机械工程测试技术课后答案第二章

合集下载

机械工程测试技术第二章信号分析基础习题

机械工程测试技术第二章信号分析基础习题

第二章 信号分析基础(一)填空题1、 测试的基本任务是获取有用的信息,而信息总是蕴涵在某些物理量之中,并依靠它们来传输的。

这些物理量就是 ,其中目前应用最广泛的是电信号。

2、 信号的时域描述,以 为独立变量;而信号的频域描述,以 为独立变量。

3、 周期信号的频谱具有三个特点: , , 。

4、 非周期信号包括 信号和 信号。

5、 描述随机信号的时域特征参数有 、 、 。

6、 对信号的双边谱而言,实频谱(幅频谱)总是 对称,虚频谱(相频谱)总是 对称。

7、信号x(t)的均值μx 表示信号的 分量,方差2x σ描述信号的 。

7、 当延时τ=0时,信号的自相关函数R x (0)= 均方值 ,且为R x (τ)的 最大 值。

9、 周期信号的自相关函数是 周期信号,但不具备原信号的 信息。

10、 为了识别信号类型,常用的信号分析方法有 概率密度函数 、和 自相关函数 。

11、为了获得测试信号的频谱,常用的信号分析方法有 傅立叶变换法 、 和 滤波器法12、 设某一信号的自相关函数为)cos(ωτA ,则该信号的均方值为2x ψ= ,均方根值为x rms = 。

(二)判断对错题(用√或×表示)1、 各态历经随机过程一定是平稳随机过程。

(√)p39-402、 信号的时域描述与频域描述包含相同的信息量。

( √ )3、 非周期信号的频谱一定是连续的。

( ×)(离散傅立叶变换)4、 非周期信号幅频谱与周期信号幅值谱的量纲一样。

(×)5、 随机信号的频域描述为功率谱。

(√)6、 互相关函数是偶实函数。

( × )(三)单项选择题1、下列信号中功率信号是( B )。

A.指数衰减信号B.正弦信号、C.三角脉冲信号D.矩形脉冲信号2、周期信号x(t) = sin(t/3)的周期为(B )。

A. 2π/3B. 6πC. π/3D. 2π3、下列信号中周期函数信号是(C )。

A.指数衰减信号B.随机信号C.余弦信号、D.三角脉冲信号4、设信号的自相关函数为脉冲函数,则自功率谱密度函数必为(D )。

机械工程测试技术课后习题答案

机械工程测试技术课后习题答案

第一章习题1.测试技术的静态特性是什么?其用哪些性能指标来描述?它们一般用哪些公式表示?①测试技术的静态特性是指被测量的值处于稳定状态时,测试技术的输入与输出之间的关系。

②衡量测试技术静态特性的主要指标有线性度、灵敏度、迟滞、重复性、分辨率、阈值、稳定性、漂移和静态误差。

③线性度、灵敏度、迟滞、重复性、分辨率、阈值、稳定性、漂移和静态误差。

2.测试技术的动态特性是什么?其分析方法有哪几种①测试技术的动态特性是指测试技术的输出对随时间变化的输入量的响应特性,它反映了输出值真实再现变化着的输入量的能力。

②阶跃响应、频率响应3.测试技术数学模型的一般描述方法有哪些?传感器数学模型可分为静态和动态数学模型。

其中传感器静态数学模型一般多用多项式来描述,而动态数学模型通常采用微分方程和传递函数等来描述。

4.测试技术系统有哪些典型环节?写出不同环节的微分方程。

输入,输出方程、传递函数、频率响应和单位阶跃5.为什么说零阶测试技术的动态特性是最理想的?因为零阶没有滞后6.简述系统误差和随机误差出现的原因及特点。

系统误差:系统误差是由固定不变的或按确定规律变化的因素所造成的。

系统误差的特征是:在同一条件下多次测量同一量值时,绝对值和符号保持不变;或当条件改变时,按一定规律变化。

系统误差在某些情况下对测量结果的影响还比较大,因此,研究系统误差产生的原因,发现、减小或消除系统误差,使测量结果更加趋于正确和可靠,是误差理论的重要课题之一,是数据处理中的一个重要的内容。

随机误差:随机误差是由于感官灵敏度和仪器精密程度的限制、周围环境的干扰及伴随着测量而来的不可预料的随机因素的影响而造成的。

它的特点是大小无定值,一切都是随机发生的,因而又把它称为偶然误差7.标准误差的意义是什么?标准误越小,抽样误差越小,样本对总体的代表性越好8.有效数字的运算原则和规则是什么?有效数字的确定方法是什么? 一般规定,数值中的可靠数字与所保留的1位(或2位)可疑数字统称为有效数字。

机械工程测试技术基础课后习题答案

机械工程测试技术基础课后习题答案

《机械工程测试技术基础》课后答案章节测试题第1章 信号及其描述(一)填空题1、 测试的基本任务是获取有用的信息,而信息总是蕴涵在某些物理量之中,并依靠它们来传输的。

这些物理量就是 ,其中目前应用最广泛的是电信号。

2、 信号的时域描述,以 为独立变量;而信号的频域描述,以 为独立变量。

3、 周期信号的频谱具有三个特点: , , 。

4、 非周期信号包括 信号和 信号。

5、 描述随机信号的时域特征参数有 、 、 。

6、 对信号的双边谱而言,实频谱(幅频谱)总是 对称,虚频谱(相频谱)总是 对称。

(二)判断对错题(用√或×表示)1、 各态历经随机过程一定是平稳随机过程。

( )2、 信号的时域描述与频域描述包含相同的信息量。

( )3、 非周期信号的频谱一定是连续的。

( )4、 非周期信号幅频谱与周期信号幅值谱的量纲一样。

( )5、 随机信号的频域描述为功率谱。

( )(三)简答和计算题1、 求正弦信号t x t x ωsin )(0=的绝对均值μ|x|和均方根值x rms 。

2、 求正弦信号)sin()(0ϕω+=t x t x 的均值x μ,均方值2x ψ,和概率密度函数p(x)。

3、 求指数函数)0,0()(≥>=-t a Ae t x at 的频谱。

4、求被截断的余弦函数⎩⎨⎧≥<=T t T t t t x ||0||cos )(0ω的傅立叶变换。

5、求指数衰减振荡信号)0,0(sin )(0≥>=-t a t e t x at ω的频谱。

第二章 测试装置的基本特性(一)填空题1、 某一阶系统的频率响应函数为121)(+=ωωj j H ,输入信号2sin )(t t x =,则输出信号)(t y 的频率为=ω ,幅值=y ,相位=φ 。

2、 试求传递函数分别为5.05.35.1+s 和2224.141n n n s s ωωω++的两个环节串联后组成的系统的总灵敏度。

机械工程测试技术_课后习题与答案

机械工程测试技术_课后习题与答案

机械工程测试技术基础习题解答教材:机械工程测试技术基础,熊诗波 黄长艺主编,机械工业,2006年9月第3版第二次印刷。

绪 论0-1 叙述我国法定计量单位的基本容。

解答:教材P4~5,二、法定计量单位。

0-2 如何保证量值的准确和一致? 解答:(参考教材P4~6,二、法定计量单位~五、量值的传递和计量器具检定) 1、对计量单位做出严格的定义;2、有保存、复现和传递单位的一整套制度和设备;3、必须保存有基准计量器具,包括国家基准、副基准、工作基准等。

3、必须按检定规程对计量器具实施检定或校准,将国家级准所复现的计量单位量值经过各级计算标准传递到工作计量器具。

0-3 何谓测量误差?通常测量误差是如何分类表示的? 解答:(教材P8~10,八、测量误差)0-4 请将下列诸测量结果中的绝对误差改写为相对误差。

①1.0182544V±7.8μV ②(25.04894±0.00003)g③(5.482±0.026)g/cm 2解答: ①-667.810/1.01825447.6601682/10±⨯≈±②60.00003/25.04894 1.197655/10±≈±③0.026/5.482 4.743±≈‰0-5 何谓测量不确定度?国际计量局于1980年提出的建议《实验不确定度的规定建议书INC-1(1980)》的要点是什么? 解答:(1)测量不确定度是表征被测量值的真值在所处量值围的一个估计,亦即由于测量误差的存在而对被测量值不能肯定的程度。

(2)要点:见教材P11。

0-6为什么选用电表时,不但要考虑它的准确度,而且要考虑它的量程?为什么是用电表时应尽可能地在电表量程上限的三分之二以上使用?用量程为150V 的0.5级电压表和量程为30V 的1.5级电压表分别测量25V 电压,请问哪一个测量准确度高? 解答:(1)因为多数的电工仪表、热工仪表和部分无线电测量仪器是按引用误差分级的(例如,精度等级为0.2级的电表,其引用误差为0.2%),而 引用误差=绝对误差/引用值其中的引用值一般是仪表的满度值(或量程),所以用电表测量的结果的绝对误差大小与量程有关。

《机械工程测试技术基础》课后习题及答案详解

《机械工程测试技术基础》课后习题及答案详解

第一章 信号的分类与描述1-1 求周期方波(见图1-4)的傅里叶级数(复指数函数形式),划出|c n |–ω和φn –ω图,并与表1-1对比。

解答:在一个周期的表达式为00 (0)2() (0)2T A t x t T A t ⎧--≤<⎪⎪=⎨⎪≤<⎪⎩ 积分区间取(-T/2,T/2)000000002202002111()d =d +d =(cos -1) (=0, 1, 2, 3, ) T T jn tjn tjn t T T n c x t et Aet Ae tT T T Ajn n n ωωωππ-----=-±±±⎰⎰⎰所以复指数函数形式的傅里叶级数为 001()(1cos )jn tjn t n n n Ax t c ejn e n∞∞=-∞=-∞==--∑∑ωωππ,=0, 1, 2, 3, n ±±± 。

(1cos ) (=0, 1, 2, 3, )0nI nR A c n n n c ⎧=--⎪±±±⎨⎪=⎩ ππ21,3,,(1cos )00,2,4,6, n An A c n n n n ⎧=±±±⎪==-=⎨⎪=±±±⎩πππ1,3,5,2arctan1,3,5,200,2,4,6,nI n nRπn c πφn c n ⎧-=+++⎪⎪⎪===---⎨⎪=±±±⎪⎪⎩没有偶次谐波。

其频谱图如下图所示。

图1-4 周期方波信号波形图1-2 求正弦信号0()sin x t x ωt =的绝对均值x μ和均方根值rms x 。

解答:00002200000224211()d sin d sin d cos TTT Tx x x x x μx t t x ωt t ωt t ωt T T TT ωT ωπ====-==⎰⎰⎰rmsx ==== 1-3 求指数函数()(0,0)at x t Ae a t -=>≥的频谱。

机械工程测试技术课本习题及参考答案

机械工程测试技术课本习题及参考答案

第二章 信号描述及其分析【2-1】 描述周期信号的频率结构可采用什么数学工具? 如何进行描述? 周期信号是否可以进行傅里叶变换? 为什么?参考答案:一般采用傅里叶级数展开式。

根据具体情况可选择采用傅里叶级数三角函数展开式和傅里叶级数复指数函数展开式两种形式。

不考虑周期信号的奇偶性,周期信号通过傅里叶级数三角函数展开可表示为:001()sin()(1,2,3,)n n n x t a A n n ωϕ∞==++=∑2021()T T a x t dt T-=⎰n A =(2022()cos T n T a x t n tdt T ω-=⎰ 202()sin T n T b x t n tdt Tω-=⎰ )tan n n n b a ϕ=式中,T 为信号周期, 0ω为信号角频率, 02T ωπ=。

n A ω-图为信号的幅频图, n ϕω-图为信号的相频图。

周期信号通过傅里叶级数复指数函数展开式可表示为:0()(0,1,2,)jn tnn x t C e n ω∞=-∞==±±∑0221()T jn t n T C x t e dt Tω--=⎰n C 是一个复数,可表示为:n j n nR nI n C C jC C e ϕ=+=n C = arctan n nI nR C ϕ=n C ω-图为信号的幅频图, n ϕω-图称为信号的相频图。

▲ 不可直接进行傅里叶变换,因为周期信号不具备绝对可积条件。

但可间接进行傅里叶变换。

参见书中第25页“正弦和余弦信号的频谱”。

【2-2】 求指数函数()(0,0)at x t Ae a t -=>≥的频谱。

参考答案:由非周期信号的傅里叶变换,()()j t X x t e dt ωω∞--∞=⎰,得22()()j tA a j X x t edt A a j a ωωωωω∞--===++⎰由此得到,幅频谱为:()X ω=相频谱为: ()arctan()a ϕωω=-【2-3】 求周期三角波(图2-5a )的傅里叶级数(复指数函数形式)参考答案:周期三角波为: (2)20()(2)02A A T tT t x t A A T tt T +-≤<⎧=⎨-≤≤⎩则0221()T jn t n T C x t e dt T ω--=⎰积分得 02222204(1cos )(1cos )2n A T AC n n n T n ωπωπ=-=- 即 22()1,3,5,00,2,4,n A n n C n π⎧=±±±=⎨=±±⎩又因为周期三角波为偶函数,则0n b =,所以arctan 0n nI nR C C ϕ==所以,周期三角波傅里叶级数复指数形式展开式为:00(21)222()(0,1,2)(21)jn tj k tnn n A x t C ee k k ωωπ∞∞+=-∞=-∞===±±+∑∑【2-4】 求图2-15所示有限长余弦信号()x t 的频谱。

机械工程测试技术课后答案第二章

机械工程测试技术课后答案第二章

2-1 一个测试系统与其输入和输出间的关系各有哪几种情形?试分别用工程实例加以说明。

答:测试系统与输入、输出的关系大致可以归纳为以下三类问题:(1)当输入和输出是可观察的或已知量时,就可以通过他们推断系统的传输特性,也就是求出系统的结构与参数、建立系统的数学模型。

此即 系统辨识 问题。

(2)当系统特性已知,输出可测时,可以通过他们推断导致该输出的输入量,此即滤波与预测问题,有时也称为载荷识别问题。

(3)当输入和系统特性已知时,则可以推断和估计系统的输出量,并通过输出来研究系统本身的有关结构参数,此即系统分析问题。

2-2什么是测试系统的静特性和动特性?两者有哪些区别?如何来描述一个系统的动特性?答:当被测量是恒定的或是缓慢变化的物理量时,便不需要对系统做动态描述,此时涉及的就是系统的静态特性。

测试系统的静态特性,就是用来描述在静态测试的情况下,实际的测试系统与理想的线性定常系统之间的接近程度。

静态特性一般包括灵敏度、线性度、回程误差等。

测试系统的动态特性是当被测量(输入量)随时间快速变化时,输入与输出(响应)之间动态关系的数学描述。

静特性与动态性都是用来反映系统特性的,是测量恒定的量和变化的量时系统所分别表现出的性质。

系统的动态特性经常使用系统的传递函数和频率响应函数来描述。

2-3传递函数和频率响应函数均可用于描述一个系统的传递特性,两者有何区别?试用工程实例加以说明。

答:传递函数是在复数域中描述系统特性的数学模型。

频率响应函数是在频域中描述系统特性的数学模型。

2-4 不失真测试的条件时什么?怎样在工程中实现不失真测试?答:理想情况下在频域描述不失真测量的输入、输出关系:输出与输入的比值为常数,即测试系统的放大倍数为常数;相位滞后为零。

在实际的测试系统中,如果一个测试系统在一定工作频带内,系统幅频特性为常数,相频特性与频率呈线性关系,就认为该测试系统实现的测试时不失真测试。

在工程中,要实现不失真测试,通常采用滤波方法对输入信号做必要的预处理,再者要根据测试任务的不同选择不同特性的测试系统,如测试时仅要求幅频或相频的一方满足线性关系,我们就没有必要同时要求系统二者都满足线性关系。

机械工程测试原理与技术课后习题答案(第2版)

机械工程测试原理与技术课后习题答案(第2版)

机械工程测试原理与技术课后习题答案(第2版)重大或者西华大学《测试技术与信号分析》习题与题解适用专业:机械类、自动化课程代码:学时:42-48编写单位:机械工程与自动化学院编写人:余愚审核人:审批人:第二章习题解答2-1.什么是信号?信号处理的目的是什么?2-2.信号分类的方法有哪些?22-3.求正弦信号某tAint的均方值某。

解:1T21T22某tdtAintdtT0T022T222T21co2t2AintdtAdt00TT222TinTA2AT4422某A2也可先求概率密度函数:p(t)则:某p(某)d某222A某12某22-4.求正弦信号某tAin(t)的概率密度函数p(某)。

某dt1,Ad某1A某1()2A1解:tarcinA某22代入概率密度函数公式得:t12dt12p(某)limlim某0某某0TTA2某2d某T21222A2某2A某2-5.求如下图所示周期性方波的复指数形式的幅值谱和相位谱某-T解在某(t)的一个周期中可表示为t-T1T1T1某(t)0tT1T1tT2该信号基本周期为T,基频0=2/T,对信号进行傅里叶复指数展开。

由于某(t)关于t=0对称,我们可以方便地选取-T/2≤t≤T/2作为计算区间。

计算各傅里叶序列系数cn当n=0时,常值分量c0:c0a02T11T1dtTT1T当n0时,cn最后可得1TT1T1ejn0tdt1jn0Tejn0tT1T1ejn0tejn0tcnn0T2j2cn其幅值谱为:cn注意上式中的括号中的项即in(n0T1)的欧拉公式展开,因此,傅里叶序列系数cn可表示为2in(n0T1)2inc(n0T1),n0n0TT2T1inc(noT1),相位谱为:n0,,频谱图如下:T/T100Cn2T1/T/T100n02-6.设cn为周期信号某(t)的傅里叶级数序列系数,证明傅里叶级数的时移特性。

即:若有FS某tcnFS则某tt0e'cnj0t0cn证明:若某(t)发生时移t0(周期T保持不变),即信号某(t-t0),则其对应的傅立叶系数为1j0t某tedtTT令tt0,代入上式可得'cn1某ej0(t0)dTT1ej0t0某ej0dTTej0t0cn因此有FS某tt0ej0t0cnej(2/T)t0cn同理可证FS某tt0ej0t0cnej(2/T)t0cn2-7.求周期性方波的(题图2-5)的幅值谱密度解:周期矩形脉冲信号的傅里叶系数Cn2T11Tjn0tedtinc(n0T1)T1TT2T1inc(n0T1)(n0)nT则根据式,周期矩形脉冲信号的傅里叶变换,有某()2此式表明,周期矩形脉冲信号的傅里叶变换是一个离散脉冲序列,集中于基频0以及所有谐频处,其脉冲强度为4T1/T0被inc(t)的函数所加权。

机械工程测试技术基础课后答案全集

机械工程测试技术基础课后答案全集

第二章 测试装置的基本特性2-5 想用一个一阶系统做100Hz 正弦信号的测量,如要求限制振幅误差在5%以内,那么时间常数应取多少?若用该系统测量50Hz 正弦信号,问此时的振幅误差和相角差是多少? 解:设该一阶系统的频响函数为1()1H j ωτω=+,τ是时间常数则 21()1()A ωτω=+稳态响应相对幅值误差21()1100%1100%1(2)A f δωπτ⎛⎫⎪=-⨯=-⨯ ⎪+⎝⎭令δ≤5%,f =100Hz ,解得τ≤523μs 。

如果f =50Hz ,则 相对幅值误差:262111100%1100% 1.3%1(2)1(25231050)f δπτπ-⎛⎫⎛⎫⎪ ⎪=-⨯=-⨯≈ ⎪ ⎪++⨯⨯⨯⎝⎭⎝⎭相角差:6()arctan(2)arctan(25231050)9.33f ϕωπτπ-=-=-⨯⨯⨯≈-︒2-6 试说明二阶装置阻尼比ζ多采用0.6~0.8的原因。

解答:从不失真条件出发分析。

ζ在0.707左右时,幅频特性近似常数的频率范围最宽,而相频特性曲线最接近直线。

2-9 试求传递函数分别为1.5/(3.5s + 0.5)和41ωn 2/(s 2 + 1.4ωn s + ωn 2)的两环节串联后组成的系统的总灵敏度(不考虑负载效应)。

解:11 1.53() 3.50.57171K H s s s s ===+++,即静态灵敏度K 1=32222222241() 1.4 1.4n n n n n nK H s s s s s ωωωωωω==++++,即静态灵敏度K 2=41 因为两者串联无负载效应,所以总静态灵敏度K = K 1 ⨯ K 2 = 3 ⨯ 41 = 1232-10 设某力传感器可作为二阶振荡系统处理。

已知传感器的固有频率为800Hz ,阻尼比ζ=0.14,问使用该传感器作频率为400Hz 的正弦力测试时,其幅值比A (ω)和相角差ϕ(ω)各为多少?若该装置的阻尼比改为ζ=0.7,问A (ω)和ϕ(ω)又将如何变化?解:设222()2n n nH s s ωωζωω=++,则2221()12n n A ωωωζωω=⎡⎤⎛⎫⎛⎫⎢⎥-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,22()arctan1nn ωζωϕωωω=-⎛⎫- ⎪⎝⎭,即2221()12n n A f f f f f ζ=⎡⎤⎛⎫⎛⎫⎢⎥-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,22()arctan1nn f f f f f ζϕ=-⎛⎫- ⎪⎝⎭将f n = 800Hz ,ζ = 0.14,f = 400Hz ,代入上面的式子得到A (400) ≈ 1.31,ϕ(400) ≈ −10.57︒如果ζ = 0.7,则A (400) ≈ 0.975,ϕ(400) ≈ −43.03︒第三章 常用传感器与敏感元件3-3 电阻丝应变片与半导体应变片在工作原理上有何区别?各有何优缺点?应如何针对具体情况来选用?解答:电阻丝应变片主要利用形变效应,而半导体应变片主要利用压阻效应。

机械工程测试技术基础课后答案全集

机械工程测试技术基础课后答案全集

机械工程测试技术基础习题解答第一章 信号的分类与描述1-1 求周期方波(见图1-4)的xx 级数(复指数函数形式),划出|cn|–ω和φn–ω图,并与表1-1对比。

解答:在一个周期的表达式为 .积分区间取(-T/2,T/2)000000002202002111()d =d +d =(cos -1) (=0, 1, 2, 3, )T T jn tjn tjn t T T n c x t et Aet Ae tT T T Ajn n n ωωωππ-----=-±±±⎰⎰⎰所以复指数函数形式的xx 级数为 ,。

(1cos ) (=0, 1, 2, 3, )0nInR A c n n n c ⎧=--⎪±±±⎨⎪=⎩ππ图1-4 周期方波信号波形图21,3,,(1cos)00,2,4,6,nAnAc n nnn⎧=±±±⎪==-=⎨⎪=±±±⎩πππ1,3,5,2arctan1,3,5,200,2,4,6,nInnRπncπφncn⎧-=+++⎪⎪⎪===---⎨⎪=±±±⎪⎪⎩没有偶次谐波。

其频谱图如下图所示。

1-2 求正弦信号的绝对均值和均方根值。

解答:rmsx====1-3 求指数函数的频谱。

解答:(2)22022(2) ()()(2)2(2)a j f tj f t at j f te A A a jf X f x t e dt Ae e dt Aa j f a j f a f-+∞∞---∞-∞-=====-+++⎰⎰πππππππ幅频图相频图周期方波复指数函数形式频谱图22()(2)k X f a f π=+Im ()2()arctanarctan Re ()X f ff X f a==-πϕ1-4 求符号函数(见图1)和单位阶跃函数(见图1-25b)的频谱。

机械工程测试原理与技术(第2版)(课后习题答案)

机械工程测试原理与技术(第2版)(课后习题答案)

重大&西华大学《测试技术与信号分析》习题与题解适用专业: 机械类、自动化课程代码:学时: 42-48编写单位:机械工程与自动化学院编写人:余愚审核人:审批人:第二章 习题解答2-1.什么是信号?信号处理的目的是什么?2-2.信号分类的方法有哪些?2-3.求正弦信号()t A t x ωsin =的均方值2x ψ。

解:()24sin 4222cos 12sin 2sin 11222022022022022A T T A T dt t A T tdt A T dtt A T dt t x T T T T T x=⎪⎭⎫ ⎝⎛-=-====⎰⎰⎰⎰ωωωωωψ也可先求概率密度函数:221)(xA t p -=π则:⎰∞∞-==2)(222A dx x p x xψ。

2-4.求正弦信号())sin(ϕω+=t A t x的概率密度函数p(x)。

解: 2221)(111,arcsinxA Ax A dx dt A x t -=-=-=ωωϕω代入概率密度函数公式得:22222200122221lim 1lim )(xA x A x A T Tdt dx T t x x p x x -=-=-=⋅=⎥⎥⎦⎤⎢⎢⎣⎡∆∆=∑→∆→∆πωπωω2-5.求如下图所示周期性方波的复指数形式的幅值谱和相位谱解 在x(t)的一个周期中可表示为⎩⎨⎧<<≤=21)(11T t T T t t x该信号基本周期为T ,基频ω0=2π/T ,对信号进行傅里叶复指数展开。

由于x (t )关于t =0对称,我们可以方便地选取-T /2≤t ≤T /2作为计算区间。

计算各傅里叶序列系数c n 当n =0时,常值分量c 0:txT 1-T 1T-TTT dt T a c T T 1002111===⎰- 当n ≠0时,110110011T T tjn T T t jn n e Tjn dt e Tc -----==⎰ωωω最后可得⎥⎦⎤⎢⎣⎡-=-j e e T n c t jn t jn n 22000ωωω注意上式中的括号中的项即sin (n ω0 T 1)的欧拉公式展开,因此,傅里叶序列系数c n 可表示为0)(sin 2)sin(210010≠==n T n c TT n T n c n ,ωπωω其幅值谱为:)(sin 211T n c TT c o n ω=,相位谱为:ππϕ-=,,0n 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2-1 一个测试系统与其输入和输出间的关系各有哪几种情形?试分别用工程实例加以说明。

答:测试系统与输入、输出的关系大致可以归纳为以下三类问题:
(1)当输入和输出是可观察的或已知量时,就可以通过他们推断系统的传输特性,也就是求出系统的结构与参数、建立系统的数学模型。

此即 系统辨识 问题。

(2)当系统特性已知,输出可测时,可以通过他们推断导致该输出的输入量,此即滤波与预测问题,有时也称为载荷识别问题。

(3)当输入和系统特性已知时,则可以推断和估计系统的输出量,并通过输出来研究系统本身的有关结构参数,此即系统分析问题。

2-2什么是测试系统的静特性和动特性?两者有哪些区别?如何来描述一个系统的动特性?
答:当被测量是恒定的或是缓慢变化的物理量时,便不需要对系统做动态描述,此时涉及的就是系统的静态特性。

测试系统的静态特性,就是用来描述在静态测试的情况下,实际的测试系统与理想的线性定常系统之间的接近程度。

静态特性一般包括灵敏度、线性度、回程误差等。

测试系统的动态特性是当被测量(输入量)随时间快速变化时,输入与输出(响应)之间动态关系的数学描述。

静特性与动态性都是用来反映系统特性的,是测量恒定的量和变化的量时系统所分别表现出的性质。

系统的动态特性经常使用系统的传递函数和频率响应函数来描述。

2-3传递函数和频率响应函数均可用于描述一个系统的传递特性,两者有何区别?试用工程实例加以说明。

答:传递函数是在复数域中描述系统特性的数学模型。

频率响应函数是在频域中描述系统特性的数学模型。

2-4 不失真测试的条件时什么?怎样在工程中实现不失真测试?
答:理想情况下在频域描述不失真测量的输入、输出关系:输出与输入的比值为常数,即测试系统的放大倍数为常数;相位滞后为零。

在实际的测试系统中,如果一个测试系统在一定工作频带内,系统幅频特性为常数,相频特性与频率呈线性关系,就认为该测试系统实现的测试时不失真测试。

在工程中,要实现不失真测试,通常采用滤波方法对输入信号做必要的预处理,再者要根据测试任务的不同选择不同特性的测试系统,如测试时仅要求幅频或相频的一方满足线性关系,我们就没有必要同时要求系统二者都满足线性关系。

对于一个二阶系统,当3.0n <ωω时,测试装置选择阻尼比为0.6~0.8的范围内,能够得到较好的相位线性特性。

当3n >ωω时,可以用反相器或在数据处理时减去固定的180°相位差来获得无相位差的结果,可以认为此时的相位特性满足精确测试条件。

2-5 进行某动态压力测量时,所采用的压电式力传感器的灵敏度为90.9nC/MPa ,将它与增益为0.005V/nC 的电荷放大器相连,电荷放大器的输出接到一台笔式记录仪上,记录仪的灵敏度为20mm/V 。

试计算这个测试系统的总灵敏度。

当压力变化为3.5MPa 时,记录笔在记录本上的偏移量是多少?
答:由题意知此系统为串联系统,故
而 1S =90.9nC/MPa ,2S =0.005V/nC,3S =20mm/V
故可得
总S =9.09mm/MPa
2-6用时间常数s 35.0=τ的一阶系统(传递函数H(s)=1/(1+τs ))去测量周期分别为1s 、2s 和5s 的正弦信号,问各种情况的相对幅值误差是多少?
解: 由题意可得
一阶系统幅频特性表达式为
一阶系统相频特性表达式为
又 T π2=
ω 求得 1ω 所以
相对幅值误差=1)(-=ωδA
所以计算可得周期分别为1s 、2s 和5s 的正弦信号,相对幅值误差分别是58.6% ,32.7% ,
8.5% 。

2-7 将200Hz 正弦信号输入到一阶系统进行调理,要求通过该系统后信号的幅值误差小于5%。

问该系统的时间常数应为多少?若输入200Hz 的方波信号,时间常数又应是多少? 解:一阶系统幅频特性表达式为 由题意要求,相对幅值误差≤-=1)(ωδA 0.05 即2)(11
τω+>0.95,将200=ω代入,可得
2-8 试说明二阶系统阻尼比ξ多用0.6~0.8的原因。

答:从不失真条件出发分析,ξ 在0.707左右时,幅频特性近似常数的频率范围最宽,而相频特性曲线最接近直线。

2-9将温度计从20℃的空气中突然插入80℃的水中,若温度计的时间常数τ=3.5s ,求2s 后的温度计指示值是多少?
解: 设温度计的输入为单位阶跃信号,故 1)(=S X
则 []ττt S S t e s L X H L ----=⎥⎦⎤⎢⎣⎡+==1)1(s 1y 1
)()(1)( 则 )e 1(6020)e
1()(5.30t t T T t T ---+=-∆+=τ
计算可得 )2(T =46.1℃ 2-10 一温度计可视为时间常数为15s 的一阶系统,携带此温度计的气球以5m/s 的上升速度通过大气层。

设大气层温度按每升高30m 下降0.15℃的规律变化,气球用无线电将温度和高度的数据发送回地面。

在3000m 处所记录的温度为-1℃。

问实际出现-1℃的真实高度是多少?
解: 设温度计的输入为单位斜坡函数,则 2)s (1s X =
则 )
1(12)()s (s s s X H Y s τ+==)( 求拉氏逆变换得 )1(y )(ττt t e t ---=
因为气球在3000m 时所需时间为600秒,代入得y=585秒 即气球在3000m 处记录的温度实际是温度计在585秒时的温度,而此时的高度为
而在3000m 处的温度应该比-1℃还要低375.015.035
75=⨯℃ 2-11 设某力传感器可作为二阶震荡系统处理。

已知传感器的固有频率为800Hz ,阻尼比ξ=0.14,问使用该传感器做频率为400Hz 的正弦测试时,其幅值比A(ω)和相角差()ωϕ各为多少?若该系统的阻尼比ξ=0.7,问A(ω)和()ωϕ又将如何变化?
解: 已知传感器为二阶振荡系统,故可得
二阶系统幅频特性为
二阶系统相频特性为
令ξ=0.14 ,n ω= 2π*800 ,ω=2π*400 可得
A(400)= 1.31 ()400ϕ=-10.57°
再令ξ=0.7 ,n ω= 2π*800 ,ω=2π*400 可得
A(400)= 0.97 ()400ϕ=-43.03°
2-12 某测试系统的频响函数为:H(ωj )=1/(1+0.05ωj ),当输入信号为x (t )=2cos100t+cos(300t-π/4)时,求系统的稳态响应,并列出时域求输出响应的步骤。

解:由已知条件可知
输入信号可分为两个部分 : x (t )=1x (t )+2x (t )
则1x (t )=2cos100t 和2x (t )=cos(300t-π/4)
可得 )arctan 100cos()(12
)(y 112111ωτωτ-+=t t
其中 1τ=0.05 1001=ω
所以 )5arctan 100cos(26
2)(y 1-=t t 又 )arctan 45300cos()(12
)(y 222222ωτωτ-︒-+=t t
其中 2τ=0.05 =2ω300 所以)15arctan 45300cos(226
1)(y 2-︒-=t t 最后得: )()(y 21t y t y +==
)5arctan 100cos(262-t +)15arctan 45300cos(2261-︒-t。

相关文档
最新文档