浙教版七年级下《第六章数据与统计图表》单元检测试卷含答案

合集下载

浙教版七年级下册数学第六章 数据与统计图表单元测试卷(含答案)

浙教版七年级下册数学第六章 数据与统计图表单元测试卷(含答案)

浙教版七年级下册数学第六章数据与统计图表单元测试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)某校八年级(3)班体训队员的身高(单位:cm)如下:169,165,166,164,169,167,166,169,166,165,获得这组数据方法是()A.直接观察B.查阅文献资料C.互联网查询D.测量2.(3分)某校开设了艺术、体育、劳技、书法四门拓展性课程,要求每一位学生都要选且只能选一门课.小黄同学统计了本班50名同学的选课情况,并将结果绘制成条形统计图(如图,不完全),则选书法课的人数有()A.12名B.13名C.15名D.50名3.(3分)已知一组数据﹣,π,﹣,1,2,则无理数出现的频率是()A.20%B.40%C.60%D.80%4.(3分)在1﹣7月份,某种水果的每斤进价与售价的信息如图所示,则出售该种水果每斤利润最大的月份是()A.3月份B.4月份C.5月份D.6月份5.(3分)用适当的统计图表示某班同学戴眼镜和不戴眼镜所占的比例,应绘制的统计图是()A.条形统计图B.折线统计图C.扇形统计图D.以上都不对6.(3分)某空气检测部门收集了贵阳市2018年1月至6月的空气质量数据,并绘制成了折线统计图,如图所示,下列叙述正确的是()A.空气质量为“优”的天数最多的是5月B.空气质量为“良”的天数最少的是3月C.空气质量为“良”的天数1月至3月呈下降趋势,3月至4月呈上升趋势D.空气质量为“轻度污染”的天数波动最大7.(3分)小红同学5月份各项消费情况的扇形统计图如图所示,其中小红在学习用品上共支出100元,则她在午餐上共支出()A.50元B.100元C.150元D.200元8.(3分)小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/分钟0<x≤55<x≤1010<x≤1515<x≤20频数(通话次数)201695则5月份通话次数中,通话时间不超过15分钟的所占百分比是()A.10%B.40%C.50%D.90%9.(3分)某校随机抽查若干名学生,测试了1分钟仰卧起坐的次数,把所得数据绘制成频数分布直方图(如图),则仰卧起坐次数不小于15次且小于20次的频率是()A.0.1B.0.2C.0.3D.0.410.(3分)体育老师对八年级(2)班学生“你最喜欢的体育项目是什么?(只写一项)”的问题进行了调查,把所得数据绘制成如图所示的折线统计图.由图可知,最喜欢篮球的学生的频率是()A.16%B.24%C.30%D.40%二.填空题(共6小题,满分24分,每小题4分)11.(4分)某班55名学生在2018年(下)期末的县质量检测中,数学成绩在90~110分这个分数段的频率为0.2,则该班在这个分数段的学生有人.12.(4分)如图,是光明中学七年级(2)班四个小组交的创新教育实践的调查报告,四个小组中交的篇数最多的有篇,占全班总数的%.13.(4分)甲、乙两公司2014﹣2018年的销售收入情况如图所示,这两家公司中销售收入增长较快的是.14.(4分)长沙市明德华兴中学举行“书香校园”系列活动,倡导同学们多看书,看好书.某班为了让班级图书角的书籍更丰富,同学们纷纷捐书.如图,所捐书籍中,故事书所对应的扇形的圆心角大小为.15.(4分)将一批数据分成5组,列出频率分布表,其中第一组与第五组的频率之和是0.27,第二与第四组的频率之和是0.54,那么第三组的频率是.16.(4分)某校开展捐书活动,七(1)班同学积极参与,现将捐书数量绘制成频数分布直方图(如图所示),如果捐书数量在3.5﹣4.5组别的人数占总人数的,那么捐书数量在4.5﹣5.5组别的人数是.三.解答题(共8小题,满分66分)17.(6分)两支篮球队进行4场对抗赛的结果如下(单位:分)第一场第二场第三场第四场场次得分球队球队166728890球队295908980(1)你认为用哪种统计图反映这两支篮球队4场对抗赛的比赛结果比较合适?画出你选用的统计图.(2)你怎样评价这两支球队?如果再进行一场比赛,你预测结果会如何?18.(6分)妈妈准备用5万元投资金融产品,她查询到有A、B两款“利滚利”产品,即上一周产生的收益将计入本金以计算下一周的收益.例如:投资100元,第一周的周收益率为5%,则第一周的收益为100×5%=5元,第二周投资的本金将变为100+5=105元.如图是这两款产品过去5周的周收益率公告信息.(第一周:3月1日~3月7日)(1)若妈妈3月1日投资产品B,到第二周结束时会不赚不赔,这种说法对吗?请判断并说明理由.(2)请运用学过的统计知识,为妈妈此次投资金融产品提出建议并简要说明理由.19.(8分)某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图(如图),请你结合图中的信息解答下列问题:(1)求被调查的学生人数;(2)补全条形统计图;(3)已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?20.(8分)小花最近买了三本课外书,分别是《汉语字典》用A表示,《流行杂志》用B表示和《故事大王》用C表示.班里的同学都很喜欢借阅,在五天内小花做了借书记录如下表:书名代号借阅频数星期一星期二星期三星期四星期五A32234B43323C12323(1)在表中填写五天内每本书的借阅频数.(2)计算五天内《汉语字典》的借阅频率.21.(8分)某班学生的期中成绩(成绩为整数)的频数分布表如下,请根据表中提供的信息回答下列问题:分组频数频率49.5﹣59.530.0559.5﹣69.59m69.5﹣79.5n0.4079.5﹣89.5180.3089.5﹣99.56p合计q 1.0(1)m=,n=,p=,q=;(2)在表内,频率最小的一组的成绩范围是.(3)成绩优秀的学生有人(成绩大于或等于80分为优秀).22.(10分)小明同学以“你最喜欢的运动项目“为主题对家附近的公园里参加运动的群众进行了随机调查(每名被调查者只能选一个项目,且被调查者都进行了选择),下面是小明根据调查结果列出的统计表和绘制的扇形统计图.男、女被调查者所选项目人数统计表项目男(人数)女(人数)广场舞79健步走m4器械22跑步5n根据以上信息回答下列问题:(1)m=,n=.(2)扇形统计图中“广场舞“项目所对应扇形的圆心角度数为°;(3)若平均每天来该公园运动的人数有3600人,请你估计这3600人中最喜欢的运动项目是“跑步“的约有多少人?23.(10分)有大小两个转盘,其中黑色区域都是中心角为90°的扇形,为了探究指针落在黑色区域的频率,甲乙两人分别转动两转盘,记录下表(A:指针落在大转盘的黑色区域频数;B:大转盘中的频率;C:指针落在小转盘的黑色区域频数;D:小转盘中相应频率)次数255075100125150175200225A81521263236445157BC81321263237434955D(1)将B、D两空格填写完整;(2)分别绘出指针落在大小转盘中黑色区域的频率折线图;(3)比较25次与50次的大小频率之差及200与225次之间大小转盘两频率之差;(4)从(3)中频率之差及折线统计图中的变化趋势,你能总结出什么规律?24.(10分)为积极创建全国文明城市,我市对某路口的行人交通违章情况进行了20天的调查,将所得的数据绘制成如下统计图(图2不完整):请根据所给信息,解答下列问题:(1)第13天,这一路口的行人交通违章次数是;这20天中,行人交通违章7次的有天.(2)这20天中,行人交通违章6次的有天;请把图2中的频数直方图补充完整.(3)请你根据图2绘制一个扇形统计图,并求行人违章9次的天数在扇形统计图中所对的圆心角度数.参考答案一.选择题(共10小题,满分30分,每小题3分)1.D 2.A 3.B 4.B 5.C 6.C 7.D 8.D 9.A 10.D二.填空题(共6小题,满分24分,每小题4分)11.11 12.10 40%.13.甲公司14.54°15.0.19 16.16人三.解答题(共8小题,满分66分)17.解:(1)折线统计图比较合适,如图所示:(2)球队1虽然开始成绩不佳,但是渐入佳境,得分稳步提升;球队2虽然开始成绩不错,但是有逐步下降的趋势,预计下场比赛球队1会明显优于球队2.18.解:(1)这种说法不对,理由:设开始投资x元,则两周结束时的总资产为:x(1+2%)(1﹣2%)=0.9996x≠x,故到第二周结束时会不赚不赔,这种说法不对;(2)选择A产品,理由:由图可以看出两个产品平均收益率相近,但A产品波动较小,方差较小,且一直是正收益,说明收益比较稳定,故选择A产品.19.解:(1)被调查的学生人数为:12÷20%=60(人);(2)喜欢艺体类的学生数为:60﹣24﹣12﹣16=8(人),如图所示:(3)全校最喜爱文学类图书的学生约有:1200×=480(人).20.解:(1)填表如下:书名代号借阅频数星期一星期二星期三星期四星期五A3223414B4332315C1232311(2)总数是14+15+11=40,则五天内《汉语字典》的借阅频率是:=.21.解:(1)∵总人数q=3÷0.05=60(人),∴m=9÷60=0.15,n=60﹣3﹣9﹣18﹣6=24(人),p=6÷60=0.1,故答案为:0.15,24,0.1,60;(2)由各组的频率可知,频率最小的一组的成绩范围是49.5﹣59.5,故答案为:49.5﹣59.5;(3)成绩优秀的学生有18+6=24(人).故答案为:24.22.解:(1)总人数是:4÷10%=40(人),∵健步走占30%,∴健步走的人数是:40×30%=12(人),∴m=12﹣4=8,∴n=40﹣16﹣12﹣4﹣5=3,故答案为:8,3;(2)扇形统计图中“广场舞“项目所对应扇形的圆心角度数为×360°=144°,故答案为:144;(3)根据题意得:3600×=720(人),答:这3600人中最喜欢的运动项目是“跑步“的约有720人.23.解:(1)将B、D两空格填写完整如下:次数255075100125150175200225A81521263236445157B0.32 0.300.28 0.26 0.256 0.24 0.2510.255 0.253C81321263237434955D0.320.260.280.26 0.256 0.2470.246 0.245 0.244 (2)折线统计图如下:(3)大转盘中25次与50次的大小频率之差为0.02,200与225次之间的大小频率之差为0.002;小转盘中25次与50次的大小频率之差为0.06,200与225次之间的大小频率之差为0.001;(4)随着次数的增多,大小转盘的频率都逐渐稳定在0.25左右.24.解:(1)由折线图知,第13天,这一路口的行人交通违章次数是8,这20天中,行人交通违章7次的有6天,故答案为:8,6;(2)这20天中,行人交通违章6次的有5天,补全直方图如图2所示:故答案为:5;(3)扇形统计图如图3所示,违章9次的天数在扇形统计图中所对的圆心角度数为:360°×15%=54°.。

浙教版七年级下第6章《数据与统计图表》单元培优试题含答案

浙教版七年级下第6章《数据与统计图表》单元培优试题含答案

浙教版七下数学第6章《数据与统计图表》单元培优测试题班级_________ 姓名_____________ 得分_____________注意事项:本卷共有三大题23小题,满分120分,考试时间120分钟.一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1﹒下列说法中,不正确的是()A﹒了解某市中小学生每天睡眠情况,适合采用抽样调查B﹒了解某班学生的兴趣爱好,适合采用普查C﹒检查乘坐高铁旅客的行李,适合采用普查D﹒检查新研发的新型战斗机的零部件,适合采用抽样调查2﹒某课外兴趣小组为了解所在地区老年人的身体健康状况,分别作出了四种不同的抽样调查,你认为抽样比较合理的是()A﹒在公园选择1000名老年人了解身体健康状况B﹒随意调查10名老年人的健康状况C﹒利用所辖派出所的户籍网随机调查10%老年人的健康状况D﹒在各医院、卫生院调查100名老年人的健康状况3﹒某中学为了解七年级800名学生的视力情况,从中抽查了100名学生的视力情况,对于这个问题,下列说法中正确的是()A﹒该校七年级800名学生的全体是总体B﹒每个学生是个体C﹒100名学生的视力情况是所抽取样本的容量D﹒100名学生的视力情况是所抽取的一个样本4﹒为调查某校1500名学生对新闻、体育、动画、娱乐和戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图﹒根据统计图提供的信息,可估算出该校喜欢体育节目的学生共有()A﹒300名B﹒400名C﹒450名D﹒1200名第4题图第6题图第8题图5﹒某地三月中旬每天平均空气质量指数(AQI)分别为:118,96,60,82,56,86,112,108,94,为了描述这十天空气质量的变化情况,最适合用的统计图是()A﹒条形统计图B﹒折线统计图C﹒扇形统计图D﹒频数分布直方图6﹒如图,所提供的信息正确的是()A﹒七年级学生人数最多B﹒九年级的男生是女生的2倍C﹒九年级女生比男生多D﹒八年级比九年级的学生多6、4,则第5组的频率是()A﹒0.1 B﹒0.2 C﹒0.3 D﹒0.48﹒为了解七年级学生的体育锻炼时间,小华调查了某班45名同学一周参加体育锻炼的情况,并把它绘制成折线统计图.由图可知,一周参加体育锻炼8小时的人数比锻炼10小时的人数少()A﹒20%B﹒40%C﹒60%D﹒80%9﹒如图是七(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A﹒2~4小时B﹒4~6小时C﹒6~8小时D﹒8~10小时10.小明统计了他家今年4月份打电话的次数及通话时间,并列出了如下频数分布表:通话时间x/分钟0<x≤55<x≤1010<x≤1515<x≤20频数(通话次数)20 16 9 6 则通话时间不超过15分钟的频率是()A﹒0.1B﹒0.4C﹒0.5 D﹒0.9二、填空题(本题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.某自然保护区的工作人员为估算该自然保护区栖息的某种鸟类的数量,他们随机捕捉了500只这种鸟,先将每只鸟做好标记,然后将其全部放回,经过一段时间之后,他们又从该保护区随机捕捉该种鸟300只,发现其中有20只是之前做的标记,则该保护区有这种鸟类大约________只﹒12.对某班组织的一次考试成绩进行统计,已知80.5~90.5分这一组的频数是7,频率是0.2,那么该班级的人数是________人﹒13.一个样本含有下面10个数据:52,51,49,50,47,48,50,51,48,53,如果将这组数据的组距定为1.5,则应分成________组﹒14.在某次公益活动中,小明对本年级同学的捐款情况进行了统计,绘制成如图所示的不完整的条形统计图,其中捐10元的人数占年级总人数的25%,则本次捐款20元的人数为__________人﹒第14题图第15题图第16题图15.某校对学生上学方式进行了一次抽样调查,并根据调查结果绘制了一个不完整的扇形统计图,其中“其他”部分所对应的圆心角为36°,则“步行”部分所占百分比是_____﹒16.如图是某地一周五天中的日平均气温统计图,观察统计图得到下列4条信息:①这五天大;④这五天中有两天平均气温相同;⑤周二比周一平均气温升高了20%﹒其中信息准确的有____________________﹒(只填写准确信息的序号)三、解答题(本题有7小题,共66分)解答应写出文字说明,证明过程或推演步骤.17.(6分)某中学开展“阳光体育一小时”活动.根据学校场地情况,决定开设四种运动项目:乒乓球;足球;篮球;跳绳.为了解学生最喜欢哪一种运动项目,随机抽取了n 名学生进行问卷调查,每位学生在问卷调查时都按要求只选择了其中一种喜欢的运动项目.收回全部问卷后,将收集到的数据整理并绘制成如下不完整的统计图,若参与调查的学生中喜欢乒乓球项目的学生人数占参与调查学生人数的40%.根据统计图提供的信息,解答下列问题:(1)求n的值;(2)求参与调查的学生中喜欢篮球的学生人数,并补全条形统计图;(3)根据统计结果,估计该校1800名学生中喜欢篮球项目的学生比喜欢足球项目的学生多的人数.18.(8分)某校课外兴趣小组在本校学生中开展“感动中国2016年度人物”先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A,B,C,D四类,其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,划分类别后的数据整理如下表:类别频数频率A 30 aB 40 0.4C 24 0.24D b 0.06(1)表中a,b的值各是多少?(2)根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;(3)若该校有2000名学生,根据调查结果估计该校学生中类别为D的人数约为多少?19.(8分)诗词是我国古代文化中的瑰宝,某市教育主管部门为了解本市初中生对诗词的学习情况,举办了一次“中华诗词”背诵大赛,随机抽取了部分同学的成绩绘制了如下不完整的频数表(每一组含前一个边界值,不含后一个边界值).组别(分)组中值(分)频数频率50~6055 40 0.0860~7065 70 0.1470~8075 90 b80~9085 a 0.4090~10095 100 0.20 请根据以上信息,解答下列问题:(1)求统计表中a,b的值;(2)数据分组时,组距是多少?并根据上述信息绘制频数直方图;(3)若参加本次大赛的同学共有4000人,请你估计成绩在90分及以上的学生大约有多少人?20.(10分)为了解某市12000名初中学生的视力情况,某校数学兴趣小组从该市七、八、九年级各随机抽取了100名学生进行调查,整理他们的视力情况数据,得到如下的折线统计图.(1)由统计图可以看出年级越高视力不良率越________(填“高”或“低”);(2)抽取的八年级学生中,视力不良的学生有多少名;(3)请你根据抽样调查的结果,估计该市12000名初中学生中视力不良的人数是多少?21.(10分)某中学七年级学生共450人,其中男生250人,女生200人.该校对七年级所有学生进行了一次体育测试,并随机抽取了50名男生和40名女生的测试成绩作为样本进行分析,绘制成如下的条形统计图:成绩频数百分比不及格9 10%及格18 20%良好36 40%优秀27 30% (1)本次随机抽取了50名男生和40名女生进行分析合理吗?为什么?(2)请绘制扇形统计图来反映这次体育测试各等级成绩所占百分比情况;(3)估计该校七年级学生体育测试成绩不及格的人数.22.(12分)为了加强学生的安全意识,某校组织了学生参加安全知识竞赛,从中抽取了部分学生成绩(满分为100分)进行统计,绘制如下不完整的频数直方图,若将频数直方图划分的五组从左至右依次记为A、B、C、D、E,绘制如下扇形统计图,请你根据图形提供的信息,解答下列问题:(1)若A组的频数比B组小24,求频数分布直方图中的a、b的值;(2)扇形统计图中,D部分所对的圆心角为多少度,并补全频数直方图;(3)E组的两个边界值是多少?该组的频数、频率分别是多少?(4)若成绩在80分以上为优秀,全校共有2000名学生,估计成绩优秀的学生有多少名?23.(12分)已知一水果个体户在批发市场按每千克1.8元批发了若干千克的西瓜在城镇出售,为了方便,他带了一些零钱备用.他先按市场价售出一些后,又降价出售.若根据他售出西瓜千克数x和他手中持有的钱数y元(含备用零钱)绘制如下折线统计图,请你根据统计图提供的信息,解答下列问题:(1)该水果个体户自带的备用零钱是多少元?(2)降价前他每千克西瓜出售的价格是多少?(3)随后他按每千克下降0.5元将剩余的西瓜售完,这时他手中的钱(含备用的钱)是450元,问他一共批发了多少千克的西瓜?(4)请问这位水果个体户一共赚了多少钱?浙教版七下数学第6章《数据与统计图表》单元培优测试题参考答案Ⅰ﹒答案部分:一、选择题题号 1 2 3 4 5 6 7 8 9 10 答案 D C D A B B B A B D 二、填空题11﹒7500﹒12﹒35﹒13﹒5﹒14﹒35﹒15﹒40%﹒16﹒①②③﹒三、解答题17.解:(1)n=80÷40%=200(人);(2)200-80-30-50=40(人);答:喜欢篮球的学生人数为40人,补全条形统计图如下:(3)4030200×1800=90(人),答:该校1800名学生中喜欢篮球项目的学生比喜欢足球项目的学生多90人.18.解:(1)问卷调查的总人数是:400.4=100(名),a=30100=0.3,b=100×0.06=6(名),故a,b的值分别为0.3,6;(2)类别为B的学生数所对应的扇形圆心角的度数为:360°×0.4=144°;(3)根据题意得:2000×0.06=120(名).答:该校学生中类别为D的人数约为120名.19.解:(1)由频数表可知:本次随机抽取的学生数为40÷0.08=500(人),∴a=500×0.4=200,b=90500=0.18,故a,b的值为200,0.18;(2)组距为10,绘制频数直方图如下:(3)∵4000×0.20=800(人),∴估计成绩在90分及以上的学生大约有800人.20.解:(1)由折线统计图可知,年级越高视力不良率越高,故答案为:高;(2)∵100×63%=63,∴抽取的八年级学生中,视力不良的学生有63名;(3)12000×10049%10063%10068%100100100⨯+⨯+⨯++=7200(名),答:估计视力不良的学生共有7200名.21.解:(1)合理,理由如下:∵抽取的男生所占百分比为50250=20%,抽取的女生所占百分比为40200=20%,∴抽取的男生所占百分比=抽取的女生所占百分比,∴随机抽取了50名男生和40名女生是合理的;(2)绘制的扇形统计图如下:(3)该校七年级学生体育测试成绩不及格的人数为:450×10%=45人,答:估计该校七年级学生体育测试成绩不合格的人数为45人.22.解:(1)学生总数是24÷(20%-8%)=200(人),则a=200×8%=16,b=200×20%=40;(2)n°=360°×70200=126°.即D部分所对的圆心角为126°,C组的人数是:200×25%=50.补全频数直方图如下:;(3)E组的两个边界值分别是90.5,100.5,该组的频数为200-16-40-50-70=24(人),频率为24200=0.12;(4)∵D、E两组的百分比的和为1-25%-20%-8%=47%,∴2000×47%=940(名)答估计成绩优秀的学生有940名.23.解:(1)由折线统计图可知:该水果个体户自带的备用零钱为50元,答:该水果个体户自带的备用零钱为50元;(2)(330-50)÷80=280÷80=3.5元.答:降价前他每千克西瓜售出的价格是3.5元;(3)(450-330)÷(3.5-0.5)=120÷3=40(千克),则80+40=120千克,答:他一共批发了120千克的西瓜;(4)450-120×1.8-50=184元.答:这个水果贩子一共赚了184元钱.Ⅱ﹒解答部分:一、选择题1﹒下列说法中,不正确的是()A﹒了解某市中小学生每天睡眠情况,适合采用抽样调查B﹒了解某班学生的兴趣爱好,适合采用普查C﹒检查乘坐高铁旅客的行李,适合采用普查D﹒检查新研发的新型战斗机的零部件,适合采用抽样调查【解答】A﹒了解某市中小学生每天睡眠情况,适合采用抽样调查,故此项正确;B﹒了解某班学生的兴趣爱好,适合采用普查,故此项正确;C﹒检查乘坐高铁旅客的行李,适合采用普查,故此项正确;D﹒检查新研发的新型战斗机的零部件,适合采用普查,故此项不正确;故选:D﹒2﹒某课外兴趣小组为了解所在地区老年人的身体健康状况,分别作出了四种不同的抽样调查,你认为抽样比较合理的是()A﹒在公园选择1000名老年人了解身体健康状况B﹒随意调查10名老年人的健康状况C﹒利用所辖派出所的户籍网随机调查10%老年人的健康状况D﹒在各医院、卫生院调查100名老年人的健康状况【解答】A﹒调查不具代表性,故此项错误;B﹒调查不具广泛性,故此项错误;C﹒调查具有广泛性、代表性,故此项正确;D﹒调查不具代表性,故此项错误,故选:C.3﹒某中学为了解七年级800名学生的视力情况,从中抽查了100名学生的视力情况,对于这个问题,下列说法中正确的是()A﹒该校七年级800名学生的全体是总体B﹒每个学生是个体C﹒100名学生的视力情况是所抽取样本的容量D﹒100名学生的视力情况是所抽取的一个样本【解答】A﹒该校八年级800名学生的视力情况的全体是总体,故此项错误;B﹒每个学生的视力情况是个体,故此项错误;C﹒样本的容量是100,故此项错误;D﹒100名学生的视力情况是所抽取的一个样本,故此项正确,故选:D﹒4﹒为调查某校1500名学生对新闻、体育、动画、娱乐和戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图﹒根据统计图提供的信息,可估算出该校喜欢体育节目的学生共有()A﹒300名B﹒400名C﹒450名D﹒1200名第4题图第6题图第8题图【解答】1500×(1-10%-30%-35%-5%)=300(名),故选:A﹒5﹒如图,所提供的信息正确的是()A﹒七年级学生人数最多B﹒九年级的男生是女生的2倍C﹒九年级女生比男生多D﹒八年级比九年级的学生多【解答】根据图中数据计算:七年级人数是8+13=21;八年级人数是14+16=30;九年级人数是10+20=30,所以A和D错误;根据统计图的高低,显然C错误;B中,九年级的男生20人是女生10人的两倍,故正确.故选:B.6﹒某地三月中旬每天平均空气质量指数(AQI)分别为:118,96,60,82,56,86,112,108,94,为了描述这十天空气质量的变化情况,最适合用的统计图是()A﹒条形统计图B﹒折线统计图C﹒扇形统计图D﹒频数分布直方图【解答】因为要反映这十天空气质量的变化情况,所以选择折线统计图最合适,故选:B﹒7﹒一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、4,则第5组的频率是()A﹒0.1 B﹒0.2 C﹒0.3 D﹒0.4【解答】根据题意得:40-(12+10+6+4)=40-32=8,则第5组的频率为8÷40=0.2.故选:B.8﹒为了解七年级学生的体育锻炼时间,小华调查了某班45名同学一周参加体育锻炼的情况,并把它绘制成折线统计图.由图可知,一周参加体育锻炼8小时的人数比锻炼10小时的人数少()A﹒20%B﹒40%C﹒60%D﹒80%【解答】由图可知:锻炼8小时的人数为8人,锻炼10小时的人数10人,∴10810=20%,故选:A﹒9﹒如图是七(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A﹒2~4小时B﹒4~6小时C﹒6~8小时D﹒8~10小时【解答】解:由条形统计图可得,4~6小时这组的频数为22,所以4~6小时这组的人数最多,故选:B.10.小明统计了他家今年4月份打电话的次数及通话时间,并列出了如下频数分布表:通话时间x/分钟0<x≤55<x≤1010<x≤1515<x≤20频数(通话次数)20 16 9 6则通话时间不超过15分钟的频率是()A﹒0.1B﹒0.4C﹒0.5 D﹒0.9【解答】由频数分布表可得,通话时间不超过15分钟的频率是20169 201695+++++=0.9,故选:D﹒二、填空题11.某自然保护区的工作人员为估算该自然保护区栖息的某种鸟类的数量,他们随机捕捉了500只这种鸟,先将每只鸟做好标记,然后将其全部放回,经过一段时间之后,他们又从该保护区随机捕捉该种鸟300只,发现其中有20只是之前做的标记,则该保护区有这种鸟类大约________只﹒【解答】500÷20300=7500(只),故答案为:7500﹒12.对某班组织的一次考试成绩进行统计,已知80.5~90.5分这一组的频数是7,频率是0.2,那么该班级的人数是________人﹒【解答】∵80.5~90.5分这一组的频数是7,频率是0.2,∴该班级的人数是7÷0.2=35,故答案为:35﹒13.一个样本含有下面10个数据:52,51,49,50,47,48,50,51,48,53,如果将这组数据的组距定为1.5,则应分成________组﹒【解答】分析数据得:这组数据的最大值为53,最小值为47,则它们的差为53-47=6,∵组距定为1.5,∴61.6=4,但由于要包含两个端点,故可分为5组,故答案为:5﹒14.在某次公益活动中,小明对本年级同学的捐款情况进行了统计,绘制成如图所示的不完整的条形统计图,其中捐10元的人数占年级总人数的25%,则本次捐款20元的人数为__________人﹒第14题图第15题图第16题图【解答】由题意,知:本年级捐款的同学一共有20÷25%=80(人),则本次捐款20元的有80-20-10-15=35(人),故答案为:35﹒15.某校对学生上学方式进行了一次抽样调查,并根据调查结果绘制了一个不完整的扇形统计图,其中“其他”部分所对应的圆心角为36°,则“步行”部分所占百分比是_____﹒【解答】∵“其他”部分所对应的圆心角为36°,∴“其他”部分所占百分比为36360︒︒=10%,∴“步行”部分所占百分比是1-15%-35%-10%=40%,故答案为:40%﹒16.如图是某地一周五天中的日平均气温统计图,观察统计图得到下列4条信息:①这五天中周二平均气温最高;②这五天中周三平均气温最低;③从周二到周三平均气温变化最大;④这五天中有两天平均气温相同;⑤周二比周一平均气温升高了20%﹒其中信息准确的有____________________﹒(只填写准确信息的序号)【解答】由折线统计图可得:这五天中周二平均气温最高,故①正确;这五天中周三平均气温最低,故②正确;从周二到周三平均气温变化最大,故③正确;这五天中有三天平均气温相同,故④错误;周二比周一平均气温升高了222020-=10%,故⑤错误,故答案为:①②③﹒三、解答题17.某中学开展“阳光体育一小时”活动.根据学校场地情况,决定开设四种运动项目:乒乓球;足球;篮球;跳绳.为了解学生最喜欢哪一种运动项目,随机抽取了n名学生进行问卷调查,每位学生在问卷调查时都按要求只选择了其中一种喜欢的运动项目.收回全部问卷后,将收集到的数据整理并绘制成如下不完整的统计图,若参与调查的学生中喜欢乒乓球项目的学生人数占参与调查学生人数的40%.根据统计图提供的信息,解答下列问题:(1)求n的值;(2)求参与调查的学生中喜欢篮球的学生人数,并补全条形统计图;(3)根据统计结果,估计该校1800名学生中喜欢篮球项目的学生比喜欢足球项目的学生多的人数.【解答】解:(1)n=80÷40%=200(人);(2)200-80-30-50=40(人);答:喜欢篮球的学生人数为40人,补全条形统计图如下:(3)4030200×1800=90(人),答:该校1800名学生中喜欢篮球项目的学生比喜欢足球项目的学生多90人.18.某校课外兴趣小组在本校学生中开展“感动中国2016年度人物”先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A,B,C,D四类,其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,划分类别后的数据整理如下表:类别频数频率A 30 aB 40 0.4C 24 0.24D b 0.06(1)表中a,b的值各是多少?(2)根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;(3)若该校有2000名学生,根据调查结果估计该校学生中类别为D的人数约为多少?【解答】解:(1)问卷调查的总人数是:400.4=100(名),a=30100=0.3,b=100×0.06=6(名),故a,b的值分别为0.3,6;(2)类别为B的学生数所对应的扇形圆心角的度数为:360°×0.4=144°;(3)根据题意得:2000×0.06=120(名).答:该校学生中类别为D的人数约为120名.19.诗词是我国古代文化中的瑰宝,某市教育主管部门为了解本市初中生对诗词的学习情况,举办了一次“中华诗词”背诵大赛,随机抽取了部分同学的成绩绘制了如下不完整的频数表(每一组含前一个边界值,不含后一个边界值).组别(分)组中值(分)频数频率50~6055 40 0.0860~7065 70 0.1470~8075 90 b80~9085 a 0.4090~10095 100 0.20请根据以上信息,解答下列问题:(1)求统计表中a,b的值;(2)数据分组时,组距是多少?并根据上述信息绘制频数直方图;(3)若参加本次大赛的同学共有4000人,请你估计成绩在90分及以上的学生大约有多少人?【解答】解:(1)由频数表可知:本次随机抽取的学生数为40÷0.08=500(人),∴a=500×0.4=200,b=90500=0.18,故a,b的值为200,0.18;(2)组距为10,绘制频数直方图如下:(3)∵4000×0.20=800(人),∴估计成绩在90分及以上的学生大约有800人.20.为了解某市12000名初中学生的视力情况,某校数学兴趣小组从该市七、八、九年级各随机抽取了100名学生进行调查,整理他们的视力情况数据,得到如下的折线统计图.(1)由统计图可以看出年级越高视力不良率越________(填“高”或“低”);(2)抽取的八年级学生中,视力不良的学生有多少名;(3)请你根据抽样调查的结果,估计该市12000名初中学生中视力不良的人数是多少?【解答】解:(1)由折线统计图可知,年级越高视力不良率越高,故答案为:高;(2)∵100×63%=63,∴抽取的八年级学生中,视力不良的学生有63名;(3)12000×10049%10063%10068%100100100⨯+⨯+⨯++=7200(名),答:估计视力不良的学生共有7200名.21.某中学七年级学生共450人,其中男生250人,女生200人.该校对七年级所有学生进行了一次体育测试,并随机抽取了50名男生和40名女生的测试成绩作为样本进行分析,绘制成如下的条形统计图:成绩频数百分比不及格9 10%及格18 20%良好36 40%优秀27 30%(1)本次随机抽取了50名男生和40名女生进行分析合理吗?为什么?(2)请绘制扇形统计图来反映这次体育测试各等级成绩所占百分比情况;(3)估计该校七年级学生体育测试成绩不及格的人数.【解答】解:(1)合理,理由如下:∵抽取的男生所占百分比为50250=20%,抽取的女生所占百分比为40200=20%,∴抽取的男生所占百分比=抽取的女生所占百分比,∴随机抽取了50名男生和40名女生是合理的;(2)绘制的扇形统计图如下:(3)该校七年级学生体育测试成绩不及格的人数为:450×10%=45人,答:估计该校九年级学生体育测试成绩不合格的人数为45人.22.为了加强学生的安全意识,某校组织了学生参加安全知识竞赛,从中抽取了部分学生成绩(满分为100分)进行统计,绘制如下不完整的频数直方图,若将频数直方图划分的五组从左至右依次记为A、B、C、D、E,绘制如下扇形统计图,请你根据图形提供的信息,解答下列问题:(1)若A组的频数比B组小24,求频数分布直方图中的a、b的值;(2)扇形统计图中,D部分所对的圆心角为多少度,并补全频数直方图;(3)E组的两个边界值是多少?该组的频数、频率分别是多少?(4)若成绩在80分以上为优秀,全校共有2000名学生,估计成绩优秀的学生有多少名?【解答】解:(1)学生总数是24÷(20%-8%)=200(人),则a=200×8%=16,b=200×20%=40;(2)n°=360°×70200=126°.即D部分所对的圆心角为126°,C组的人数是:200×25%=50.补全频数直方图如下:;(3)E组的两个边界值分别是90.5,100.5,该组的频数为200-16-40-50-70=24(人),频率为24200=0.12;(4)∵D、E两组的百分比的和为1-25%-20%-8%=47%,∴2000×47%=940(名)答估计成绩优秀的学生有940名.23.已知一水果个体户在批发市场按每千克1.8元批发了若干千克的西瓜在城镇出售,为了方便,他带了一些零钱备用.他先按市场价售出一些后,又降价出售.若根据他售出西瓜千克数x和他手中持有的钱数y元(含备用零钱)绘制如下折线统计图,请你根据统计图提供的信息,解答下列问题:(1)该水果个体户自带的备用零钱是多少元?(2)降价前他每千克西瓜出售的价格是多少?(3)随后他按每千克下降0.5元将剩余的西瓜售完,这时他手中的钱(含备用的钱)是450元,问他一共批发了多少千克的西瓜?(4)请问这位水果个体户一共赚了多少钱?【解答】解:(1)由折线统计图可知:该水果个体户自带的备用零钱为50元,答:该水果个体户自带的备用零钱为50元;(2)(330-50)÷80=280÷80=3.5元.答:降价前他每千克西瓜售出的价格是3.5元;(3)(450-330)÷(3.5-0.5)=120÷3=40(千克),则80+40=120千克,答:他一共批发了120千克的西瓜;(4)450-120×1.8-50=184元.答:这个水果贩子一共赚了184元钱.。

最新浙教版七年级数学下册《第六章数据与统计图表》单元试题含答案

最新浙教版七年级数学下册《第六章数据与统计图表》单元试题含答案

第6章测试卷一、选择题(每题3分,共30分)1.以下问题,不适合用全面调查的是( )A.了解全班同学每周体育锻炼的时间B.调查七年级(1)班学生的某次数学考试成绩C.调查某班学生的身高D.了解全市中小学生每天的零花钱2.如图是某班学生参加课外兴趣小组的人数占总人数百分比的统计图,则参加人数最多的课外兴趣小组是( )A.棋类组 B.演唱组 C.书法组 D.美术组(第2题) (第5题)3.要调查你校学生学业负担是否过重,选用下列哪种方法最恰当( ) A.查阅文献资料 B.对学生无记名问卷调查C.上网查询 D.对校领导问卷调查4.为了表示某种食品中钙、维生素、糖等物质的含量的百分比,应选用( ) A.条形统计图 B.折线统计图C.扇形统计图 D.直方图5.在今年的助残募捐活动中,我市某中学九年级(1)班同学组织献爱心捐款活动,班长根据第一组12名同学的捐款情况绘制成如图所示的条形统计图.根据图中提供的信息,第一组捐款金额的平均数是( )A.20元 B.15元C.12元 D.10元6.为了了解2017年昆明市九年级学生学业水平考试的数学成绩,从中随机抽取1 000名学生的数学成绩,下列说法正确的是( )A.2017年昆明市九年级学生是总体B.每一名九年级学生是个体C.1 000名九年级学生是总体的一个样本D.样本容量是1 0007.某公司的生产量在七个月之内的增长率变化情况如图所示,从图上看,下列结论不正确的是( )A.2~6月生产量增长率逐月减少B.7月份生产量的增长率开始回升C.这七个月中,每月生产量不断上涨D.这七个月中,生产量有上涨有下跌8.小林家今年1~5月份的用电量情况如图所示,由图可知,相邻两个月中,用电量变化最大的是( )A.1月至2月 B.2月至3月C.3月至4月 D.4月至5月(第8题) (第9题)9.为了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图所示的频数直方图(每小组的时间值包含最小值,不包含最大值).根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分比约( )A.50% B.55% C.60% D.65%10.希望中学开展以“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,根据这组数据绘制成不完整的统计图如图,则下列四种说法中不正确的是( )A.被调查的学生有200人B.被调查的学生中最喜欢教师职业的有40人C.被调查的学生中最喜欢其他职业的占40%D.扇形统计图中,公务员部分对应扇形圆心角的度数是72°二、填空题(每题3分,共24分)11.要调查某班学生对“社会主义核心价值观”内容的熟记情况,宜选择____________.(填“全面调查”或“抽样调查”)12.已知一个样本数据分组的组距是10,某组的组别显示“27.5~37.5”,则该组的组中值是________.13.某学校为了解学生课间体育活动情况,随机抽取本校100名学生进行调查.整理收集到的数据,绘制成如图所示的统计图.若该校共有800名学生,估计最喜爱“踢毽子”的学生有________名.14.小亮同学为了估计全县九年级学生的人数,对自己所在乡的人口和全乡九年级学生人数作了调查:全乡人口约2万,九年级学生人数为300.全县人口约35万,由此他推断全县九年级学生人数约为5 250,但县教育局提供的全县九年级学生人数为3 000,与估计数据有很大偏差.根据所学的统计知识,你认为产生偏差的原因是________________________.15.为制订某区七年级学生校服的生产计划,有关部门需要了解七年级男生的身高情况.现有三种调查方案:①测量该区各学校男子篮球队、排球队中七年级学生的身高;②查阅外区各校七年级男生身高的统计资料;③在该区的城区和农村均任选几所学校,测量这几所学校七年级男生的身高.你认为上述调查方案中比较合适的是________.(只填写序号)16.某班50名学生在某一次考试中,分数段在90~100分的频率为0.1,则该班在这个分数段的学生有________名.17.从某厂生产的同种规格的电阻中,抽取100只进行测量,得到一组数据.其中最大值为11.58欧,最小值为10.72欧,对这组数据进行整理时,确定它的组距为0.10欧,则应分成________组.18.如图是某农场里三种蔬菜种植面积的扇形统计图,若西红柿种植面积为4.2公顷,则这三种蔬菜种植总面积是________公顷,表示黄瓜的扇形圆心角的度数为________.三、解答题(19,20题每题6分,21,22,23题每题8分,24题10分,共46分) 19.某股票上周五的收盘价为3元,本周的收盘价分别为:周一3.2元;周二3.25元;周三3.35元;周四3.18元;周五3.3元,根据以上信息完成下列各题:(1)填写下面的统计表:(2)画出你认为最能反映该股票变化情况的统计图.20.某学校为了解2017年八年级学生课外书籍借阅情况.从中随机抽取了40名学生进行调查,根据调查结果列出如下的表格,并绘制成如图所示的扇形统计图,其中科普类本数占这40名学生借阅总本数的40%.(1)求表格中字母m的值及扇形统计图中“教辅类”所对应的圆心角α的度数;(2)该校2017年八年级有500名学生,请你估计该年级学生共借阅教辅类书籍约多少本.21.小军同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数统计表和频数直方图(如图).(1)请根据题中已有的信息补全频数统计表和频数直方图;(2)如果家庭月均用水量大于或等于4 t且小于7 t为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户.22.某学习小组对所在城区初中学生的视力情况进行抽样调查,图①是调查小组根据调查结果画出的条形统计图.请根据图中信息解决下列问题:(1)本次调查活动中共抽查了多少名学生?(2)请估算该城区视力不低于4.8的学生所占的比例,用扇形统计图的形式在图②中表示出来.(3)假设该城区八年级共有4 000名学生,请估计这些学生中视力低于4.8的学生约有多少名.23.为了解某校七、八年级学生的睡眠情况,随机抽取了该校七、八年级部分学生进行调查.已知抽取的七年级与八年级的学生人数相同,利用抽样所得的数据绘制了如下统计图表.睡眠情况分组表(单位:小时)根据图表提供的信息,回答下列问题:(1)求统计图中的a.(2)抽取的样本中,八年级学生睡眠时间在C组的有多少人?(3)已知该校七年级学生有755人,八年级学生有785人.如果睡眠时间x(小时)满足:7.5≤x<9.5,称睡眠时间合格.试估计该校七、八年级学生中睡眠时间合格的共有多少人.24.某校为了了解学生在校吃午餐所需时间的情况,抽查了20名同学在校吃午餐所花的时间,获得如下数据(单位:min):10,12,15,10,16,18,19,18,20,38,22,25,20,18,18,20,15,16,21,16.(1)若将这些数据分为6组,请列出频数表,画出频数直方图;(2)根据频数直方图,你认为校方安排学生吃午餐时间多长为宜?请说明理由.答案一、1.D 2.B 3.B 4.C 5.D 6.D 7.D 8.B 9.C 10.C 二、11.全面调查 12.32.5 13.200 14.样本选取不合理15.③ 16.5 17.9 18.7.5;108° 三、19.解:(1)(2)如图所示.某股票收盘价变化情况折线统计图20.解:(1)依题意得,总本数为128÷40%=320(本),∴m =320-128-80-48=64. “教辅类”所对应的圆心角α=80320×360°=90°. (2)8040×500=1 000(本). 答:估计该年级学生共借阅教辅类书籍约1 000本. 21.解:(1)补全频数统计表如下:补全频数直方图如图:(2)中等用水量家庭大约有450×(30%+20%+12%)=279(户).22.解:(1)本次调查活动中共抽查了200+600+300+500+200+300=2 100(名)学生.(2)本次调查中视力不低于4.8的学生人数为600+500+300=1 400(名),所占的比例为1 4002 100=23,约为67%.所以估计该城区视力不低于4.8的学生人数约占学生总人数的67%. 扇形统计图如图所示.(3)由条形统计图可知在抽取的八年级的学生中,视力低于4.8的学生占抽取的八年级学生总人数的300800,则估计该城区八年级视力低于4.8的学生人数约为300800×4 000=1 500(名). 23.解:(1)a =1-35%-25%-25%-10%=5%.(2)依题意,得八年级抽取的学生人数为6+19+17+10+8=60(人),所以八年级学生睡眠时间在C 组的有60×35%=21(人). (3)755×19+1760+785×(25%+35%)=924(人).11答:估计该校七、八年级学生中睡眠时间合格的共有924人.24.解:(1)(2)校方安排学生吃午餐时间25 min 左右为宜,因为约有90%的学生在25 min 内可以就餐完毕.。

浙教版七年级数学下《第6章数据与统计图表》检测题含答案

浙教版七年级数学下《第6章数据与统计图表》检测题含答案

12.如图 ,是某班同学一次献爱心捐款的条形图 有 15 人每人捐 100 元 ( 答案不唯一 )__.
,写出一条你从图中所获得的信息: __
13.某市为了了解七年级学生数学考试成绩 ,从全体学生的成绩中抽取了一部分 ,其中 有 10 人得 100 分 , 20 人得 95 分, 80 人得 90 分 , 100 人得 80 分, 150 人得 70 分 ,在这个
2.为ቤተ መጻሕፍቲ ባይዱ考察一批电视机的使用寿命 本是 ( D )
,从中任意抽取了 10 台进行实验 ,在这个问题中样
A . 抽取的 10 台电视机 B.这一批电视机的使用寿命
C.10 D.抽取的 10 台电视机的使用寿命
3. 为了了解我市 6000 名学生参加的初中毕业会考数学考试的成绩情况
, 从中抽取了
200 名考生的成绩进行统计 , 在这个问题中 ,下列说法: ①这 6000 名学生的数学会考成绩
此组的组中值是 __167.5_cm__.
18.某校要在园内空地上种植桂花树、香樟树、柳树、木棉树
A . 5 组 B. 6 组 C.7 组 D. 8 组
6. 某个样本的频数直方图中 , 一组数据的频数为 50, 频率为 0.5, 则抽查样本的样本 容量是 ( A )
A . 100 B. 75 C. 25 D .无法确定
7. 某校随机抽取 200 名学生 , 对他们喜欢的图书类型进行问卷调查 , 统计结果如图 , 根据图中信息 , 估计该校 2000 名学生中喜欢文学类书籍的人数是 ( A )
100
根据图表提供的信息 , 下列结论错误的是 ( D )
A . 这次被调查的学生人数为 400 人 B.扇形统计图中 E 部分扇形的圆心角为 72° C.被调查的学生中喜欢选修课 E, F 的人数分别为

2021-2022学年浙教版初中数学七年级下册第六章数据与统计图表单元测试试卷(含答案详细解析)

2021-2022学年浙教版初中数学七年级下册第六章数据与统计图表单元测试试卷(含答案详细解析)

初中数学七年级下册第六章数据与统计图表单元测试(2021-2022浙教考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、下列调查中,最适宜采用全面调查(普查)的是()A.调查一批灯泡的使用寿命B.调查漓江流域水质情况C.调查桂林电视台某栏目的收视率D.调查全班同学的身高2、某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如下尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③B.①③⑤C.②③④D.②④⑤3、如图,是某企业甲、乙两位员工的能力测试结果的网状图,以O为圆心的五个同心圆分别代表能力水平的五个等级由低到高分别赋分1至5分,由原点出发的五条线段分别指向能力水平的五个维度,网状图能够更加直观的描述测试者的优势和不足,观察图形,有以下几个推断:①甲和乙的动手操作能力都很强;②缺少探索学习的能力是甲自身的不足;③与甲相比乙需要加强与他人的沟通合作能力;④乙的综合评分比甲要高.其中合理的是()A.①③B.②④C.①②③D.①②③④4、为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.所抽取的100台电视机的寿命D.1005、某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、“优”划分为四个等级,并绘制成如图所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为()A.1100B.1000C.900D.1106、要反映台州市某一周每天的最高气温的变化趋势,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布统计图7、如图,是根据某市2010年至2014年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中信息判断错误的是()A.2010年至2014年间工业生产总值逐年增加B.2014年的工业生产总值比前一年增加了40亿元C.2012年与2013年每一年与前一年比,其增长额相同D.从2011年至2014年,每一年与前一年比,2014年的增长率最大8、某中学开展“眼光体育一小时”活动,根据学校实际情况,如图决定开设“A:踢毽子,B:篮球,C:跳绳,D:乒乓球”四项运动项目(每位同学必须选择一项),为了解学生最喜欢哪一项运动项目,随机抽取了一部分学生进行调查,丙将调查结果绘制成如图的统计图,则参加调查的学生中最喜欢跳绳运动项目的学生数为()A.240 B.120 C.80 D.409、在下列四项调查中,方式正确的是()A.了解本市中学生每天学习所用的时间,采用全面调查的方式B.为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C.了解某市每天的流动人口数,采用全面调查的方式D.了解全市中学生的视力情况,采用抽样调查的方式10、某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是()A.30,40 B.45,60 C.30,60 D.45,40二、填空题(5小题,每小题4分,共计20分)1、2021年4月25日-29日,福州举办第四届数字中国建设峰会,会务组要知道所有参会人员的体温状况,应采用的调查方式是__.(填“抽样调查”或“全面调查”)2、某校随机抽查若干名学生,测试了1分钟仰卧起坐的次数,把所得数据绘制成频数分布直方图(如图),则仰卧起坐次数不小于15次且小于20次的频率等于______.3、为了解学生体质健康水平,某校抽查了10名学生每分钟跳绳次数,获得如下数据(单位:次)87,88,89,91,93,100,102,111,117,121.则跳绳次数在90~110这一组的频数是________________.4、一组数据中的最小值是31,最大值是101,若取组距为9,则组数为______.5、为了考察我市5000名七年级学生数学知识与能力测试的成绩,从中抽取100份试卷进行分析,那么样本容量是_____.三、解答题(5小题,每小题10分,共计50分)1、某市教育局在全市党员教职工中开展的“学党史,知党情,颂党恩”活动中,进行了论文的评比,论文的交稿时间为6月1日至25日,评委会把各校交的论文的篇数按4天一组分组统计,绘制成如图所示的频数分布直方图(每组包括左端点,不包括右端点)已知从左往右各小长方形的高的比为2:3:4:6:4:1,第二组的频数为18.请回答下列问题.(1)本次活动共有多少篇论文参加评比?(2)哪组上交的论文数量最多?是多少?(3)经过评比,第四组和第六组分别有20篇、4篇论文获奖,则这两组哪组获奖率高?2、某学校为了推动运动普及,拟成立多个球类运动社团,为此,学生会采取抽样调查的方法,从足球、乒乓球、篮球、排球四个项目调查了若干名学生的兴趣爱好(要求每位同学只能选择其中一种自己喜欢的球类运动),并将调查结果绘制成了如下条形统计图和扇形统计图(不完整),请你根据图中提供的信息,解答下列问题:(1)本次调查的学生共有多少人;(2)请将条形统计图和扇形统计图补充完整;(3)若该学校共有学生2000人,根据以上数据分析,试估计选择足球运动的同学有多少人?3、为了调查居民的生活水平,有关部门对某个地区5个街道的50户居民的家庭存款额进行了调查,数据(单位:万元)如下:1.6 3.52.3 6.5 2.2 1.9 6.8 4.8 5.0 4.7 2.31.5 3.1 5.6 3.72.23.3 5.84.3 3.6 3.8 3.05.1 7.0 3.1 2.9 4.4 5.8 3.8 3.7 3.3 5.2 4.14.2 4.8 3.0 4.0 4.6 6.0 2.4 3.3 6.15.0 4.93.0 3.1 7.2 1.8 5.0 1.9将数据适当分组,并绘制相应的频数直方图.4、某校为了调查学生视力变化情况,从该校2010年入校的学生中抽取了部分学生进行连续三年的视力跟踪调查,将所得数据进行处理,制成折线统计图和扇形统计图(如图1、图2所示).(1)该校被抽查的学生共有多少名?(2)现规定视力达到5.0及以上为合格,若被抽查年级共有500名学生,估计该年级在2012年有多少名学生视力合格.5、调查你们班同学出生时的体重(或身高),然后将数据适当分组,并绘制相应的频数直方图,看看你们班大多数同学出生时的体重(或身高)处于哪个范围.---------参考答案-----------一、单选题1、D【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.从而逐一判断各选项.【详解】解:A、调查一批灯泡的使用寿命,由于具有破坏性,应当使用抽样调查,故本选项不合题意;B、调查漓江流域水质情况,所费人力、物力和时间较多,应当采用抽样调查的方式,故本选项不合题意;C、调查桂林电视台某栏目的收视率,人数多,耗时长,应当采用抽样调查的方式,故本选项不合题意.D、调查全班同学的身高,应当采用全面调查,故本选项符合题意.【点睛】本题考查的是全面调查与抽样调查的含义,掌握以上知识是解题的关键.2、C【分析】在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中找到三个互不包含,互不交叉的项目即可.【详解】解:∵①室外体育运动,包含了②篮球和③足球,⑤球类运动,包含了②篮球和③足球,∴只有选择②③④,调查问卷的选项之间才没有交叉重合,故选:C.【点睛】本题考查收集调查数据的过程与方法,理解题意,准确掌握收集数据的方法是解题的关键.3、D【分析】根据甲、乙两位员工的能力测试结果的网状图一一判断即可得到答案;【详解】解:因为甲、乙两位员工的动手操作能力均是5分,故甲乙两人的动手操作能力都很强,故①正确;因为甲的探索学习的能力是1分,故缺少探索学习的能力是甲自身的不足,故②正确;甲的与他人的沟通合作能力是5分,乙的与他人的沟通合作能力是3分,故与甲相比乙需要加强与他人的沟通合作能力,故③正确;乙的综合评分是:3+4+4+5+5=22分,甲的综合评分是:1+4+4+5+5=19分,故乙的综合评分比甲要高,故选:D;【点睛】本题主要考查图象信息题,能从图象上获取相关的信息是解题的关键;4、C【详解】本题考查的对象是了解一批电视机的使用寿命,故样本是所抽取的100台电视机的使用寿命.故选C.5、A【分析】先求出“良”和“优”的人数所占的百分比,然后乘以2000即可.【详解】解:“良”和“优”的人数所占的百分比:852518728525++++×100%=55%,∴在2000人中成绩为“良”和“优”的总人数估计为2000×55%=1100(人),故选:A.【点睛】本题考查了用样本估计总体,求出“良”和“优”的人数所占的百分比是解题关键.6、C【详解】根据题意,得要求直观反映长沙市一周内每天的最高气温的变化情况,结合统计图各自的特点,应选择折线统计图.故选C.7、D【详解】解:A、2010年至2014年间工业生产总值逐年增加,正确,不符合题意;B、2014年的工业生产总值比前一年增加了40亿元,正确,不符合题意;C、2012年与2013年每一年与前一年比,其增长额相同,正确,不符合题意;D、从2011年至2014年,每一年与前一年比,2012年的增长率最大,故D符合题意;故选D.【点睛】本题考查折线统计图.8、D【详解】试题分析:调查的总人数是:80÷40%=200(人),则参加调查的学生中最喜欢跳绳运动项目的学生数是:200﹣80﹣30﹣50=40(人).故选D.考点:1.条形统计图;2.扇形统计图.9、D【详解】分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.详解:A、了解本市中学生每天学习所用的时间,调查范围广适合抽样调查,故A不符合题意;B、为保证运载火箭的成功发射,对其所有的零部件采用全面调查的方式,故B不符合题意;C、了解某市每天的流动人口数,无法普查,故C不符合题意;D、了解全市中学生的视力情况,采用抽样调查的方式,故D符合题意;故选D.点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10、B【详解】试题分析:由题意得,打羽毛球学生的比例为:1﹣20%﹣10%﹣30%=40%,则跑步的人数为:150×30%=45,打羽毛球的人数为:150×40%=60.故选B.考点:扇形统计图.二、填空题1、全面调查【分析】根据事件的特点,结合全面调查特点即可确定调查方式.【详解】∵第四届数字中国建设峰会参会人员有限,疫情的需要,∴选全面调查.故答案为:全面调查【点睛】根据事件的特点,结合全面调查特征确定答案,做题的关键是弄清全面调查的优点以及局限性.2、0.1【分析】结合频数分布直方图,根据频率=频数÷总数,直接代入求解即可.【详解】解:仰卧起坐次数不小于15次且小于20次的频率是:3310125+++=0.1;故答案为:0.1.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力,解题的关键是掌握频率=频数÷总数.3、4【分析】首先找出在90~110这一组的数据个数,可得答案.【详解】解:∵在这10个数据中,跳绳次数在90~110这一组的有4个,∴跳绳次数在90~110这一组的频数是4.故答案为:4.【点睛】此题主要考查了频数与频率,关键是掌握频率=频数÷总数.4、8【分析】根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:在样本数据中最大值与最小值的差为101-31=70,已知组距为9,所以,70÷9=779,故可以分成8组.故答案为8【点睛】本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.5、100【分析】直接利用样本容量的定义分析得出答案.【详解】解:∵从中抽取100份试卷进行分析,∴样本容量是:100.故答案为:100.【点睛】本题考查了总体、个体、样本、样本容量的知识,属于基础题,解答本题的关键是分清具体问题中的总体、个体与样本.三、解答题1、(1)本次活动共有120篇论文参加评比;(2)计算可知第四组上交的论文数量最多,有36篇;(3)第六组的获奖率较高【分析】(1)由题意可知:从左至右各长方形的高的比为2:3:4:6:4:1,则从左到右的各组的频率为0.1、0.15、0.2、0.3、0.2、0.05,又知第二组的频数为18,则总篇数==第二组的频数÷第二组的频率;(2)由图可以看出第四组的频率组大,则第四组的论文数量最多;(3)第四组的论文的频数=120×0.3=36篇,第六组的论文的频数=120×0.05=6篇;则第四组的获奖率=20÷36=56%,第六组的获奖率为4÷6=67%;则第六组的获奖率较高.【详解】解:(1)第二组的频率是32+3+4+6+4+1=0.15总篇数是18÷0.15=120(篇),则本次活动共有120篇论文参加评比.(2)由题意可知:从左至右各长方形的高的比为2:3:4:6:4:1,则从左到右的各组的频率为0.1、0.15、0.2、0.3、0.2、0.05,第四组的论文的频数=120×0.3=36篇,则计算可知第四组上交的论文数量最多,有36篇.(3)第六组的论文的频数=120×0.05=6篇;第四组的获奖率=20÷36×100%≈56%,第六组的获奖率为4÷6≈67%;56%<67%,则第六组的获奖率较高.【点睛】本题考查频率的分布直方图,能从图表中提取有用的信息是解题的关键.2、(1)400人;(2)画图见解析;(3)500人【分析】(1)由喜欢足球的有100人,占比25%,列式10025%,再计算即可得到答案;(2)分别求解喜欢排球的占比为:10%,喜欢篮球的占比为:25%,喜欢篮球的人数为:40025%100⨯=人,喜欢乒乓球的人数有:40040%160⨯=人,再补全图形即可;(3)由样本中喜欢足球的占比乘以总体的总人数即可得到答案.【详解】解:(1)由喜欢足球的有100人,占比25%,可得:本次调查的学生共有100400 25%=人,(2)喜欢排球的占比为:40100%10%, 400⨯=所以喜欢篮球的占比为:140%25%10%25%,---=喜欢篮球的人数为:40025%100⨯=人,喜欢乒乓球的人数有:40040%160⨯=人,所以补全图形如下:(3)该学校共有学生2000人,则选择足球运动的同学有:200025%500⨯=人.【点睛】本题考查的是从条形图与扇形图中获取信息,补全条形图与扇形图,利用样本估计总体,熟练的从两个图形中得到互相关联的信息是解本题的关键.3、见解析【分析】绘制频数分布直方图的一般步骤为:1、收集数据;2、整理数据;3、分析数据(决定组距、频数);4、绘制频数分布表;5、绘制频数分布直方图,在本题中,由于最大的数据为7.2,最小的数据为1.5,则极差为7.2-1.5=5.7,于是需将数据分为6组,接下来对数据进行分组,统计出每组数据的个数,按照绘制频数分布直方图的方法来作图即可.【详解】解:第一步,计算最大值与最小值的差:在所给的数据中,最大值是7.2,最小值是1.5,它们的差是7.2-1.5=5.7,第二步,决定组距与组数:由于最大值与最小值的差是5.7,如果取组距为1,那么由于5.77=5110,可分成6组,组数合适,于是取组距为1,组数为6,第三步,列频数分布表:第四步,画频数直方图:【点睛】本题考查了绘制频数分布直方图的方法,属于基础题,熟练掌握绘制频数分布直方图的一般步骤是解题关键.4、(1)该校被抽查的学生共有300名;(2)估计该年级在2012年有300名学生视力合格.【分析】(1)利用折线图中10年的视力为5.0以下人数120和扇形图中的百分比40%,即可求出总人数;(2)用样本估计总体可直接求算结果.【详解】解:(1)120÷40%=300人.故该校被调查的学生共有300名.(2)500×(10%+20%+30%)=300人.估计该年级在2012年有300名视力合格.【点睛】本题考查的是折线统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.5、见解析【分析】先调查,将我们班同学出生时候的体重数据进行分组列表,然后绘制频数直方图,进而分析可得学出生时的题中处于那个范围.【详解】调查所得数据,分组如下:绘制频数直方图如下:从频数直方图可知,大多数同学出生时的体重处于3.6-4.0kg之间.【点睛】本题考查了调查与统计,绘制频数分布表,绘制频数直方图,掌握频数分布表和直方图是解题的关键.。

浙教版七年级下《第6章数据与统计图表》单元测试有答案-(数学)

浙教版七年级下《第6章数据与统计图表》单元测试有答案-(数学)

第6章质量评估试卷一、选择题(每题5分,共30分)1.以下问题中,不适合用全面调查的是( ) A.了解全班同学每周体育锻炼的时间B.鞋厂检查生产的鞋底能承受的弯折次数C.学校招聘老师,对应聘人员面试D.黄河三角洲中学调查全校753名学生的身高2.某同学为了解梅州市火车站今年“五一”期间每天乘车人数,随机抽查了其中五天的乘车人数,所抽查的这五天中每天乘车人数是这个问题的( )A.总体B.个体 C.样本D.以上都不对3.为调查某校2000名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合数据作出如图1所示的扇形统计图.根据统计图提供的信息,可估算出该校喜爱体育节目的学生共有( )A.300名B.400名 C.500名D.600名图1 图24.如图2,下列说法正确的是 ( )A.步行人数最少,为90人B.步行人数为50人C.坐公共汽车的人数占总数的50%D.步行与骑自行车的人数和比坐公共汽车的人数要少5.如图3是护士统计一位甲型H1N1流感疑似病人的体温变化图,这位病人在16时的体温约是 ( )A.37.8℃B.38℃ C.38.7℃D.39.1℃图3 图46.为了支援地震灾区同学,某校开展捐书活动,七(1)班40名同学积极参与.现将捐书数量绘制成频数直方图如图4所示,则捐书数量在5.5~6.5组别的频率是( )A.0.1 B.0.2 C.0.3 D.0.4二、填空题(每题5分,共30分)7.Lost time is never found again(岁月既往,一去不回).在这句谚语的所有英文字母中,字母“i”出现的频率是__ __.8.某中学为了解学生上学方式,现随机抽取部分学生进行调查,将结果绘成条形统计图如图5所示,由此可估计该校2400名学生中有__ __名学生是乘车上学的.图5 图69.在中国旅游日(5月19日),金华市旅游部门对2011年第一季度游客在金华的旅游时间作抽样调查,统计如下:当天往__ __.10.学校组织七、八、九年级同学参加某项综合实践活动.如图6所示的扇形统计图表示上述各年级参加人数的分布情况.已知九年级有80人参加,则这三个年级参加该项综合实践活动的共有__ __人.11.把90个数据分成四组,绘制成频数直方图,已知各小长方形的高的比为3∶4∶2∶1,则第一小组的频率为__ _,第二小组的频数为__ __.12.某校九年级二班的学生在植树节开展“植树造林,绿化城市”的活动,本次活动结束后,该班植树情况的部分统计图如图7所示,那么该班的总人数是__ __人.图7三、解答题(共40分)13.(10分)中学生骑电动车上学的现象越来越受到社会的关注,为此某媒体记者小李随机调查了城区若干名中学生家长对这种现象的态度(态度分为:A:无所谓;B:反对;C:赞成),并将调查结果绘制成如图①和图②所示的统计图(不完整).请根据图中提供的信息,解答下列问题:图8(1)此次抽样调查中,共调查了________名中学生家长;(2)将图①补充完整;(3)根据抽样调查结果,请你估计该市城区80000名中学生家长中有多少名家长持反对态度?14.(10分)某市把中学生学习情绪的自我调控能力分为四个等级,即A级:自我调控能力很强;B级:自我调控能力较好;C级:自我调控能力一般;D级:自我调控能力较差.通过对该市农村中学的初级中学生学习情绪的自我调控能力的随机抽样调查,得到下面两幅不完整的统计图,请根据图中的信息解决下面的问题.(1)在这次随机抽样调查中,共抽查了多少名学生?(2)求自我调控能力为C级的学生人数;(3)求扇形统计图中D级所占的圆心角的度数;(4)请估计该市农村中学60000名初中学生中,学习情绪自我调控能力达到B级及以上等级的人数是多少?图915.(10分)某城市对教师试卷讲评课中学生参与的深度和广度进行评价,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制了如下两幅不完整的统计图,请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了______名学生;(2)请将条形统计图补充完整;(3)如果全市有16万名初中学生,那么在试卷讲评课中,“独立思考”的学生约有多少万人?图1016.(10分)某校组织学生书法比赛,对参赛作品按A ,B ,C ,D 四个等级进行了评定.现随机抽取部分学生书法作品的评定结果进行分析,并绘制扇形统计图和条形统计图如下:图11根据上述信息完成下列问题:(1)求这次抽取的样本的容量;(2)请在图②中把条形统计图补充完整;(3)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B 级以上(即A 级和B 级)的有多少份?第六章参考答案1、B,2、B ,3、B ,4、C ,5、C ,6、B ,7、0.12,8、312,9、144º, 10、320, 11、0.3,36, 12、40,13、解:(1)200;(2)略;(3)持反对态度的家长人数:80000×60%=48000(名). 14、解:(1)80÷16%=500(名).(2)500×42%=210(名). (3)360°×90500=64.8°.(4)60000×(16%+24%)=24000(名). 15、解:(1)560,(2)560-84-168-224=84,(3)16×168560=4.8, ∴“独立思考”的学生约有4.8万人.16、解:(1)这次抽取的样本的容量为24÷20%=120; (3)750×24+48120=450(份),∴参赛作品达到B 级以上的约有450份.。

浙教版七年级下第六章数据与统计图表单元检测卷有答案-(数学)

浙教版七年级下第六章数据与统计图表单元检测卷有答案-(数学)

第六章数据与统计图表单元检测卷一、选择题1.下列调查中,适宜采用全面调查普查方式的A. 对“天宫一号”飞船的零部件进行检查B. 对我市中小学生视力情况进行调查C. 对市场上某品牌老酸奶的质量情况进行调查D. 对某品牌彩电的使用寿命2.为了解2013年河北中考数学试卷学生得分情况,某小组从中随机抽查了1000份进行分析,下列说法中不正确的是A. 以上调查方式属于抽样调查B. 总体是所有考生的数学试卷C. 个体指每个考生的数学试卷D. 样本容量指所有抽取的1000份试卷3.有40个数据,最大值为35,最小值为15,若取组距为则组数应为A. 4B. 5C. 6D. 74.某学习小组将要进行一次统计活动,下面是四位同学分别设计的活动序号,其中正确的是A. 实际问题收集数据表示数据整理数据统计分析合理决策B. 实际问题表示数据收集数据整理数据统计分析合理决策C. 实际问题收集数据整理数据表示数据统计分析合理决策D. 实际问题整理数据收集数据表示数据统计分析合理决策5.某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查你认为抽样比较合理的是A. 在公园调查了1000名老年人的健康状况B. 在医院调查了1000名老年人的健康状况C. 调查了10名老年邻居的健康状况D. 利用派出所的户籍网随机调查了该地区的老年人的健康状况6.下列调查中,适宜采用全面调查普查方式的是A. 对我市中学生心理健康状况的调差B. 调差我市冷饮市场雪糕质量情况C. 调差我国网民对某件事的看法D. 对我国首架大型民用飞机各零部件质量的检查7.下列调查中,适宜采用全面调查普查方式的是A. 调查乘坐飞机的旅客是否携带了违禁物品B. 调查市场上老酸奶的质量情况C. 调查某品牌圆珠笔芯的使用寿命D. 调查我市市民对伦敦奥运会吉祥物的知晓率8.下列调查中,适宜采用普查方式的是A. 了解一批圆珠笔的寿命B. 了解全国九年级学生身高的现状C. 检查一枚用于发射卫星的运载火箭的各零部件D. 考察人们保护海洋的意识9.下列调查方式中,应采用“普查”方式的是A. 调查某品牌手机的市场占有率B. 调查我市市民实施低碳生活的情况C. 对我国首架歼15战机各个零部件的调查D. 调查某型号炮弹的射程10.下列调查中,调查方式选择不合理的是A. 了解某电视台某次“爱的奉献”抗震救灾文艺晚会的收视率,采用抽样调查的方式B. 了解某渔场中青鱼的平均重量,采用抽样调查C. 了解某型号联想电脑的使用寿命,采用全面调查D. 了解一批汽车的刹车性能,采用全面调查二、填空题11.如图的折线统计图分别表示我国A市与B市在2015年4月份的日平均气温的情况,记该月A市和B市日平均气温是的天数分别为m天和n天,则 ______.12.在如图所示的频数分布直方图中,共测量了______ 个学生的身高,人数最多的身高段占全体被测者的比例是______.13.某校为了解学生喜爱的体育活动项目,随机抽查了100名学生,让每人选一项自已喜欢的项目,并制成如图所示的扇形统计图如果该校有1200名学生,则喜爱跳绳的学生约有______ 人14.某校在一次期末考试中,随机抽取八年级30名学生的数学成绩进行分析,其中3名学生的数学成绩达108分以上,据此估计该校八年级630名学生中期末考试数学成绩达108分以上的学生约有______ 名15.把40个数据分在4个组内,第一、二、四组中的数据分别为,,,则第三组的频数为______ ,频率为______.三、解答题16.某学校wie丰富课间自由活动的内容,随机选取本校100名学生进行调查,调查内容是“你最喜欢的自由活动项目是什么”,整理收集到的数据,绘制成直方图,如图.喜欢“踢毽子”的学生有______ 人,并在图中将“踢毽子”部分的条形图补充完整;喜欢“跳绳”的频率是______ ;该校共有800名学生,估计喜欢“跳绳”的学生有______ 人17.某校对该校七年级班全体学生的血型做了一次全面调查,根据调查结果绘制了下列两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:该校七年级班有多少名学生.求出扇形统计图中“O型”血所对扇形的圆心角的度数.将条形统计图中“B型”血部分的条形图补充完整.18.某中学开展以“我最喜欢的职业”为主题的调査活动,并根据收集的数据绘制了如图不完整的统计图请你根据图中提供的信息,解答下面的问题:求被调査的学生人数;将折线统计图补充完整;求出扇形统计图中公务员部分对应的圆心角的度数.19.随着互联网的发展,同学们的学习习惯也有了改变,一些在做题遇到困难时,喜欢上网查找答案,针对这个问题,某校调查了部分学生对这种做法的意见分为:赞成、无所谓、反对,并将调查结果绘制成图1和图2两个不完整的统计图,请根据图中提供的信息,解答下列问题:此次抽样调查中,共调查了多少名学生?将图1补充完整;求出扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;根据抽样调查结果,请你估计该校1500名学生中有多少名学生持“无所谓”意见?20.学习完统计知识后,小兵就本班同学的上学方式进行调查统计、他通过收集数据后绘制的两幅不完整的统计图如下图所示请你根据图中提供的信息解答下列问题:求该班共有多少名学生;请将表示“步行”部分的条形统计图补充完整;在扇形统计图中,“骑车”部分扇形所对应的圆心角是多少度;若全年级共1000名学生,估计全年级步行上学的学生有多少名?【答案】1. A2. D3. B4. C5. D6. D7. A8. C 9. C 10. C11. 10012. 50;13. 36014. 6315. 12;16. 25;;16017. 解:名答:该校七年级班有50名学生.依题意有“O型”血占的百分比为:扇形统计图中“O型”血所对扇形的圆心角的度数“B型”血部分的人数为人,补全条形统计图18. 解:被调查的学生人数为人;喜欢医生职业的人数为人,喜欢教师职业的人数为人,如图:公务员部分对应的圆心角的度数为19. 解:持赞成意见的人数为130,所占百分比为,调查总人数人;持反对意见的人数为:人,条形统计图如图所示:持“反对”意见的学生所在扇形的圆心角的度数;该校1500名学生中有持“无所谓”意见学生数为:人20. 解:名;“步行”学生人数:名;“骑车”部分扇形所对应的圆心角的度数:;名.。

最新浙教版初中数学七年级下册第六章数据与统计图表章节练习试题(含答案解析)

最新浙教版初中数学七年级下册第六章数据与统计图表章节练习试题(含答案解析)

初中数学七年级下册第六章数据与统计图表章节练习(2021-2022浙教考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、在下列调查中,适宜采用全面调查的是()A.了解我省中学生视力情况B.了解九(1)班学生校服的尺码情况C.检测一批电灯泡的使用寿命D.调查台州《600全民新闻》栏目的收视率2、根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可知,下列说法错误..的是()A.扇形统计图能反映各部分在总体中所占的百分比B.每天阅读30分钟以上的居民家庭孩子超过50%C.每天阅读1小时以上的居民家庭孩子占20%D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108°3、荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人4、以下问题不适合全面调查的是()A.调查某班学生每周课前预习的时间B.调查某中学在职教师的身体健康状况C.调查全国中小学生课外阅读情况D.调查某校篮球队员的身高5、为了了解青海湖自然保护区中白天鹅的分布数量,保护区的工作人员捕捉了40只白天鹅做记号后,放飞在大自然保护区里,过一段时间后又捕捉了40只白天鹅,发现里面有5只白天鹅有记号,试推断青海湖自然保护区里有白天鹅( )A.40只B.1600只C.200只D.320只6、随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去年的收入分别是60000元和80000元,下面是依据①②③三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图.依据统计图得出的以下四个结论正确的是()A.①的收入去年和前年相同B.③的收入所占比例前年的比去年的大C.去年②的收入为2.8万D.前年年收入不止①②③三种农作物的收入7、小明统计了他家今年5月份打电话的次数及通话时间,并列出了如下的频数分布表:则通话时间不超过15 min的频率为( )A.0.1 B.0.4 C.0.5 D.0.98、某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四9、某中学开展“眼光体育一小时”活动,根据学校实际情况,如图决定开设“A:踢毽子,B:篮球,C:跳绳,D:乒乓球”四项运动项目(每位同学必须选择一项),为了解学生最喜欢哪一项运动项目,随机抽取了一部分学生进行调查,丙将调查结果绘制成如图的统计图,则参加调查的学生中最喜欢跳绳运动项目的学生数为()A.240 B.120 C.80 D.4010、某商品四天内每天每斤的进价与售价信息如图所示,则售出这种商品每斤利润最大的是()A.第一天B.第二天C.第三天D.第四天二、填空题(5小题,每小题4分,共计20分)1、如图为某市未来几天的每日最高气温与最低气温的变化趋势图,根据图中信息可知,最大的温差是______.2、用哪种统计图反映如下信息更合适?(选填“条形图”、“扇形图”或“折线图”)(1)某学生从6岁到12岁每年一次体检的视力变化情况________.(2)某班40名同学穿鞋的号码数________.(3)北京市各区的占地面积与全市总面积的对比情况________.(4)海淀区昨天一天的气温变化情况________.(5)空气的组成成分________.3、为了了解某校七年级1500名学生的数学期中考试成绩,从中抽取了200名学生的成绩进行统计,在这个问题中,样本容量是________.4、为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞60条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有________条鱼.5、在频数分布直方图中,横坐标表示________,纵坐标表示各组的________,各个小长方形的面积等于相应各组的________,全体小长方形总面积即________,各小长方形面积占全体小长方形总面积的百分比好等于相应各组的________,等距分组时,通常直接用小长方形的高表示________.三、解答题(5小题,每小题10分,共计50分)1、某音像制品店某一天的销售的情况如图:(1)从条形统计图看,民歌类唱片与流行歌曲唱片销售量之比大约是多少?从扇形统计图看呢?(2)要使读者清楚地看出各类音像制品的销售量之比,条形统计图应做怎样的改动?2、下面是A,B两球从不同高度自由下落到地面后反弹高度的统计图.(1)比较两个球反弹高度的变化情况,哪个球的弹性大?(2)如果两个球下落的起始高度继续增加,那么你认为A球的反弹高度会继续增加吗?B球呢?(3)分别比较A球、B球的反弹高度和起始高度,你认为反弹高度会超过起始高度吗?3、根据下表制作扇形统计图,表示各大洋面积占四大洋总面积的百分比.四大洋的面积统计表(1)借助计算器,计算各大洋面积占四大洋总面积的百分比(结果精确到1%);(2)借助计算器,计算各大洋面积对应的扇形圆心角的度数(结果精确到1 );(3)画出扇形统计图.4、你能读懂这些统计图吗?这些统计图和我们学过的统计图相比有什么特点?有关部门曾经对“您是否想成为奥运会志愿者”做了一个网上调查,结果显示:①想97%,②不想3%.你能将这一调查结果用比较形象的统计图表示出来吗?5、“立定跳远”是凌源市中考体育考试项目之一.为了了解七年级女生的“立定跳远”情况,某校随机抽取了部分女生进行“立定跳远”测试,并将测试数据(单位:cm)统计后绘制成如图不完整的统计图表,请根据图表中的信息解答下列问题:“立定跳远”成绩频数分布表(1)频数分布表中,a=,b=,c=;(2)请补全频数分布直方图;(3)按国家规定,“立定跳远”成绩满足187≤x<206时,等级为“良好”.若该校七年级女生共有840人,则其中等级为“良好”的女生约有多少人?---------参考答案-----------一、单选题1、B【详解】试题分析:采用全面调查时,调查的对象要小,A、C、D三个选项的调查对象庞大,不宜适用全面调查,只能采用抽样调查的方式.考点:调查的方式.2、C【分析】根据扇形统计图中的百分比的意义逐一判断即可得.【详解】解:A.扇形统计图能反映各部分在总体中所占的百分比,此选项正确;B.每天阅读30分钟以上的居民家庭孩子的百分比为140%60%-=,超过50%,此选项正确;C.每天阅读1小时以上的居民家庭孩子占30%,此选项错误;D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是360(140%10%20%)108︒⨯---=︒,此选项正确;故选C.【点睛】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.3、D【详解】【分析】结合条形图和扇形图,求出样本人数,进而进行解答.【详解】A、本次抽样调查的样本容量是200040%=5000,正确;B、扇形图中的m为10%,正确;C、样本中选择公共交通出行的有5000×50%=2500人,正确;D、若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有50×40%=20万人,错误,故选D.【点睛】本题考查了条形统计图、扇形统计图,熟悉样本、用样本估计总体等知识是解题的关键,另外注意学会分析图表.4、C【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.【详解】解: A.调查某班学生每周课前预习的时间,班级容量小,且要求精准度高,用全面调查B.调查某中学在职教师的身体健康状况,人数不多,容易调查,适合普查;C.调查全国中小学生课外阅读情况,中学生的人数比较多,适合采取抽样调查;D.调查某篮球队员的身高,此种情况数量不是很大,故必须普查;故选C5、D【分析】先根据样本求出有记号的白天鹅所占的百分比,再用40除以这个百分比即可.【详解】根据题意得:540=32040÷(只),答:青海湖自然保护区里有白天鹅320只;故选D.【点睛】本题考查了用样本估计总体,解题关键是熟记总体平均数约等于样本平均数.6、C【详解】A、前年①的收入为60000×117360=19500,去年①的收入为80000×117360=26000,此选项错误;B、前年③的收入所占比例为360135117360--×100%=30%,去年③的收入所占比例为360126117360--×100%=32.5%,此选项错误;C、去年②的收入为80000×126360=28000=2.8(万元),此选项正确;D、前年年收入即为①②③三种农作物的收入,此选项错误,故选C.【点睛】本题主要考查扇形统计图,解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数,并且通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.7、D【分析】用不超过15分钟的通话时间除以所有的通话时间即可求得通话时间不超过15分钟的频率.【详解】解:∵不超过15分钟的通话次数为20+16+9=45次,通话总次数为20+16+9+5=50次,∴通话时间不超过15min的频率为4550=0.9,故选D.【点睛】本题考查了频数分布表的知识,解题的关键是了解频率=频数÷样本容量,难度不大.8、A【分析】通过条形统计图可以看出套餐一出现了50人,最多,即可得出答案.【详解】解:通过观察条形统计图可得:套餐一一共出现了50人,出现的人数最多,因此通过利用样本估计总体可以得出学生最喜欢的套餐种类是套餐一;故选:A.【点睛】本题主要考查了条形统计图,明白条形统计图能清楚地表示出每个项目的数据,从条形统计图中得到必要的信息是解决问题的关键.9、D【详解】试题分析:调查的总人数是:80÷40%=200(人),则参加调查的学生中最喜欢跳绳运动项目的学生数是:200﹣80﹣30﹣50=40(人).故选D.考点:1.条形统计图;2.扇形统计图.10、B【分析】根据图象中的信息即可得到结论.【详解】由图象中的信息可知,利润=售价﹣进价,利润最大的天数是第二天,故选B.二、填空题1、10【分析】求出每天的最高气温与最低气温的差,再比较大小即可.【详解】解:∵由折线统计图可知,15日温差=4−(−3)=7;16日温差=4−(−6)=10;17日温差=2−(−6)=8;18日温差=2−(−2)=4;19日温差=1−(−5)=6;20日温差=1−(−1)=2;∴最大的温差是10.故答案为:10.【点睛】本题考查了折线统计图的应用以及有理数的减法,掌握有理数减法法则是解答本题的关键.有理数减法法则:减去一个数,等于加上这个数的相反数.2、折线图条形图扇形图折线图扇形图【分析】根据统计图的特点,选用合适的统计图即可,条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小;折线统计图适合表示出变化情况.【详解】(1)某学生从6岁到12岁每年一次体检的视力变化情况,适合使用折线图;(2)某班40名同学穿鞋的号码数,适合使用条形图.(3)北京市各区的占地面积与全市总面积的对比情况,适合使用扇形图;(4)海淀区昨天一天的气温变化情况,适合使用折线图;(5)空气的组成成分,适合使用扇形图.故答案为:折线图;条形图;扇形图;折线图;扇形图【点睛】本题考查了条形统计图,折线统计图,扇形统计图的特点,根据实际情况选用合适的统计图是解题的3、200【分析】结合题意,根据样本容量的性质分析,即可得到答案.【详解】根据题意,样本容量是200;故答案为:200.【点睛】本题考查了样本容量的知识;解题的关键是熟练掌握样本容量的性质,从而完成求解.4、2400【分析】先打捞200条鱼,发现其中带标记的鱼有5条,求出有标记的鱼占的百分比,再根据共有60条鱼做上标记,即可得出答案.【详解】解:∵打捞200条鱼,发现其中带标记的鱼有5条,∴有标记的鱼占5200×100%=2.5%,∵共有60条鱼做上标记,∴鱼塘中估计有60÷2.5%=2400(条).故答案为:2400.【点睛】此题考查了用样本估计总体,关键是求出带标记的鱼占的百分比,运用了样本估计总体的思想.5、组距频数组距频数样本容量频率频数根据画频数直方图的相关概念分析即可.【详解】在频数分布直方图中,横坐标表示组距,纵坐标表示各组的频数组距,各个小长方形的面积等于相应各组的频数,全体小长方形总面积即样本容量,各小长方形面积占全体小长方形总面积的百分比好等于相应各组的频率,等距分组时,通常直接用小长方形的高表示频数.故答案为:组距;频数组距;频数;样本容量;频率;频数【点睛】本题考查了频数直方图,掌握画频数直方图是解题的关键.三、解答题1、(1)从条形统计图直观地看,民歌类唱片与流行歌曲唱片销售量之比约为2:3;从扇形统计图看,它们的比为2: 3;(2)应将0作为纵轴上销售量的起始值.【分析】(1)用民歌类唱片销售量除以流行歌曲唱片销售量即可.(2)根据条形统计图的特点回答即可.【详解】解:(1)从条形统计图看,民歌类唱片销售量为:80(张),流行歌曲唱片销售量为:120(张),∴民歌类唱片与流行歌曲唱片销售量之比约为80:120=2:3;从扇形统计图看,民歌类唱片与流行歌曲唱片销售量之比约为80:120=2:3;(2)要使读者清楚地看出各类音像制品的销售量之比,应将0作为纵轴上销售量的起始值.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.2、(1)A球的弹性大;(2)根据统计图预测,A球可能会继续增加,而B球可能不会;(3)不会超过起始高度.【分析】(1)根据折线统计图可知A球每次反弹的高度都比B球高,由此即可得到答案;(2)由折线统计图可知A球的反弹高度变化趋势还非常明显,而B球的反弹高度变化趋势趋于平缓,由此即可判断;(3)从折线统计图可知,反弹的高度是不会超过下路的起始高度的.【详解】解:(1)比较两个球反弹高度的变化情况可知,A球每次反弹的高度都比B球高,所以A球的弹性大;(2)根据统计图预测,A球可能会继续增加,而B球可能不会;(3)从统计图上看,反弹高度一直低于起始高度,并且差距越来越大,因此不会超过起始高度.【点睛】本题主要考查了折线统计图,解题的关键在于能够准确读懂统计图.3、(1)见解析;(2)见解析;(3)见解析【分析】(1)用各大洋面积的面积除以四大洋总面积,即可求出答案;(2)根据(1)得出的各大洋面积所占的百分乘以360°即可;(3)根据(2)得出的圆心角的度数即可画出扇形统计图.【详解】解:(1)17967.9+9165.5+7617.4+1475.0=36225.8(万2km);太平洋所占百分比:17967.90.50=50% 36225.8;印度洋所占百分比:9165.50.25=25% 36225.8≈;大西洋所占百分比:7617.40.21=21% 36225.8≈;北冰洋所占百分比:1475.00.04=4% 36225.8≈.(2)太平洋对应的扇形圆心角为:360°×50%=180°,大西洋对应的扇形圆心角为:360°×25%=90°,印度洋对应的扇形圆心角为:360°×21%≈76°,北冰洋对应的扇形圆心角为:360°×4%≈14°;(3)如图:四大洋面积统计图【点睛】本题考查了扇形统计图的制法及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°比.4、见解析【分析】根据统计图的特点解答即可.【详解】解:题中第一幅图是中国人口不同出生时间的性别人数的大致统计;题中第二幅图是在10个城市1016人参加调查的是否在禁烟的公共场合抽过烟的比例统计,这些统计图和我们.学过的统计图相比,没有条形图能清楚地表明各种数据的具体数量,但可以比较直观的进行大致双向数据对比.用扇形统计图表示,具体如下:想的部分:97%×360°=349°,不想的部分:3%×360°=11°扇形统计图如下:想97%不想3%【点睛】本题考查了统计图的应用,能够根据统计图得到相关的信息,并能根据题意绘制统计图.5、(1)0.2;3;40;(2)见解析;(3)294人【分析】(1)根据成绩频数分布表中168187x≤<中的频数为10,所占百分比为0.25,求得总数c,进而根据总数以及其他成绩的频数求得b,根据149168x≤<的频数除以总数即可求得a;(2)根据(1)的结论和频数分布表补全条形统计图;(3)根据成绩在187206x≤<的频数估算该校七年级女生等级为“良好”的女生约有多少人.【详解】解:(1)168187x≤<中的频数为10,所占百分比为0.25则10400.25c==,405810143b=----=,80.240a==∴a=0.2,b=3,c=40 故答案为:0.2,3,40(2)由题意可知成绩为187206x≤<的人数为14人,成绩为206225x≤<的人数为3人,补全全频数分布直方图,如图,(3)1440×840=294(人)所以等级为“良好”的女生约有294人.【点睛】本题考查了频数分布表和频数分布直方图的综合,根据样本的频数估计总体,用频数分布表中某部分的频数除以它的频率求出样本容量,进而求解其它未知的量是解题的关键.。

2022年浙教版初中数学七年级下册第六章数据与统计图表章节测试试题(含答案及详细解析)

2022年浙教版初中数学七年级下册第六章数据与统计图表章节测试试题(含答案及详细解析)

初中数学七年级下册第六章数据与统计图表章节测试(2021-2022浙教考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.2602、在下列四项调查中,方式正确的是()A.了解本市中学生每天学习所用的时间,采用全面调查的方式B.为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C.了解某市每天的流动人口数,采用全面调查的方式D.了解全市中学生的视力情况,采用抽样调查的方式3、今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计解析,以下说法正确的是( )A.这1000名考生是总体的一个样本B.近4万名考生是总体C.每位考生的数学成绩是个体D.1000名学生是样本容量4、为配合全科大阅读活动,学校团委对全校学生阅读兴趣调查的数据进行整理.欲反映学生感兴趣的各类图书所占百分比,最适合的统计图是( )A.条形统计图B.频数直方图C.折线统计图D.扇形统计图5、下列调查中,适宜采用全面调查(普查)方式的是()A.了解我国民众对乐天集团“萨德事件”的看法B.了解湖南卫视《人们的名义》反腐剧的收视率C.调查我校某班学生喜欢上数学课的情况D.调查某类烟花爆竹燃放的安全情况6、为了解某市参加中考的32000名学生的体质情况,抽查了其中1600名学生的体重进行统计分析.下面叙述正确的是()A.32000名学生是总体B.1600名学生的体重是总体的一个样本C.每名学生是总体的一个个体D.以上调查是普查7、下列调查中,调查方式选择合理的是()A.调查你所在班级同学的身高,采用抽样调查方式B.调查市场上某品牌电脑的使用寿命,采用普查的方式C.调查嘉陵江的水质情况,采用抽样调查的方式D.要了解全国初中学生的业余爱好,采用普查的方式8、甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市9、为了解学生体育锻炼的用时情况,陈老师对本班50名学生一天的锻炼时间进行调查,并将结果绘制成如图统计图,那么一天锻炼时间为1小时的人数占全班人数的()A.14% B.16% C.20% D.50%10、在频数分布直方图中,有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形面积的和的14,且数据有160个,则中间一组的频数为()A.0.2B.0.25C.32D.40二、填空题(5小题,每小题4分,共计20分)1、为了解某校七年级400名学生的身高情况,从中抽查了100名学生的身高情况进行统计分析,在此次调查中样本容量是____.2、为了了解某校七年级400名学生的期中数学成绩的情况,从中抽取了50名学生的数学成绩进行分析.在这个过程中,样本容量是________.3、已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是5,7,6,10,第五组的频率是0.2,则第六组的频率是______.4、目前我国中年人群中“三高”(高血压、高血脂、高血糖)现象严重,这个结论是通过______得到的(填“全面调查”或“抽样调查”).5、某班级有45名学生在期中考试学情分析中,分数段在70~79分的频率为0.4,则该班级在这个分数段内的学生有 _____人.三、解答题(5小题,每小题10分,共计50分)1、(1)设法收集你所在地区连续30天的空气污染指数;(2)空气质量等级划分如下:根据上述划分,请将你收集到的数据制作成频数直方图.2、小颖随机调查了若干市民租用公共自行车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图,请根据图中信息,解答下列问题:(1)这次被调查的总人数是多少?(2)试求表示A组的扇形圆心角的度数,并补全条形统计图;(3)试求在租用公共自行车的市民中,骑车时间在30分钟及以下的人数所占的百分比3、学校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图:(1)此次共调查了多少人?(2)通过计算将条形统计图补充完整;(3)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?4、某校对七年级学生进行“综合素质”评价,评价的结果分为A、B、C、D四个等级,现从中随机抽查了若干名学生的“综合素质”等级作为样本进行数据处理,并绘制了两幅不完整的统计图.根据统计图提供的信息,解答下列问题:(1)B等级人数所占百分比是;C等级所在扇形的圆心角是度;(2)请补充完整条形统计图;(3)若该校七年级学生共1000名,请根据以上调查结果估算:评价结果为A等级或B等级的学生共有名.5、2020年冬季达州市持续出现雾霾天气.某记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了尚不完整的统计图表.请根据图表中提供的信息解答下列问题:(1)填空:m=,n=,扇形统计图中E组所占的百分比为%;(2)若该市人口约有200万人,请你估计其中持D组“观点”的市民人数.(3)治污减霾,你有什么建议?---------参考答案-----------一、单选题1、A【详解】由题可得,抽查的学生中参加社团活动时间在8∼10小时之间的学生数为100−30−24−10−8=28(人),∴1000×28100=280(人),即该校五一期间参加社团活动时间在8∼10小时之间的学生数大约是280人.故选A.2、D【详解】分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.详解:A、了解本市中学生每天学习所用的时间,调查范围广适合抽样调查,故A不符合题意;B、为保证运载火箭的成功发射,对其所有的零部件采用全面调查的方式,故B不符合题意;C、了解某市每天的流动人口数,无法普查,故C不符合题意;D、了解全市中学生的视力情况,采用抽样调查的方式,故D符合题意;故选D.点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3、C【分析】根据总体、个体、样本、样本容量的定义对各选项判断即可.【详解】解:A、1000名考生的数学成绩是样本,故本选项错误;B、4万名考生的数学成绩是总体,故本选项错误;C、每位考生的数学成绩是个体,故本选项正确;D、1000是样本容量,故本选项错误.故选C.4、D【分析】根据题意,需要反映部分与总体的关系,故最适合的统计图是扇形统计图.【详解】欲反映学生感兴趣的各类图书所占百分比,最适合的统计图是扇形统计图.故选D.【点睛】本题主要考查了统计图的应用,熟练掌握各种统计图的特点是解答本题的关键.5、C【解析】解:A.了解我国民众对乐天集团“萨德事件”的看法调查范围广适合抽样调查,故A不符合题意;B.了解湖南卫视《人们的名义》反腐剧的收视率调查范围广适合抽样调查,故B不符合题意;C.调查我校某班学生喜欢上数学课的情况适合普查,故C符合题意;D.调查某类烟花爆竹燃放的安全情况调查具有破坏性适合抽样调查,故D不符合题意;故选C.6、B【详解】试题分析:A、总体是:某市参加中考的32000名学生的体质情况,故本选项错误,B、样本是:1600名学生的体重,故本选项正确,C、每名学生的体重是总体的一个个体,故本选项错误,D、是抽样调查,故本选项错误,故选B.考点:1.总体、个体、样本、样本容量;2.全面调查与抽样调查.7、C【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、调查你所在班级同学的身高,应采用全面调查方式,故方法不合理,故此选项错误;B、调查市场上某品牌电脑的使用寿命,采用普查的方式,方法不合理,故此选项错误;C、查嘉陵江的水质情况,采用抽样调查的方式,方法合理,故此选项正确;D、要了解全国初中学生的业余爱好,采用普查的方式,方法不合理,故此选项错误;故选C.【点睛】本题主要考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8、D【分析】根据折线图中各月的具体数据对四个选项逐一分析可得.【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C、8月份两家超市利润相同,此选项正确,不符合题意;D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D.【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.9、D【分析】根据条形统计图中的数据,可以计算出一天锻炼时间为1小时的人数占全班人数的百分比,从而可以解答本题.【详解】解:由题意可得,25÷(8+25+10+7)×100%=0.5×100%即一天锻炼时间为1小时的人数占全班人数的50%,故选:D.【点睛】本题考查样本估计总体,从条形统计图中读取信息是解题的关键.10、C【分析】由频率分布直方图分析可得“中间一个小长方形”对应的频率,再由频率与频数的关系,中间一组的频数.解:设中间一个小长方形的面积为x,其他10个小长方形的面积之和为y,则有x+y=1,x=14y,解得x=0.2∴中间一组的频数=160×0.2=32.【详解】解:设中间一个小长方形的面积为x,其他10个小长方形的面积之和为y,则有x+y=1, x=14y,解得x=0.2∴中间一组的频数=160×0.2=32.故选C.【点睛】本题是对频率、频数灵活运用的考查,各小组频数之和等于数据总和,各小组频率之和等于1.频率、频数的关系二、填空题1、100【分析】样本容量则是指样本中个体的数目.解:从中抽查了100名学生的身高,则这次调查中的样本容量是100,故答案为:100.【点睛】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.2、50【分析】根据样本容量:一个样本包括的个体数量叫做样本容量即可得.【详解】解:为了了解某校七年级400名学生的期中数学成绩的情况,从中抽取了50名学生的数学成绩进行分析,这个问题中的样本容量是50,故答案为:50.【点睛】本题主要考查总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.3、0.1【分析】根据频率=频数÷总数,以及第五组的频率是0.2,可以求得第五组的频数;再根据各组的频率和等于1,求得第六组的频数,从而求得其频率.【详解】解:根据第五组的频率是0.2,其频数是40×0.2=8;则第六组的频数是40﹣(10+5+7+6+8)=4.故第六组的频率是440=0.1.故答案:0.1.【点睛】本题是对频率=频数÷总数这一公式的灵活运用的综合考查,注意:各小组频数之和等于数据总和,各小组频率之和等于1.4、抽样调查【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】解:目前我国中年人群中“三高”(高血压、高血脂、高血糖)现象严重,这个结论是通过抽样调查得到的,故答案为:抽样调查.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,解题的关键是知道一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5、18【分析】根据频数=总数×频率,直接求解即可.【详解】依题意该班级在在70~79分数段内的学生有450.418⨯=(人).故答案为:18.【点睛】本题考查了根据描述求频数,掌握频数、频率、总数之间的关系是解题的关键.三、解答题1、(1)见解析;(2)见解析【分析】(1)调查本地区连续30天的空气污染指数即可;(2)根据所调查的数据填好频数分布表,进而即可画出相应的频数分布直方图.【详解】解:(1)本地区连续30天的空气污染指数如下:32,41,53,37,33,34,38,34,52,47,45,32,27,22,38,52,63,39,32,29,21,30,48,42,45,39,36,25,27,36;(2)频数分布表如下:∴频数分布直方图如下:【点睛】本题考查了画频数分布表以及频数分布直方图的能力,利用所调查的数据画出相应的频数分布表是解决本题的关键.2、(1)50;(2)108°,图见解析;(3)92%【分析】(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数;(2)用360乘以A组所占的百分比,求出A组的扇形圆心角的度数,再用总人数减去A、B、D组的人数,求出C组的人数,从而补全统计图;(3)用A、B、D组的人数除以总人数,即可得出骑车时间不超过30分钟的人数所占的百分比.【详解】解:(1)调查的总人数是:19÷38%=50(人);(2)A 组所占圆心角的度数是:360×1550=108°; C 组的人数有:50-15-19-4=12(人)补图如下:(3)因为30分钟及以下的应该是A +B +C 区域,所以骑车时间是30分钟及以下的人数所占的百分比:50450×100%=92% 【点睛】本题考查的是条形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.3、(1)200人;(2)画图见解析;(3)600人【分析】(1)由喜欢体育类的有80人,占比40%,再列式8040%计算即可; (2)先分别求解喜欢其它与喜欢艺术的人数,再补全图形即可;(3)由总人数乘以样本中喜欢体育类的占比即可得到答案.【详解】解:(1)由喜欢体育类的有80人,占比40%,可得 此次共调查80=20040%人(2)由喜欢文学的有60人,则占比:60100%=30%, 200所以喜欢其它的占比:140%20%30%10%,则有:20010%=20人,喜欢艺术的有:20020%=40人,补全图形如下:(3)该校有1500名学生,喜欢体育类社团的学生有:801500=600200人.【点睛】本题考查的是从条形图与扇形图中获取信息,补全条形统计图,利用样本估计总体,掌握“获取条形图与扇形图的互相关联的信息”是解本题的关键.4、(1)25%;72;(2)见解析;(3)700.【分析】(1)先根据D等级人数及其所占百分比求出被调查的总人数,再由四个等级人数之和等于总人数求出B等级人数,最后用B等级人数除以总人数可得答案,再用360°乘以C等级人数所占比例可得答案;(2)根据(1)中计算结果可补全条形图;(3)用总人数乘以样本中A、B等级人数和所占比例即可.【详解】解:(1)∵被调查的人数为4÷10%=40(人),∴B等级人数为40﹣(18+8+4)=10(人),则B(良好)等级人数所占百分比是1040×100%=25%,在扇形统计图中,C(合格)等级所在扇形的圆心角度数是360°×840=72°,故答案为:25%;72;(2)补全条形统计图如下:;(3)估计评价结果为A(优秀)等级或B(良好)等级的学生共有1000×181040=700(人).故答案为:700.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小.5、(1)400,100,15;(2)60万人;(3)见解析【分析】(1)根据A的人数除以BA所占的百分比,求得总人数,总人数乘以B的百分比可得m,总人数减去其余各组人数之和可得n,用E组人数除以总人数可得答案;(2)根据全市总人数乘以D类所占比例,可得答案;(3)根据以上图表提出合理倡议均可.【详解】解:(1)本次调查的总人数为80÷20%=400(人),则B组人数m=400×10%=40(人),C组人数n=400﹣(80+40+120+60)=100(人),∴扇形统计图中E组所占的百分比为(60÷400)×100%=15%;(2)200×120400=60(万人),答:估计其中持D组“观点”的市民人数有60万人;(3)由上面的统计可知,造成“雾霾”的主要原因是“工厂造成的污染”和“汽车尾气排放”.倡议关停重污染企业,加大对工厂排污的监管和处罚;倡议大家尽量乘坐公共交通工具出行,减少汽车尾气的排放.【点睛】本题主要考查了扇形统计图,统计表,能从图形中获取准确信息是解题的关键.。

浙教版数学七年级下第六章数据与统计图表单元检测试卷及答案

浙教版数学七年级下第六章数据与统计图表单元检测试卷及答案

最新浙教版初中数学七年级下册第六章数据与统计图表单元检测试及答案卷班级_____________考号______________姓名_______________总分_________________一、选择题(10小题,每题3分,共30分)1.要反映某市一天内气温的变化情况宜采用( )A.条形统计图 B.扇形统计图 C.折线统计图 D.频数分布直方图2.一家鞋店在一段时间内销售了某种女式鞋子38双,其中各种尺码的鞋的销售量如下表:根据统计的数据,鞋店进货时尺寸码为23 cm,23.5 cm,24 cm的鞋双数合理的比是( )A.1:2:4 B.2:4:5 C.2:4:3 D.2:3:43.要了解全校学生课外作业负担情况,你认为以下抽样方式比较合理的是( )A.调查全体男学生 B.调查全体女学生C.调查七年级全体学生 D.调查各年级中的部分学生4.为了了解某市七年级2000名学生的身高,从中抽取500名学生进行测量.对这个问题,下列说法正确的是( )A.2000名学生是总体 B.每个学生是个体C.抽取的500名学生是所抽的一个样本 D.每个学生的身高是个体5.小欢为一组数据制作频数分布表,他了解到这组数据的最大值是40,最小值是16,准备分组时取组距为4.为了使数据不落在边界上,他应将这组数据分成的组数为( )A.6组 B.7组 C.8组 D.9组6.如图所示是某造纸厂2018年中各季度的产量统计图,下列表述中不正确的是( )A.二季度的产量最低 B.从二季度到四季度产量在增长C.三季度产量增幅最大 D.四季度产量增幅最大7.如图是一份学生午餐的营养成分统计图,已知脂肪的含量是30克. 则下列信息中说法不正确的是( )A.维生素和矿物质对应的扇形的圆心角为18°B.这份快餐的总质量为300克C.可以求出每一种营养成分占总质量的百分比D.可以看出各种营养成分在总质量中的变化情况8.若扇形统计图中有4组数据,其中前三组数据相应的圆心角度数分别为72°、108°、144°,则这四组数据的比为( )A.2∶3∶4∶1 B.2∶3∶4∶3C.2∶3∶4∶5 D.第四组数据不确定9.某班学生在颁奖大会上得知该班获得奖励的情况如下表:三好学生优秀学生干部优秀团员市级 3 2 3校级18 6 12已知该班共有28人获得奖励,其中只获得两项奖励的有13人,那么该班获得奖励最多的一位同学可能获得的奖励为( )A.3项 B.4项 C.5项 D.6项10.为了建设“书香校园”,某校计划购进一批新书,学校图书管理员对一周内本校学生借阅各类图书的情况,进行了统计,绘制成以下不完整的图表,根据图表中的信息,下列说法不正确的是( )A.一周内该校学生借阅各类图书一共约800本B.该校学生喜欢阅读文学类图书的约占35%C.一周内该校学生借阅漫画类图书约240本D.若该学校计划购进四类新书共1 000本,不能根据学生需要确定各类图书的数量,只能随机购买二、填空题(8小题,每题3分,共24分)11.为了知道一锅汤的味道,妈妈从锅里舀了一勺汤尝尝,这种调查方式是____________.12.已知某组数据的频率是0.35,样本容量是600. 则这组数据的频数是____________.13.据资料表明:中国已成为全球机器人第二大专利来源国和目标国.机器人几大关键技术领域包括:谐波减速器、减速器、电焊钳、视觉控制、焊缝跟踪、涂装轨迹规划等,其中涂装轨迹规划的来源国结构(仅计算了中、日、德、美)如图所示,在该扇形统计图中,美国所对应的扇形圆心角是__________度.14.一组数据经整理后分成四组,第一、二、三小组的频率分别为0.1,0.3,0.4,第一小组的频数是5,那么第四小组的频率是____________,这组数据共有____________个.15.为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与,现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是____________.16.已知样本:10,8,6,10,13,8,7,12,10,11,10,11,10,9,12,11,9,9,8,12. 那么在频数统计表中,若以5.5为最小的分界值,组距为2,则频数为8的组是____________.17.某校为了了解七年级学生课外阅读的喜好,随机抽取该校七年级部分学生进行问卷调查(每人只选一种书籍),如图是整理数据后绘制的两幅不完整的统计图,根据图中提供的信息,若该年级有500名学生,估计该年级喜欢“漫画”的学生人数约是____________人.18.对某厂生产的一批轴进行检验,检验结果中轴的直径的各组频数、频率如表(每组含前一个边界值,不含后一个边界值),且轴直径的合格标准为(单位:mm),有下列结论:①这批被检验的轴总数为50根;②a+b=0.44且x=y;③这批轴中没有直径恰为100.15mm的轴;④这一批轴的合格率是82%,若该厂生产1000根这样的轴,则其中恰好有180根不合格. 其中正确的有______个.组别(mm) 频数频率99.55~99.70 x a99.70~99.85 5 0.199.85~100.00 21 0.42100.00~100.15 20 b100.15~100.30 0 0100.30~100.45 y 0.04三、解答题(8小题,共66分)19.统计某校七年级部分同学的立定跳远测试成绩,得到如图频数分布直方图(每组含前一个边界值,不含后一个边界值).请根据右图,回答下列问题:(1)参加测试的总人数是;数据分组的组距是;频数最大一组的组中值是;(2)成绩在1.50m(含1.50m)以上的为合格,求这部分同学本次测试成绩的合格率.20.老师想知道学生每天在上学路上所花的时间,统计了全班30名学生上学路上时间(单位:分):20,20,30,15,20,25,5,15,20,10,15,35,45,10,20,25,30,20,15,20,20,10,20,10,15,20,20,20,5,15,(1)将上述数据按时间小于20分,等于20分和大于20分分成三类,并制作各类人数的统计表;(2)根据所列的统计表,计算各类人数各占总人数的比例.21.某校为了解本校1200名初中生对安全知识掌握情况,随机抽取了60名初中生进行安全知识测试,并将测试成绩进行统计分析,绘制了如下不完整的频数统计表和频数直方图:请结合图表完成下列各题:(1)频数表中的a=________,b=________;(2)将频数分布直方图补充完整;(3)若测试成绩不低于80分定为“优秀”,你估计该校的初中生对安全知识掌握情况为“优秀”等级的大约有多少人?22.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;23.某数学老师将本班学生的身高数据(精确到1cm)交给甲、乙两同学,要求他们各自独立地绘制一幅频数直方图,甲绘制的图如图1所示,乙绘制的图如图2所示,经检测确定,甲绘制的频数直方图是正确的,乙在整理数据及绘图过程中均有个别错误.(1)问:该班学生有多少人?(2)某同学身高为165cm,他说:“我们班上比我高的人不超过.”他的说法正确吗?(3)请指出乙在整理数据或绘图过程中存在的一个错误.24.八年级的同学们即将步入初三,某主题班会小组为了了解本校八年级同学对初三的第一印象,打算抽样调查40位同学.(1)有同学提议:“八年级1班的人数刚好是40人,不如我们直接调查1班所有同学吧”,他的建议合理吗?请说明理由;(2)他们用问卷随机调查了40位同学(每人只能选一项),并统计如下:请选择一种统计图将上表中的数据描述出来;(3)若本校八年级共有500名学生,请估计对初三第一印象是“忧喜交加”的同学人数.25.某市建设森林城市需要大量的树苗,某生态示范园负责对甲、乙、丙、丁四个品种的树苗共500株进行树苗成活率试验,从中选择成活率高的品种进行推广.通过实验得知:丙种树苗的成活率为89.6%,把实验数据绘制成下面两幅统计图(部分信息未给出).(1)实验所用的乙种树苗的数量是________株.(2)求出丙种树苗的成活数,并把图2补充完整.(3)你认为应选哪种树苗进行推广?(4)请通过计算说明理由.26.阅读下列材料:2016年全国科技活动周暨北京科技周主场活动于5月14日至21日在北京民族文化宫举办.北京科技周主场活动以“梦想大道”为展示主线,通过“科普乐园、北京众创空间3.0、创新梦工场、新能源汽车、航天员出舱体验”五大板块展现科技创新魅力.其中科普乐园板块展示了科技互动产品等100个项目,占北京科技周主场活动全部展览项目数量的一半;北京众创空间3.0板块展示了新科技新产品的40个项目;创新梦工场板块展示了智能科技等40个项目;新能源汽车板块和航天员出舱体验板块分别展示了电动汽车全产业链的最新成果、模拟了航天员出舱任务操作的环境特点和身体感受.市民参与科技周、学在科技周、乐在科技周、玩在科技周,享受科技创新给生活带来的魅力.特别值得一提的是自2013年北京科技周主场活动开始利用微博、新华网等新媒体手段与市民互动,2013年至2015年参与新媒体互动的人次依次为60万、800万、1500万,本届北京科技周主场活动中参与新媒体互动的人次更是达到了3000万.根据以上材料回答下列问题:(1)2016年北京科技周主场活动的全部展览项目的数量为________个;(2)选择合适的统计表或者统计图,将2016年北京科技周主场活动中科普乐园板块、北京众创空间3.0板块、创新梦工场板块、其他板块的展览项目的数量表示出来;(3)请预测2017年北京科技周主场活动中参与新媒体互动的人次,并说明理由.参考答案1.C 2.C 3.D 4.D 5.B 6.D 7.D 8.A 9.B 10.D 11.由题意描述判断为抽样调查.12. 210 13. 14. 0.2,50.、15..16. 9.5~11.5. 17. 100 18. 3个.19.解:(1)4+6+14+10+6=40人 1.60-1.40=0.2m 1.80m ;(2)(6+14+10+6)÷40=90%.20.解:(1)制作统计表如图所示:时间(分)小于20分等于20分大于20分人数12 12 6(2)小于20分的人数占总人数的比例为:12÷30×100%=40%;等于20分的人数占总人数的比例为:12÷30×100%=40%;大于20分的人数占总人数的比例为:6÷30×100%=20%.21.解:(1)根据条形统计图所给出的数据可得a=18,则b=60-6-10-18-12=14;故答案为18,14.(2)根据(1)求出的b的值,补图如下:(3)“优秀”等级的人数为1200×=520(人).22.解:(1)设参加抽样调查的居民有x人,=0.4,∴x=600.答:本次参加抽查的居民人数为600人.(2)如图(3)8000×40%=3200人.答:爱吃D粽的人数约为3200人.23.解:(1)60人(2)说法正确,因为身高超过165cm的共有10+5=15人,15÷60=.(3)部分量之和与总量不相等,即4+8+11+17+11+8≠60.24.解:(1)不合理.因为这样调查使得八年级每位同学被调查到的可能性不同,缺乏代表性.(2)选择条形统计图:(3)×500=150(人),答:对初三第一印象是“忧喜交加”的同学人数约为150人.25.解:(1)500×(1-25%-25%-30%)=100(株).故答案为:100.(2)500×25%×89.6%=112(株),补全统计图如图:(3)应选择丁种品种进行推广.(4)甲种树苗成活率为×100%=90%,乙种果树苗成活率为×100%=85%,丁种果树苗成活率为×100%=93.6%,因为93.6%>90%>89.6%>85%,所以应选择丁种品种进行推广,它的成活率最高,为93.6%.26.解:(1)100÷=200(个).故2016年北京科技周主场活动的全部展览项目的数量为200个,故答案为:200.(2)如下,2016年北京科技周主场活动展览项目数量统计表:(3)预测2017年北京科技周主场活动中参与新媒体互动的人次是5000万,因为人数呈现上升趋势.。

浙教版七年级下《第六章数据与统计图表》单元检测试卷含答案

浙教版七年级下《第六章数据与统计图表》单元检测试卷含答案

浙教版七年级下《第六章数据与统计图表》单元检测试卷含答案第六章数据与统计图表单元检测卷姓名:__________ 班级:__________一、选择题(共9题;每小题4分,共36分)1.下面获取数据的方法不正确的是()A. 我们班同学的身高用测量方法B. 快捷了解历史资料情况用观察方法C. 抛硬币看正反面的次数用实验方法D. 全班同学最喜爱的体育活动用访问方法2.一个容量为80的样本,最大值是141,最小值是50,取组距为10,可以分成()A. 10组B. 9组C. 8组D. 7组3.为丰富学生课外活动,某校积极开展社团活动,学生可根据自己的爱好选择一项,已知该校开设的体育社团有:A:篮球,B:排球C:足球;D:羽毛球,E:乒乓球.李老师对某年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是()A. 选科目E的有5人B. 选科目D的扇形圆心角是72°C. 选科目A的人数占体育社团人数的一半D. 选科目B的扇形圆心角比选科目D的扇形圆心角的度数少21.6°4.下列各数:π,,cos60°,0,,其中无理数出现的频率是()A. 20%B. 40%C. 60%D. 80%5.下列说法中,不正确的是()A. 可以很清楚地表示出各部分同总体之间关系的统计图是条形统计图B. 能清楚地反映出数量增减变化的统计图是折线统计图C. 为了清楚地知道你的各科成绩,你可以选择制作条形统计图D. 为了清楚地反映出全校人数同各年级人数之间的关系,应选择扇形统计图6.如图,是某商场4种品牌的商品销售情况统计图,其中甲品牌所占的扇形的圆心角是()A. 36°B. 108°C. 72°D. 162°7.如图阴影部分扇形的圆心角是()A. 15°B. 23°C. 30°D. 36°8.有一个样本有100个数据,落在某一组内的频率是0.3,那么落在这一组内的频数是()A. 50B. 30C. 15D. 39.武汉市某校在“创新素质实践行”活动中组织学生进行社会调查,并对学生的调查报告进行评比,下面是将某年级60篇学生调查报告的成绩进行整理,分成五组画出的频数分布直方图.已知从左至右5个小组的频数之比为1:3:7:6:3,则在这次评比中被评为优秀的调查报告(分数大于或等于80分为优秀,且分数为整数)占百分之()A. 45B. 46C. 47D. 48二、填空题(共10题;共30分)10.随着综艺节目“爸爸去哪儿”的热播,问卷调查公司为调查了解该节目在中学生中受欢迎的程度,走进某校园随机抽取部分学生就“你是否喜欢看爸爸去哪儿”进行问卷调查,并将调查结果统计后绘制成如下不完整的统计表:则a﹣b=________11.如图,一项统计数据的频数分布直方图中,如果直方图关于第三组的小长方形呈轴对称图形(坐标轴忽略不计),那么,落在110~130这一组中的频数是________。

浙教版七年级下册第六章 数据与统计图表 章末检测(附答案)

浙教版七年级下册第六章 数据与统计图表 章末检测(附答案)

浙教版七年级下册第六章数据与统计图表章末检测(附答案)一、单选题(共10题;共30分)1.为了了解某年级同学每天参加体育锻炼的时间,比较恰当的收集数据的方法是()A. 查阅资料B. 问卷调查C. 实地调查D. 实验2.为了了解阳光居民小区“全民健身”活动的开展情况,某志愿者随机调查了该小区50名成年居民一周的体育锻炼时间,并将数据进行整理后绘制成如图所示的统计图,则这50人一周体育锻炼时间的众数是()A. 6小时B. 20人C. 10小时D. 3人3.下列选项中,显示部分在总体中所占百分比的统计图是()A. 扇形图B. 条形图C. 折线图D. 直方图4.某单位有职工100名,按他们的年龄分成8组,在40~42(岁)组内有职工32名,那么这个小组的频率是A. 0.12B. 0.38C. 0.32D. 325.某班有位学生,每人抛次硬币,统计正面向上次数依次为,,,…,的人数,得到直方图(如图),记正面向上次数为,,的人数和占班级人数的比例为,则的值()A. 小于B. 在与之间C. 在与之间D. 大于6.某人在调查了本班同学的体重情况后,画出了频数分布图如图.下列结论中,不正确的是()A. 全班总人数40人B. 学生体重的众数是13C. 学生体重的中位数落在50~55千克这一组D. 体重在60~65千克的人数占全班总人数的7.某校初三参加体育测试,一组10人的引体向上成绩如下表:这组同学引体向上个数的众数与中位数依次是()A. 9.5和10B. 9和10C. 10和9.5D. 10和98.如图,反映的是某中学九(3)班学生外出方式(乘车、步行、骑车)的频数(人数)分布直方图(部分)和扇形分布图,那么下列说法正确的是()A. 九(3)班外出的学生共有42人B. 九(3)班外出步行的学生有8人C. 在扇形图中,步行的学生人数所占的圆心角为82D. 如果该校九年级外出的学生共有500人,那么估计全年级外出骑车的学生约有140人9.统计得到的一组数据有80个,其中最大值为141,最小值为50,取组距为10,可以分成()A. 10组B. 9组C. 8组D. 7组10.有40个数据,其中最大值为35,最小值为14,若取组距为4,则应该分的组数是( )A. 4B. 5C. 6D. 7二、填空题(共6题;共24分)11.调查某品牌洗衣机的使用寿命,采用的调查方式是________.12.学校为了考察我校七年级同学的视力情况,从七年级的10个班共540名学生中,每班抽取了8名进行分析,在这个问题中总体是________,样本容量是________.13.在全国初中数学竞赛中,都匀市有40名同学进入复赛,把他们的成绩分为六组,第一组一第四组的人数分别为10,5,7,6,第五组的频率是0.2,则第六组的频率是________.14.为了直观地表示我国体育健儿在最近六届夏季奥运会上获得奖牌总数的变化趋势,最适合使用的统计图是________.(从“扇形图”、“折线图”、“条形图”、“直方图”中选填)15.根据2009﹣2014年浙江固定资产投资(单位:亿元)及增速统计图所提供的信息,下列判断正确的是________ .①2011年增长最快②2011、2012两年的年平均增长率为22.15%③从2011年开始增速逐年减少④各年固定资产投资的中位数是15586.5.16.某商场为了解本商场的服务质量,随机调查了本商场的200名顾客,调查的结果如图所示.根据图中给出的信息,这200名顾客中对该商场的服务质量表示不满意的有________人.三、解答题(共8题;共66分)17.某中学初三(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如下的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)初三(1)班的学生人数为________,并把条形统计图补充完整;(2)扇形统计图中m=________,n=________,表示“足球”的扇形的圆心角是________度;(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.18.某校七、八、九三个年级的学生人数比为6:5:4,为了了解全校学生参加课外活动的时间,欲从中抽取容量为150的样本,现有四种方案.(1)在九年级学生中用简单随机抽样,抽取150名学生进行调查;(2)在全校学生中进行简单随机抽样,抽取150名学生进行调查;(3)分别在三个年级各随机抽取50个样本进行调查;(4)根据三个年级的人数比,分别在七、八、九年级中抽取60人、50人、40人进行调查.你觉得哪种方案调查的结果会更准确一点?说说你的理由.19.家庭过期药品属于“国家危险废物”处理不当将污染环境,危害健康.某市药监部门为了了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调查.(1)设计调查方式:有下列选取样本的方法①在市中心某个居民区以家庭为单位随机抽取②在全市医务工作者中以家庭为单位随机抽取③在全市常住人口中以家庭为单位随机抽取.其中最合理的一种是________.(只需填上正确答案的序号)收集整理数据:本次抽样调查发现,接受调查的家庭都有过期药品,现将有关数据呈现如下表:处理方式A继续使用B直接丢弃C送回收点D搁置家中E卖给药贩F直接焚烧所占比例8% 51% 10% 20% 6% 5%(2)描述数据:此次抽样的样本数为1000户家庭,请你绘制条形统计图描述各种处理过期药品方式的家庭数;(3)分析数据:根据调查数据,你认为该市市民家庭处理过期药品最常见的方式是什么?20.新学期开学时,某校对八年级学生掌握“中学生日常行为规范”的情况进行了知识测试测试成绩全部合格(说明:成绩大于或等于60分合格),学校随机选取了部分学生的成绩,整理并绘制成以下不完整的图表:部分学生测试成绩统计表请根据上述统计图表,解答下列问题:(1)表中a=________,b=________,c=________;(2)补全频数分布直方图.21.某中学组织学生参加交通安全知识网络测试活动,小华对九年(8)班全体学生的测试成绩进行了统计,并将成绩分为四个等级:优秀、良好、一般、不合格,绘制成如下的统计图(不完整),请你根据图中所给的信息解答下列问题:分数段频数频率60≤x<70 9 a70≤x<80 36 0.480≤x<90 27 b90≤x≤100 C 0.2(1)九年(8)班有________名学生,并把折线统计图补充完整________;(2)已知该市共有11000名中学生参加了这次交通安全知识测试,请你根据该班成绩估计该市在这次测试中成绩为优秀的人数;(3)小王查了该市教育网站发现,全市参加本次测试的学生中,成绩为优秀的有5200人,请你用所学统计知识简要说明实际优秀人数与估计人数出现较大偏差的原因.22.学校组织首届“数学文化节”活动,旨在引导同学们感受数学魅力、提升数学素养。

浙教版初中数学七年级下册第六单元《数据与统计图表》单元测试卷(困难)(含答案解析)

浙教版初中数学七年级下册第六单元《数据与统计图表》单元测试卷(困难)(含答案解析)

浙教版初中数学七年级下册第六单元《数据与统计图表》单元测试卷(困难)(含答案解析)考试范围:第六单元; &nbsp; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1. 相关部门对某厂生产的学生营养午餐重量是否达标进行检查,该厂准备运送午餐有20辆车,每辆车装100箱,每箱有50盒营养午餐,随机选取20箱,每箱抽取3盒进行称重检测,以下说法正确的是( )A. 本次抽查的总体是1000盒营养午餐B. 本次抽查的样本是20箱营养午餐的重量C. 本次抽查的个体是1盒营养午餐D. 本次抽查的样本容量是602. 要调查下列问题,你认为哪些适合抽样调查.①市场上某种食品的某种添加剂的含量是否符合国家标准;②调查浙江卫视节目“奔跑吧兄弟”的收视率;③调查全市中学生一天的学习时间.A. ①②B. ①③C. ②③D. ①②③3. 为了解我校800名学生的身高,从中抽取了100名学生对其身高进行统计分析,则下列说法正确的是( )A. 800名学生是总体B. 每个学生是个体C. 100名学生是抽取的一个样本D. 每个学生的身高是个体4. 如图,是根据某市2014年至2018年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中判断错误的是( )A. 2014年至2018年工业生产总值逐年增加B. 2018年的工业生产总值比前一年增加了40亿元C. 2016年与2017年每一年与前一年比,其增长额相同D. 2015年至2018年,每一年与前一年比,2018年的增长率最大5. 如图所示为我国2009~2012年财政收入增长率的折线统计图,其中2010年我国财政收入约为83100亿元.给出下列说法:①2009年我国财政收入约为83100(1−21.3%)亿元;②这4年中,我国年财政收入先增后减;③这4年中,2009年我国财政收入最少;④这4年中,2011年我国财政收入最多;⑤2012年我国财政收入约为83100(1+24.8%)(1+12.8%)亿元.其中正确的个数是( )A. 0个B. 1个C. 2个D. 3个6. 以下是某手机店1—4月份的两个统计图,分析统计图,四个同学对3、4月份X手机的销售情况得出以下四个结论,其中正确的为( )A. 4月份X手机销售额为65万元B. 4月份X手机销售额比3月份有所上升C. 4月份X手机销售额比3月份有所下降D. 3月份与4月份的X手机销售额无法比较,只能比较该店销售总额7. 某班有60名学生,班长把全班学生对周末出游地的意向绘制成了扇形统计图,其中“想去重庆金佛山滑雪的学生数”的扇形圆心角是60°,则下列说法正确的是( )A. 想去重庆金佛山滑雪的学生有12人B. 想去重庆金佛山滑雪的学生肯定最多C. 想去重庆金佛山滑雪的学生占全班学生的16 D. 想去重庆金佛山滑雪的学生占全班学生的60% 8. 将20个数据分成8个组,如下表,则第6组的频数为( )A. 2B. 3C. 4D. 59. 在100克水中放入25克盐,盐与盐水的百分比是 A. 1:4B. 20%C. 25%D. 1:510. 某校120名学生某一周用于阅读课外书籍的时间的频数分布直方图如图所示.其中阅读时间是8−10小时的组频数和组频率分别是( )A. 15和0.125B. 15和0.25C. 30和0.125D. 30和0.2511. 我校某班为提高中考体育成绩将学生按规定组数进行分组训练,若每组7人,余3人;若每组8人,则缺4人;设该班学生人数为x 人,组数为y 组,则可列出的方程组为( )A. {7y =x −38y =x +4 B. {7y =x +38y =x +4 C. {7y =x −38y =x −4 D. {7y =x +38y =x −412. 某水库水位发生变化的主要原因是降雨的影响,对这个水库5月份到10月份的水位进行统计得到折线统计图如图所示,则该地区降雨最多的时期为( )A. 5~6月份B. 7~8月份C. 8~9月份D. 9~10月份第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 我县抽考年级有1万多名学生参加考试,为了了解这些学生的抽考学科成绩,便于质量分析,从中抽取了200名考生的抽考学科成绩进行统计分析.这个问题中,下列说法:①这1万多名学生的抽考成绩的全体是总体;②每个学生是个体;③200名考生是总体的一个样本;④样本容量是200.你认为说法正确的有______ 个.14. 某校为了举办“庆祝建军90周年”活动,调查了本校所有学生,调查的结果如图,根据图中给出的信息,这所学校赞成举办演讲比赛的学生有_________人.15. 将500个数据分成4组,列出频率分布表,其中第一组的频率是0.23,第二组与第四组的频率之和是0.56,那么第三组的频数是_______.16. 在样本容量为120的频数直方图中,共有3个小长方形,若中间一个小长方形的高与其余两个小长方形高的和之比是2:3,则中间一组的频率为________ .三、解答题(本大题共9小题,共72.0分。

浙教版七年级下数学第六章数据与统计图表单元试卷含答案

浙教版七年级下数学第六章数据与统计图表单元试卷含答案

浙教版七年级下数学第6章数据与统计图表单元试卷题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共10小题,3*10=30)1.某学校课外活动小组为了解同学们喜爱的电影类型,设计了如下的调查问卷(不完整):准备在“①国产片,②科幻片,③动作片,④喜剧片,⑤亿元大片”中选取三个作为该问题的备选答案,选取合理的是()A.①②③B.①③⑤C.②③④D.②④⑤2.某班40名同学的一次数学成绩进行统计,适当分组后80到90分这个分数段的划记人数为:正一,则这个班这个分数段的人数占全班人数的百分比是()A.20% B.40% C.15% D.25%3.袋子里有4个黑球,m个白球,它们除颜色外都相同,经过大量实验,从中任取一个球恰好是白球的频率是0.20,则m的值是()A.1 B.2 C.4 D.164.“I am a good student.”这句话中,字母“a”出现的频率是()A.2 B.C.D.5.一个有80个样本的数据组中,样本的最大值是145,最小值是50,取组距为10,那么可以分成()A.7组B.8组C.9组D.10组6.将50个数据分成5组列出频数分布表,其中第一组的频数为6,第二组与第五组的频数和为20,第三组的频率为0.2,则第四组的频率为()A.4 B.14 C.0.28 D.507.某小区居民利用“健步行APP”开展健步走活动,为了解居民的健步走情况,小文同学调查了部分居民某天行走的步数(单位:千步),并将样本数据整理绘制成如下不完整的频数分布直方图和扇形统计图.有下面四个推断:①小文此次一共调查了200位小区居民;②行走步数为8~12千步的人数超过调查总人数的一半;③行走步数为4~8千步的人数为50人;④行走步数为12~16千步的扇形圆心角是72°.根据统计图提供的信息,上述推断合理的是()A.①②③B.①②④C.①③④D.②③④8.将某样本数据分析整理后分成8组,且组距为5,画频数分布折线图时,求得某组的组中值恰好为18.则该组是()A.10.5~15.5 B.15.5~20.5 C.20.5~25.5 D.25.5~30.59.某校男生、女生及教师人数的扇形统计图如图所示,若该校男生、女生及教师的总人数为1200人,则根据图中信息,可知该校教师人数为()A.552 B.540 C.108 D.10010.某班有64位同学,在一次数学检测中,分数只能取整数,统计其成绩绘制成频数直方图,如图所示,从左到右的小长方形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.12 B.24 C.16 D.8第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共6小题,3*6=18)11.七年级一班的小明根据本学期“从数据谈节水”的课题学习,知道了统计调查活动要经历5个重要步骤:①收集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.但他对这5个步骤的排序不对,请你帮他正确排序为.(填序号)12.为了解某初中校学生的身体健康状况,以下选取的调查对象中:①120位男学生;②每个年级都各选20位男学生和20位女学生;③120位八年级学生.你认为较合适的是.(填序号)13.一组数据共有50个,分成四组后其中前三组的频率分别是0.10、0.24、0.36,则第四组数据的个数为.14.某些数据分五组,第一、二组的频率之和为0.25,第三组的频率为0.35,第四、五组的频率相等,则第五组的频率是.15.某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示,则a=.组号分组频数一6≤m<72二7≤m<87三8≤m<9a四9≤m≤10216.下面的频数分布折线图分别表示我国A市与B市在2014年4月份的日平均气温的情况,记该月A市和B市日平均气温是8℃的天数分别为a天和b天,则a+b=.评卷人得分三.解答题(共8小题,52分)17.(6分)调查作业:了解你所在学校学生家庭的教育消费情况.小华、小娜和小阳三位同学在同一所学校上学,该学校共有3个年级,每个年级有4个班,每个班的人数在20~30之间.为了了解该校学生家庭的教育消费情况,他们各自设计了如下的调查方案:小华:我准备给全校每个班都发一份问卷,由班长填写完成.小娜:我准备把问卷发送到随机抽取的某个班的家长微信群里,通过网络提交完成.小阳:我准备给每个班学号分别为1,5,10,15,20的同学各发一份问卷,填写完成.根据以上材料回答问题:小华、小娜和小阳三人中,哪一位同学的调查方案能较好的获得该校学生家庭的教育消费情况,并简要说明其他两位同学调查方案的不足之处.18.(6分)小花最近买了三本课外书,分别是《汉语字典》用A表示,《流行杂志》用B表示和《故事大王》用C表示.班里的同学都很喜欢借阅,在五天内小花做了借书记录如下表:书名代号借阅频数星期一星期二星期三星期四星期五A32234B43323C12323(1)在表中填写五天内每本书的借阅频数.(2)计算五天内《汉语字典》的借阅频率.19.(6分)为了了解学校开展“孝敬父母,从家务劳动做起”活动的实施情况,该校抽取八年级50名学生,调查他们一周(按七天计算)做家务所用时间(单位:小时)得到一组数据,绘制成下表:时间x(小时)划记人数所占百分比0.5x≤x≤1.0正正1428%1.0≤x<1.5正正正1530%1.5≤x<272≤x<2.548%2.5≤x<3正510%3≤x<3.533.5≤x<44%合计50100%(1)请填表中未完成的部分;(2)根据以上信息判断,每周做家务的时间不超过1.5小时的学生所占的百分比是多少?(3)针对以上情况,写出一个20字以内的倡导“孝敬父母,热爱劳动”的句子.20.(6分)某班学生的期中成绩(成绩为整数)的频数分布表如下,请根据表中提供的信息回答下列问题:分组频数频率49.5﹣59.530.0559.5﹣69.59m69.5﹣79.5n0.4079.5﹣89.5180.3089.5﹣99.56p合计q 1.0(1)m=,n=,p=,q=;(2)在表内,频率最小的一组的成绩范围是.(3)成绩优秀的学生有人(成绩大于或等于80分为优秀).21.(6分)将某雷达测速区监测到的一组汽车的时速数据整理,得到其频数及频率如表(未完成):数据段频数频率30~40100.0540~503650~600.3960~7070~80200.10总计2001注:30~40为时速大于等于30千米而小于40千米,其他类同.(1)请你把表中的数据填写完整;(2)补全频数分布直方图;(3)如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆?22.(6分)有大小两个转盘,其中黑色区域都是中心角为90°的扇形,为了探究指针落在黑色区域的频率,甲乙两人分别转动两转盘,记录下表(A:指针落在大转盘的黑色区域频数;B:大转盘中的频率;C:指针落在小转盘的黑色区域频数;D:小转盘中相应频率)次数255075100125150175200225A81521263236445157BC81321263237434955D(1)将B、D两空格填写完整;(2)分别绘出指针落在大小转盘中黑色区域的频率折线图;(3)比较25次与50次的大小频率之差及200与225次之间大小转盘两频率之差;(4)从(3)中频率之差及折线统计图中的变化趋势,你能总结出什么规律?23.(8分)大黄鱼是中国特有的地方性鱼类,有“国鱼”之称,由于过去滥捕等多种因素,大黄鱼资源已基本枯竭,目前,我市已培育出十余种大黄鱼品种,某鱼苗人工养殖基地对其中的四个品种“宁港”、“御龙”、“甬岱”、“象山港”共300尾鱼苗进行成活实验,从中选出成活率最高的品种进行推广,通过实验得知“甬岱”品种鱼苗成活率为80%,并把实验数据绘制成下列两幅统计图(部分信息未给出):(1)求实验中“宁港”品种鱼苗的数量;(2)求实验中“甬岱”品种鱼苗的成活数,并补全条形统计图;(3)你认为应选哪一品种进行推广?请通过计算说明理由.24.(8分)十八大报告首次提出建设生态文明,建设美丽中国.十九大报告再次明确,到2035年美丽中国目标基本实现.森林是人类生存发展的重要生态保障,提高森林的数量和质量对生态文明建设非常关键.截止到2013年,我国已经进行了八次森林资源清查,其中全国和北京的森林面积和森林覆盖率情况如下:表1全国森林面积和森林覆盖率清查次数一(1976年)二(1981年)三(1988年)四(1993年)五(1998年)六(2003年)七(2008年)八(2013年)森林面积(万公顷)122001150125001340015894.0917490.9219545.2220768.73森林覆盖率12.7%12%12.98%13.92%16.55%18.21%20.36%21.63%表2北京森林面积和森林覆盖率清查次数一(1976年)二(1981年)三(1988年)四(1993年)五(1998年)六(2003年)七(2008年)八(2013年)森林面积(万公顷)33.7437.8852.0558.81森林覆盖率11.2%8.1%12.08%14.99%18.93%21.26%31.72%35.84%(以上数据来源于中国林业网)请根据以上信息解答下列问题:(1)从第次清查开始,北京的森林覆盖率超过全国的森林覆盖率;(2)补全以下北京森林覆盖率折线统计图,并在图中标明相应数据;(3)第八次清查的全国森林面积20768.73(万公顷)记为a,全国森林覆盖率21.63%记为b,到2018年第九次森林资源清查时,如果全国森林覆盖率达到27.15%,那么全国森林面积可以达到万公顷(用含a和b的式子表示).参考答案与试题解析一.选择题(共10小题)1.某学校课外活动小组为了解同学们喜爱的电影类型,设计了如下的调查问卷(不完整):准备在“①国产片,②科幻片,③动作片,④喜剧片,⑤亿元大片”中选取三个作为该问题的备选答案,选取合理的是()A.①②③B.①③⑤C.②③④D.②④⑤【分析】利用调查问卷内容要全面且不能重复,进而得出答案.【解答】解:电影类型包括:科幻片,动作片,喜剧片等,故选取合理的是②③④.故选:C.【点评】此题主要考查了调查收集数据的过程与方法,正确把握选项设计的合理性是解题关键.2.某班40名同学的一次数学成绩进行统计,适当分组后80到90分这个分数段的划记人数为:正一,则这个班这个分数段的人数占全班人数的百分比是()A.20% B.40% C.15% D.25%【分析】根据80~90分这个分数段的频数除以总数,即可得到80~90分这个分数段占全班人数的百分比,进而求出即可.【解答】解:∵80~90分这个分数段的划记人数为:正一,则这个分数段的频数为6,∴此班在这个分数段的人数占全班人数的百分比是:6÷40×100%=15%.故选:C.【点评】此题主要考查了频数的定义以及频数与总数的关系,正确理解频数定义是解题关键.3.袋子里有4个黑球,m个白球,它们除颜色外都相同,经过大量实验,从中任取一个球恰好是白球的频率是0.20,则m的值是()A.1 B.2 C.4 D.16【分析】根据概率公式列出从中任取一个球恰好是白球的概率,求出m的值即可.【解答】解:袋子里有4个黑球,m个白球,若从中任取一个球恰好是白球的概率是,根据题意可得:=0.2,解得m=1.故选:A.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=.4.“I am a good student.”这句话中,字母“a”出现的频率是()A.2 B.C.D.【分析】首先正确数出这句话中的字母总数,a出现的次数;再根据频率=频数÷总数进行计算.【解答】解:这句话中,15个字母a出现了2次,所以字母“a”出现的频率是.故选:B.【点评】考查了频率的概念以及计算方法:频率=频数÷总数.5.一个有80个样本的数据组中,样本的最大值是145,最小值是50,取组距为10,那么可以分成()A.7组B.8组C.9组D.10组【分析】根据组数=(最大值﹣最小值)÷组距计算,注意小数部分要进位.【解答】解:在样本数据中最大值为145,最小值为50,它们的差是145﹣50=95,已知组距为10,那么由于95÷10=9.5,∴可以分成10组,故选:D.【点评】此题考查的是组数的计算,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.6.将50个数据分成5组列出频数分布表,其中第一组的频数为6,第二组与第五组的频数和为20,第三组的频率为0.2,则第四组的频率为()A.4 B.14 C.0.28 D.50【分析】首先求得第三组的频数,则利用总数减去其它各组的频数就可求得,利用频数除以总数即可求解.【解答】解:第三组的频数是:50×0.2=10,则第四组的频数是:50﹣6﹣20﹣10=14,则第四组的频率为:=0.28.故选:C.【点评】本题考查了频率的公式:频率=即可求解.7.某小区居民利用“健步行APP”开展健步走活动,为了解居民的健步走情况,小文同学调查了部分居民某天行走的步数(单位:千步),并将样本数据整理绘制成如下不完整的频数分布直方图和扇形统计图.有下面四个推断:①小文此次一共调查了200位小区居民;②行走步数为8~12千步的人数超过调查总人数的一半;③行走步数为4~8千步的人数为50人;④行走步数为12~16千步的扇形圆心角是72°.根据统计图提供的信息,上述推断合理的是()A.①②③B.①②④C.①③④D.②③④【分析】由8~12千步的人数及其所占百分比可判断①;由行走步数为8~12千步的人数为70,未超过调查总人数的一半可判断②;总人数乘以4~8千步的人数所占比例可判断③;用360°乘以12~16千步人数所占比例可判断④.【解答】解:①小文此次一共调查了70÷35%=200位小区居民,正确;②行走步数为8~12千步的人数为70,未超过调查总人数的一半,错误;③行走步数为4~8千步的人数为200×25%=50人,正确;④行走步数为12~16千步的扇形圆心角是360°×20%=72°,正确;故选:C.【点评】本题考查了频数(率)直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.8.将某样本数据分析整理后分成8组,且组距为5,画频数分布折线图时,求得某组的组中值恰好为18.则该组是()A.10.5~15.5 B.15.5~20.5 C.20.5~25.5 D.25.5~30.5【分析】设该组的最小值为x,则最大值为x+5,根据该组的组中值为18列出方程,求解即可.【解答】解:设该组的最小值为x,则最大值为x+5,由题意,得x+x+5=18×2,解得x=15.5,x+5=15.5+5=20.5,即该组是15.5~20.5.故选:B.【点评】本题考查了频数分布折线图,理解组中值的定义是解题的关键.9.某校男生、女生及教师人数的扇形统计图如图所示,若该校男生、女生及教师的总人数为1200人,则根据图中信息,可知该校教师人数为()A.552 B.540 C.108 D.100【分析】首先求得教师所占百分比,乘以总人数即可求解.【解答】解:∵教师的人数所占百分比为1﹣46%﹣45%=9%,∴该校教师人数为1200×9%=108(人),故选:C.【点评】本题主要考查了扇形统计图,扇形统计图直接反映部分占总体的百分比大小.10.某班有64位同学,在一次数学检测中,分数只能取整数,统计其成绩绘制成频数直方图,如图所示,从左到右的小长方形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.12 B.24 C.16 D.8【分析】小长方形的高度比等于各组的人数比,即可求得分数在70.5到80.5之间的人数所占的比例,乘以总数48即可得出答案.【解答】解:分数在70.5到80.5之间的人数是:×64=24(人);故选:B.【点评】此题考查了频率分布直方图,了解频数分布直方图中小长方形的高度比与各组人数比的关系是解答问题的关键.二.填空题(共6小题)11.七年级一班的小明根据本学期“从数据谈节水”的课题学习,知道了统计调查活动要经历5个重要步骤:①收集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.但他对这5个步骤的排序不对,请你帮他正确排序为②①④⑤③.(填序号)【分析】根据已知统计调查的一般过程:①问卷调查法﹣﹣﹣﹣﹣收集数据;②列统计表﹣﹣﹣﹣﹣整理数据;③画统计图﹣﹣﹣﹣﹣描述数据进而得出答案.【解答】解:解决上述问题要经历的几个重要步骤进行排序为:②设计调查问卷,①收集数据,④整理数据,⑤分析数据,③用样本估计总体.故答案为:②①④⑤③.【点评】此题主要考查了调查收集数据的过程与方法,正确进行数据的调查步骤是解题关键.12.为了解某初中校学生的身体健康状况,以下选取的调查对象中:①120位男学生;②每个年级都各选20位男学生和20位女学生;③120位八年级学生.你认为较合适的是②.(填序号)【分析】如果抽取的样本得当,就能很好地反映总体的情况,否则抽样调查的结果会偏离总体情况.【解答】解:由题可得,为了解某初中校学生的身体健康状况,需要从每个年级都各选20位男学生和20位女学生,这样选取的样本具有代表性.故答案为:②.【点评】本题主要考查了抽样调查,解题时注意:抽样调查除了具有花费少,省时的特点外,还适用一些不宜使用全面调查的情况(如具有破坏性的调查).13.一组数据共有50个,分成四组后其中前三组的频率分别是0.10、0.24、0.36,则第四组数据的个数为15.【分析】首先计算出第四小组的频率,再利用总数×频率可得第四组数据的个数.【解答】解:第四小组的频率为:1﹣0.1﹣0.24﹣0.36=0.3,第四组数据的个数为:50×0.3=15,故答案为:15.【点评】此题主要考查了频数与频率,关键是掌握频率=频数÷数据总数.14.某些数据分五组,第一、二组的频率之和为0.25,第三组的频率为0.35,第四、五组的频率相等,则第五组的频率是0.2.【分析】根据各组的频率的和是1即可求解.【解答】解:第五组的频率是:(1﹣0.35﹣0.25)=0.2.故答案是:0.2.【点评】本题考查了频率的意义,利用各组的频率的和为1分析是解题关键.15.某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示,则a=9.组号分组频数一6≤m<72二7≤m<87三8≤m<9a四9≤m≤102【分析】根据被调查人数为20和表格中的数据可以求得a的值.【解答】解:a=20﹣(2+7+2)=9,故答案为:9.【点评】本题主要考查频数分布表,解题的关键是掌握各组频数之和等于总数.16.下面的频数分布折线图分别表示我国A市与B市在2014年4月份的日平均气温的情况,记该月A市和B市日平均气温是8℃的天数分别为a天和b天,则a+b=12.【分析】根据折线图即可求得a、b的值,从而求得代数式的值.【解答】解:根据图表可得:a=10,b=2,则a+b=10+2=12.故答案为:12.【点评】本题考查读频数分布折线图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.三.解答题(共8小题)17.调查作业:了解你所在学校学生家庭的教育消费情况.小华、小娜和小阳三位同学在同一所学校上学,该学校共有3个年级,每个年级有4个班,每个班的人数在20~30之间.为了了解该校学生家庭的教育消费情况,他们各自设计了如下的调查方案:小华:我准备给全校每个班都发一份问卷,由班长填写完成.小娜:我准备把问卷发送到随机抽取的某个班的家长微信群里,通过网络提交完成.小阳:我准备给每个班学号分别为1,5,10,15,20的同学各发一份问卷,填写完成.根据以上材料回答问题:小华、小娜和小阳三人中,哪一位同学的调查方案能较好的获得该校学生家庭的教育消费情况,并简要说明其他两位同学调查方案的不足之处.【分析】根据题意分析解答即可.【解答】解:小阳的调查方案能较好的获得该校学生家庭的教育消费情况.小娜的调查方案的不足之处:抽样调查所抽取的样本的代表性不够好;小华的调查方案的不足之处:抽样调查所抽取的学生数量太少.【点评】此题主要考查了抽样调查的可靠性,正确理解抽样调查的随机性是解题关键.18.小花最近买了三本课外书,分别是《汉语字典》用A表示,《流行杂志》用B表示和《故事大王》用C表示.班里的同学都很喜欢借阅,在五天内小花做了借书记录如下表:书名代号借阅频数星期一星期二星期三星期四星期五A3223414 B4332315 C1232311(1)在表中填写五天内每本书的借阅频数.(2)计算五天内《汉语字典》的借阅频率.【分析】(1)从星期一到星期五的借阅次数的和就是频数;(2)求得借阅三种书的频数的总和,然后利用频率公式即可求解.【解答】解:(1)填表如下:书名代号借阅频数星期一星期二星期三星期四星期五A3223414B4332315C1232311(2)总数是14+15+11=40,则五天内《汉语字典》的借阅频率是:=.【点评】本题是对频率、频数灵活运用的综合考查.注意:每个小组的频数等于数据总数减去其余小组的频数,即各小组频数之和等于数据总和.频率=.19.为了了解学校开展“孝敬父母,从家务劳动做起”活动的实施情况,该校抽取八年级50名学生,调查他们一周(按七天计算)做家务所用时间(单位:小时)得到一组数据,绘制成下表:时间x(小时)划记人数所占百分比0.5x≤x≤1.0正正1428%1.0≤x<1.5正正正1530%1.5≤x<2714%2≤x<2.548%2.5≤x<3正510%3≤x<3.536%3.5≤x<424%合计50100%(1)请填表中未完成的部分;(2)根据以上信息判断,每周做家务的时间不超过1.5小时的学生所占的百分比是多少?(3)针对以上情况,写出一个20字以内的倡导“孝敬父母,热爱劳动”的句子.【分析】(1)根据百分比的意义以及各组的百分比的和是1即可完成表格;(2)根据百分比的意义即可求解;(3)根据实际情况,写出的句子只要符合题意,与家务劳动有关即可,答案不唯一.【解答】解:(1)1.5≤x<2一组的百分比是:×100%=14%;3≤x<3.5一组的百分比是:×100%=6%;3.5≤x<4一组的人数是2(人);(2)每周做家务的时间不超过1.5小时的学生所占的百分比是:28%+30%=58%;(3)孝敬父母,每天替父母做半小时的家务.【点评】本题难度中等,考查统计图表的识别,要注意统计表中各部分所占百分比的和是1,各组人数的和就是样本容量.20.某班学生的期中成绩(成绩为整数)的频数分布表如下,请根据表中提供的信息回答下列问题:分组频数频率49.5﹣59.530.0559.5﹣69.59m69.5﹣79.5n0.4079.5﹣89.5180.3089.5﹣99.56p合计q 1.0(1)m=0.15,n=24,p=0.1,q=60;(2)在表内,频率最小的一组的成绩范围是49.5﹣59.5.(3)成绩优秀的学生有24人(成绩大于或等于80分为优秀).【分析】(1)根据频数除以频率,可得总人数q;根据频数除以总数,可得m;再根据各组人数,可得n;根据根据频数除以总数,可得p;(2)由各组的频率大小,进相比较即可得到结论;(3)根据最后两组的人数,即可得到成绩优秀的学生数量.【解答】解:(1)∵总人数q=3÷0.05=60(人),∴m=9÷60=0.15,n=60﹣3﹣9﹣18﹣6=24(人),p=6÷60=0.1,故答案为:0.15,24,0.1,60;(2)由各组的频率可知,频率最小的一组的成绩范围是49.5﹣59.5,故答案为:49.5﹣59.5;(3)成绩优秀的学生有18+6=24(人).故答案为:24.【点评】本题主要考查了频数分布表,在统计数据时,经常把数据按照不同的范围分成几个组,分成的组的个数称为组数,每一组两个端点的差称为组距,称这样画出的统计图表为频数分布表.21.将某雷达测速区监测到的一组汽车的时速数据整理,得到其频数及频率如表(未完成):数据段频数频率30~40100.0540~50360.1850~60780.3960~70560.2870~80200.10总计2001注:30~40为时速大于等于30千米而小于40千米,其他类同.(1)请你把表中的数据填写完整;(2)补全频数分布直方图;(3)如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆?【分析】(1)本题需先根据总数以及频数和频率的关系,即可将表中的数据填写完整.(2)本题须根据统计表即可补全频数分布直方图.(3)本题需先根据题意得出违章车辆是最后两组,从而得出答案【解答】解:(1)如表:数据段频数频率30~40100.0540~50360.1850~60780.3960~70560.2870~80200.10总计2001(2)如图:(3)如果此地汽车时速超过60公里即为违章,则违章车辆共有;56+20=76辆.【点评】本题主要考查了频数分布直方图的有关知识,在解题时要能够把直方图和频数分布表相结合是本题的关键.22.有大小两个转盘,其中黑色区域都是中心角为90°的扇形,为了探究指针落在黑色区域的频率,甲乙两人分别转动两转盘,记录下表(A:指针落在大转盘的黑色区域频数;B:大转盘中的频率;C:指针落在小转盘的黑色区域频数;D:小转盘中相应频率)次数255075100125150175200225A81521263236445157B0.320.300.280.260.2560.240.2510.2550.253C81321263237434955D0.320.260.280.260.2560.2470.2460.2450.244(1)将B、D两空格填写完整;(2)分别绘出指针落在大小转盘中黑色区域的频率折线图;(3)比较25次与50次的大小频率之差及200与225次之间大小转盘两频率之差;(4)从(3)中频率之差及折线统计图中的变化趋势,你能总结出什么规律?【分析】(1)根据“频率=频数÷总次数”逐一计算即可补全表格;(2)以横轴为次数、纵轴为频率,用点分别表示表格中数据,大转盘用实线依次连接,小转盘用虚线依次连接即可得;(3)根据表格中的数据即可得;(4)根据折线统计图知,最后随次数的增加而稳定的常数即可得.【解答】解:(1)将B、D两空格填写完整如下:次数255075100125150175200225A81521263236445157B0.32 0.300.28 0.26 0.256 0.24 0.2510.255 0.253C81321263237434955D0.320.260.280.26 0.256 0.2470.246 0.245 0.244(2)折线统计图如下:(3)大转盘中25次与50次的大小频率之差为0.02,200与225次之间的大小频率之差为0.002;小转盘中25次与50次的大小频率之差为0.06,200与225次之间的大小频率之差为0.001;(4)随着次数的增多,大小转盘的频率都逐渐稳定在0.25左右.【点评】本题主要考查频数(率)分布折线图,掌握“频率=频数÷总数”及折线图的制作、大量重。

浙教版初中数学七年级下册第六单元《数据与统计图表》单元测试卷(标准难度)(含答案解析)

浙教版初中数学七年级下册第六单元《数据与统计图表》单元测试卷(标准难度)(含答案解析)

浙教版初中数学七年级下册第六单元《数据与统计图表》单元测试卷(标准难度)(含答案解析)考试范围:第六单元; &nbsp; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1. 今年某市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,有下列说法:①这4万名考生的数学中考成绩的全体是总体;②每名考生是个体;③2000名考生是总体的一个样本;④样本容量是2000.其中正确的有A. 4个B. 3个C. 2个D. 1个2. 以下调查中,最适宜采用普查方式的是( )A. 检测某批次汽车的抗撞击能力B. 调查黄河的水质情况C. 调查全国中学生视力和用眼卫生情况D. 检查我国“神州八号”航天飞船各零部件的情况3. 近几年来,国民经济和社会发展取得了新的成就,农村经济快速发展,农民收入不断提高.下图统计的是某地区2004年−2008年农村居民人均年纯收入.根据图中信息,下列判断:①与上一年相比,2006年的人均年纯收入增加的数量高于2005年人均年纯收入增加的数量;×100%;②与上一年相比,2007年人均年纯收入的增长率为3587−32553255③若按2008年人均年纯收入的增长率计算,2009年人均年纯收入将达到4140×(1+4140−3587)元.3587其中正确的是( )A. 只有①②B. 只有②③C. 只有①③D. ①②③4. 下图是某地区用水量与人口数情况统计图.日平均用水量为400万吨的那一年,人口数大约是( )A. 180万B. 200万C. 300万D. 400万5. 小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形图1及条形图2(柱的高度从高到低排列).条形图不小心被撕了一块,图2中“”应填的颜色是( )A. 蓝B. 粉C. 黄6. 某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到扇形统计图如图所示:则下面结论中不正确的是( )A. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,种植收入减少7. 某校七、八、九三个年级共有学生800人,该校公布了反映各年级学生体育达标情况的两张统计图(如图),甲、乙、丙三名同学看了这两张统计图后,甲说:“七年级的体育达标率最高.”乙说:“八年级共有学生264人.”丙说:“九年级的体育达标率最高.”甲、乙、丙三名同学中,说法正确的是( )A. 甲和乙B. 乙和丙C. 只有乙D. 只有丙8. 有三名候选人A,B,C竞选班长,要求班级的每名学生只能从三人中选一人(候选人也参与投票).经统计,A,B,C三名候选人得票数之比依次为6:3:1,若候选人B获得票数的频数为15,则该班级共有( )A. 44人B. 46人C. 48人D. 50人9. 某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的频率为( )棉花纤维长度x0≤x<88≤x<1616≤x<2424≤x<3232≤x<40频数12863A. 0.8B. 0.7C. 0.4D. 0.210. 为了解某校八年级400名学生60秒跳绳的次数,随机对该年级50名学生进行了调查,根据收集的数据绘制了如图所示的频数分布直方图,每组数据包括左端值,不包括右端值,如最左边第一组的次数x为:60≤x<80.则以下说法正确的是( )A. 该年级50名学生跳绳次数不少于100次的占80%B. 大多数学生跳绳次数在140~160范围内C. 60秒跳绳次数最多的是160次D. 由样本可以推断全年级400人中跳绳次数在60~80次的大约有48人11. 某中学八年级甲、乙两个班进行了一次跳远测试,测试人数每班都为40人,每个班学生的跳远成绩分为A,B,C,D四个等级,绘制的统计图如图.根据以上统计图提供的信息,下列说法错误的是( )A. 甲班A等级的人数在甲班中最少B. 乙班D等级的人数比甲班少C. 乙班A等级的人数与甲班一样多D. 乙班B等级的人数为14人12. 为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( )A. 280B. 240C. 300D. 260第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 在调查某地区老年人的健康状况中,个体是______.14. 某校组织学生开展“八荣八耻”宣传教育活动,其中有30%的同学走出校门进行宣讲,这部分学生在扇形统计图中应为______部分.15. 一次跳远比赛中,成绩在4.05米以上的人有8人,频率为0.4,则参加比赛的运动员共有______人.16. 某校为了解学生的课外阅读情况,随机抽取了50名学生,并统计他们平均每天的课外阅读时间t(单位:min),然后利用所得数据绘制成如下不完整的统计表.课外阅读时间频数表课外阅读时间t(min)频数10≤t<30430≤t<50850≤t<70a70≤t<901690≤t<1102合计50表中a=.三、解答题(本大题共9小题,共72.0分。

浙教版七年级下数学第六章 数据与统计图表单元检测卷附答案

浙教版七年级下数学第六章 数据与统计图表单元检测卷附答案

浙教版七年级下数学第六章数据与统计图表单元检测卷班级__________姓名____________总分___________一、选择题1.要反映某市一周内每天的最高气温的变化情况,宜采用( )A. 条形统计图B. 扇形统计图C. 折线统计图D. 频数分布直方图2.将100个数据分成8个组,如下表:则第六组的频数为( )A、12B、13C、14D、153.为了了解某校学生对篮球、足球、羽毛球、乒乓球、网球等五类的喜爱,小李采用了抽样调查,在绘制扇形图时,由于时间仓促,还有足球、网球等信息还没有绘制完成,如图所示,根据图中的信息,这批被抽样调查的学生最喜欢足球的人数不可能是()A. 100人B. 200人C. 260人D. 400人4.小明在选举班委时得了28票,下列说法错误的是()A. 不管小明所在的班级有多少学生,所有选票中选小明的选票频率不变B. 不管小明所在的班级有多少学生,所有选票中选小明的选票频数不变C. 小明所在班级的学生人数不少于28人D. 小明的选票的频率不能大于15.某水库水位发生变化的主要原因是降雨的影响,对这个水库5月份到10月份的水位进行统计得到折线统计图如图所示,则该地区降雨最多的时期为( )A. 5~6月份B. 7~8月份C. 8~9月份D. 9~10月份6.一组数据的最大值是97,最小值76,若组距为4,则可分为几组()A. 4B. 5C. 6D. 77.下列调查中:①为了了解七年级学生每天做作业的时间,对某区七年级(1)班的学生进行调查;②爱心中学美术爱好小组拟组织一次郊外写生活动,为了确定写生地点,对美术爱好小组全体成员进行调查;③为了了解观众对电视剧的喜爱程度,数学兴趣小组调查了某小区的100位居民,其中属于抽样调查的有()A. 3个B. 2个C. 1个D. 0个8.超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成频数分布直方图(图中等待时间6分钟到7分钟表示大于或等于6分钟而小于7分钟,其余类同),这个时间段内顾客等待时间不少于六分钟的人数为()A. 5B. 7C. 16D. 339.某中学开展“眼光体育一小时”活动,根据学校实际情况,如图决定开设“A:踢毽子,B:篮球,C:跳绳,D:乒乓球”四项运动项目(每位同学必须选择一项),为了解学生最喜欢哪一项运动项目,随机抽取了一部分学生进行调查,丙将调查结果绘制成如图的统计图,则参加调查的学生中最喜欢跳绳运动项目的学生数为()A. 240B. 120C. 80D. 4010.以下是某手机店1~4月份的统计图,分析统计图,对3、4月份三星手机的销售情况四个同学得出的以下四个结论,其中正确的为( )A. 4月份三星手机销售额为65万元B. 4月份三星手机销售额比3月份有所上升C. 4月份三星手机销售额比3月份有所下降D. 3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额二、填空题12.在如图所示的扇形统计图中,根据所给的已知数据,若要画成条形统计图,甲、乙、丙三个条形对应的三个小长方形的高度比为____________.13.某学校计划开设A,B,C,D四门校本课程供学生选修,规定每个学生必须并且只能选修其中一门,为了了解学生的选修意向,现随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的条形统计图,已知该校学生人数为2000人,由此估计选修A课程的学生有_______________人.14.测得某市2月份1~10日最低气温随日期变化折线图如图所示()1最低气温为2c的天数为_____天。

浙教版初中数学七年级下册第六单元《数据与统计图表》单元测试卷(较易)(含答案解析)

浙教版初中数学七年级下册第六单元《数据与统计图表》单元测试卷(较易)(含答案解析)

浙教版初中数学七年级下册第六单元《数据与统计图表》单元测试卷(较易)(含答案解析)考试范围:第六单元; &nbsp; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1. 某校为了解七年级14个班级学生吃零食的情况,下列做法中,比较合理的是( )A. 了解每一名学生吃零食情况B. 了解每一名女生吃零食情况C. 了解每一名男生吃零食情况D. 每班各抽取7男7女,了解他们吃零食情况2. 某市有9个区,为了解该市初中生的体重情况,有人设计了四种调查方案,你认为比较合理的是( )A. 测试该市某一所中学初中生的体重B. 测试该市某个区所有初中生的体重C. 测试全市所有初中生的体重D. 每区随机抽取5所初中,测试所抽学校初中生的体重3. 某校随机调查了若干名家长与中学生对带手机进校园的态度统计图(如图),已知调查家长的人数与调查学生的人数相等,则家长反对学生带手机进校园的人数有( )A. 140B. 120C. 220D. 1004. 下面的折线图描述了杭州市区某一天的气温变化情况,根据图象提供的信息,下列结论正确的是( )A. 这一天的温差8℃B. 最低气温是24℃C. 从4:00到14:00气温逐渐上升D. 从0:00到6:00气温逐渐下降5. 如图是一个还没画完整的扇形统计图,整个圆表示某班参加体育活动的总人数,其中参加立定跳远的人数占总人数的35%,则图中表示立定跳远人数的扇形是( )A. M.B. N.C. P.D. Q.6. 某校参加课外兴趣小组的学生人数统计图如图所示.若信息技术小组有60人,则劳动实践小组有( )A. 75人B. 90人C. 108人D. 150人7. 一次数学比赛中,成绩在90分以上的有12人,频率为0.2,则参加比赛的共有( )A. 40人B. 50人C. 60人D. 70人8. 某青年足球队的14名队员的年龄如表:年龄(单位:岁)19202122人数(单位:人)3722则出现频数最多的是( )A. 19岁B. 20岁C. 21岁D. 22岁9. 在频数直方图中,用来表示各组频数的是每个矩形的( )A. 长B. 宽(高)C. 周长D. 面积10. 市某视力健康管理中心对全市初中生的视力情况进行了一次抽样调查,如图是利用调查所得数据绘制的频数直方图,则这组数据的组数与组距分别是( )A. 4和0.20B. 4和0.30C. 5和0.20D. 5和0.3011. 进行数据的收集调查时,在明确调查问题、确定调查对象后一般还要完成以下4个步骤: ①展开调查; ②得出结论; ③记录结果; ④选择调查方法.但它们的顺序弄乱了,正确的顺序是( )A. ④ ① ③ ②B. ③ ④ ① ②C. ④ ③ ① ②D. ② ④ ③ ①12. 某校调查了150名学生最喜爱的体育活动,制成了下图所示的扇形统计图.在被调查的学生中,选羽毛球的学生人数的百分比为( )A. 10%B. 20%C. 30%D. 40%第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 为了了解某地区45000名七年级学生的睡眠情况,运用所学统计知识解决上述问题所要经历的几个主要步骤: ①抽样调查; ②设计调查问卷; ③用样本估计总体; ④整理数据; ⑤分析数据,按操作的先后进行排序为.(只写序号)14. 学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计两人中新手是.15. 已知一个样本含有30个数据,这些数据被分成4组,各组数据的个数之比为1:3:4:2,则第三组的频数为.16. 某项目小组对新能源汽车充电成本进行抽测,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如下图所示,其中充电成本在300元/月及以上的车有辆.三、解答题(本大题共9小题,共72.0分。

中考特训浙教版初中数学七年级下册第六章数据与统计图表章节测试试题(含答案解析)

中考特训浙教版初中数学七年级下册第六章数据与统计图表章节测试试题(含答案解析)

初中数学七年级下册第六章数据与统计图表章节测试(2021-2022浙教考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、下列选项中,显示部分在总体中所占百分比的统计图是( )A.扇形统计图B.条形统计图C.折线统计图D.直方图2、为了解中学生获取资讯的主要渠道,随机抽取50名中学生进行问卷调查,调查问卷设置了“A.报纸,B.电视,C.网络,D.身边的人,E.其他”五个选项(五项中必选且只能选一项),根据调查结果绘制了如下的条形图.该调查的调查方式及图中a的值分别是( )A.全面调查;26 B.全面调查;24C.抽样调查;26 D.抽样调查;243、今年我市有4万名考生参加中考,为了了解这些考生的数学成绩,从中抽取2 000名学生的数学成绩进行统计分析,在这个问题中,下列说法:①这4万名考生的中考数学成绩的全体是总体;②每个考生是个体;③2 000名考生是总体的一个样本;④样本容量是2 000. 其中说法正确的有( )A.4个B.3个C.2个D.1个4、甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市5、如图是九年级某考生做的水滴入一个玻璃容器的示意图(滴水速度保持不变),能正确反映容器中水的高度(h)与时间(t)之间对应关系的大致图象是().A.B.C.D.6、下列调查中,调查方式选择最合理的是()A.调查“乌金塘水库”的水质情况,采用抽样调查B.调查一批飞机零件的合格情况,采用抽样调查C.检验一批进口罐装饮料的防腐剂含量,采用全面调查D.企业招聘人员,对应聘人员进行面试,采用抽样调查7、为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.2608、为了解学生体育锻炼的用时情况,陈老师对本班50名学生一天的锻炼时间进行调查,并将结果绘制成如图统计图,那么一天锻炼时间为1小时的人数占全班人数的()A.14% B.16% C.20% D.50%9、下列调查中,调查方式选择合理的是()A.为了解襄阳市初中每天锻炼所用时间,选择全面调查B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查C.为了解神舟飞船设备零件的质量情况,选择抽样调查D.为了解一批节能灯的使用寿命,选择抽样调查10、某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是()A.30,40 B.45,60 C.30,60 D.45,40二、填空题(5小题,每小题4分,共计20分)1、某中学七年级(1)班全体40名同学的综合素质评价“运动与健康”方面的等级统计如图所示,其中评价为“A”等级的百分比是“D”等级的2倍,则评价为“A”等级有______人.2、为了了解某校800名初一学生的睡眠时间,从中抽取80名学生进行调查,在这个问题中样本容量是 ___.3、为了解某校七年级学生的视力情况,从中抽取了100名学生进行了检查,发现只有30名学生的视力在5.0及以上,则该问题中的样本容量是______.4、为了了解某校七年级400名学生的期中数学成绩的情况,从中抽取了50名学生的数学成绩进行分析.在这个过程中,样本容量是________.5、超市为了制定某个时间段收银台开放方案,统计了这个时间段顾客在收银台排队付款的等待时间,并绘制成如下的频数分布直方图(图中等待时间1-2分钟表示大于或等于1分钟而小于2分钟,其它类同),这个时间段内顾客等待时间不少于5分钟的人数为________.三、解答题(5小题,每小题10分,共计50分)1、“中国梦”是中华民族每一个人的梦,各中小学开展经典诵读活动,是“中国梦”教育这一宏大乐章里的响亮音符某学校在经典诵读活动中,对全校学生用A(优秀)、B(良好)、C(合格)、D(不合格)四个等级进行评价,现从中抽取若干名学生进行调查,绘制出了两幅不完整的统计图,请你根据图中信息解答下列问题:(1)共抽取了多少名学生进行调查;(2)将图甲中的条形统计图补充完整;(3)求出图乙中D等级所对应的扇形圆心角的度数;(4)根据抽样调查的结果,请你估计该校2000名学生中有多少名学生获得B等级的评价.2、某市对老城进行改造,根据2008年至2010年的发展情况,制作了下列两个统计图,根据统计图回答下列问题:(1)2008年各个房地产公司建筑房屋的平均面积是多少?2009年呢?2010年呢?(2)根据统计图中的数据,你还能得到什么信息?3、为了了解你们学校的学生是否吃早饭,下列这些抽取样本的方式是否合适?(1)早上7:00至7:30在校门口随机选择50名同学进行调查;(2)选择全校每个班级中学号是5和15的同学进行调查;(3)选择七(1)班全体学生进行调查.4、永昌公司最近5年的利润情况如下表:小明、小亮和小颖根据上述数据分别绘制了折线统计图.(1)在这三幅图中,哪个更令人觉得永昌公司的效益蒸蒸日上?(2)这三幅图,它们所表示的数据相同,但为什么给人不同的感觉?5、为落实“每天锻炼一小时,快乐学习一整天”的要求,某校举行校园阳光大课间活动,为了解七年级学生每周在校体育锻炼时间,随机抽取了部分学生进行调查,并绘制了以下不完整的频数分布表和频数分布直方图.(1)本次调查的学生总人数为______;(2)求a、b的值,并补全频数分布直方图;(3)若将调查结果绘制成扇形统计图,求锻炼时间在“56≤<”所对应的扇形圆心角的度数.t---------参考答案-----------一、单选题1、A【详解】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.故在进行数据描述时,要显示部分在总体中所占的百分比,应采用扇形统计图;故选A.2、D【详解】试题分析:本次调查方式为抽样调查,a=50﹣6﹣10﹣6﹣4=24.故选D.考点:1.条形统计图2.全面调查与抽样调查.3、C【详解】试题解析:这4万名考生的数学中考成绩的全体是总体;每个考生的数学中考成绩是个体;2000名考生的中考数学成绩是总体的一个样本,样本容量是2000.故正确的是①④.故选C.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.4、D【分析】根据折线图中各月的具体数据对四个选项逐一分析可得.【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C、8月份两家超市利润相同,此选项正确,不符合题意;D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D.【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.5、D【分析】先根据容器的上下的大小,判断水上升快慢和对应的图象,再对题中的每一种结论进行判断.【详解】解:由于容器的形状是下宽上窄,所以水的深度上升是先慢后快.表现出的函数图形为先缓,后陡.故选D.【点睛】本题考查单式折线统计图,解题关键在于根据容器的上下的大小,判断水上升快慢和对应的图象6、A【详解】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】A.了解“乌金塘水库”的水质情况,采用抽样调查,故A正确;B.了解一批飞机零件的合格情况,适合全面调查,故B错误;C.了解检验一批进口罐装饮料的防腐剂含量,调查范围广,适合抽样调查,故C错误;D.企业招聘人员,对应聘人员进行面试,适合全面调查,故D错误,故选A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7、A【详解】由题可得,抽查的学生中参加社团活动时间在8∼10小时之间的学生数为100−30−24−10−8=28(人),∴1000×28100=280(人),即该校五一期间参加社团活动时间在8∼10小时之间的学生数大约是280人.故选A.8、D【分析】根据条形统计图中的数据,可以计算出一天锻炼时间为1小时的人数占全班人数的百分比,从而可以解答本题.【详解】解:由题意可得,25÷(8+25+10+7)×100%=0.5×100%=50%,即一天锻炼时间为1小时的人数占全班人数的50%,故选:D.【点睛】本题考查样本估计总体,从条形统计图中读取信息是解题的关键.9、D【详解】A.为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A不符合题意;B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B不符合题意;C.为了解神舟飞船设备零件的质量情况,选普查,故C不符合题意;D.为了解一批节能灯的使用寿命,选择抽样调查,故D符合题意;故选D.10、B【详解】试题分析:由题意得,打羽毛球学生的比例为:1﹣20%﹣10%﹣30%=40%,则跑步的人数为:150×30%=45,打羽毛球的人数为:150×40%=60.故选B.考点:扇形统计图.二、填空题1、12【分析】设“A”等级有x人,则x+12x=40(1-20%-35%),解方程可得.【详解】设“A”等级有x人,则x+12x=40(1-20%-35%)解得x=12故答案为:12【点睛】考核知识点:扇形图.从统计图获取信息,理解百分比的意义是关键.2、80【分析】根据样本容量是指样本中个体的数目,可得答案.【详解】解:为了了解某校800名初一学生的睡眠时间,从中抽取80名学生进行调查,在这个问题中样本容量是80.故答案为:80.【点睛】本题主要考查总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.3、100【分析】样本容量则是指样本中个体的数目.【详解】解:从中抽取了100名学生进行了检查,发现只有30名学生的视力在5.0及以上,则该问题中的样本容量是100,故答案为:100.【点睛】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.4、50【分析】根据样本容量:一个样本包括的个体数量叫做样本容量即可得.【详解】解:为了了解某校七年级400名学生的期中数学成绩的情况,从中抽取了50名学生的数学成绩进行分析,这个问题中的样本容量是50,故答案为:50.【点睛】本题主要考查总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.5、16【分析】根据题意和频数分布直方图可以得到这个时间段内顾客等待时间不少于5分钟的人数,找出等待5—6分钟,6—7分钟与7—8分钟的人数相加即可.【详解】解:由频数分布直方图可得,这个时间段内顾客等待时间不少于5分钟的人数为:9+5+2=16,故答案为:16.【点睛】本题考查频数分布直方图,解题的关键是明确题意,利用数形结合的思想解答问题.三、解答题1、(1)100名;(2)图见解析;(3)18︒;(4)700.【分析】(1)根据C等级的条形统计图和扇形统计图的信息即可得;(2)根据(1)的结果,求出B等级的学生人数,再补全条形统计图即可;(3)利用360︒乘以D等级所占的百分比即可得;(4)利用2000乘以B等级所占的百分比即可得.【详解】解:(1)抽取调查的学生总人数为1010%100÷=(名),答:共抽取了100名学生进行调查;(2)B等级的人数为1005010535---=(名),则补全条形统计图如下:(3)图乙中D等级所对应的扇形圆心角的度数为5360100%18100⨯⨯=︒︒,答:图乙中D等级所对应的扇形圆心角的度数18︒;(4)352000100%700100⨯⨯=(名),答:估计有700名学生获得B等级的评价.【点睛】本题考查了条形统计图和扇形统计图的信息关联,熟练掌握统计调查的相关知识是解题关键.2、(1)2008年、2009年、2010年各个房地产开发公司的平均建筑面积是8万2m,15.5万2m,13.75万2m;(2)答案不唯一.例如,2008年至2010年房地产开发公司的数量在不断增长,建筑总面积也在增长,但增长的幅度在变小;2008年至2009年,各个房地产开发公司的平均建筑面积有大幅提高,2009年至2010年,各个房地产开发公司的平均建筑面积减少了.【分析】(1)用对应年份的建筑总面积÷建筑公司数量即可得到答案;(2)根据统计图写出相应的结论即可.【详解】解:(1)2008年、2009年、2010年各个房地产开发公司的平均建筑面积是:120158÷=万m2,6204015.5÷=万m2,6604813.75÷=万m2,(2)2008年至2010年房地产开发公司的数量在不断增长,建筑总面积也在增长,但增长的幅度在变小;2008年至2009年,各个房地产开发公司的平均建筑面积有大幅提高,2009年至2010年,各个房地产开发公司的平均建筑面积减少了.【点睛】本题主要考查了条形统计图,解题的关键在于能够准确根据统计图获取信息进行求解.3、(1)(2)可以,(3)不合适.【分析】(1)符合样本抽取的代表性,广泛性,全面性的特点;(2)符合样本抽取的代表性,广泛性,全面性的特点;(3)不符合样本抽取的代表性,广泛性,全面性的特点.【详解】(1)符合样本抽取的代表性,广泛性,全面性的特点,故可以;(2)符合样本抽取的代表性,广泛性,全面性的特点,故可以;(3)不符合样本抽取的代表性,广泛性,全面性的特点,故不可以.【点睛】本题考查了样本抽取,熟练掌握抽取样本的基本条件和基本特点是解题的关键.4、(1)小颖的图更令人觉得该公司的效益蒸蒸日上;(2)小明和小亮的图相比,横轴上同一单位长度表示的意义相同,但纵轴上同一单位长度所表示的意义不同,结果导致小颖的图更“窄”,其相应的折线更“陡”.【分析】(1)根据几个折线图的倾斜程度即可比较;(2)根据三个折线统计图表示年份和利润的单位长度不同即可作出判断;【详解】解:(1)小颖的图更令人觉得该公司的效益蒸蒸日上.(2)小明和小亮的图相比,横轴上同一单位长度表示的意义相同,但纵轴上同一单位长度所表示的意义不同,因而造成折线的倾斜程度不同,给人以不同的感觉;小亮和小颖的图相比,虽然纵轴上同一单位长度表示的意义相同,但横轴上表示一年的长度不同,结果导致小颖的图更“窄”,其相应的折线更“陡”.【点睛】本题考查了折线统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.5、(1)40 (2)a=6,b=10%,频数分布直方图见解析(3)72°【分析】(1)根据体育锻炼时间“3≤t<4”频数10,占学生总人数的百分比是25%,可得答案;(2)由(1)的结果学生总人数可求a,由学生总人数和频数4,可求b;(3)根据体育锻炼时间“5≤t<6”占学生总人数的百分比20%,即可得答案.【详解】解:(1)∵体育锻炼时间“3≤t<4”频数10,百分比是25%,∴学生总人数为10÷25%=40;(2)∵学生总人数为40,∴a=40-4-10-8-12=6,b=41%=%=10% 4010;∴频数分布直方图为下图:(3)体育锻炼时间“5≤t<6” 占学生总人数的百分比为20%,∴对应的扇形圆心角的度数=20%360=72⨯︒︒.【点睛】本题考查了数据的收集与整理,做题的关键是掌握由频数和对应的百分比会求总数,频数和总数会求扇形的圆心角.。

浙教新版七年级下册《第6章_数据与统计图表》2024年单元测试卷(2)+答案解析

浙教新版七年级下册《第6章_数据与统计图表》2024年单元测试卷(2)+答案解析

浙教新版七年级下册《第6章数据与统计图表》2024年单元测试卷(2)一、选择题:本题共11小题,每小题3分,共33分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列调查中,适合采用全面调查普查方式的是()A.了解西宁电视台“教育在线”栏目的收视率B.了解青海湖斑头雁种群数量C.了解全国快递包裹产生包装垃圾的数量D.了解某班同学“跳绳”的成绩2.为了了解某市老人的身体健康状况,需要抽取部分老人进行调查,下列抽取方法最合适的是()A.随机抽取100位女性老人 B.随机抽取100位男性老人C.随机抽取公园内100位老人D.在城市和乡镇各选50位老人3.某校学生来自甲、乙、丙三个地区,其人数比为2:7:3,如图所示的扇形图表示上述分布情况.如果来自甲地区的为180人,则这个学校的学生总数为()A.1080人B.630人C.270人D.180人4.九年级一班同学根据兴趣分成A 、B 、C 、D 、E 五个小组,把各小组人数分布绘制成如图所示的不完整统计图.则D 小组的人数是()A.10人B.11人C.12人D.15人5.体育委员统计了七年级一班全体同学60秒跳绳的次数,并列出下面的频数表各组含前一个边界值,不含后一个边界值:次数频数242114731有下列结论:①全班有52名学生;②组距是20;③组数是7;④跳绳次数在范围内的学生约占全班学生的其中,正确结论的个数是()A.1B.2C.3D.46.为了解某市参加中考的25000名学生的身高情况,抽查了其中1200名学生的身高进行统计分析.下面叙述正确的是()A.25000名学生是总体B.1200名学生的身高是总体的一个样本C.每名学生是总体的一个个体D.以上调查是全面调查7.某地区有8所高中和22所初中,要了解该地区中学生的视力情况,下列抽样方式获得的数据最能反映该地区中学生视力情况的是()A.从该地区随机选择一所中学里的学生B.从该地区30所中学里随机选取800名学生C.从该地区的一所高中和一所初中各选取一个年级的学生D.从该地区的22所初中里随机选取400名学生8.已知一组数据有40个,把它分成6组,第一组到第四组的频数分别是10,5,7,6,第5组的频率为,则第6组的频率是()A. B. C. D.9.在线教育使学生足不出户也能连接全球优秀的教育资源.下面的统计图反映了我国在线教育用户规模的变化情况.以上数据摘自《2017年中国在线少儿英语教育白皮书》根据统计图提供的信息,下列推断一定不合理的是()A.2015年12月至2017年6月,我国在线教育用户规模逐渐上升B.2015年12月至2017年6月,我国手机在线教育课程用户规模占在线教育用户规模的比例持续上升C.2015年12月至2017年6月,我国手机在线教育课程用户规模的平均值超过7000万D.2017年6月,我国手机在线教育课程用户规模超过在线教育用户规模的10.下面两个统计图反映的是甲、乙两所学校三个年级的学生在各校学生总人数中的占比情况,下列说法错误的是()A.甲校中七年级学生和八年级学生人数一样多B.乙校中七年级学生人数最多C.乙校中八年级学生比九年级学生人数少D.甲、乙两校的九年级学生人数一样多11.如图是七年级三班全体同学的一次体检中每分钟心跳次数的频数分布直方图次数均为整数已知该班只有5名同学的心跳是每分钟75次,则下列说法错误的是()A.数据75落在第2小组B.每分钟心跳75次的人数占该班体检人数的C.第4小组的人数占全班同学的D.每分钟心跳75次以上的人数是15二、填空题:本题共7小题,每小题3分,共21分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙教版七年级下《第六章数据与统计图表》单元检测试卷含答案
第六章数据与统计图表单元检测卷
姓名:__________ 班级:__________
一、选择题(共9题;每小题4分,共36分)
1.下面获取数据的方法不正确的是()
A. 我们班同学的身高用测量方法
B. 快捷了解历史资料情况用观察方法
C. 抛硬币看正反面的次数用实验方法
D. 全班同学最喜爱的体育活动用访问方法
2.一个容量为80的样本,最大值是141,最小值是50,取组距为10,可以分成()
A. 10组
B. 9组
C. 8组
D. 7组
3.为丰富学生课外活动,某校积极开展社团活动,学生可根据自己的爱好选择一项,已知该校开设的体育社团有:A:篮球,B:排球C:足球;D:羽毛球,E:乒乓球.李老师对某年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是()
A. 选科目E的有5人
B. 选科目D的扇形圆心角是72°
C. 选科目A的人数占体育社团人数的一半
D. 选科目B的扇形圆心角比选科目D的扇形圆心角的度数少21.6°
4.下列各数:π,,cos60°,0,,其中无理数出现的频率是()
A. 20%
B. 40%
C. 60%
D. 80%
5.下列说法中,不正确的是()
A. 可以很清楚地表示出各部分同总体之间关系的统计图是条形统计图
B. 能清楚地反映出数量增减变化的统计图是折线统计图
C. 为了清楚地知道你的各科成绩,你可以选择制作条形统计图
D. 为了清楚地反映出全校人数同各年级人数之间的关系,应选择扇形统计图
6.如图,是某商场4种品牌的商品销售情况统计图,其中甲品牌所占的扇形的圆心角是()
A. 36°
B. 108°
C. 72°
D. 162°
7.如图阴影部分扇形的圆心角是()
A. 15°
B. 23°
C. 30°
D. 36°
8.有一个样本有100个数据,落在某一组内的频率是0.3,那么落在这一组内的频数是()
A. 50
B. 30
C. 15
D. 3
9.武汉市某校在“创新素质实践行”活动中组织学生进行社会调查,并对学生的调查报告进行评比,下面是将某年级60篇学生调查报告的成绩进行整理,分成五组画出的频数分布直方图.已知从左至右5个小组的频数之比为1:3:7:6:3,则在这次评比中被评为优秀的调查报告(分数大于或等于80分为优秀,且分数为整数)占百分之()
A. 45
B. 46
C. 47
D. 48
二、填空题(共10题;共30分)
10.随着综艺节目“爸爸去哪儿”的热播,问卷调查公司为调查了解该节目在中学生中受欢迎的程度,走进某校园随机抽取部分学生就“你是否喜欢看爸爸去哪儿”进行问卷调查,并将调查结果统计后绘制成如下不完整的统计表:
则a﹣b=________
11.如图,一项统计数据的频数分布直方图中,如果直方图关于第三组的小长方形呈轴对称图形(坐标轴忽略不计),那么,落在110~130这一组中的频数是________。

12.某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.
解答下列问题:
(1)这次抽样调查的样本容量是________ ,并补全频数分布直方图;
(2)C组学生的频率为________ ,在扇形统计图中D组的圆心角是________ 度;
(3)请你估计该校初三年级体重超过60kg的学生大约有________ 名
13.调查机构对某地区1000名20~30岁年龄段观众周五综艺节目的收视选择进行了调查,相关统计图如下,请根据图中信息,估计该地区20000名20~30岁年龄段观众选择观看《最强大脑》的人数约为
________ 人.
14.甲,乙两家汽车销售公司根据近几年的销售量,分别作了如下统计图,从2010年到2014年,这两家公司中销售量增长较快的是________ .
15.已知在一个样本中,50个数据分别落在5个组内,第一、二、三、五组数据的个数分别为2,8,15,5,则第四组的频率是________.
16.在日常生活、生产和科学研究中,人们常常通过________ 、________ 等方式有目的地收集数据.
17.某记者抽样调查了某校一些学生假期用于读书的时间(单位:分钟)后,绘制了频数分布直方图,从左到右的前5个长方形相对应的频率之和为0.9,最后一组的频数是15,则此次抽样调查的人数为
________ 人.(注:横轴上每组数据包含最小值不包含最大值)
18.假如你想知道你们班同学的身高情况,你必须进行调查,然后对你的调查结果加以总结,那么:(1)你调查的问题是________ ;
(2)你调查的对象是________;
(3)你感兴趣的是调查对象的________ ;
(4)你的调查方式是________ .
19.某班50名学生右眼视力的检查结果如下表:
视力 0.1 0.1 0.3 0.4 0.5 0.6 0.7 0.8 1.0 1.2 1.5
人数 1 1 3 4 3 4 4 6 8 10 6
视力在1.0以上(包括1.0)的为正常,则视力正常的人数占全班人数的________%;该班学生视力情况________(选填“好”“一般”“差”).
三、解答题(共3题;共34分)
20.某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:
(1)补全条形统计图;
(2)求扇形统计图扇形D的圆心角的度数;
(3)若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?
21.小花最近买了三本课外书,分别是《汉语字典》用A表示,《流行杂志》用B表示和《故事大王》用C表示.班里的同学都很喜欢借阅,在五天内小花做了借书记录如下表:
(1)在表中填写五天内每本书的借阅频数.
(2)计算五天内《汉语字典》的借阅频率.
22.某校开展了主题为“梅山文化知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,整理调查数据制成了不完整的表格和扇形统计图(如图).
根据以上提供的信息解答下列问题:
(1)本次问卷调查共抽取的学生数为多少人,表中m的值为多少;
(2)计算等级为“非常了解”的频数在扇形统计图中对应扇形的圆心角的度数,并补全扇形统计图;
(3)若该校有学生2000人,请根据调查结果估计这些学生中“不太了解”梅山文化知识的人数约为多少?
参考答案
一、选择题
B A
C B A B
D B A
二、填空题
10.0.1 11.300 12.50;0.32;72;360
13.6800 14.甲15.0.4 16.观察;调查17.150
18.我班同学的身高情况是什么;我班所有同学;身高;全面调查19.48;一般
三、解答题
20.解:(1)抽取的总人数是:10÷25%=40(人),
在B类的人数是:40×30%=12(人).

(2)扇形统计图扇形D的圆心角的度数是:360×=27°;
(3)能在1.5小时内完成家庭作业的人数是:2000×(25%+30%+35%)=1800(人).21.解:(1)填表如下:
(2)总数是14+15+11=40,则五天内《汉语字典》的借阅频率是:=.
22.解:(1)40÷20%=200人,
200×45%=90人;
(2)×100%×360°=90°,1﹣25%﹣45%﹣20%=10%,扇形统计图如图所示:
(3)2000×10%=200人.
答:这些学生中“不太了解”梅山文化知识的人数约为200人.。

相关文档
最新文档