柱、锥、台表面积体积公式

合集下载

柱体、锥体、台体、球的体积与球的表面积

柱体、锥体、台体、球的体积与球的表面积

柱体、锥体、台体、球的体积与球的表面积学习目标 1.掌握柱体、锥体、台体的体积公式,会利用它们求有关几何体的体积.2.了解球的表面积与体积公式,并能应用它们求球的表面积及体积.3.会求简单组合体的体积及表面积.知识点一 柱体、锥体、台体的体积公式1.柱体的体积公式V =Sh (S 为底面面积,h 为高); 2.锥体的体积公式V =13Sh (S 为底面面积,h 为高);3.台体的体积公式V =13(S ′+S ′S +S )h (S ′、S 为上、下底面面积,h 为高);4.柱体、锥体、台体的体积公式之间的关系V =ShV =13(S ′+S ′S +S )hV =13Sh .知识点二 球的表面积和体积公式1.球的表面积公式S =4πR 2(R 为球的半径); 2.球的体积公式V =43πR 3.类型一 柱体、锥体、台体的体积例1 (1)如图所示,已知三棱柱ABC -A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1-ABC 1的体积为( )A.312B.34C.612D.64答案 A解析 三棱锥B 1-ABC 1的体积等于三棱锥A -B 1BC 1的体积,三棱锥A -B 1BC 1的高为32,底面积为12,故其体积为13×12×32=312.(2)现有一个底面直径为20 cm 的装有一部分水的圆柱形玻璃杯,水中放着一个底面直径为6 cm ,高为20 cm 的圆锥形铅锤,铅锤完全浸没在水中.当铅锤从水中取出后,杯里的水将下降( )A .0.6 cmB .0.15 cmC .1.2 cmD .0.3 cm 答案 A解析 设杯里的水下降h cm ,由题意知π(202)2h =13×20×π×32,解得h =0.6 cm.反思与感悟 (1)常见的求几何体体积的方法 ①公式法:直接代入公式求解.②等积法:如四面体的任何一个面都可以作为底面,只需选用底面积和高都易求的形式即可. ③分割法:将几何体分割成易求解的几部分,分别求体积. (2)求几何体体积时需注意的问题柱、锥、台体的体积的计算,一般要找出相应的底面和高,要充分利用截面、轴截面,求出所需要的量,最后代入公式计算.跟踪训练1 (1)如图所示,在长方体ABCD -A ′B ′C ′D ′中,用截面截下一个棱锥C -A ′DD ′,求棱锥C -A ′DD ′的体积与剩余部分的体积之比.解 设AB =a ,AD =b ,AA ′=c , ∴V C -A ′D ′D =13CD ·S △A ′D ′D =13a ·12bc =16abc ,∴剩余部分的体积为V ABCD -A ′B ′C ′D ′-V C -A ′D ′D =abc -16abc =56abc ,∴棱锥C -A ′DD ′的体积与剩余部分的体积之比为1∶5.(2)已知一个三棱台上、下底面分别是边长为20 cm 和30 cm 的正三角形,侧面是全等的等腰梯形,且侧面面积等于上、下底面面积之和,求棱台的高和体积.解 如图,在三棱台ABC -A ′B ′C ′中,取上、下底面的中心分别为O ′,O ,BC ,B ′C ′的中点分别为D ,D ′,则DD ′是梯形BCC ′B ′的高. 所以S 侧=3×12×(20+30)×DD ′=75DD ′.又因为A ′B ′=20 cm ,AB =30 cm ,则上、下底面面积之和为S 上+S 下=34×(202+302)=3253(cm 2).由S 侧=S 上+S 下,得75DD ′=3253,所以DD ′=1333(cm),O ′D ′=36×20=1033(cm),OD =36×30=53(cm), 所以棱台的高h =O ′O =D ′D 2-(OD -O ′D ′)2 =(1333)2-(53-1033)2=43(cm). 由棱台的体积公式,可得棱台的体积为V =h 3(S 上+S 下+S 上·S 下)=433×(34×202+34×302+34×20×30)=1 900(cm 3).类型二 球的表面积与体积命题角度1 与球有关的切、接问题例2 (1)求球与它的外切等边圆锥(轴截面是正三角形的圆锥叫等边圆锥)的体积之比.解 如图等边△ABC 为圆锥的轴截面,截球面得圆O . 设球的半径OE =R , OA =OE sin 30°=2OE =2R ,∴AD =OA +OD =2R +R =3R , BD =AD ·tan 30°=3R , ∴V 球=43πR 3,V 圆锥=13π·BD 2×AD =13π(3R )2×3R =3πR 3,则V 球∶V 圆锥=4∶9.(2)设长方体的长、宽、高分别为2a ,a ,a ,其顶点都在一个球面上,则该球的表面积为( )A .3πa 2B .6πa 2C .12πa 2D .24πa 2 答案 B解析 长方体的体对角线是其外接球的直径,由长方体的体对角线为(2a )2+a 2+a 2=6a , 得球的半径为62a ,则球的表面积为4π(62a )2=6πa 2. 反思与感悟 (1)正方体的内切球球与正方体的六个面都相切,称球为正方体的内切球,此时球的半径为r 1=a2,过在一个平面上的四个切点作截面如图①. (2)球与正方体的各条棱相切球与正方体的各条棱相切于各棱的中点,过球心作正方体的对角面有r 2=22a ,如图②. (3)长方体的外接球长方体的八个顶点都在球面上,称球为长方体的外接球,根据球的定义可知,长方体的体对角线是球的直径,若长方体过同一顶点的三条棱长为a ,b ,c ,则过球心作长方体的对角面有球的半径为r 3=12a 2+b 2+c 2,如图③.(4)正方体的外接球正方体棱长a 与外接球半径R 的关系为2R =3a . (5)正四面体的外接球正四面体的棱长a 与外接球半径R 的关系为2R =62a . 跟踪训练2 (1)正方体的内切球与其外接球的体积之比为( ) A .1∶ 3 B .1∶3 C .1∶3 3 D .1∶9 答案 C解析 设正方体的棱长为1,则正方体内切球的半径为棱长的一半即为12,外接球的直径为正方体的体对角线, ∴外接球的半径为32, ∴其体积比为43π×(12)3∶43π×(32)3=1∶3 3.(2)长方体的共顶点的三个侧面面积分别为3、5、15,则它的外接球表面积为_______. 答案 9π解析 设长方体共顶点的三条棱长分别为a 、b 、c ,则⎩⎨⎧ab =3,bc =5,ac =15,解得⎩⎨⎧a =3,b =1,c =5,∴外接球半径为a 2+b 2+c 22=32,∴外接球表面积为4π×(32)2=9π.命题角度2 球的截面例3 在球内有相距9 cm 的两个平行截面面积分别为49π cm 2和400π cm 2,求此球的表面积. 解 方法一 (1)若两截面位于球心的同侧,如图(1)所示的是经过球心O 的大圆截面,C ,C 1分别是两平行截面的圆心,设球的半径为R cm ,截面圆的半径分别为r cm ,r 1 cm.由πr 21=49π,得r 1=7(r 1=-7舍去), 由πr 2=400π,得r =20(r =-20舍去).在Rt △OB 1C 1中,OC 1=R 2-r 21=R 2-49,在Rt △OBC 中,OC =R 2-r 2=R 2-400.由题意可知OC 1-OC =9,即R 2-49-R 2-400=9, 解此方程,取正值得R =25.(2)若球心在截面之间,如图(2)所示,OC 1=R 2-49,OC =R 2-400.由题意可知OC 1+OC =9, 即R 2-49+R 2-400=9.整理,得R 2-400=-15,此方程无解,这说明第二种情况不存在.综上所述,此球的半径为25 cm.∴S球=4πR2=4π×252=2 500π(cm2).方法二(1)若截面位于球心的同侧,同方法一,得OC21=R2-49,OC2=R2-400,两式相减,得OC21-OC2=400-49⇔(OC1+OC)(OC1-OC)=351.又OC1-OC=9,∴OC1+OC=39,解得OC1=24,OC=15,∴R2=OC2+r2=152+202=625,∴R=25 cm.(以下略)反思与感悟设球的截面圆上一点A,球心为O,截面圆心为O1,则△AO1O是以O1为直角顶点的直角三角形,解答球的截面问题时,常用该直角三角形求解,并常用过球心和截面圆心的轴截面.跟踪训练3把本例的条件改为“球的半径为5,两个平行截面的周长分别为6π和8π”,则两平行截面间的距离是()A.1 B.2 C.1或7 D.2或6答案 C解析画出球的截面图,如图所示.两平行直线是球的两个平行截面的直径,有两种情形:①两个平行截面在球心的两侧,②两个平行截面在球心的同侧.对于①,m=52-32=4,n=52-42=3,两平行截面间的距离是m+n=7;对于②,两平行截面间的距离是m-n=1.故选C.类型三组合体的体积例4某几何体的三视图如图所示,则该几何体的体积为()A.13+π B.23+π C.13+2π D.23+2π 答案 A解析 由三视图可知该几何体是一个三棱锥与半个圆柱的组合体,V =12π×12×2+13×(12×1×2)×1=π+13.故选A.反思与感悟 此类问题的关键是把三视图还原为空间几何体,再就是代入公式计算,注意锥体与柱体两者的体积公式的区别.解答组合体问题时,要注意知识的横向联系,善于把立体几何问题转化为平面几何问题,运用方程思想与函数思想解决,融计算、推理、想象于一体. 跟踪训练4 如图,是一个奖杯的三视图(单位:cm),底座是正四棱台,求这个奖杯的体积.解 三视图复原的几何体下部是底座是正四棱台,中部是圆柱,上部是球. 这个奖杯的体积V =13h (S 上+S 上S 下+S 下)+22π·16+4π3×33=336+100π(cm 3).1.已知一个铜质的五棱柱的底面积为16 cm 2,高为4 cm ,现将它熔化后铸成一个正方体的铜块(不计损耗),那么铸成的铜块的棱长是( ) A .2 cm B .3 cm C .4 cm D .8 cm 答案 C解析 ∵铜质的五棱柱的底面积为16 cm 2,高为4 cm , ∴铜质的五棱柱的体积V =16×4=64(cm 3), 设熔化后铸成一个正方体的铜块的棱长为a cm , 则a 3=64,解得a =4 cm ,故选C.2.已知高为3的棱柱ABC —A 1B 1C 1的底面是边长为1的正三角形(如图),则三棱锥B 1—ABC 的体积为( )A.14B.12C.36D.34答案 D解析 V =13Sh =13×34×3=34.3.将棱长为2的正方体木块削成一个体积最大的球,则这个球的表面积为( ) A .2π B .4π C .8π D .16π答案 B解析 体积最大的球是其内切球,即球的半径为1,所以表面积为S =4π×12=4π.4.如图,一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径相等,这时圆柱、圆锥、球的体积之比为________.答案 3∶1∶2解析 设球的半径为R ,则V 柱=πR 2·2R =2πR 3,V 锥=13πR 2·2R =23πR 3,V 球=43πR 3,故V 柱∶V锥∶V 球=2πR 3∶23πR 3∶43πR 3=3∶1∶2.5.某几何体的三视图如图所示,则其表面积为________.答案 3π解析 由三视图可知,该几何体是一个半径为1的半球,其表面积为半个球面面积与截面面积的和,即12×4π+π=3π.1.柱体、锥体、台体的体积之间的内在关系为V 柱体=Sh ←―――S ′=S V 台体=13h (S +SS ′+S ′)――→S ′=0V 锥体=13Sh .2.在三棱锥A -BCD 中,若求点A 到平面BCD 的距离h ,可以先求V A -BCD ,h =3V S △BCD.这种方法就是用等体积法求点到平面的距离,其中V 一般用换顶点法求解,即V A -BCD =V B -ACD =V C -ABD =V D -ABC ,求解的原则是V 易求,且△BCD 的面积易求.3.求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解.4.利用球的半径、球心到截面圆的距离、截面圆的半径可构成直角三角形,进行相关计算. 5.解决球与其他几何体的切接问题时,通常先作截面,将球与几何体的各量体现在平面图形中,再进行相关计算.课时作业一、选择题1.如果轴截面为正方形的圆柱的侧面积是4π,那么圆柱的体积等于( ) A .π B .2π C .4π D .8π 答案 B解析 设圆柱母线长为l ,底面半径为r ,由题意得⎩⎪⎨⎪⎧ l =2r ,2πrl =4π,解得⎩⎪⎨⎪⎧r =1,l =2.∴V 圆柱=πr 2l =2π.2.如图,在正方体中,四棱锥S -ABCD 的体积占正方体体积的( )A.12B.13C.14 D .不确定 答案 B解析 由于四棱锥S -ABCD 的高与正方体的棱长相等,底面是正方形,根据柱体和锥体的体积公式,得四棱锥S -ABCD 的体积占正方体体积的13,故选B.3.如图是某几何体的三视图,则该几何体的体积为( )A.92π+12 B.92π+18 C .9π+42 D .36π+18答案 B解析 由三视图可知该几何体是一个长方体和球构成的组合体,其体积V =43π(32)3+3×3×2=92π+18. 4.如图,ABC -A ′B ′C ′是体积为1的棱柱,则四棱锥C -AA ′B ′B 的体积是( )A.13B.12C.23D.34答案 C解析 ∵V C -A ′B ′C ′=13V ABC -A ′B ′C ′=13,∴V C -AA ′B ′B =1-13=23.5.一平面截一球得到直径为6 cm 的圆面,球心到这个圆面的距离是4 cm ,则该球的体积是( ) A.100π3 cm 3B.208π3 cm 3C.500π3 cm 3D.4163π3cm 3答案 C解析 如图,根据题意, |OO 1|=4 cm ,|O 1A |=3 cm ,∴|OA |=R =|OO 1|2+|O 1A |2=5(cm), 故球的体积V =43πR 3=500π3(cm 3).故选C.6.一个正四棱柱的各个顶点都在一个半径为2 cm 的球面上,如果正四棱柱的底面边长为2 cm ,那么该棱柱的表面积为( ) A .(2+42) cm 2 B .(4+82) cm 2 C .(8+162) cm 2 D .(16+322) cm 2答案 C解析 ∵一个正四棱柱的各个顶点都在一个半径为2 cm 的球面上,正四棱柱的底面边长为2 cm ,球的直径为正四棱柱的体对角线,∴正四棱柱的体对角线为4,正四棱柱的底面对角线长为22,∴正四棱柱的高为16-8=22,∴该棱柱的表面积为2×22+4×2×22=8+162,故选C.7.如图,在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2,将梯形ABCD 绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.23πB.43πC.53π D .2π答案 C解析由题意,旋转而成的几何体是圆柱,挖去一个圆锥(如图),该几何体的体积为π×12×2-13×π×12×1=53π.8.一个表面积为36π的球外切于一圆柱,则圆柱的表面积为()A.45π B.27π C.36π D.54π答案 D解析因为球的表面积为36π,所以球的半径为3,因为该球外切于圆柱,所以圆柱的底面半径为3,高为6,所以圆柱的表面积S=2π×32+2π×3×6=54π.二、填空题9.如图,三棱柱A1B1C1-ABC中,已知D,E,F分别为AB,AC,AA1的中点,设三棱锥A -FED的体积为V1,三棱柱A1B1C1-ABC的体积为V2,则V1∶V2的值为________.答案124解析设三棱柱的高为h,∵F是AA1的中点,则三棱锥F-ADE的高为h2,∵D,E分别是AB,AC的中点,∴S△ADE=14S△ABC,∵V1=13S△ADE·h2,V2=S△ABC·h,∴V1V2=16S△ADE·hS△ABC·h=124.10.圆锥的侧面展开图为扇形,若其弧长为2π cm,半径为 2 cm,则该圆锥的体积为___ cm3. 答案π3解析∵圆锥的侧面展开图的弧长为2π cm,半径为 2 cm,故圆锥的底面周长为2π cm,母线长为 2 cm ,则圆锥的底面半径为1,高为1,则圆锥的体积V =13·π·12·1=π3.11.已知某几何体的三视图如图所示,其中正视图、侧视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为________.答案2π6+16解析 由已知的三视图可知原几何体的上方是三棱锥,下方是半球,∴V =13×(12×1×1)×1+[43π(22)3]×12=16+2π6. 12.若一个四面体的四个面中,有两个面都是直角边长为1的等腰直角三角形,另两个面都是直角边长分别为1和2的直角三角形,则该四面体的外接球的表面积为________. 答案 3π解析 满足题意的四面体为如图所示的正方体中的三棱锥V -ABC ,所以VA =AB =BC =1,VB =AC =2,其外接球即为该正方体的外接球,故其半径为R =32, 所以该四面体外接球的表面积为4π×(32)2=3π. 三、解答题13.如图所示,半径为R 的半圆内的阴影部分是以直径AB 所在直线为轴,旋转一周得到的一几何体,求该几何体的表面积和体积.(其中∠BAC =30°)解 过C 作CO 1⊥AB 于点O 1,由已知得∠BCA =90°, ∵∠BAC =30°,AB =2R , ∴AC =3R ,BC =R ,CO 1=32R . ∴S 球=4πR 2,1圆锥侧AO S =π×32R ×3R =32πR 2, 1圆锥侧BO S =π×32R ×R =32πR 2,∴11几何体表球圆锥侧圆锥侧=++AO BO S S S S=4πR 2+32πR 2+32πR 2=11+32πR 2.又∵V 球=43πR 3,1圆锥AO V =13·AO 1·π·CO 21=14πR 2·AO 1, 1圆锥BO V =13·BO 1·π·CO 21=14πR 2·BO 1, ∴V 几何体=V 球-()11圆锥圆锥+AO BO V V =56πR 3.四、探究与拓展14.圆柱形容器内盛有高度为6 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球,如图所示.则球的半径是( )A .1 cmB .2 cmC .3 cmD .4 cm答案 C解析 设球半径为r ,则由3V 球+V 水=V 柱,可得 3×43πr 3+πr 2×6=πr 2×6r ,解得r =3. 15.如图所示,已知某几何体的三视图如下(单位:cm).(1)画出这个几何体(不要求写画法); (2)求这个几何体的表面积及体积. 解 (1)这个几何体如图所示.(2)这个几何体可看成是正方体AC 1及直三棱柱B 1C 1Q -A 1D 1P 的组合体. 由P A 1=PD 1= 2 cm ,A 1D 1=AD =2 cm , 可得P A 1⊥PD 1.故所求几何体的表面积S =5×22+2×2×2+2×12×(2)2=22+42(cm 2),所求几何体的体积V =23+12×(2)2×2=10(cm 3).。

柱锥台球的体积与表面积

柱锥台球的体积与表面积

2 锥体的体积
V = 1/3πr²h
如何计算柱锥台球的体积
1
Step 1
测量柱体的半径(r)和高度(h)
Step 2
2
使用柱体的体积公式计算柱体的体积(Vc)
3
Step 3
测量锥体的半径(r)和高度(h)
Step 4
4
使用锥体的体积公式计算锥体的体积(Vc)
5
Step 5
将柱体的体积和锥体的体积相加得到柱锥台 球的总体积(V)
4
使用锥体的表面积公式计算锥体的表面积
(A c)
5
Step 5
将柱体的表面积和锥体的表面积相加得到柱 锥台球的总表面积(A)
柱锥台球的尺寸影响体积和表 面积吗?
柱锥台球的尺寸,如半径和高度,会直接影响它的体积和表面积。增加柱锥 台球的尺寸会增加其体积和表面积。
柱锥台球的体积和表面积之间 的关系
柱锥台球的体积和表面积之间是相互关联的。当柱锥台球的体积增加时,它 的表面积也会增加。
柱锥台球的表面积公式
1 柱体的表面积
A = 2πrh + 2πr²
2 锥体的表面积
A = πr(l + r)
如何计算柱锥台球的表面积径(r)和高度(h)
Step 2
2
使用柱体的表面积公式计算柱体的表面积
(A c)
3
Step 3
测量锥体的半径(r)和斜高(l)
Step 4
柱锥台球的体积与表面积
柱锥台球是一种特殊形状的台球,它由柱体和锥体两部分组成。在本演示中, 我们将讨论柱锥台球的体积和表面积,以及与数学和物理学的关系。
柱锥台球的形状
柱锥台球由一个底部较大的柱体和一个顶部较小的锥体组成。这种特殊形状 让它成为一个有趣的几何体。

简单几何体表面积体积

简单几何体表面积体积

简单几何体的表面积与体积1.柱、锥、台和球的侧面积和体积面积 体积圆柱 S 侧=2πrh V =Sh =πr 2h圆锥S 侧=πrlV =13Sh =13πr 2h =13πr 2l 2-r 2 圆台 S 侧=π(r 1+r 2)l V =13(S 上+S 下+S 上S 下)h=13π(r 21+r 22+r 1r 2)h 直棱柱 S 侧=Ch V =Sh 正棱锥 S 侧=12Ch ′ V =13Sh正棱台 S 侧=12(C +C ′)h ′V =13(S 上+S 下+S 上S 下)h球S 球面=4πR 2V =43πR 32.几何体的表面积(1)棱柱、棱锥、棱台的表面积就是各面面积之和.(2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形;它们的表面积等于侧面积与底面面积之和. [难点正本 疑点清源] 1.几何体的侧面积和全面积几何体的侧面积是指(各个)侧面面积之和,而全面积是侧面积与所有底面积之和.对侧面积公式的记忆,最好结合几何体的侧面展开图来进行.要特别留意根据几何体侧面展开图的平面图形的特点来求解相关问题.如直棱柱(圆柱)侧面展开图是一矩形,则可用矩形面积公式求解.再如圆锥侧面展开图为扇形,此扇形的特点是半径为圆锥的母线长,圆弧长等于底面的周长,利用这一点可以求出展开图扇形的圆心角的大小. 2.等积法等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高,这一方法回避了具体通过作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.1.圆柱的一个底面积为S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是________.2.设某几何体的三视图如下(尺寸的长度单位为m).则该几何体的体积为________m 3.3.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________.4.一个球与一个正方体的各个面均相切,正方体的边长为a ,则球的表面积为________.5.如图所示,在棱长为4的正方体ABCD —A 1B 1C 1D 1中,P 是A 1B 1上一点,且PB 1=14A 1B 1,则多面体P —BB 1C 1C 的体积为________.题型一 简单几何体的表面积例1 一个空间几何体的三视图如图所示,则该几何体的表面积为( )A .48B .32+817C .48+817D .80思维启迪:先通过三视图确定空间几何体的结构特征,然后再求表面积.探究提高(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.一个几何体的三视图(单位:cm)如图所示,则该几何体的表面积是________cm2.题型二简单几何体的体积例2如图所示,已知E、F分别是棱长为a的正方体ABCD—A1B1C1D1的棱A1A、CC1的中点,求四棱锥C1—B1EDF的体积.思维启迪:思路一:先求出四棱锥C1—B1EDF的高及其底面积,再利用棱锥的体积公式求出其体积;思路二:先将四棱锥C1—B1EDF化为两个三棱锥B1—C1EF与D—C1EF,再求四棱锥C1—B1EDF的体积.解 方法一 连接A 1C 1,B 1D 1交于点O 1,连接B 1D ,EF ,过O 1作O 1H ⊥B 1D 于H .∵EF ∥A 1C 1,且A 1C 1平面B 1EDF ,∴A 1C 1∥平面B 1EDF .∴C 1到平面B 1EDF 的距离就是A 1C 1到平面B 1EDF 的距离. ∵平面B 1D 1D ⊥平面B 1EDF , 平面B 1D 1D ∩平面B 1EDF =B 1D ,∴O 1H ⊥平面B 1EDF ,即O 1H 为棱锥的高. ∵△B 1O 1H ∽△B 1DD 1, ∴O 1H =B 1O 1·DD 1B 1D =66a .∴VC 1—B 1EDF =13S 四边形B 1EDF ·O 1H=13·12·EF ·B 1D ·O 1H =13·12·2a ·3a ·66a =16a 3. 方法二 连接EF ,B 1D .设B 1到平面C 1EF 的距离为h 1,D 到平面C 1EF 的距离为h 2,则h 1+h 2=B 1D 1=2a . 由题意得,VC 1—B 1EDF =VB 1—C 1EF +VD —C 1EF =13·S △C 1EF ·(h 1+h 2)=16a 3. 探究提高 在求解一些不规则的几何体的体积以及两个几何体的体积之比时,常常需要用到分割法.在求一个几何体被分成两部分的体积之比时,若有一部分为不规则几何体,则可用整个几何体的体积减去规则几何体的体积求出其体积.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( ) A.26 B.36 C.23 D.22题型三几何体的展开与折叠问题例3(1)如图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于O,剪去△AOB,将剩余部分沿OC、OD折叠,使OA、OB重合,则以A、B、C、D、O为顶点的四面体的体积为________.(2)有一根长为3π cm,底面直径为2 cm的圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的最短长度为________ cm.思维启迪:(1)考虑折叠后所得几何体的形状及数量关系;(2)可利用圆柱的侧面展开图.(2)研究几何体表面上两点的最短距离问题,常选择恰当的母线或棱展开,转化为平面上两点间的最短距离问题.如图,已知一个多面体的平面展开图由一边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是_______..方法与技巧1.对于基本概念和能用公式直接求出棱柱、棱锥、棱台与球的表面积的问题,要结合它们的结构特点与平面几何知识来解决.2.要注意将空间问题转化为平面问题.3.求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解.4.一些几何体表面上的最短距离问题,常常利用几何体的展开图解决.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B .9C .12D .182.已知高为3的直棱柱ABC —A ′B ′C ′的底面是边长为1的正三角形(如右图所示),则三棱锥B ′—ABC 的体积为( )A.14B.12C.36D.343.正六棱柱的高为6,底面边长为4,则它的全面积为( ) A .48(3+3) B .48(3+23) C .24(6+2) D .1444.某三棱锥的三视图如图所示,该三棱锥的表面积是( )A.28+65B.30+6 5C.56+125D.60+12 5二、填空题(每小题5分,共15分)5.如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1-EDF的体积为________.6.一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m3.7.已知三棱锥A—BCD的所有棱长都为2,则该三棱锥的外接球的表面积为________.三、解答题(共22分)8.(10分)如图所示,在边长为5+2的正方形ABCD中,以A为圆心画一个扇形,以O为圆心画一个圆,M,N,K为切点,以扇形为圆锥的侧面,以圆O为圆锥底面,围成一个圆锥,求圆锥的全面积与体积.9.(12分)有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1.某几何体的三视图如图所示,其中俯视图是个半圆,则该几何体的表面积为( )A.32π B .π+3C.32π+ 3 D.52π+ 3 2.在四棱锥E —ABCD 中,底面ABCD 为梯形,AB ∥CD,2AB =3CD ,M 为AE 的中点,设E —ABCD 的体积为V ,那么三棱锥M —EBC 的体积为( ) A.25V B.13V C.23V D.310V 3.已知球的直径SC =4,A 、B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S -ABC 的体积为( )A .33B .2 3 C. 3 D .1 二、填空题(每小题5分,共15分)4.如图,已知正三棱柱ABC —A 1B 1C 1的底面边长为2 cm ,高为5 cm ,则一质点自点A 出发,沿着三棱柱的侧面绕行两周到达点A 1的最短路线 的长为______ cm.5.已知一个几何体是由上、下两部分构成的组合体,其三视图如图所示,若图中圆的半径为1,等腰三角形的腰长为5,则该几何体的体积是________.6.如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2.若AD=2c,且AB+BD=AC+CD=2a,其中a、c为常数,则四面体ABCD的体积的最大值是________.三、解答题7.(13分)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D—ABC,如图2所示.图1 图2(1)求证:BC⊥平面ACD;(2)求几何体D—ABC的体积.。

空间几何体的表面积与体积

空间几何体的表面积与体积
(1)公式法:直接根据相关的体积公式计算.
(2)等积法:根据体积计算公式,通过转换空间几何体的 底面和高使得体积计算更容易,或是求出一些体积比等.
(3)割补法: 把不能直接计算体积的空间几何体进行适当 的分割或补形,转化为可计算体积的几何体.
2.几个与球有关的切、接常用结论
(1)正方体的棱长为 a,球的半径为 R,
解析:由三视图知,该几何体为圆柱内挖去一个底面相同的 8π 16π 4π 32π 3 圆锥,因此V1=8π- = ,V2= ×2 = ,V1∶V2= 3 3 3 3 1∶2.
答案:1∶2
4.已知三棱锥 OABC 中,∠BOC=90° ,OA⊥平面 BOC,其 中 AB=AC= 7,BC= 11,O,A,B,C 四点均在球 S 的 表面上,则球 S 的表面积为________. 解析:易知以O点为顶点的三条棱两两垂直,则球S即为以
3,∴S 表=4πR2=4π×( 3)2=12π.
答案:D
角度五
正三棱柱的内切球
5.(2013· 南昌模拟)点 P 是底边长为 2 3,高为 2 的正三棱柱表面 上的动点,MN 是该棱柱内切球的一条直径,则 PM · PN 的取 值范围是 A.[0,2] C.[0,4] B.[0,3] D.[-2,2] ( )
解析:依题意可知,新的几何体的外接球也就是原正方体的 外接球,要求的直径就是正方体的体对角线;∴2R=2 3(R为 4 3 球的半径),∴R= 3,∴球的体积V= πR =4 3π. 3
答案:4 3π
角度三
正四面体的内切球
3.(2014· 长春模拟)若一个正四面体的表面积为S1,其内切球 S1 的表面积为S2,则 =________. S2
2
答案:C

高中数学 立体几何的柱,锥,台,球的公式

高中数学 立体几何的柱,锥,台,球的公式

立体几何的柱,锥,台,球的公式1.圆柱、圆锥、圆台的侧面展开图及侧面积公式❶圆柱圆锥圆台侧面展开图侧面积公式S 圆柱侧=2πrlS 圆锥侧=πrlS 圆台侧=π(r 1+r 2)l2.柱、锥、台、球的表面积和体积❷名称几何体表面积 体积 柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =Sh 锥体(棱锥和圆锥)S 表面积=S 侧+S 底V =13Sh 台体(棱台和圆台) S 表面积=S 侧+S 上+S 下 V =13(S 上+S 下+S 上S 下)h 球S =4πR 2V =43πR 3 3.直观图 S 原=22S 直题型一:直观图1.如图,已知等腰三角形O A B '''△,OA AB ''''=是一个平面图形的直观图,斜边2O B ''=,则这个平面图形的面积是( ) A .22B .1C .2D .222.一个梯形的直观图是一个如图所示的等腰梯形,且1A B ''=,3O C ''=,2O A ''=,则原梯形的面积为( )A .22B .42C .8D .43.如图所示为水平放置的正方形ABCO ,在平面直角坐标系xOy 中点B 的坐标为(2,2),用斜二测画法画出它的直观图A ′B ′C ′O ′,则四边形A ′B ′C ′O ′的面积为___________.4.如图所示,是三角形ABC 的直观图,则三角形ABC 的面积S △ABC =_______;(请用数字填写)5.如图,正方形O ′A ′B ′C ′的边长为1,它是一个水平放置的平面图形的直观图,则原图形的周长为( ) A .4 B .6C .8D .222+6.正三角形ABC 的边长为2 cm ,如图,△A’B’C’为其水平放置的直观图,则△A’B’C’的周长为( ) A .8 cmB .6 cmC .(2 +√6)cmD .(2 + 2√3)cm7.用斜二测画法画出水平放置的△ABC 的直观图如图所示,已知A’C’ = 3,B’C’ = 2,则△ABC 中AB 边上的中线长为_________.8.(多空题)在如图所示的直观图中,四边形O ′A ′B ′C ′为菱形且边长为2 cm ,则在平面直角坐标系中原四边形OABC 为________(填具体形状),其面积为________ cm 2.9.已知用斜二测画法得到的某水平放置的平面图形的直观图是如图所示的等腰直角△O B C ''',其中1O B ''=,则原平面图形中最大边长为( ) A .2B .22C .3D .2310.如图,△A ′B ′C ′表示水平放置的△ABC 根据斜二测画法得到的直观图,A B ''在x '轴上,B ′C ′与x '轴垂直,且2B C ''=,则△ABC 的边AB 上的高为( )A .2B .22C .4D .4211.如图所示,△A ′B ′C ′表示水平放置的△ABC 在斜二测画法下的直观图,A ′B ′在x ′轴上,B ′C ′与x ′轴垂直,且B ′C ′=3,则△ABC 的边AB 上的高为( ) A .6√2 B .3√3 C .3√2 D .3题型二棱柱、棱锥、棱台的表面积和体积1.正三棱锥的所有棱长均为a ,则该三棱锥的表面积为( ) A .33a 2B .23a 2C .3a 2D .4a 22.已知正四棱锥的底面边长是2,侧棱长是5,则该正四棱锥的表面积为( ) A .3B .12C .8D .433.已知高为3的棱柱ABC -A 1B 1C 1的底面是边长为1的正三角形,如图,则三棱锥B -AB 1C 的体积为( ) A .41 B .21 C .63 D .43 4.将一个棱长为a 的正方体,切成27个全等的小正方体,则表面积增加了( ) A .26aB .212aC .218aD.224a5.将一个正方体截去四个角后得到一个正四面体,这个正四面体的体积是正方体体积的( )A .21 B .31 C .61 D .41 6.如图所示,在三棱台ABC - A 1B 1C 1中,A 1B 1:AB = 1:2,则三棱锥B - A 1B 1C 1与三棱锥A 1 - ABC 的体积比为( ) A .1:2 B .1:3 C .1:2D .1:47.在底面半径为1的圆锥中,若该圆锥侧面展开图的面积是2π,则该圆锥的体积为( )A .B .C .D .8.已知球A 与球B 的体积之比为8:27,则球A 与球B 的半径之比为( ) A .:B .4:9C .2:3D .3:29.球的一个截面面积为49πcm 2,球心到球截面距离为24cm ,则球的表面积是 . 10.用一个平面截半径为25cm 的球,截面面积是49πcm 2,则球心到截面的距离是 . 11.已知一个长方体的三个面的面积分别是2,3,6,则这个长方体的体积为_________。

柱体、锥体、台体的表面积和体积

柱体、锥体、台体的表面积和体积
总表面积 = 2πr² + 2πrh 其中,r 是底面半径,h 是高度。
柱体的体积公式
柱体的体积可以通过以下公式计算:
体积 = 底面积 × 高度 底面积 = πr² 其中,r 是底面半径,h 是高度。
锥体的定义和特征
• 锥体由一个圆锥面和一个尖顶组成。 • 锥体的高度是尖顶到底面的垂直距离。
锥体的表面积公式
柱体、锥体、台体的表面 积和体积
通过学习柱体、锥体和台体的表面积和体积公式,你将能够理解它们的定义、 特征以及在日常生活和建筑中的应用。
柱体的定义和特征
• 柱体由两个平行的圆面以及它们之间的侧面组成。 • 柱体的高度是两个平行圆面之间的垂直距离。
柱体的表面积公式
柱体的表面积可以通过以下公式计算:
锥体的表面积可以通过以下公式计算: 总表面积 = πr² + πrl 其中,r 是底面半径,l 是斜高。
锥体的体积公式
锥体的体积可以通过以下公式计算:
体积 = 1/3 × 底面积 × 高度 底面积 = πr² 其中,r 是底面半径,h由两个平行的圆面和它们之间的侧面组成。 • 底面和顶面是平行的,而侧面是梯形形状。

空间几何体的表面积和体积公式大全

空间几何体的表面积和体积公式大全

空间几何体的表面积与体积公式大全一、全(表)面积(含侧面积)①棱柱、②圆柱.2・锥体①棱锥:S^ = ^h [②圆锥:= /3、台体①棱台• S梭台侧=空(6?上底+c下底)方'» S全= s±+s『s下②圆台:S杭台側=*(6底+cQZ -4、球体①球:S球=勿/②球冠:略③球缺:略二、体积1、柱体①棱柱} V,=S h②圆柱S S 2、锥体①棱锥} v.=\sh②圆锥S S3、 台体V 台肓//(S 匕+ JS 上S F + S 下)台=齐方(厂上+Jr 上厂下+厂下) 4、 球体①球:V 球② 球冠:略VyT/③ 球缺:略说明:棱锥、棱台计算侧面积时使用侧面的斜高力计算;而圆锥、圆台的 侧面积计算时使用母线/计算。

三、拓展提高1、 祖眶原理:(祖璀:祖冲之的儿子)夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。

最早推导出球体体积的祖冲之父子便是运用这个原理实现的。

2、 阿基米德原理:(圆柱容球)圆柱容球原理:在一个高和底面直径都是2厂的圆柱形容器内装一个最大 的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的?。

①棱台 ②圆台丿分析:圆柱体积:V H1 = s h =(^r)x2r = 2^/圆柱侧面积:S叭削= c/z = (2岔)X2广=4兀/2 彳4 彳因lit :球体体积:|/厅=—x2/r^ =_龙厂球体表面积:S球=4兀厂通过上述分析,我们可以得到一个很重要的关系(如图)即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和3、台体体积公式公式:几冷〃(S上+、恳瓦+ S』证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD。

延长两侧棱相交于一点P 0设台体上底面积为Si,下底面积为S下高为// °易知:\PDCs 型AB,设卩£ =人,则Pf+h由相似三角形的性质得:孚=袋AB PF即:(相似比等于面积比的算术平方根)、用hi整理得:人=尺刃又因为台体的体积二大锥体体积一小锥体体积u台=§s下(九+力r s上人人(S下-S上)+§s下方即:(、瓦+丫瓦)+扣下力=|/z $ + 应7+S卜)4、球体体积公式推导分析:将半球平行分成相同高度的若干层(兀层),〃越大,每一层越近似于圆柱'"T -HZ)时»每一层都可以看作是一个圆柱。

算不规则表面积和体积的常用公式

算不规则表面积和体积的常用公式

算不规则表面积和体积的常用公式
常用的计算不规则表面积和体积的公式有:
1. 体积公式:
- 正方体:体积 = 边长³
- 长方体:体积 = 长 ×宽 ×高
- 圆柱体:体积= π × 半径² ×高
- 圆锥体:体积= 1/3 × π × 半径² ×高
- 球体:体积= 4/3 × π × 半径³
- 锥台:体积= 1/3 × π × (上底半径² + 上底半径 ×下底半径 + 下底半径²) ×高
2. 表面积公式:
- 正方体:表面积 = 6 ×边长²
- 长方体:表面积 = 2(长 ×宽 + 长 ×高 + 宽 ×高)
- 圆柱体:表面积= 2π × 半径² + 2π × 半径 ×高
- 圆锥体:表面积= π × 半径 ×斜高+ π × 半径²
- 球体:表面积= 4π × 半径²
- 锥台:表面积= π × (上底半径 + 下底半径) ×斜高+ π × (上
底半径² + 下底半径²)
注意:以上公式仅适用于简单的不规则几何形体的计算,对于更复杂的形体,可能需要使用数值计算或其他数学方法来求解。

圆柱、圆锥、圆台、球的表面积和体积

圆柱、圆锥、圆台、球的表面积和体积

8. 3.2 圆柱、圆锥、圆台、球的表面积和体积 学习指导核心素养1.知道圆柱、圆锥、圆台、球的表面积和体积公式.2.能用表面积和体积公式解决简单的实际问题.直观想象、数学运算:利用公式计算圆柱、圆锥、圆台、球的表面积与体积.[学生用书P75]1.圆柱、圆锥、圆台的表面积圆柱底面积:S 底=πr 2侧面积:S 侧=2πrl 表面积:S =2πr (r +l ) 圆锥底面积:S 底=πr 2侧面积:S 侧=πrl 表面积:S =πr (r +l ) 圆台上底面面积:S 上底=πr ′2 下底面面积:S 下底=πr 2侧面积:S 侧=πl (r +r ′)表面积: S =π(r ′2+r 2+r ′l +rl )2.圆柱、圆锥、圆台的体积 V 圆柱=πr 2h (r 是底面半径,h 是高), V 圆锥=13πr 2h (r 是底面半径,h 是高),V 圆台=13 πh (r ′2+r ′r +r 2)(r ′,r 分别是上、下底面半径,h 是高).3.球的表面积和体积 表面积:S =4πR 2. 体积:V =43πR 3.1.圆柱、圆锥、圆台的侧面积公式之间有什么关系? 提示:S 圆柱侧=2πrl ――→r ′=rS 圆台侧=π(r ′+r )l ――→r ′=0S 圆锥侧=πrl . 2.球面能展开成平面图形吗? 提示:不能展开成平面图形.1.判断正误(正确的打“√”,错误的打“×”) (1)圆柱的侧面面积等于底面面积与高的积.( )(2)圆柱、圆锥、圆台的展开图分别是一个矩形、扇形、扇环.( ) (3)决定球的大小的因素是球的半径.( )(4)球面被经过球心的平面截得的圆的半径等于球的半径.( ) 答案:(1)× (2)× (3)√ (4)√2.若圆锥的底面半径为3 ,高为1,则圆锥的体积为( ) A .π3B .π2C .πD .2π答案:C3.若一个球的直径为 2,则此球的表面积为( ) A .2π B .16π C .8π D .4π解析:选D .因为球的直径为 2,所以球的半径为 1,所以球的表面积 S =4πR 2=4π.4.圆柱的侧面展开图是长 12 cm ,宽 8 cm 的矩形,则这个圆柱的体积为( ) A .288π cm 3B .192πcm 3C .288π cm 3或192π cm 3D .192π cm 3解析:选 C .当圆柱的高为 8 cm 时, V =π×⎝⎛⎭⎫122π 2×8=288π (cm 3),当圆柱的高为 12 cm 时,V =π×⎝⎛⎭⎫82π 2×12=192π(cm 3). [学生用书P75]探究点1 圆柱、圆锥、圆台的表面积 [问题探究]求圆柱、圆锥、圆台的表面积时,关键是什么?探究感悟:求圆柱、圆锥的表面积时,关键是求其母线长与底面的半径;求圆台的表面积时,关键是求其母线长与上、下底面的半径.(1)若圆锥的高为3,底面半径为4,则此圆锥的表面积为( ) A .40π B .36π C .26πD .20π(2)圆台的上、下底面半径和高的比为1∶4∶4,若母线长为10,则圆台的表面积为( ) A .81π B .100π C .168πD .169π【解析】 (1)圆锥的母线l =32+42 =5,所以圆锥的表面积为π×42+π×4×5=36π.故选B.(2)圆台的轴截面如图所示,设上底面半径为r ,下底面半径为R ,则它的母线长为l =h 2+(R -r )2 =(4r )2+(3r )2 =5r =10,所以r =2,R =8.故S 侧=π(R +r )l =π×(8+2)×10=100π,S 表=S 侧+πr 2+πR 2=100π+4π+64π=168π.故选C.【答案】 (1)B (2)C圆柱、圆锥、圆台的表面积的求解步骤解决圆柱、圆锥、圆台的表面积问题,要利用好旋转体的轴截面及侧面展开图,借助于平面几何知识,求得所需几何要素,代入公式求解即可,基本步骤如下:(1)得到空间几何体的展开图; (2)依次求出各个平面图形的面积; (3)将各平面图形的面积相加.1.若一个圆柱的轴截面是面积为9的正方形,则这个圆柱的侧面积为( ) A .9π B .12π C .272πD .454π解析:选A.由于圆柱的轴截面是面积为9的正方形,则h =2r =3,所以圆柱的侧面积为2πr ·h =9π.2.如图,已知直角梯形ABCD ,BC ∥AD ,∠ABC =90°,AB =5,BC =16,AD =4,求以BC 所在直线为轴旋转一周所得几何体的表面积.解:以BC 所在直线为轴旋转一周所得几何体是圆柱和圆锥的组合体,如图.其中圆锥的高为16-4=12,圆柱的母线长为AD =4,圆锥的母线长CD =13,故该几何体的表面积为2π×5×4+π×52+π×5×13=130π.探究点2 圆柱、圆椎、圆台的体积(2021·贵州安顺高二期末)若一个圆锥的侧面展开图是半径为3,圆心角为120°的扇形,求该圆锥的体积.【解】 设圆锥底面半径为r ,则由题意得2πr =120180·π·3,解得r =1.所以底面面积为S =πr 2=π. 又圆锥的高h =32-12 =22 ,故圆锥的体积V =13 Sh =13 ×π×22 =223π.求圆柱、圆锥、圆台的体积问题,一是要牢记公式,然后观察空间图形的构成,是单一的旋转体,还是组合体;二是注意旋转体的构成,以及圆柱、圆锥、圆台轴截面的性质,从而找出公式中需要的各个量,代入公式计算.1.圆台上、下底面面积分别是π,4π,侧面积是6π,则这个圆台的体积是( ) A .233 πB .2 3C .736πD .733π解析:选D.S 1=π,S 2=4π,所以r =1,R =2,S 侧=6π=π(r +R )l ,所以l =2,所以h=3 .所以V =13 π(1+4+2)×3 =733π.故选D.2.若一圆柱与圆锥的高相等,且轴截面面积也相等,那么圆柱与圆锥的体积的比值为( )A .1B .12C .32D .34解析:选D.设圆柱底面圆半径为R ,圆锥底面圆半径为r ,高都为h ,由已知得2Rh =rh ,所以r =2R ,所以V 柱∶V 锥=πR 2h ∶13πr 2h =3∶4,故选D.探究点3 球的表面积与体积 [问题探究]用一个平面去截球体,截面是什么形状?该截面的几何量与球的半径之间有什么关系? 探究感悟:用一个平面去截球体,截面是圆面.在不过球心的截面图中,截面圆与球的轴截面的关系如图所示.其关系为R 2=d 2+r 2.用与球心距离为1的平面去截球,所得截面圆的面积为π,则球的表面积为( ) A .8π3B .32π3C .8πD .82π3【解析】 设球的半径为R ,则截面圆的半径为R 2-1 ,所以截面圆的面积为S =π(R 2-1 )2=(R 2-1)π=π,所以R 2=2,所以球的表面积S =4πR 2=8π.故选C. 【答案】 C(1)球的表面积和体积的求解关键因为球的表面积和体积都与球的半径有关,所以在解答这类问题时,设法求出球的半径是解题的关键.(2)球的截面问题的解题技巧①有关球的截面问题,常画出过球心的截面圆,将问题转化为平面中圆的问题. ②解题时要注意借助球半径R 、截面圆半径r 、球心到截面的距离d 构成的直角三角形,即R 2=d 2+r 2.1.(2021·江苏徐州高一期中)一个球的表面积是16π,那么这个球的体积为( ) A .163 πB .323 πC .643πD .2563π解析:选B.设这个球的半径为R ,则4πR 2=16π,解得R =2,所以这个球的体积V =43 πR 3=323π.故选B. 2.两个球的半径相差 1,表面积之差为 28π,则它们的体积之和为________. 解析:设大、小两球半径分别为 R ,r ,则⎩⎪⎨⎪⎧R -r =1,4πR 2-4πr 2=28π,所以⎩⎪⎨⎪⎧R =4,r =3.所以体积之和为 43 πR 3+43 πr 3=364π3 .答案:364π3探究点4 与球有关的切、接问题(1)一个长方体的各个顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为 1,2,3,则此球的表面积为________.(2)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切,记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.【解析】 (1)长方体外接球直径长等于长方体体对角线长,即 2R =12+22+32 =14 ,所以球的表面积 S =4πR 2=14π.(2)设球O 的半径为r ,则圆柱的底面半径为r ,高为2r ,所以V 1V 2 =πr 2·2r 43πr 3 =32.【答案】 (1)14π (2)32(1)常见几何体与球的切、接问题的解题策略①处理有关几何体外接球或内切球的相关问题时,要注意球心的位置与几何体的关系.一般情况下,由于球的对称性,球心总在特殊位置,比如中心、对角线的中点等.②解决此类问题的实质就是根据几何体的相关数据求球的直径或半径,关键是根据“切点”和“接点”作出轴截面图,把空间问题转化为平面问题来计算.(2)几个常用结论①球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径. ②球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径. ③球与圆柱的底面和侧面均相切,则球的直径等于圆柱的高,也等于圆柱底面圆的直径.将棱长为 2 的正方体木块削成一个体积最大的球,则该球的体积为( )A .4π3B .2π3C .3π2D .π6解析:选A.由题意知,此球是正方体的内切球,根据其几何特征知,此球的直径与正方体的棱长是相等的,故可得球的直径为 2,故半径为 1,其体积是43 ×π×13=4π3.[学生用书P77]1.已知圆柱的底面半径r =1,母线长l 与底面的直径相等,则该圆柱的表面积为( ) A .6π B .8π C .9πD .10π解析:选A.因为圆柱的表面积为2πr 2+2πrl ,r =1,l =2,所以圆柱的表面积为6π.故选A.2.若球的大圆面积扩大为原来的2倍,球的体积扩大为原来的( ) A .8倍 B .4倍 C .22 倍D .2倍解析:选C.球的大圆面积扩大为原来的2倍,则球的半径扩大为原来的2 倍,所以球的体积扩大为原来的22 倍.3.设三棱柱的侧棱垂直于底面,所有棱的长都为 a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2B .73 πa 2C .113πa 2D .5πa 2解析:选B.由题意知,该三棱柱为正三棱柱,且侧棱与底面边长相等,均为 a .如图,P 为三棱柱上底面的中心,O 为球心,易知 AP =23 ×32 a =33 a ,OP =12a ,所以球的半径 R = OA 满足R 2=⎝⎛⎭⎫33a 2 +⎝⎛⎭⎫12a 2=712 a 2,故 S 球=4πR 2=73 πa 2.4.已知圆台上、下底面半径分别为1,2,高为3,则圆台的体积为__________. 解析:由公式知V 圆台=13 π(1+2+4)×3=7π.答案:7π5.如图所示,在边长为4的正三角形ABC 中,E ,F 分别是AB ,AC 的中点,AD ⊥BC ,EH ⊥BC ,FG ⊥BC ,D ,H ,G 为垂足,若将正三角形ABC 绕AD 旋转180°,求阴影部分形成的几何体的体积.解:由题意知,旋转后几何体是一个圆锥,从下面挖去一个圆柱,且圆锥的底面半径为2,高为23 ,圆柱的底面半径为1,高为3 .所求旋转体的体积为大圆锥的体积减去里面小圆柱的体积,即V 旋转体=13 ×π×22×23 -π×12×3 =533 π,故所求旋转体的体积为533π. [学生用书P217(单独成册)][A 基础达标]1.在△ABC 中,AB =4,BC =3,AC =5,现以AB 所在直线为轴旋转一周,则所得几何体的表面积为( )A .24πB .21πC .33πD .39π解析:选A.因为在△ABC 中,AB =4,BC =3,AC =5,所以△ABC 是以∠B 为直角的直角三角形,故以AB 所在直线为轴旋转一周得到的几何体为圆锥,所以圆锥的底面半径为3,母线长为5,所以底面周长为6π,侧面积为12 ×6π×5=15π,所以几何体的表面积为15π+π×32=24π.故选A.2.两个球的体积之比为8∶27,那么这两个球的表面积之比为( ) A .2∶3 B .4∶9 C .2 ∶3D .8 ∶27解析:选B.设两个球的半径分别为r ,R ,则⎝⎛⎭⎫43πr 3 ∶⎝⎛⎭⎫43πR 3 =r 3∶R 3=8∶27, 所以r ∶R =2∶3,所以S 1∶S 2=r 2∶R 2=4∶9.3.(多选)如图,一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径2R 相等,则下列结论正确的是( )A .圆柱的侧面积为2πR 2B .圆锥的侧面积为2πR 2C .圆柱的侧面积与球面面积相等D .圆柱、圆锥、球的体积之比为3∶1∶2解析:选CD.依题意得球的半径为R ,则圆柱的侧面积为2πR ×2R =4πR 2,所以A 错误;圆锥的侧面积为πR ×5 ·R =5 πR 2,所以B 错误;球面面积为4πR 2,因为圆柱的侧面积为4πR 2,所以C 正确;因为V 圆柱=πR 2·2R =2πR 3,V 圆锥=13 πR 2·2R =23 πR 3,V 球=43 πR 3,所以V 圆柱∶V 圆锥∶V 球=2πR 3∶23 πR 3∶43πR 3=3∶1∶2,所以D 正确.故选CD.4.将半径为R 的半圆卷成一个圆锥,则它的体积是( ) A .524 πR 3 B .58 πR 3 C .324πR 3 D .38πR 3 解析:选C.设圆锥的底面半径为r ,则2πr =πR ,所以r =R2 .所以圆锥的高h =R 2-r 2 =32R . 所以圆锥的体积V =13 πr 2×h =13 π(R 2 )2×32 R =324πR 3.故选C.5.若两球的体积之和是 12π,经过两球球心的截面圆周长之和为 6π,则两球的半径之差为( )A .1B .2C .3D .4解析:选 A .设两球的半径分别为 R ,r (R >r ),则由题意得⎩⎪⎨⎪⎧4π3R 3+4π3r 3=12π,2πR +2πr =6π,解得⎩⎪⎨⎪⎧R =2,r =1.故 R -r =1. 6.一个高为2的圆柱,底面周长为2π,该圆柱的表面积为________.解析:由底面周长为2π可得底面半径为1.S 底=πr 2=π,S 侧=2πr ·h =4π,所以S 表=2S底+S 侧=6π.答案:6π7.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________. 解析:设圆锥的母线为l ,圆锥底面半径为r ,由题意可知,πrl +πr 2=3π,且πl =2πr .解得r =1,即圆锥的底面直径为2.答案:28.圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的铁球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的铁球(如图所示),则铁球的半径是________cm.解析:设铁球的半径为x cm ,由题意得πx 2×8=πx 2×6x -43 πx 3×3,解得x =4.答案:49.某组合体的直观图如图所示,它的中间为圆柱形,左右两端均为半球形,若图中r =1,l =3,试求该组合体的表面积和体积.解:该组合体的表面积S =4πr 2+2πrl =4π×12+2π×1×3=10π, 该组合体的体积V =43 πr 3+πr 2l =43 π×13+π×12×3=13π3.10.已知一个圆锥的底面半径为R ,高为H ,在其内部有一个高为x 的内接圆柱. (1)求圆柱的侧面积;(2)x 为何值时,圆柱的侧面积最大?解:(1)作圆锥的轴截面,如图所示.因为rR =H -x H,所以r =R -RH x ,所以S 圆柱侧=2πrx =2πRx -2πR Hx 2(0<x <H ). (2)因为-2πRH<0,所以当x =2πR 4πR H=H2 时,S 圆柱侧最大.故当x =H2时,即圆柱的高为圆锥高的一半时,圆柱的侧面积最大.[B 能力提升]11.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积为323 π,那么这个正三棱柱的体积是( )A .963B .163C .243D .483解析:选D.由题意可知正三棱柱的高等于球的直径,从棱柱中间平行棱柱底面截得球的大圆内切于正三角形,正三角形与棱柱底面三角形全等,设三角形边长为a ,球半径为r ,由V 球=43 πr 3=323 π,得r =2.由S 柱底=12 a ×r ×3=34 a 2,得a =23 r =43 ,所以V 柱=S柱底·2r =483 .12.如图,一个盛满溶液的玻璃杯,其形状为一个倒置的圆锥,现放一个球状物体完全浸没于杯中,球面与圆锥侧面相切,且与玻璃杯口所在平面相切,则溢出溶液的体积为( )A .8327 πB .4327 πC .16327πD .32327π解析:选D.由题意,设球的半径为r ,作出玻璃杯的轴截面,可得一个半径为r 的圆内切于一个边长为4的等边三角形,此等边三角形的高h =23 .根据中心(重心)的性质可得,球的半径r =13 h =233 ,所以球的体积V =43 πr 3=43 π×⎝⎛⎭⎫233 3 =32327 π.即溢出溶液的体积为32327π,故选D.13.(多选)如图所示,△ABC 的三边长分别是AC =3,BC =4,AB =5,过点C 作CD ⊥AB ,垂足为D ,下列说法正确的是( )A .以BC 所在直线为轴,将此三角形旋转一周,所得旋转体的侧面积为15πB .以BC 所在直线为轴,将此三角形旋转一周,所得旋转体的体积为36π C .以AC 所在直线为轴,将此三角形旋转一周,所得旋转体的侧面积为25πD .以AC 所在直线为轴,将此三角形旋转一周,所得旋转体的体积为16π解析:选AD.以BC 所在直线为轴旋转时,所得旋转体为底面半径为3,母线长为5,高为4的圆锥,所以侧面积为π×3×5=15π,体积为13 ×π×32×4=12π,所以A 正确,B 错误;以AC 所在直线为轴旋转时,所得旋转体为底面半径为4,母线长为5,高为3的圆锥,侧面积为π×4×5=20π,体积为13×π×42×3=16π,所以C 错误;D 正确.故选AD.14.在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,过A 1,C 1,B 三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD -A 1C 1D 1,这个几何体的体积为403.(1)求棱AA 1的长;(2)求经过A 1,C 1,B ,D 四点的球的表面积和体积.解:(1)设AA 1=x ,依题意可得403 =2×2·x -13 ×12 ×2×2·x ,解得x =4,故棱AA 1的长为4.(2)依题意可知, 经过A 1,C 1,B ,D 四点的球就是长方体ABCD -A 1B 1C 1D 1的外接球,这个球的直径就是长方体的体对角线,所以球的直径2R =22+22+42 =26 ,解得R =6 .故所求球的表面积为4πR 2=24π,体积为43·πR 3=86 π.[C 拓展探究]15.如图,用一边长为2 的正方形硬纸,按各边中点垂直折起4个小三角形,做成一个“底座”,将体积为4π3 的球放入其中,“底座”形状保持不变,则球的最高点与“底座”底面的距离为( )A .62 +32 B .32C .22 +32D .32 +32解析:选D.由题意,可得“底座”的底面是边长为1的正方形,则经过4个小三角形的顶点截球所得的截面圆的直径为1.因为球的体积为4π3 ,所以球的半径为1,所以球心到截面圆的距离为1-⎝⎛⎭⎫122 =32 ,因为垂直折起的4个小直角三角形斜边上的高为12,所以球的最高点与“底座”底面的距离为32 +1+12 =32 +32.故选D. 16.如图,四边形ABCD 是正方形,BD ︵是以 A 为圆心、AB 为半径的弧,将正方形 ABCD 以 AB 为轴旋转一周,求图中 Ⅰ,Ⅱ,Ⅲ 三部分经旋转所得几何体的体积之比.解:Ⅰ生成圆锥,Ⅱ生成的是半球去掉Ⅰ生成的圆锥,Ⅲ生成的是圆柱去掉扇形 ABD 生成的半球.设正方形的边长为 a ,则Ⅰ,Ⅱ,Ⅲ 三部分经旋转所得几何体的体积分别为 V Ⅰ,V Ⅱ,V Ⅲ,则 V Ⅰ=13 πa 3,V Ⅱ=12 ×43 πa 3-13 πa 3=13 πa 3,V Ⅲ=πa 3-12 ×43 πa 3=13πa 3.所以三部分经旋转所得几何体的体积之比为1∶1∶1.。

棱柱棱锥棱台的表面积和体积公式

棱柱棱锥棱台的表面积和体积公式

棱柱棱锥棱台的表面积和体积公式棱柱、棱锥和棱台是几何学中常见的三种立体图形,它们都具有特定的表面积和体积公式。

本文将分别介绍棱柱、棱锥和棱台的表面积和体积公式,并对其应用进行讨论。

一、棱柱的表面积和体积公式棱柱是一种具有两个平行且相等的底面,底面之间的连接线段都垂直于底面的立体图形。

棱柱的表面积公式为:S = 2B + L,体积公式为:V = Bh。

其中,B表示底面积,L表示侧面积,h表示高度。

由于棱柱的底面是一个多边形,所以底面积的计算方法取决于底面的形状。

常见的底面形状有正多边形、矩形和圆形。

以正多边形为例,当底面是正n边形时,底面积的计算公式为:B = n * a * a / (4 * tan(π / n)),其中a表示边长,n表示边的个数。

侧面积的计算公式为:L = p * h,其中p表示正多边形的周长。

以矩形为例,当底面是矩形时,底面积的计算公式为:B = l * w,其中l表示矩形的长,w表示矩形的宽。

侧面积的计算公式同样为:L = p * h,其中p表示矩形的周长。

以圆形为例,当底面是圆形时,底面积的计算公式为:B = π * r * r,其中r表示圆的半径。

侧面积的计算公式为:L = 2 * π * r * h,其中h表示高度。

二、棱锥的表面积和体积公式棱锥是一种具有一个底面和侧面的立体图形,底面是一个多边形,侧面连接底面和顶点。

棱锥的表面积公式为:S = B + L,体积公式为:V = (1/3) * B * h。

与棱柱类似,棱锥的底面积的计算方法取决于底面的形状。

侧面积的计算公式为:L = (1/2) * p * l,其中p表示底面的周长,l表示侧面的斜高。

三、棱台的表面积和体积公式棱台是一种具有两个底面和侧面的立体图形,底面形状相等且平行,侧面连接两个底面。

棱台的表面积公式为:S = B1 + B2 + L,体积公式为:V = (1/3) * (B1 + B2 + √(B1 * B2)) * h。

柱,锥,台的体积及球的表面积和体积

柱,锥,台的体积及球的表面积和体积
螺帽共重5.8kg,已知底面是正六边形, 边长为12mm,内 孔直径为10mm, 高为10mm,问这 堆螺帽大约有多少个?
[例2] 如图,圆柱的底面直径与高
都等于球的直径.
求证:(1) 球的
体积等于圆柱体积
的 2;
O
3
(2) 球] 如图,圆柱的底面直径与高
都等于球的直径.
***补例*** 1. 若圆台的高是3,一个底面半径
是另一个底面半径的2倍,母线与下底 面所成的角是45°,求这个圆台的侧 面积.
***补例***
2. 如图,一块正方形薄铁片的边长
为22cm,以它的一 个顶点为圆心,一
22cm
边长为半径画弧.沿
弧剪下一扇形,围
成一锥筒.求它的侧面积和体积.
1
V锥 3 sh V台 3 h(s s' ss')
1 V锥 3 sh
s'=0
1 V台体 3 h(s s' ss')
V柱 sh
s'=s
V圆锥
1 3
R2h
r=0
V圆台
1 3
h(r 2
R
R2
)
V圆柱 R2h
r=R
三、 球的表面积、体积公式
S球表 4R2
V球
4 R3
3
典型例题 [例1] 有一堆规格相同的铁制六角
1、多面体的表面积公式是什么?
S多面体表 底面面积 侧面面积
2、圆柱体的表面积公式是什么?
S圆柱表 2 r(r l)
3、圆锥体的表面积公式是什么?
S圆锥表 r(r l)
4、圆台的表面积公式是什么?
S圆台表(r'2 r2 r'l rl)

柱、锥、台表面积体积公式

柱、锥、台表面积体积公式

圆柱体体积公式
圆柱体体积公式
$V = pi r^{2}h$
解释
其中,$V$表示圆柱体的体积,$pi$是圆周率,$r$是底面圆的半径,$h$是圆柱的高。
棱柱体表面积公式
棱柱体表面积公式
根据棱柱的形状和尺寸有所不同,需 要具体问题具体分析。
解释
棱柱体的表面积由底面和顶面的面积 以及侧面的面积组成,具体计算方法 需要根据棱柱的具体形状和尺寸来确 定。
03
台体表面积体积公式
圆台体表面积公式
总结词
圆台体表面积公式是计算圆台侧面积和两个底面积的总和。
详细描述
圆台体表面积公式为 S = π * (r1 + r2) * l,其中 r1 和 r2 分别为圆台上下底面的半径, l 为圆台母线长度。
圆台体体积公式
总结词
圆台体体积公式是计算圆台所占三维空间的 大小。
物理学
在计算物体之间的相互作用力、热传导、电磁波的传播等物理现象 时,需要使用表面积和体积公式来描述物体的大小和形状。
化学工程
在化学工程领域,表面积和体积的计算对于反应器设计、传热传质计 算等方面具有重要意义。
表面积和体积公式的推导过程
要点一
柱体
柱体的表面积由底面和侧面组成,侧面 面积是高乘以底面周长,底面周长是 2πr(r为底面半径),所以侧面面积 是2πrh(h为高),底面面积是πr^2, 所以柱体表面积是2πrh+πr^2,体积 是底面积乘以高,即πr^2h。
棱台体体积公式
总结词
棱台体体积公式是计算棱台所占三维空间的 大小。
详细描述
棱台体体积公式为 V = (1/3) * (a1 + a2) * l * h,其中 a1 和 a2 分别为棱台上下底面的边

高中立体几何表面积体积公式

高中立体几何表面积体积公式

高中立体几何表面积体积公式
高中立体几何涉及到多种多面体的表面积和体积计算,以下是一些常见的立体图形的面积和体积计算公式:
1. 正方体:表面积 S = 6a^2,体积 V = a^3。

2. 长方体:表面积 S = (ab + bc + cd) × 2,体积 V = ab ×bc × cd。

3. 圆柱:表面积 S = 2πrl,体积 V = πr^2h。

其中,r 是圆柱的底面半径,l 是圆柱的底面周长,h 是圆柱的高。

4. 圆锥:表面积 S = 2πrl,体积 V = πr^2h/3。

其中,r 是圆锥的底面半径,l 是圆锥的底面周长,h 是圆锥的高。

5. 球:表面积 S = 4πr^2,体积 V = πr^3。

其中,r 是球的半径。

6. 棱锥:表面积 S = (1/2) ×π× (rs + th)^2,体积 V = (1/3) ×π× (rs + th)^3。

其中,rs 是棱锥的底面半径,th 是棱锥的高。

7. 棱柱:表面积 S = 2 ×π× (rs + th),体积 V = π×(rs + th)^2。

其中,rs 是棱柱的底面半径,th 是棱柱的高。

这些公式是高中立体几何中非常重要的基础知识,对于解决立体几何问题有着重要的作用。

柱体、锥体、台体的表面积和体积 课件

柱体、锥体、台体的表面积和体积 课件
柱体、锥体、台体的表面积与体积
[知识提炼Байду номын сангаас梳理]
1.棱柱、棱锥、棱台的表面积 棱柱、棱锥、棱台都是由多个平面图形围成的多面 体,因此它们的表面积等于各个面的面积之和,也就是 展开图的面积.
2.圆柱、圆锥、圆台的表面积
底面积:S 底=πr2 圆
侧面积:S 侧=2πrl 柱
表面积:S=2πrl+2πr2 底面积:S 底=πr2 圆 侧面积:S 侧=2πrl 锥 表面积:S=πrl+πr2
所以 r=4.则 h=4. 故圆锥的体积 V 圆锥=13πr2h=634π. 答案:A
[迁移探究 1] (变换条件,改变问法) 将典例 2 中 第(2)题的条件“侧面积是 16 2π”改为“若其体积为 3 π”,求该圆锥的侧面积.
解:设圆锥的底面半径为 r,则高 h=r,母线 l=PB
= 2r.
[变式训练] 圆台的上、下底面半径分别是 10 cm 和 20 cm,它的侧面展开图的扇环的圆心角是 180°,求圆 台的表面积.
解:如图所示,设圆台的上底面周长为 c cm,由于 扇环的圆心角是 180°,则 c=π·SA=2π×10,解得 SA= 20(cm).
同理可得 SB=40(cm), 所以 AB=SB-SA=20(cm). 所以 S 表=S 侧+S 上+S 下= π×(10+20)×20+π×102+π×202= 1 100π(cm2).
2+5 则 S 底= 2 ×4=14,高 h=4. 所以 V 四棱柱=S 底·h=56.
归纳升华 1.求解柱体体积的关键是根据条件找出相应的底面 积和高,对于旋转体要充分利用旋转体的轴截面,将待求 的量转化到轴截面内求. 2.求解锥体体积的关键是明确锥体的底面是什么图 形,特别是三棱锥,哪个三角形作为底面是解题的关键点.

柱体锥体台体的公式大全

柱体锥体台体的公式大全

柱体锥体台体的公式大全
一、柱体:
柱体是一个由两个平行的、相等的圆形底面和连接两个底面的侧面组成的几何体。

柱体的体积和表面积的公式如下:
1.柱体的体积公式:
V=πr²h
2.柱体的表面积公式:
S=2πr²+2πrh
其中,S代表柱体的表面积,r代表柱体的底面半径,h代表柱体的高度。

二、锥体:
锥体是一个由一个圆形底面和连接底面和顶点的侧面组成的几何体。

锥体的体积和表面积的公式如下:
1.锥体的体积公式:
V=(1/3)πr²h
2.锥体的表面积公式:
S=πr(r+l)
其中,S代表锥体的表面积,r代表锥体的底面半径,l代表锥体的斜高(从顶点到底边的距离)。

三、台体:
台体是一个由两个平行、相等的圆形底面和连接两个底面的侧面以及一个横截面为矩形的侧面组成的几何体。

1.台体的体积公式:
V=(1/3)π(r₁²+r₂²+r₁r₂)h
2.台体的表面积公式:
S=π(r₁+r₂)l+πr₁²+πr₂²
其中,S代表台体的表面积,r₁和r₂分别代表台体的上底半径和下底半径,l代表侧面的斜高。

需要注意的是,以上公式的单位应保持一致,如使用米,则体积的单位为立方米,表面积的单位为平方米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x x
r 'O’
l
l
2r '
圆台的侧面展开图是扇环 如何求扇环的面积?
2r
r
O
S侧 1 2 r l x 1 2 r x
2 2
r (l x) r x (rl rx r x)
' '
A
x
O’
x
B
l
r x r xl
'
r'
rx r x r l
' '
C
'
'
l
O
r
S侧 (rl rx r x) (rl r l )
S (r r r l rl )
2 '
'2
3.请用3—4分钟的时间阅读书本第25页例 题2,提出感兴趣的问题。
3.1 请观察圆柱、圆锥、圆台的几何图形和表 面积计算公式,你能 发现什么结论?
∵ BC a , S A
a 2 SD SB BD a ( ) 3 a 2 2 1 SSBC BC SD 1 a 3 a 3 a 2 2 2 2 4
2 2 2
因此,四面体S-ABC的表面积为
C
B
D
3 2 S 4 a 3a 2 4
2.请你探究“旋转体的表面积” 2.1 如图所示,如何求出下列几何体的表面 积?
4.请你说一说你今天学到了什么?
(1)柱体、锥体与台体的表面积公式 和求解方法。
(2)柱体、椎体与台体表面积公式之间的联系
小结:
柱体、锥体、台体的表面积
2 S 2 r rl 圆柱
圆台 S r2 r 2 rl rl 圆锥
S r 2 rl
展开图
各面面积之和
2 r
扇形面积公式: 1 ( 指弧长 l S = lR

2
R指半径)
l
2
1 = 2 rl S侧 2 rl
S r rl r (r l )
内环长 等于上底面圆的周长
外环长等于下底面圆的 周长
侧面展开图是扇环
2.3.1 设圆台的上下地面半径为 r '和r, 母线长为 l ,那么圆台的表面积是多少?
一般地,多面体的表面积就是各个面的面积之和
表面积=侧面积+底面积
1.3 请思考下面的问题: 已知棱长为 ,各面均为等边三角形 的四面体S-ABC(如图),求它的表面 积为 s
a
S
a
A B C
a a
B
C
四面体的展开图是由四个全等的等边三角形组成.
分析:四面体的展开图是由四个全等的等边三角形组成. 解:过点S作SD BC , 交BC于点D.
今天探究“空间几何体的表面积”
请你思考:任意一个空间几何体的表面积 如何测得?
(请写出你的思路)
问题1 请思考,如图所示,如何求出下列多 面体的表面积? (写出你的思路或过程)
问题1.1 如下图,如何求正方体的表面积
几何体表面积 空间问题
展开图
平面图形面积
平面问题
问题1.2 请思考:下面三个几何体的表面由哪 几种平面图形组成?如何求它们的表面积?
圆柱 圆锥 圆台
S 2r (r l )
S r (r l )
S (r r rl rl )
2 2
圆柱
S 2r (r l )
r r
圆台
S (r r rl rl )
2 2
r 0
圆锥
S r (r l )
2.2 请你画出以上几何体的平面展开图。
2.3 设圆柱的地面半径为r,母线长为
,那么圆柱的表面积是多少?
l
r
O
l
O
2 r
圆柱的侧面展开 图是矩形
S 2 r 2 rl 2 r ( r l )
2
2.4 设圆锥的底
l
圆锥的侧面展开图是扇形
相关文档
最新文档