似时,AP 的长为___. 18.如图,点O 是四边形ABCD 对角线AC 、BD 的交点,∠BAD 与∠ACB 互补,OD OB=34, AD=6,AB=7,AC=5,则BC 的长为_____.19.如图,在平面直角坐标系中,点A 和点C 是反比例函数y=1x 图象上的两点,以AC 为边作等边△ABC,反比例函数y=kx 恰好过点B,则k 值为____.第19题 第20题 第21题20.如图,正方形ABCD 的边长是8cm,E 是CD 边的中点,将该正方形沿BE 折叠,点C 落在点C ’处.⊙O 分别与AB 、AD 、BC ’相切,切点分别为F 、G 、H,则⊙O 的半径为___cm.21.如图,菱形ABCD 中,AB=AC,点E 、F 分别为边AB 、BC 上的点,且AE=BF,连接CE 、AF 交于点H,连接DH 交AC 于点O,∠CHD=60°.则下列结论:①△ABF ≌△CAE ②∠AHC=120°③AH+CH=DH,④AD 2=OD.DH 中,正确的是___.三、解答题22.如图,在△ABC 中,AB=AC,以AB 为直径的⊙O 分别交BC,AC 于点D,E,连结EB,交OD 于点F. (1)求证:OD ⊥BE;(2)若DE=√10,AB=10,求AE 的长;(3)若△CDE 的面积是△OBF 面积的56,求BCAC的值.23.已知,如图,在矩形ABCD 中,AB=4,BC=8.对角线AC 与BD 交于点O,点P 是边BC 上的一个动点,连接AP,作△AEP ∽△AOB,且射线OE 与AD 边交于点Q. (1)求证:△AOE ∽△ABP;(2)判断DQ 是否为定值,若是,则求出DQ;若不是,请说明理由; (3)连接CE,DP,若DP=2√135CE,求BP 的长.24(1)如图(1),已知点G 在正方形ABCD 的对角线AC 上,GE ⊥BC,垂足为点E,GF ⊥CD,垂足为F,则AGBE =___. (2)将正方形CEGF 绕点C 顺时针方向旋转α(0<a<45),如图(2)所示,试探究AG 与BE 之间的数量关系,并说明理由.(3)正方形CEGF 在旋转过程中,当B,E,F 三点在一条直线上时,如图(3)所示,延长CG 交AD 于点H.若AG=6,GH=2√2,求BC 的长.25.如图,抛物线y=3+√36x 2+bx+c 与x 轴交于A,B 两点,点A,B 分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y 轴正半轴和抛物线的交点分别为C,D,BC=√3CD. (1)求b,c 的值;(2)求直线BD 的函数解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上.当△ABD 与△BPQ 相似时,请直接写出所有满足条件的点Q 的坐标.参考答案一、选择题1-5 DCCCA 6-10 CCDAB 11-15 DBBBC 二、填空题 16.611 17.83或6-2√3 18.50719. -3 20. 221.①②③④ 三、解答题 22(1)略 (2)8 (3)√1701723(1)略(2)DQ 为定值3 (3)2 24(1)√2(2)AG=√2BE (3)3√5 25(1)b=-1-√33,c=−3−√32(2)y=-√33x+√3 (3)(1-2√33,0)或(-1+4√33,0)或(1-2√3,0)或(5-2√3,0)。

《相似三角形》中考复习题专题及答案

《相似三角形》中考复习题专题及答案

相似三角形一。

选择题(1)△ABC 中,D 、E 、F 分别是在AB 、AC 、BC 上的点,DE ∥BC ,EF ∥AB ,那么下列各式正确的是( ) A.DB AD =EC BF B.AC AB =FCEF C 。

DB AD =FC BF D 。

EC AE =BF AD (2)在△ABC 中,BC=5,CA=45,AB=46,另一个与它相似的三角形的最短边是15,则最长边是( ) A 。

138 B 。

346 C 。

135 D.不确定(3)在△ABC 中,AB=AC ,∠A=36°,∠ABC 的平分线交AC 于D ,则构成的三个三角形中,相似的是( ) A 。

△ABD ∽△BCD B.△ABC ∽△BDC C.△ABC ∽△ABD D 。

不存在(4)将三角形高分为四等分,过每个分点作底边的平行线,将三角形分四个部分,则四个部分面积之比是( )A.1∶3∶5∶7 B 。

1∶2∶3∶4 C 。

1∶2∶4∶5 D 。

1∶2∶3∶5(5)下列命题中,真命题是( )A.有一个角为30°的两个等腰三角形相似 B 。

邻边之比都等于2的两个平行四边形相似C.底角为40°的两个等腰梯形相似 D 。

有一个角为120°的两个等腰三角形相似(6)直角梯形ABCD 中,AD 为上底,∠D=Rt ∠,AC ⊥AB ,AD=4,BC=9,则AC 等于( )A.5 B 。

6 C 。

7 D 。

8(7)已知CD 为Rt △ABC 斜边上的中线,E 、F 分别是AC 、BC 中点,则CD 与EF 关系是( )A.EF >CD B 。

EF=CD C 。

EF <CD D 。

不能确定(8)下列命题①相似三角形一定不是全等三角形 ②相似三角形对应中线的比等于对应角平分线的比;③边数相同,对应角相等的两个多边形相似;④O 是△ABC 内任意一点.OA 、OB 、OC 的中点连成的三角形△A′B′C′∽△ABC.其中正确的个数是( )A 。

相似三角形练习题及答案

相似三角形练习题及答案

相似三角形练习题及答案一、选择题1. 若两个三角形的对应角相等,且对应边成比例,则这两个三角形是相似的。

这种说法正确吗?A. 正确B. 错误2. 三角形ABC和三角形DEF相似,AB=6cm,DE=3cm,那么AC的长度是多少?A. 4cmB. 6cmC. 9cmD. 12cm3. 在三角形ABC中,∠A=60°,∠B=40°,那么∠C是多少度?A. 40°B. 60°C. 80°D. 100°二、填空题4. 若三角形ABC与三角形DEF相似,且AB:DE=2:3,BC=8cm,求DE的长度。

5. 在三角形ABC中,若∠A=30°,∠B=70°,求∠C的度数。

三、解答题6. 已知三角形ABC与三角形DEF相似,且AC=4cm,DF=6cm,AB=5cm,求EF的长度。

7. 在三角形ABC中,已知AB=6cm,AC=4cm,BC=8cm,判断三角形ABC 是否为直角三角形,并说明理由。

四、证明题8. 已知三角形ABC与三角形DEF相似,且∠A=∠D,∠B=∠E,证明∠C=∠F。

9. 已知三角形ABC与三角形DEF相似,且AB/DE=2/3,AC/DF=2/3,证明BC/EF=2/3。

五、应用题10. 在平面直角坐标系中,点A(-3,4),B(1,-2),C(5,6),点D(-1,1),E(3,-6),F(7,3),判断三角形ABC与三角形DEF是否相似,并求出相似比。

答案:1. A2. B3. C4. 6cm5. 80°6. 7.5cm7. 是直角三角形,因为AB²+AC²=BC²。

8. 由于三角形ABC与三角形DEF相似,根据相似三角形的性质,对应角相等,所以∠C=∠F。

9. 根据相似三角形的性质,对应边的比值相等,所以BC/EF=AB/DE=2/3。

10. 三角形ABC与三角形DEF相似,相似比为3/2。

相似三角形测试题及答案

相似三角形测试题及答案

相似三角形测试题及答案一、选择题1. 若三角形ABC与三角形DEF相似,且AB:DE = 2:3,则BC:EF的比值为:A. 2:3B. 3:2C. 4:6D. 3:4答案:B2. 在相似三角形中,对应角相等,对应边成比例。

以下哪项不是相似三角形的性质?A. 对应角相等B. 对应边成比例C. 周长比等于相似比D. 面积比等于相似比的平方答案:D二、填空题3. 若三角形ABC与三角形DEF相似,相似比为2:3,则三角形ABC的周长是三角形DEF周长的____。

答案:2/34. 若三角形ABC与三角形DEF相似,且AB = 6cm,DE = 9cm,则BC 与EF的比值为______。

答案:2:3三、解答题5. 已知三角形ABC与三角形DEF相似,且AB = 8cm,DE = 12cm,求三角形ABC的周长,已知三角形DEF的周长为36cm。

答案:三角形ABC的周长 = (8/12) * 36cm = 24cm6. 已知三角形ABC与三角形DEF相似,且∠A = ∠D = 50°,∠B =∠E = 60°,求∠C和∠F的度数。

答案:∠C = ∠F = 70°四、证明题7. 已知三角形ABC与三角形DEF相似,且AB = 4cm,DE = 6cm,BC = 5cm,EF = 7.5cm,证明AC = 6.25cm。

答案:由于三角形ABC与三角形DEF相似,根据相似三角形的性质,对应边成比例,所以AC/DF = AB/DE = 4/6 = 2/3。

已知EF = 7.5cm,所以AC = (2/3) * EF = (2/3) * 7.5cm = 5cm。

因此,AC = 6.25cm。

8. 已知三角形ABC与三角形DEF相似,且∠A = ∠D,∠B = ∠E,求证:∠C = ∠F。

答案:由于三角形ABC与三角形DEF相似,根据相似三角形的性质,对应角相等。

已知∠A = ∠D,∠B = ∠E,所以∠C = 180° - (∠A+ ∠B) = 180° - (∠D + ∠E) = ∠F。

最新相似三角形性质与判定专项练习30题(有答案)

最新相似三角形性质与判定专项练习30题(有答案)

相似三角形性质和判定专项练习30题(有答案)1.已知:如图,在△ABC中,点D在边BC上,且∠BAC=∠DAG,∠CDG=∠BAD.(1)求证:=;(2)当GC⊥BC时,求证:∠BAC=90°.2.如图,已知在△ABC中,∠ACB=90°,点D在边BC上,CE⊥AB,CF⊥AD,E、F分别是垂足.(1)求证:AC2=AF•AD;(2)联结EF,求证:AE•DB=AD•EF.3.如图,△ABC中,PC平分∠ACB,PB=PC.(1)求证:△APC∽△ACB;(2)若AP=2,PC=6,求AC的长.4.如图,在平行四边形ABCD中,过B作BE⊥CD,垂足为点E,连接AE,F为AE上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;(2)若AB=4,∠BAE=30°,求AE的长.5.已知:如图,△ABC中,∠ABC=2∠C,BD平分∠ABC.求证:AB•BC=AC•CD.6.已知△ABC,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°,设△ABC的面积为S,说明AF•BE=2S 的理由.7.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.(1)若AE=CF;①求证:AF=BE,并求∠APB的度数;②若AE=2,试求AP•AF的值;(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.8.如图所示,AD,BE是钝角△ABC的边BC,AC上的高,求证:=.9.已知:如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF与BE相交于点G,且∠EDF=∠ABE.求证:(1)△DEF∽△BDE;(2)DG•DF=DB•EF.10.如图,△ABC、△DEF都是等边三角形,点D为AB的中点,E在BC上运动,DF和EF分别交AC于G、H 两点,BC=2,问E在何处时CH的长度最大?11.如图,AB和CD交于点O,当∠A=∠C时,求证:OA•OB=OC•OD.12.如图,已知等边三角形△AEC,以AC为对角线做正方形ABCD(点B在△AEC内,点D在△AEC外).连接EB,过E作EF⊥AB,交AB的延长线为F.(1)猜测直线BE和直线AC的位置关系,并证明你的猜想.(2)证明:△BEF∽△ABC,并求出相似比.13.已知:如图,△ABC中,点D、E是边AB上的点,CD平分∠ECB,且BC2=BD•BA.(1)求证:△CED∽△ACD;(2)求证:.14.如图,△ABC中,点D、E分别在BC和AC边上,点G是BE边上一点,且∠BAD=∠BGD=∠C,联结AG.(1)求证:BD•BC=BG•BE;(2)求证:∠BGA=∠BAC.15.已知:如图,在△ABC中,点D是BC中点,点E是AC中点,且AD⊥BC,BE⊥AC,BE,AD相交于点G,过点B作BF∥AC交AD的延长线于点F,DF=6.(1)求AE的长;(2)求的值.16.如图,△ABC中,∠ACB=90°,D是AB上一点,M是CD中点,且∠AMD=∠BMD,AP∥CD交BC延长线于P点,延长BM交PA于N点,且PN=AN.(1)求证:MN=MA;(2)求证:∠CDA=2∠ACD.17.已知:如图,在△ABC中,已知点D在BC上,联结AD,使得∠CAD=∠B,DC=3且S△ACD:S△ADB﹦1﹕2.(1)求AC的值;(2)若将△ADC沿着直线AD翻折,使点C落点E处,AE交边BC于点F,且AB∥DE,求的值.18.在△ABC中,D是BC的中点,且AD=AC,DE⊥BC,与AB相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若DE=3,BC=8,求△FCD的面积.19.如图,△ABC为等边三角形,D为BC边上一点,以AD为边作∠ADE=60°,DE与△ABC的外角平分线CE 交于点E.(1)求证:∠BAD=∠FDE;(2)设DE与AC相交于点G,连接AE,若AB=6,AE=5时,求线段AG的长.20.如图所示,△ABC中,∠B=90°,点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC 边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发,经几秒,使△PBQ的面积等于8cm2?(2)如果P,Q分别从A,B同时出发,并且P到B后又继续在BC边上前进,Q到C后又继续在CA边上前进,经过几秒,使△PCQ的面积等于12.6cm2?21.已知:如图,△ABC是等边三角形,D是AB边上的点,将DB绕点D顺时针旋转60°得到线段DE,延长ED 交AC于点F,连接DC、AE.(1)求证:△ADE≌△DFC;(2)过点E作EH∥DC交DB于点G,交BC于点H,连接AH.求∠AHE的度数;(3)若BG=,CH=2,求BC的长.22.如图,在△ABC中,CD平分∠ACB,BE∥BC交AC于点E.(1)求证:AE•BC=AC•CE;(2)若S△ADE:S△CDE=4:3.5,BC=15,求CE的长.23.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.24.在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.25.如图,M、N、P分别为△ABC三边AB、BC、CA的中点,BP与MN、AN分别交于E、F.(1)求证:BF=2FP;(2)设△ABC的面积为S,求△NEF的面积.26.在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,E、F分别是AC,BC边上一点,且CE=AC,BF=BC,(1)求证:;(2)求∠EDF的度数.27.如图,△ABC是等边三角形,且AB∥CE.(1)求证:△ABD∽△CED;(2)若AB=6,AD=2CD,①求E到BC的距离EH的长.②求BE的长.28.如图,Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,连接CC′交斜边于点E,CC′的延长线交BB′于点F.(1)若AC=3,AB=4,求;(2)证明:△ACE∽△FBE;(3)设∠ABC=α,∠CAC′=β,试探索α、β满足什么关系时,△ACE与△FBE是全等三角形,并说明理由.29.如图,△ABC是等边三角形,∠DAE=120°,求证:(1)△ABD∽△ECA;(2)BC2=DB•CE.30.如图,在Rt△ABC中,∠C=90°,且AC=CD=,又E,D为CB的三等分点.(1)证明:△ADE∽△BDA;(2)证明:∠ADC=∠AEC+∠B;(3)若点P为线段AB上一动点,连接PE,则使得线段PE的长度为整数的点P的个数有几个?请说明理由.相似三角形性质和判定专项练习30题参考答案:1.解:(1)∵∠ADC=∠B+∠BAD,且∠CDG=∠BAD,∴∠ADG=∠B;∵∠BAC=∠DAG,∴△ABC∽△ADG,∴=.(2)∵∠BAC=∠DAG,∴∠BAD=∠CAG;又∵∠CDG=∠BAD,∴∠CDG=∠CAG,∴A、D、C、G四点共圆,∴∠DAG+∠DCG=180°;∵GC⊥BC,∴∠DCG=90°,∴∠DAG=90°,∠BAC=∠DAG=90°.2.解:(1)如图,∵∠ACB=90°,CF⊥AD,∴∠ACD=∠AFC,而∠CAD=∠FAC,∴△ACD∽△AFC,∴,∴AC2=AF•AD.(2)如图,∵CE⊥AB,CF⊥AD,∴∠AEC=∠AFC=90°,∴A、E、F、C四点共圆,∴∠AFE=∠ACE;而∠ACE+∠CAE=∠CAE+∠B,∴∠ACE=∠B,∠AFE=∠B;∵∠FAE=∠BAD,∴△AEF∽△ADB,∴AE:AD=BD:EF,∴AE•DB=AD•EF.3.解:(1)∵PB=PC,∴∠B=∠PCB;∵PC平分∠ACB,∴∠ACP=∠PCB,∠B=∠ACP,∵∠A=∠A,∴△APC∽△ACB.(2)∵△APC∽△ACB,∴,∵AP=2,PC=6,AB=8,∴AC=4.∵AP+AC=PC=6,这与三角形的任意两边之和大于第三边相矛盾,∴该题无解.4.(1)证明:∵AD∥BC,∴∠C+∠ADE=180°,∵∠BFE=∠C,∴∠AFB=∠EDA,∵AB∥DC,∴∠BAE=∠AED,∴△ABF∽△EAD;(2)解:∵AB∥CD,BE⊥CD,∴∠ABE=90°,∵AB=4,∠BAE=30°,∴AE=2BE,由勾股定理可求得AE=5.证明:∵∠ABC=2∠C,BD平分∠ABC,∴∠ABD=∠DBC=∠C,∴BD=CD,在△ABD和△ACB中,,∴△ABD∽△ACB,∴=,即AB•BC=AC•BD,∴AB•BC=AC•CD.6.证明:∵AC=BC,∴∠A=∠B,∵∠ACB=90°,∴∠A=∠B=45°,∵∠ECF=45°,∴∠ECF=∠B=45°,∴∠ECF+∠1=∠B+∠1,∵∠BCE=∠ECF+∠1,∠2=∠B+∠1;∴∠BCE=∠2,∵∠A=∠B,∴△ACF∽△BEC.∴,∴AC•BC=BE•AF,∴S△ABC=AC•BC=BE•AF,∴AF•BE=2S.7.(1)①证明:∵△ABC为等边三角形,∴AB=AC,∠C=∠CAB=60°,又∵AE=CF,在△ABE和△CAF中,,∴△ABE≌△CAF(SAS),∴AF=BE,∠ABE=∠CAF.又∵∠APE=∠BPF=∠ABP+∠BAP,∴∠APE=∠BAP+∠CAF=60°.∴∠APB=180°﹣∠APE=120°.②∵∠C=∠APE=60°,∠PAE=∠CAF,∴△APE∽△ACF,∴,即,所以AP•AF=12(2)若AF=BE,有AE=BF或AE=CF两种情况.①当AE=CF时,点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形,且∠ABP=∠BAP=30°,∴∠AOB=120°,又∵AB=6,∴OA=,点P的路径是.②当AE=BF时,点P的路径就是过点C向AB作的垂线段的长度;因为等边三角形ABC的边长为6,所以点P 的路径为:.所以,点P经过的路径长为或3.8.证明:∵AD,BE是钝角△ABC的边BC,AC上的高,∴∠D=∠E=90°,∵∠ACD=∠BCE,∴△ACD∽△BCE,∴=.9.证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵DE∥BC,∴∠ABC+∠BDE=180°,∠ACB+∠CED=180°.∴∠BDE=∠CED,∵∠EDF=∠ABE,∴△DEF∽△BDE;(2)由△DEF∽△BDE,得.∴DE2=DB•EF,由△DEF∽△BDE,得∠BED=∠DFE.∵∠GDE=∠EDF,∴△GDE∽△EDF.∴,∴DE2=DG•DF,∴DG•DF=DB•EF.10.解:设EC=x,CH=y,则BE=2﹣x,∵△ABC、△DEF都是等边三角形,∴∠B=∠DEF=60°,∵∠B+∠BDE=∠DEF+∠HEC,∴∠BDE=∠HEC,∴△BED∽△CHE,∴,∵AB=BC=2,点D为AB的中点,∴BD=1,∴,即:y=﹣x2+2x=﹣(x﹣1)2+1.∴当x=1时,y最大.此时,E在BC中点11.解:∵∠A=∠C,∠AOD=∠BOC,∴△OAD∽△OCB,∴=,∴OA•OB=OC•OD.12.解:(1)猜测BE和直线AC垂直.证明:∵△AEC是等边三角形,∴AE=CE,∵四边形ABCD是正方形,∴AB=CB,∵BE=BE,∴△AEB≌△CEB(SSS).∴∠AEB=∠CEB,∵AE=CE,∴BE⊥AC;(2)∵△AEC是等边三角形,∴∠EAC=∠AEC=60°,∵BE⊥AC,∴∠BEA=∠AEC=30°,∵四边形ABCD是正方形,∴∠BAC=45°,∴∠BAE=15°,∴∠EBF=45°,∵EF⊥BF,∴∠F=90°,∴∠EBF=∠BAC,∠F=∠ABC,∴△BEF∽△ACB,延长EB交AC于G,设AC为2a,则BG=a,EB=a﹣a,∴相似比是:===13.证明:(1)∵BC2=BD•BA,∴BD:BC=BC:BA,∵∠B是公共角,∴△BCD∽△BAC,∴∠BCD=∠A,∵CD平分∠ECB,∴∠ECD=∠BCD,∴∠ECD=∠A,∵∠EDC=∠CDA,∴△CED∽△ACD;(2)∵△BCD∽△BAC,△CED∽△ACD,∴=,=,∴.14.证明:(1)∵∠DBG=∠EBC,∠BGD=∠C,∴△BDG∽△BEC,∴=,则BD•BC=BG•BE;(2)∵∠DBA=∠ABC,∠BAD=∠C,∴△DBA∽△ABC,∴=,即AB2=BD•BC,∵BD•BC=BG•BE,∴AB2=BG•BE,即=,∵∠GBA=∠ABE,∴△GBA∽△ABE,∴∠BGA=∠BAC.15.解:(1)∵在△ABC中,点D是BC中点,点E是AC中点,且AD⊥BC,BE⊥AC,∴AC=AB=BC,∴△ABC是等边三角形,∴∠C=60°,∵BF∥AC,∴∠CBF=∠C=60°,∵AD⊥BC,∴∠FDB=90°,∴∠F=30°,∵DF=6,∴BD=2,∵AE=EC=BD=DC,∴AE=2;(2)∵∠BDF=90°,∠F=30°,BD=2,∴BF=2DB=4,∵AC∥BF,∴△AEG∽△FBG,∴=()2=.16.证明:(1)∵AP∥CD,∴∠AMD=∠MAN,∠BMD=∠MNA,∵∠AMD=∠BMD,∴∠MAN=∠MNA,∴MN=MA.(2)如图,连接NC,∵AP∥CD,且PN=AN.∴==,∴MC=MD,∴CN为直角△ACP斜边AP的中线,∴CN=NA,∠NCA=∠NAC,∵AP∥CD,∴∠NAC=∠ACD,∴∠NCM=2∠ACD,∵∠CMN=∠DMB,∠DMA=∠BMD,∴∠CMD=∠DMA,在△CMN和△DMA中,,∴△CMN≌△DMA(SAS),∠ADM=∠NCM=2∠ACD.即:∠CDA=2∠ACD.17.解:(1)∵S△ACD:S△ADB﹦1:2,∴BD=2CD,∵DC=3,∴BD=2×3=6,∴BC=BD+DC=6+3=9,∵∠CAD=∠B,∠C=∠C,∴△ABC∽△DAC,∴=,即=,解得AC=3;(2)由翻折的性质得,∠E=∠C,DE=CD=3,∵AB∥DE,∴∠B=∠EDF,∵∠CAD=∠B,∴∠EDF=∠CAD,∴△EFD∽△ADC,∴=()2=()2=18.(1)证明:∵D是BC的中点,DE⊥BC,∴BE=CE,∴∠B=∠DCF,∵AD=AC,∴∠FDC=∠ACB,∴△ABC∽△FCD;(2)解:过A作AG⊥CD,垂足为G.∵AD=AC,∴DG=CG,∴BD:BG=2:3,∵ED⊥BC,∴ED∥AG,∴△BDE∽△BGA,∴ED:AG=BD:BG=2:3,∵DE=3,∴AG=,∵△ABC∽△FCD,BC=2CD,∴=()2=.∵S△ABC=×BC×AG=×8×=18,∴S△FCD=S△ABC=.19.(1)证明:∵△ABC为等边三角形,∴∠B=60°,由三角形的外角性质得,∠ADE+∠FDE=∠BAD+∠B,∵∠ADE=60°,∴∠BAD=∠FDE;(2)解:如图,过点D作DH∥AC交AB于H,∵△ABC为等边三角形,∴△BDH是等边三角形,∴∠BHD=60°,BD=BH,∴∠AHD=180°﹣60°=120°,∵CE是△ABC的外角平分线,∴∠ACE=(180°﹣60°)=60°,∴∠DCE=60°+60°=120°,∴∠AHD=∠DCE=120°,又∵AH=AB﹣BH,CD=BC﹣BD,∴AH=CD,在△AHD和△DCE中,,∴△AHD≌△DCE(ASA),∴AD=DE,∵∠ADE=60°,∴△ADE是等边三角形,∴∠DAE=∠DEA=60°,AE=AD=5,∵∠BAD=∠BAC﹣∠CAD=60°﹣∠CAD,∠EAG=∠DAE﹣∠CAD=60°﹣∠CAD,∴∠BAD=∠EAG,∴△ABD∽△AEG,∴=,即=,解得AG=.20.解:(1)设x秒时,点P在AB上,点Q在BC上,且使△PBQ面积为8cm2,由题意得(6﹣x)•2x=8,解之,得x1=2,x2=4,经过2秒时,点P到距离B点4cm处,点Q到距离B点4cm处;或经4秒,点P到距离B点2cm处,点Q到距离B点8cm处,△PBQ的面积为8cm2,综上所述,经过2秒或4秒,△PBQ的面积为8cm2;(2)当P在AB上时,经x秒,△PCQ的面积为:×PB×CQ=×(6﹣x)(8﹣2x)=12.6,解得:x1=(不合题意舍去),x2=,经x秒,点P移动到BC上,且有CP=(14﹣x)cm,点Q移动到CA上,且使CQ=(2x﹣8)cm,过Q作QD⊥CB,垂足为D,由△CQD∽△CAB得,即QD=,由题意得(14﹣x)•=12.6,解之得x1=7,x2=11.经7秒,点P在BC上距离C点7cm处,点Q在CA上距离C点6cm处,使△PCQ的面积等于12.6cm2.经11秒,点P在BC上距离C点3cm处,点Q在CA上距离C点14cm处,14>10,点Q已超出CA的范围,此解不存在.综上所述,经过7秒和秒时△PCQ的面积等于12.6cm221.(1)证明:如图,∵线段DB顺时针旋转60°得线段DE,∴∠EDB=60°,DE=DB.∵△ABC是等边三角形,∴∠B=∠ACB=60°.∴∠EDB=∠B.∴EF∥BC.∴DB=FC,∠ADF=∠AFD=60°.∴DE=DB=FC,∠ADE=∠DFC=120°,△ADF是等边三角形.∴AD=DF.∴△ADE≌△DFC.(2)解:由△ADE≌△DFC,得AE=DC,∠1=∠2.∵ED∥BC,EH∥DC,∴四边形EHCD是平行四边形.∴EH=DC,∠3=∠4.∴AE=EH.∴∠AEH=∠1+∠3=∠2+∠4=∠ACB=60°.∴△AEH是等边三角形.∴∠AHE=60°.(3)解:设BH=x,则AC=BC=BH+HC=x+2,由(2)四边形EHCD是平行四边形,∴ED=HC.∴DE=DB=HC=FC=2.∵EH∥DC,∴△BGH∽△BDC.∴.即.解得x=1.∴BC=3.22.(1)证明:∵DE∥BC,∴∠ADE=∠B,∠AEC=∠ACB,∴△ADE∽△ABC,∴=,∵DE∥BC,∴∠EDC=∠BCD,∵CD平分∠ACB,∴∠BCD=∠DCE,∴∠DCE=∠EDC,∴DE=CE,∴=,即AE•BC=AC•CE;(2)∵S△ADE:S△CDE=4:3.5,∴AE:CE=4:3.5,∴=,∵由(1)知=,∴=,解得DE=6,∵DE=CE,∴CE=8.23.(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB•AD;(2)证明:∵E为AB的中点,∴CE=AB=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD;(3)解:∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF,∵CE=AB,∴CE=×6=3,∵AD=4,∴,∴.24.(1)证明:如图1,在△ABC中,∵∠CAB=90°,AD⊥BC于点D,∴∠CAD=∠B=90°﹣∠ACB.∵AC:AB=1:2,∴AB=2AC,∵点E为AB的中点,∴AB=2BE,∴AC=BE.在△ACD与△BEF中,,∴△ACD≌△BEF,∴CD=EF,即EF=CD;(2)解:如图2,作EH⊥AD于H,EQ⊥BC于Q,∵EH⊥AD,EQ⊥BC,AD⊥BC,∴四边形EQDH是矩形,∴∠QEH=90°,∴∠FEQ=∠GEH=90°﹣∠QEG,又∵∠EQF=∠EHG=90°,∴△EFQ∽△EGH,∴EF:EG=EQ:EH.∵AC:AB=1:,∠CAB=90°,∴∠B=30°.在△BEQ中,∵∠BQE=90°,∴sinB==,∴EQ=BE.在△AEH中,∵∠AHE=90°,∠AEH=∠B=30°,∴cos∠AEH==,∴EH=AE.∵点E为AB的中点,∴BE=AE,∴EF:EG=EQ:EH=BE:AE=1:=:3.25.(1)证明:如图1,连接PN,∵N、P分别为△ABC边BC、CA的中点,∴PN∥AB,且.∴△ABF∽△NPF,∴.∴BF=2FP.(2)解:如图2,取AF的中点G,连接MG,∴MG∥EF,AG=GF=FN.∴△NEF∽△NMG,∴S△NEF=S△MNG=×S△AMN=××S△ABC=S.26.(1)证明:∵CD⊥AB,∴∠CDB=∠ADC=90°,∴∠ACD+∠BCD=90°,∵∠ACB=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,∴△ADC∽△CDB,∴=;(2)解:∵CE=AC,BF=BC,∴===,又∵∠A=∠BCD,∴∠ACD=∠B,∴△CED∽△BFD,∴∠CDE=∠BDF,∴∠EDF=∠EDC+∠CDF=∠BDF+∠CDF=∠CDB=90°.27.解;(1)∵AB∥CE,∴∠A=∠DCE,又∵∠ADB=∠EDC,∴△ABD∽△CED;(2)①过点E作EH⊥BF于点H,∵△ABC是等边三角形,△ABD∽△CED,AB=6,AD=2CD,∴==,∠A=∠ACB=60°,∴CE=3,∵AB∥CE,∴∠ECH=180°﹣∠ACB﹣∠DCE=180°﹣60°﹣60°=60°,∴EH=CE•sin60°=3×=;②在Rt△ECH中,∵∠ECH=60°,CE=3,∴CH=CE•cos60°=3×=,∴BH=BC+CH=6+=,∴BE===3.28.(1)解:∵AC=AC′,AB=AB′,∴由旋转可知:∠CAB=∠C′AB′,∴∠CAB+∠EAC′=∠C′AB′+∠EAC′,即∠CAC′=∠BAB′,又∵∠ACB=∠AC′B′=90°,∴△ACC′∽△ABB′,∵AC=3,AB=4,∴==;(2)证明:∵Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,∴AC=AC′,AB=AB′,∠CAB=∠C′AB′,(1分)∴∠CAC′=∠BAB′,∴∠ABB′=∠AB′B=∠ACC′=∠AC′C,∴∠ACC′=∠ABB′,(3分)又∵∠AEC=∠FEB,∴△ACE∽△FBE.(4分)(3)解:当β=2α时,△ACE≌△FBE.理由:在△ACC′中,∵AC=AC′,∴∠ACC′=∠AC′C====90°﹣α,(6分)在Rt△ABC中,∠ACC′+∠BCE=90°,∴∠BCE=90°﹣90°+α=α,∵∠ABC=α,∴∠ABC=∠BCE,(8分)∴CE=BE,由(2)知:△ACE∽△FBE,∴△ACE≌△FBE.(9分)29.证明:(1)∵△ABC是等边三角形,∠DAE=120°,∴∠DAB+∠CAE=60°,∵∠ABC是△ABD的外角,∴∠DAB+∠D=∠ABC=60°,∴∠CAE=∠D,∵∠ABC=∠ACB=60°,∴∠ABD=∠ACE=120°,∴△ABD∽△ECA;(2)∵△ABD∽△ECA,∴=,即AB•AC=BD•CE,∵AB=AC=BC,∴BC2=BD•CE30.(1)证明:∵AC=CD=DE=EB=,又∠C=90°,∴AD=2,∴=,==,∴=,又∵∠ADE=∠BDA,∴△ADE∽△BDA;(2)证明:∵△ADE∽△BDA,∴∠DAE=∠B,又∵∠ADC=∠AEC+∠DAE,∴∠ADC=∠AEC+∠B;(3)解:∵点P为线段AB上一动点,根据勾股定理得:AE==,BE=,∴PE的最大值为.作EF⊥AB,则EF=,则PE的最小值为∴≤EP≤,∵EP为整数,即EP=1,2,3,结合图形可知PE=1时有两个点,所以PE长为整数的点P个数为4个.输血过程质量管理监控及效果评价制度一、输血护理服务的规定1、血液必须保存在指定的血库冰箱内,温度应保持在4℃,保存温度不当可能导致血细胞破坏或细菌感染,血液自血库取出后应在30分钟内输入。

相似三角形试题及答案

相似三角形试题及答案

相似三角形试题及答案一、选择题1. 在相似三角形中,对应角相等的条件是:A. 边长成比例B. 面积相等C. 周长相等D. 角相等答案:A2. 下列选项中,哪一项不是相似三角形的性质?A. 对应边成比例B. 对应角相等C. 面积比等于边长比的平方D. 周长比等于边长比答案:B二、填空题3. 若三角形ABC与三角形DEF相似,且AB:DE=2:3,则三角形ABC的面积与三角形DEF的面积之比是________。

答案:4:94. 若三角形ABC与三角形A'B'C'相似,且∠A=∠A'=60°,则∠B与∠B'的关系是________。

答案:相等三、简答题5. 解释为什么在相似三角形中,对应边长的比等于对应角的正弦值之比。

答案:在相似三角形中,由于对应角相等,根据正弦定理,对应边长的比等于对应角的正弦值之比。

这是因为正弦值与角的大小成正比,而相似三角形的对应角大小相同,因此它们的正弦值之比也相同。

四、计算题6. 在三角形ABC中,已知AB=5cm,AC=7cm,∠A=60°,求三角形ABC的面积。

答案:首先,利用余弦定理计算BC的长度。

根据余弦定理,BC²= AB² + AC² - 2AB*AC*cos∠A。

代入已知值,得到BC² = 5² +7² - 2*5*7*(1/2) = 25 + 49 - 35 = 39,所以BC = √39 cm。

然后,利用三角形的面积公式S = (1/2)AB*AC*sin∠A,代入已知值,得到S = (1/2)*5*7*(√3/2) = 17.5√3 cm²。

7. 若三角形ABC与三角形DEF相似,且AB:DE=3:5,求三角形ABC与三角形DEF的面积比。

答案:由于相似三角形的面积比等于边长比的平方,所以三角形ABC与三角形DEF的面积比为(3:5)² = 9:25。

相似三角形测试题及答案

相似三角形测试题及答案

相似三角形测试题及答案### 相似三角形测试题及答案#### 测试题一:基础概念题题目:下列哪组三角形是相似的?A. 等腰三角形和直角三角形B. 两个等腰直角三角形C. 两个等边三角形D. 两个不同形状的三角形答案:B、C解析:相似三角形的定义是两组对应角相等,且两组对应边的比相等的两个三角形。

选项B中的两个等腰直角三角形,它们的两个锐角相等,且两组对应边的比相等,因此是相似的。

选项C中的两个等边三角形,它们的三个角都相等,并且三组对应边的比也相等,因此也是相似的。

#### 测试题二:计算题题目:已知三角形ABC与三角形DEF相似,且AB:DE = 3:2,求AC:EF 的比值。

答案:AC:EF = 3:2解析:由于三角形ABC与三角形DEF相似,根据相似三角形的性质,它们的对应边的比值是相等的。

因此,AC与EF作为对应边,它们的比值也应该是3:2。

#### 测试题三:应用题题目:在平面直角坐标系中,三角形PQR的顶点坐标分别为P(1,2),Q(4,6),R(1,6)。

点S(2,4)是否在以PQ为斜边的相似三角形PQS的内部?答案:是的,点S(2,4)在以PQ为斜边的相似三角形PQS的内部。

解析:首先计算PQ的长度,使用距离公式得到PQ = √[(4-1)² + (6-2)²] = √13。

然后计算PS和QS的长度,PS = √[(2-1)² + (4-2)²] = √2,QS = √[(2-4)² + (4-6)²] = √13。

由于PS < PQ < QS,根据三角形的不等式定理,点S在以PQ为斜边的三角形PQS 的内部。

#### 测试题四:证明题题目:若三角形ABC与三角形DEF相似,且∠A = ∠D,∠B = ∠E,请证明∠C = ∠F。

答案:根据相似三角形的性质,如果两个三角形相似,那么它们的对应角相等。

已知∠A = ∠D,∠B = ∠E,根据三角形内角和定理,三角形ABC的内角和为180°,即∠A + ∠B + ∠C = 180°。

相似三角形测试题及答案

相似三角形测试题及答案

第27章相似三角形测试题一、选择题:(每小题3分共30分)1、下列命题中正确的是()①三边对应成比例的两个三角形相似②二边对应成比例且一个角对应相等的两个三角形相似③一个锐角对应相等的两个直角三角形相似④一个角对应相等的两个等腰三角形相似A、①③B、①④C、①②④D、①③④2、如图,已知DE∥BC,EF∥AB,则下列比例式中错误的是( )A B C D3、如图,D、E分别是AB、AC上两点,CD与BE相交于点O,下列条件中不能使ΔABE和ΔACD相似的是()A. ∠B=∠C B。

∠ADC=∠AEBC. BE=CD,AB=ACD. AD∶AC=AE∶AB4、如图,E是平行四边形ABCD的边BC的延长线上的一点,连结AE交CD于F,则图中共有相似三角形()A 1对B 2对C 3对D 4对5、在矩形ABCD中,E、F分别是CD、BC上的点,若∠AEF=90°,则一定有()A ΔADE∽ΔAEFB ΔECF∽ΔAEFC ΔADE∽ΔECFD ΔAEF∽ΔABF6、如图1,∽,若,则与的相似比是()A.1:2 B.1:3 C.2:3 D.3:27、一个三角形三边的长分别为3,5,7,另一个与它相似的三角形的最长边是21,则其它两边的和是( )A.19 B.17 C.24 D.218、在比例尺为1:5000的地图上,量得甲,乙两地的距离25cm,则甲,乙的实际距离是( )A.1250km B。

125km C。

12。

5km D。

1。

25km9、在相同时刻,物高与影长成正比。

如果高为1。

5米的标杆影长为2。

5米,那么影长为30米的旗杆的高为( )A 20米B 18米C 16米D 15米10、.如图3,小正方形的边长均为1,则图中三角形(阴影部分)与相似的是( )二、填空题: (每小题3分,共,24分)11、已知,则12、两个相似三角形的面积之比为4:9,则这两个三角形周长之比为 。

13、如图,在△ABC 中,D 为AB 边上的一点,要使△ABC ~△AED 成立,还需要添加一个条件为 。

相似三角形经典练习题及答案

相似三角形经典练习题及答案

相似三角形经典练习题及答案一、选择题1、若两个相似三角形的面积之比为 1∶4,则它们的周长之比为()A 1∶2B 1∶4C 1∶5D 1∶16答案:A解析:相似三角形面积的比等于相似比的平方,相似三角形周长的比等于相似比。

因为两个相似三角形的面积之比为 1∶4,所以相似比为 1∶2,那么它们的周长之比为 1∶2。

2、如图,在△ABC 中,点 D、E 分别在边 AB、AC 上,DE∥BC,若 AD∶DB = 1∶2,则下列结论中正确的是()A AE∶EC = 1∶2B AE∶EC = 1∶3 C DE∶BC = 1∶2 DDE∶BC = 1∶3答案:B解析:因为 DE∥BC,所以△ADE∽△ABC。

因为 AD∶DB =1∶2,所以 AD∶AB = 1∶3。

因为相似三角形对应边成比例,所以AE∶AC = AD∶AB = 1∶3,所以 AE∶EC = 1∶2。

3、已知△ABC∽△A'B'C',相似比为 3∶4,△ABC 的周长为 6,则△A'B'C'的周长为()A 8B 7C 9D 10答案:A解析:因为相似三角形周长的比等于相似比,所以△ABC 与△A'B'C'的周长之比为3∶4。

设△A'B'C'的周长为x,则6∶x =3∶4,解得 x = 8。

4、如图,在△ABC 中,D、E 分别是 AB、AC 上的点,且DE∥BC,如果 AD = 2cm,DB = 1cm,AE = 15cm,则 EC =()A 05cmB 1cmC 15cmD 3cm答案:B解析:因为 DE∥BC,所以△ADE∽△ABC,所以 AD∶AB =AE∶AC。

因为 AD = 2cm,DB = 1cm,所以 AB = 3cm。

所以 2∶3= 15∶(15 + EC),解得 EC = 1cm。

5、下列各组图形一定相似的是()A 两个直角三角形B 两个等边三角形C 两个菱形D 两个矩形答案:B解析:等边三角形的三个角都相等,都是 60°,所以两个等边三角形一定相似。

相似三角形综合题(解析版)

相似三角形综合题(解析版)

相似三角形综合题一、解答题1.(2018·上海普陀·中考模拟)如图1,正方形ABCD的边长为4,把三角板的直角顶点放置BC中点E 处,三角板绕点E旋转,三角板的两边分别交边AB、CD于点G、F.(1)求证:△GBE∽△GEF.(2)设AG=x,GF=y,求Y关于X的函数表达式,并写出自变量取值范围.(3)如图2,连接AC交GF于点Q,交EF于点P.当△AGQ与△CEP相似,求线段AG的长.【答案】(1)见解析;(2)y=4﹣x+44x-(0≤x≤3);(3)当△AGQ与△CEP相似,线段AG的长为2或4【解析】【分析】(1)先判断出△BEF'≌△CEF,得出BF'=CF,EF'=EF,进而得出∠BGE=∠EGF,即可得出结论;(2)先判断出△BEG∽△CFE进而得出CF=4 4x -,即可得出结论;(3)分两种情况,①△AGQ∽△CEP时,判断出∠BGE=60°,即可求出BG;②△AGQ∽△CPE时,判断出EG∥AC,进而得出△BEG∽△BCA即可得出BG,即可得出结论.【详解】(1)如图1,延长FE交AB的延长线于F',∵点E是BC的中点,∴BE=CE=2,∵四边形ABCD是正方形,∴AB∥CD,∴∠F'=∠CFE,在△BEF'和△CEF中,,∴△BEF'≌△CEF,∴BF'=CF,EF'=EF,∵∠GEF=90°,∴GF'=GF,∴∠BGE=∠EGF,∵∠GBE=∠GEF=90°,∴△GBE∽△GEF;(2)∵∠FEG=90°,∴∠BEG+∠CEF=90°,∵∠BEG+∠BGE=90°,∴∠BGE=∠CEF,∵∠EBG=∠C=90°,∴△BEG∽△CFE,∴,由(1)知,BE=CE=2,∵AG=x,∴BG=4﹣x,∴,∴CF=44x -,由(1)知,BF'=CF=44x -,由(1)知,GF'=GF=y,∴y=GF'=BG+BF'=4﹣x+4 4x -当CF=4时,即:44x-=4,∴x=3,(0≤x≤3),即:y关于x的函数表达式为y=4﹣x+44x-(0≤x≤3);(3)∵AC是正方形ABCD的对角线,∴∠BAC=∠BCA=45°,∵△AGQ与△CEP相似,∴①△AGQ∽△CEP,∴∠AGQ=∠CEP,由(2)知,∠CEP=∠BGE,∴∠AGQ=∠BGE,由(1)知,∠BGE=∠FGE,∴∠AGQ=∠BGQ=∠FGE,∴∠AGQ+∠BGQ+∠FGE=180°,∴∠BGE=60°,∴∠BEG=30°,在Rt△BEG中,BE=2,∴BG=3,∴AG=AB﹣BG=4,②△AGQ∽△CPE,∴∠AQG=∠CEP,∵∠CEP=∠BGE=∠FGE,∴∠AQG=∠FGE,∴EG∥AC,∴△BEG∽△BCA,∴,∴,∴BG=2,∴AG=AB﹣BG=2,即:当△AGQ与△CEP相似,线段AG的长为2或4【点睛】本题考核知识点:相似三角形综合. 解题关键点:熟记相似三角形的判定和性质.2.(2020·全国初三专题练习)如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;②推断:AGBE的值为:(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=,则BC= .【答案】(1)①四边形CEGF ;(2)线段AG 与BE 之间的数量关系为AG BE ;(3)3【解析】【分析】(1)①由GE BC ⊥、GF CD ⊥结合BCD 90∠=可得四边形CEGF 是矩形,再由ECG 45∠=即可得证;②由正方形性质知CEG B 90∠∠==、ECG 45∠=,据此可得CG CE =、GE //AB ,利用平行线分线段成比例定理可得;(2)连接CG ,只需证ACG ∽△BCE 即可得;(3)证AHG ∽CHA 得AG GH AH AC AH CH==,设BC CD AD a ===,知AC =,由AG GH AC AH =得2AH a 3=、1DH a 3=、CH =,由AG AH AC CH =可得a 的值. 【详解】(1)①∵四边形ABCD 是正方形,∴∠BCD =90°,∠BCA =45°,∵GE ⊥BC 、GF ⊥CD ,∴∠CEG =∠CFG =∠ECF =90°,∴四边形CEGF 是矩形,∠CGE =∠ECG =45°,∴EG =EC ,∴四边形CEGF 是正方形;②由①知四边形CEGF 是正方形,∴∠CEG =∠B =90°,∠ECG =45°,∴CG CE=,GE ∥AB ,∴AG CG BE CE ==;(2)连接CG ,由旋转性质知∠BCE =∠ACG =α,在Rt △CEG 和Rt △CBA 中,CE CG =2、CB CA =2,∴CG CE =CA CB= ∴△ACG ∽△BCE ,∴AG CA BE CB ==∴线段AG 与BE 之间的数量关系为AG BE ;(3)∵∠CEF =45°,点B 、E 、F 三点共线,∴∠BEC =135°,∵△ACG ∽△BCE ,∴∠AGC =∠BEC =135°,∴∠AGH =∠CAH =45°,∵∠CHA =∠AHG ,∴△AHG ∽△CHA , ∴AG GH AH AC AH CH==,设BC =CD =AD =a ,则AC a ,则由AG GHAC AH==,∴AH=23 a,则DH=AD﹣AH=13a,CHa,∴由AG AHAC CH=2a=解得:a=BC=故答案为【点睛】本题考查了正方形的性质与判定,相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握正方形的判定与性质、相似三角形的判定与性质是解题的关键.3.(2019·南岸·重庆第二外国语学校初三月考)如图,已知四边形ABCD中,AB//DC,AB=DC,且AB=6cm,BC=8cm,对角线AC =10cm,(1)求证:四边形ABCD是矩形;(2)如图(2),若动点Q从点C出发,在CA边上以每秒5cm的速度向点A匀速运动,同时动点P从点B出发,在BC边上以每秒4cm的速度向点C匀速运动,运动时间为t秒(0≤t<2),连接BQ、AP,若AP⊥BQ,求t的值;(3)如图(3),若点Q在对角线AC上,CQ=4cm,动点P从B点出发,以每秒1cm的速度沿BC运动至点C 止.设点P运动了t秒,请你探索:从运动开始,经过多少时间,以点Q、P、C为顶点的三角形是等腰三角形?请求出所有可能的结果.【答案】(1)见解析;(2)78t=;(3)t=4秒或1.6秒或5.5秒.【解析】【分析】(1)先根据一对对边平行且相等的四边形是平行四边形判定四边形ABCD是平行四边形,再根据勾股定理的逆定理证明∠B=90°,得出四边形ABCD是矩形;(2)先过Q作QM⊥BC于M点,AP与BQ交于点N,判定△ABP∽△BMQ,得出AB BPBM MQ=,即64843tt t=-,求得t的值即可;(3)分为三种情况讨论:当CQ=CP=4cm时,当PQ=CQ=4cm时,当QP=CP时,分别根据等腰三角形的性质,求得BP的长,进而得到t的值.【详解】证明:(1)∵AB∥DC,AB=DC,∴四边形ABCD是平行四边形,∵AB=6cm,BC=8cm,AC=l0cm,∴AB2+BC2=100,AC2=100,∴AB2+BC2=AC2,∴∠B=90°,∴四边形ABCD是矩形;(2)如图,过Q作QM⊥BC于M点,AP与BQ交于点N,则CQ=5t,QM=3t,CM=4t,MB=8-4t,∵∠NAB+∠ABN=90°,∠ABN+∠NBP=90°,∴∠NAB=∠NBP,且∠ABP=∠BMQ=90°,∴△ABP∽△BMQ,∴AB BP BM MQ=,即64 843tt t=-,解得t=78;(3)分为三种情况:①如图1,当CQ=CP=4cm时,BP=8-4=4cm,即t=4秒;②如图2,当PQ=CQ=4cm时,过Q作QM⊥BC于M,则AB∥QM,∴CE CM AC BC=,∴4108CM=,∴CM=3.2(cm),∵PQ=CQ,QM⊥CP,∴PC=2CM=6.4cm,∴BP=8cm-6.4cm=1.6cm,∴t=1.6s;③如图3,当QP=CP时,过P作PN⊥AC于N,则CN=12CQ=2,∠CNP=∠B=90°,∵∠PCN=∠BCA,∴△PCN∽△ACB,∴CN CP CB AC=,∴2810CP =,∴CP=2.5cm,∴BP=8cm-2.5cm=5.5cm,t=5.5s,即从运动开始,经过4秒或1.6秒或5.5秒时,以点Q、P、C为顶点的三角形是等腰三角形,即t=4秒或1.6秒或5.5秒.【点睛】本题以动点问题为背景,主要考查了四边形的综合应用,解决问题时需要运用矩形的判定、勾股定理的逆定理、相似三角形的判定与性质以及等腰三角形的性质等,解决问题的关键是作辅助线构造相似三角形,解题时注意分类思想的运用.4.(2019·浙江杭州·翠苑中学中考模拟)如图,已知△ABC 中,∠ACB =90°,AC =8,cosA =45,D 是AB 边的中点,E 是AC 边上一点,联结DE ,过点D 作DF ⊥DE 交BC 边于点F ,联结EF .(1)如图1,当DE ⊥AC 时,求EF 的长; (2)如图2,当点E 在AC 边上移动时,∠DFE 的正切值是否会发生变化,如果变化请说出变化情况;如果保持不变,请求出∠DFE 的正切值;(3)如图3,联结CD 交EF 于点Q ,当△CQF 是等腰三角形时,请直接写出BF 的长.【答案】(1)5;(2)不变;(3)4111或3或527117. 【解析】 试题分析:(1)由已知条件易求DE =3,DF =4,再由勾股定理EF =5;(2)过点D 作DH AC ⊥,DG BC ⊥,垂足分别为点H 、G ,由(1)可得DH =3,DG =4;再证EDH FDG ∽,即可得出结论;(3)分三种情况讨论即可.(1)∵90ACB ∠=︒,45cosA =∴45AC AB = ∵8AC =∴10AB =∵D 是AB 边的中点 ∴152AD AB == ∵DE AC ⊥∴90DEA DEC ∠=∠=︒ ∴45AE cosA AD == ∴4AE =∴844CE =-=∵在Rt AED 中,222AE DE AD +=∴3DE =∵DF DE ⊥∴90FDE ∠=︒又∵90ACB ∠=︒∴四边形DECF 是矩形∴4DF EC ==∵在Rt EDF 中,222DF DE EF +=∴5EF =(2)不变过点D 作DH AC ⊥,DG BC ⊥,垂足分别为点H 、G由(1)可得3DH =,4DG =∵DH AC ⊥,DG BC ⊥∴90DHC DGC ∠=∠=︒又∵90ACB ∠=︒,∴四边形DHCG 是矩形∴90HDG ∠=︒∵90FDE ∠=︒∴HDG HDF EDF HDF ∠-∠=∠-∠ 即EDH FDG ∠=∠又∵90DHE DGF ∠=∠=︒∴EDH FDG ∽ ∴34DE DH DF DG == ∵90FDE ∠=︒∴34DE tan DFE DF ∠== (3)1° 当QF QC =时,易证90DFE QFC ∠+∠=︒,即90DFC ∠=︒ 又∵90ACB ∠=︒,D 是AB 的中点 ∴152CD BD AB === ∴132BF CF BC === 2° 当FQ FC =时,易证FQC DEQ DCB ∽∽∵在Rt EDF 中,34DE tan DFE DF ∠== ∴设=3DE k ,则4DF k =,5EF k =当FQ FC =时,易证3DE DQ k ==,∴53CQ k =-∵DEQ DCB ∽∴56DE DC EQ BC == ∴185EQ k =∴75FQ FC k == ∵FQC DCB ∽ ∴56FQ DC CQ BC == ∴755536k k =- 解得125117k = ∴71251755117117FC =⨯= ∴1755276117117BF =-= 3° 在BC 边上截取BK =BD =5,由勾股定理得出DK =当CF CQ =时,易证CFQ EDQ BDK ∽∽∴设=3DE k ,则3EQ k =,5EF k = ∴2FQ k =∵EDQ BDK ∽∴DEBDDQ DK ==∴DQ =∴5CQ FC ==∵CQF BDK ∽∴CQBDFQ DK ==∴552k =解得k =∴2511FC = ∴254161111BF =-=。

相似三角形经典练习题(4套)附带答案

相似三角形经典练习题(4套)附带答案

练习(一)一、填空题:1. 已知a ba b+-=2295,则a b:=__________2. 若三角形三边之比为3:5:7,与它相似的三角形的最长边是21cm,则其余两边之和是__________cm3. 如图,△ABC中,D、E分别是AB、AC的中点,BC=6,则DE=__________;△ADE与△ABC的面积之比为:__________。

题3 题7 题84. 已知线段a=4cm,b=9cm,则线段a、b的比例中项c为__________cm。

5. 在△ABC中,点D、E分别在边AB、AC上,DE∥BC,如果AD=8,DB=6,EC=9,那么AE=__________6. 已知三个数1,2,3,请你添上一个数,使它能构成一个比例式,则这个数是__________7. 如图,在梯形ABCD中,AD∥BC,EF∥BC,若AD=12cm,BC=18cm,AE:EB=2:3,则EF=__________8. 如图,在梯形ABCD中,AD∥BC,∠A=90°,BD⊥CD,AD=6,BC=10,则梯形的面积为:__________二、选择题:1. 如果两个相似三角形对应边的比是3:4,那么它们的对应高的比是__________A. 9:16B. 3:2C. 3:4D. 3:72. 在比例尺为1:m的某市地图上,规划出长a厘米,宽b厘米的矩形工业园区,该园区的实际面积是__________米2A. 104mabB.1042mabC.abm104D.abm24103. 已知,如图,DE∥BC,EF∥AB,则下列结论:题3 题4 题5①AEECBEFC=②ADBFABBC=③EFABDEBC=④CECFEABF=其中正确的比例式的个数是__________A. 4个B. 3个C. 2个D. 1个4. 如图,在△ABC中,AB=24,AC=18,D是AC上一点,AD=12,在AB上取一点E,使A、D、E三点为顶点组成的三角形与△ABC相似,则AE的长是__________A. 16B. 14C. 16或14D. 16或95. 如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,AE⊥AD,交CB的延长线于点E,则下列结论正确的是__________A. △AED∽△ACBB. △AEB∽△ACDC. △BAE∽△ACED. △AEC∽△DAC三、解答题:1. 如图,AD∥EG∥BC,AD=6,BC=9,AE:AB=2:3,求GF的长。

相似三角形综合测试卷

相似三角形综合测试卷

相似三角形综合测试卷一、选择题(10题共30分)1.用放大镜将图形放大,应该属于( ) A 、相似变换 B 、平移变换 C 、对称变换D 、旋转变换2 一个铝质三角形框架三条边长分别为24cm ,30cm ,36cm ,要做一个与它相似的铝质三角形框架,现有长为27cm ,45cm 的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边,截法有( ) A 、0种 B 、1种 C 、2种 D 、3种3、如图1,P 是Rt △ABC 斜边BC 上异于B 、C 的一点,过P 点作直线截△ABC ,使截得的三角形与△ABC 相似,满足这样条件的直线共有( ) A .1条 B .2条 C .3条 D .4条4、已知△ABC 与△DEF 的相似比为1︰2 ,△ABC 的周长为30cm ,△ DEF 的三边之比为 4︰5︰6,则△DEF 的最长边为( ) A 44cm B 40cm C 36cm D 24cm5、在平面直角坐标系中,已知点E (-4,2),F (-2,-2),以原点O 为位似中心,相似比为21,把△EFO 缩小,则点E 的对应点E′的坐标是( ) A .(-2,1)B .(-8,4)C .(-8,4)或(8,-4) D .(-2,1)或(2,-1) 6、如图,AB 是⊙O 的直径,C 、D 是⊙O 上的点,∠CDB=30°,过点C 作⊙O 的切线交AB 的延长线于E ,则sin ∠E 的值为( ) A .21 B .23 C .22 D .33 7、如图,Rt △ABC 中,∠A=90°,AD ⊥BC 于点D ,若BD :CD=3:2,则tanB=( ) A 、23B .32 C .26 D .36 8、如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( ) A .16 B .17 C .18 D .19 9、某数学课外实习小组想利用树影测量树高,他们在同一时刻测得一身高为1.5米的同学的影子长为1.35米,因大树靠近一栋建筑物,大树的影子不全在地面上,他们测得地面部分的影子长BC =3.6米,墙上影子高CD =1.8米,则树高AB ( )A.2 .8B.3 .8C.4 .8D.5.810.如图,△ABC 中,CD ⊥AB 于D ,一定能确定△ABC 为直角三角形的条件的个数是( )①∠1=∠A ;②;③∠B+∠2=90°;④BC :AC :AB=3:4:5;⑤AC•BD=AD•CD .A.2B.3C.4D.5二、填空题(6题共18分) 11、如图,在4×4的正方形方格中,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上. (1)填空:∠ABC =_____°,BC =_____;(2)△ABC 与△DEF 是否相似?__________(填相似或不相似)12、如图,把矩形ABCD 对折,折痕为MN ,矩形DMNC 与矩形ABCD 相似,已知AB =4. (1)AD 的长为_______;(2)矩形DMNC 与矩形ABCD 的相似比为_________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形复习一、选择题(每题3分,共30分)1.已知如图,下列4个三角形中与△ABC 相似的是( )2.如图所示,在ABCD 中,,:2:3,4EF AB DE EA EF ==∥,则CD 的长为( ) (A )163(B )8(C )10(D )163.如图,已知AB CD EF ∥∥,那么下列结论正确的是( ) A .AD BC DF CE = B .BC DF CE AD = C .CD BC EF BE = D .CD ADEF AF= 4.如图,△ABC 中,点D 、E 分别是AB 、AC 的中点,则下列结论:①BC =2DE ; ②△ADE ∽△ABC ;③ACABAE AD =.其中正确的有( ) (A )3个 (B )2个 (C )1个 (D )0个5.下列说法正确的是( )A. 所有的等腰梯形都相B.所有的平行四边形都相似C. 所的有正方形都相似D. 所有的等腰三角形都相似6.如图,在△ABC 中,∠B=40°,将△ABC 绕点A 逆时针旋转至在△ADE 处,使得点B 落在BC 的延长线上的D 点处,则∠BDE 的度数为( ) A.90° B.85° C.80° D.40° 7.如图,已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若 △ABC 与△A 1B 1C 1是位似图形,且顶点都在格点上,则位似中心的坐标是( ). A.(9,0) B.(-8,0) C.(-7,0) D.(--6,0)3题图第2题图 EDCBA(第4题)6题图8.平行四边形 ABCD 中,E 是AB 延长线上一点,连结DE ,交AC 于G ,交BC 于F ,那么图中相似三角形共有( )对. A.6 B.5 C.4 D.39.如图,在△ABC 中,∠BAC=90°,D 是BC 中点,AE ⊥AD 交CB 的延长线于点E ,则下列结论正确的是 ( )A. △AED ∽△ACBB. △AEB ∽△ACDC. △BAE ∽△ACED. △AEC ∽△DAC10.一个钢筋三角架三边长分别为2m 、5m ,6m ,现在要再做一个与其相似的钢筋三角架,而只有长为3m 和5m 的两根钢筋,要求以其中的一根为一边,从另一根上截两段(允许有余料)作为另两边,则不同的截法有 ( )A.一种B.两种C.三种D.四种或四种以上. 二、填空题(每题3分,共30分)11.如图,AE=15,BE=4,AF=9,E F ∥BC,则FC=_______.12.如果两个相似三角形的面积比为9︰4,那么它们的相似比为_________.13.如图,△ABC 中,点D 在边AB 上,满足∠ACD =∠ABC ,若AC =3,AD = 1,则DB = .14.如图,平行四边形ABCD 中,E 是AB 延长线上一点,DE 交BC 于点F ,若BE ︰AB =2︰3,S △BEF =4求S △CDF =_________.15.如图:在△ABC 中,AB=15cm ,AC=12cm ,∠BAC 的外角平分线交BC 延长线于D ,DE ∥AB ,交AC 的延长线于点E,那么CE=_____cm..16.如图,正方形ABCD 的对角线AC 、BD 相交于点O ,E 是BC 的中点,DE 交AC 于F ,若DE=12,则EF 的长为 .17.如图,矩形ABCD 中,P 是AB 上一点,将矩形ABCD 沿PD 折叠,点A 恰好落BC 边上E 点处,若DE=3PE ,CD=9, 则CE 的长 为 .GF E DCB A 第8题图 E DC B A 9题图D BCB (第13题图) F E DC B A 第14题图11题图18.己知菱形ABCD 的边长是6,∠A=60°,点E 在直线AD 上,DE =3,连接BE 与对角线AC 相交于点M ,则CM 的长是 . 19.在△ABC 中,∠BAC=120°,AB=AC,D 为AB 中点,连接AE, 若DF=1, BE ⊥BC,BD=2BE, 则CF= .20. 在Rt △ABC 中, ∠ACB=90°,AC=BC,点F 为AC 上一点,过点A 作AB 的垂线交BF 的延长线于点D ,过点D 作BD 的垂线交BC 的延长线于点E ,若DF=2,DE=3,则BF= . 三、解答题:(其中21-24题各6分,25-26题各8分,27-28题各10分,共计60分) 21. 如图,A 为河对岸一点,AB ⊥BC ,DC ⊥BC ,垂足分别为B 、C ,直线AD 、BC 相交于点E,如果测得BE =80m ,CE=40m ,CD=30m ,求河宽AB.22. 在同一方格纸中,并在y 轴的右侧,将原小金鱼图案以原点O 为位似中心放大,使它们的位似比1:2,画出放大后小金鱼的图案.23.如图,在△ABC 中,AD 是∠BAC 的外角平分线,CE ∥AB ,求证AB ·DE =AD ·AC.B20题图B x24.在Rt△ABC中,∠A=90°,AB=8,AC=6,若动点D从点B出发,沿线段BA运动到点A为止,运动速度为每秒2个单位长度,过点D作DE//BC交AC于点E,设动点D 运动的时间为x秒,△BDE的面积S.(1)求出S关于x的函数关系式,并写出自变量x的取值范围;(2)当x为何值时,S有最大值,最大值为多少?25.已知:如图,ΔABC中,CE⊥AB,BF⊥AC.CE与BF交于点O(1)求证:∠AEF=∠ACB.(2)若BE=6,EO=2.OC==3,求AB的长.26.如图,在Rt△ABC中,∠ACB=90°,D为AC上一点,以CD为直径作⊙O,⊙O与AB相切于E,EF平分∠DEC,交CD于F.①求证:AF2=AC·AD;②若FD = 2,FC = 3,求AD:AE的值.EDC BA27.如图,在平面直角坐标系中,C点坐标(6,6),B为y轴正半轴上一点,D为线段BO中点,将点C绕点D逆时针旋转180°恰好落在x轴负半轴的点A处.(1)求直线AB的解析式;(2)动点P从A/秒的速度向终点B运动;动点Q从B出发,以1个单位/秒的速度向终点C运动,且点P、点Q同时出发,设运动时间为t;连接PQ,过点Q作PQ的垂线交x轴于点R,求R的坐标;(3)在(2)的条件下,设QR与OC交与点N,PR与y轴、OC分别交与点H、点M,当t为34CN MN+=.28.点E是□ABCD内的一点,点F在CD上,连接BE、EF,∠BEF=2∠EFD,BE=2FD,CD=2EF,连接AE、ED(1)如图1,求证:AE=2ED(2)如图2,延长BE交AD于点H,连接FH,∠HFD=∠EAD,试探究线段AH与EF之间的数量关系C图1AF图2参考答案; 一、选择题1——5 CCAAC 6-----10 CAACB 二、填空题11 2.4 12. 3:2 13 .2 14 .9 15.48 16. 4 17. 12 18.4或2.4 19 .10 20.5 三、解答题 21.AB=60 22.图略23. 证明:∵C E ∥AB∴△DCE ∽△DBA ∴DE DA =CEBA∴AB ·DE=AD ·CE ∵C E ∥AB ∴∠2=∠3又∵∠1=∠2 ∴∠1=∠3 ∴AC=CE∴AB ·DE=AD ·AC24.解:(1) ∵D E ∥AB ∴△ADE ∽△ABC∴AD AB =AE AC 即6AE =828x - ∴AE=6-43X ∴S=12×2X(6-43X)= -432X +6X(2) S=-432X +6X=-432927()44X -+∴ 当X=94时,S 最大值为27425.(1)△ACE ∽△ABF ∴∠AEF=∠ACB(2) △AEC ∽△OEB ∴AE EO =EC BE 即2AE =56 ∴AE=53 ∴AB=AE+BE=6+53=23326.(1)证△AEC ∽△ADE 可得AE 2=AC ·AD 再证AF=AE (2)求出AD=4,AF=AE=6. AD:AE=2:3271)旋转180→AD=CD ,BD=OD →平四ABCO →直线AB:y=x+6 (2)R (6,0)(3)作P E ⊥ARB正A 相似→OH 线段和差→DH 、BH 半角旋转→QH=QC+HO 斜A →旋转相似→CN 34CN MN +=列方程得:t = 3 28:(1)∵∠BEF=2∠EFD∴∠ABE=∠EFD∵2FDBEEF AB EF CD === ∴△ABE ∽△EFD ∴AE=2ED(2)延长AE 交CD 于点G ,延长B H 、CD 交于点R ∵∠HFD=∠EAD ,∠FDH=∠ADG ∴△FDH ∽△ADG ∴GDDHAD FD = ∴FD ·GD=AD ·DH 可证△EDF ∽△GDE ∴ED 2=FD ·GD∴ED 2=AD ·DH ∵∠EDH=∠ADE ∴△EDH ∽△ADH∴∠DEH=∠DAE , 又∵∠AEH=∠EDR ∴△EDR ∽△AEH ∴2EDAEER AH == ∴AH=2ER ,又∵ER=EF ∴AH=2EFGAF。

相关文档
最新文档