2015年四区联合体数学一模(含答案)

合集下载

2015年中考一模名校联考数学试题及答案.com

2015年中考一模名校联考数学试题及答案.com

2015年中考一模名校联考数学试题(卷)时间120分钟满分120分 2015/3/5 一、选择题(每小题3分,共24分)1.(3分)在0.1,﹣3,和这四个实数中,无理数是()A.0.1 B.﹣3 C. D.2.(3分)2014年3月21日上午,我国新型导弹驱逐舰昆明舰举行入列仪式,正式加入人民海军战斗序列.昆明舰采用柴燃交替动力,配备2台QC208燃气轮机,单台功率37500马力.数据37500用科学记数表示为()A. 3.75×104B.37.5×103C.0.375×105D. 3.75×1033.(3分)有一组数据:2,4,3,4,5,3,4,则这组数据的众数是()A. 5 B. 4 C. 3 D. 24.(3分)将“中国梦我的梦”六个字分别写在一个正方体的六个面上,这个正方体的展开图如图,那么在这个正方体中,和“我”字相对的字是()A.中 B.国 C.的 D.梦5.(3分)不等式组的解集是()A.﹣1<x≤1B.﹣1<x<1 C.x>﹣1 D.x≤16.(3分)如图,直线l1∥l2,且分别与△ABC的两边AB、AC相交,若∠A=50°,∠1=35°,则∠2的度数为()A.35° B 65°C.85°D.95°3题图6题图 7题图 8题图7.(3分)如图,⊙O是△ABC的外接圆,连结OA、OB,且点C、O在弦AB的同侧,若∠ABO=50°,则∠ACB的度数为()A.50°B.45°C.30°D.40°8.(3分)如图,在平面直角坐标系中,菱形ABCD的顶点C的坐标为(﹣1,0),点B的坐标为(0,2),点A在第二象限.直线y=﹣x+5与x轴、y轴分别交于点N、M.将菱形ABCD沿x轴向右平移m个单位,当点D落在△MON的内部时(不包括三角形的边),则m的值可能是()A.1 B 2 C.4 D.8二、填空题(每小题3分,共18分)9.(3分)计算:﹣2= .10.(3分)某饭店在2014年春节年夜饭的预定工作中,第一天预定了a桌,第二天预定的桌数比第一天多了4桌,则这两天该饭店一共预定了桌年夜饭(用含a的代数式表示).11.(3分)一个正方形与一个正六边形如图放置,正方形的一条边与正六边形的一条边完全重合,则∠1的度数为度.11题图 12题图 13题图 14题图12.(3分)如图,MN是⊙O的直径,矩形ABCD的顶点A、D在MN上,顶点B、C 在⊙O上,若⊙O的半径为5,AB=4,则AD边的长为 6 .13.(3分)如图,已知抛物线y=﹣x2+bx+c的对称轴为直线x=1,且与x轴的一个交点为(3,0),那么它对应的函数解析式是.14.(3分)如图,点A在反比例函数y=(x>0)的图象上,过点A作AD⊥y轴于点D,延长AD至点C,使AD=DC,过点A作AB⊥x轴于点B,连结BC交y轴于点E.若△ABC的面积为4,则k的值为.三、解答题(本大题10小题,共78分)15.(5分)化简:÷.16.(6分)在一个不透明的盒子中放有三张卡片,分别标记为A、B、C,每张卡片除了标记不同外,其余均相同.某同学第一次从盒子中随机抽取一张卡片,卡片放回,第二次又随机抽取一张卡片.请用画树状图(或列表)的方法,求两次抽取的都是A的概率.17.(6分)某车间接到加工200个零件的任务,在加工完40个后,由于改进了技术,每天加工的零件数量是原来的2.5倍,整个加工过程共用了13天完成.求原来每天加工零件的数量.18.(7分)如图,在矩形ABCD中,以点D为圆心,DA长为半径画弧,交CD于点E,以点A为圆心,AE长为半径画弧,恰好经过点B,连结BE、AE.求∠EBC 的度数.19.(7分)周末,小强在文化广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为58°,已知风筝线BC的长为10米,小强的身高AB为1.55米.请你帮小强画出测量示意图,并计算出风筝离地面的高度(结果精确到0.1米).(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)20.(8分)为了了解某市初中学生上学的交通方式,从中随机调查了a名学生的上学交通方式,统计结果如图.(1)求a的值;(2)补全条形统计图并求出乘坐公共汽车上学占上学交通方式百分比的扇形圆心角的度数;(3)该市共有初中学生15000名,请估计其中坐校车上学的人数.21.(8分)一辆轿车从甲地驶往乙地,到达乙地后返回甲地,速度是原来的1.5倍,共用t小时;一辆货车同时从甲地驶往乙地,到达乙地后停止.两车同时出发,匀速行驶.设轿车行驶的时间为x(h),两车到甲地的距离为y(km),两车行驶过程中y与x之间的函数图象如图.(1)求轿车从乙地返回甲地时的速度和t的值;(2)求轿车从乙地返回甲地时y与x之间的函数关系式,并写出自变量x的取值范围;(3)直接写出轿车从乙地返回甲地时与货车相遇的时间.22.(9分)如图,在四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=DC,连接AC、BD.在四边形ABCD的外部以BC为一边作等边三角形BCE,连接AE.(1)求证:BD=AE;(2)若AB=2,BC=3,求BD的长.23.(10分)如图①,在平面直角坐标系中,点A是抛物线y=x2在第一象限上的一个点,连结OA,过点A作AB⊥OA,交y轴于点B,设点A的横坐标为n.【探究】:(1)当n=1时,点B的纵坐标是;(2)当n=2时,点B的纵坐标是;(3)点B的纵坐标是(用含n的代数式表示).【应用】:如图②,将△OAB绕着斜边OB的中点顺时针旋转180°,得到△BCO.(1)求点C的坐标(用含n的代数式表示);(2)当点A在抛物线上运动时,点C也随之运动.当1≤n≤5时,线段OC扫过的图形的面积是.24.(12分)如图,在R t△ABC中,∠ACB=90°,AC=8cm,AB=10cm.点P从点A 出发,以5cm/s的速度从点A运动到终点B;同时,点Q从点C出发,以3cm/s 的速度从点C运动到终点B,连结PQ;过点P作PD⊥AC交AC于点D,将△APD 沿PD翻折得到△A′PD,以A′P和PB为邻边作▱A′PBE,A′E交射线BC于点F,交射线PQ于点G.设▱A′PBE与四边形PDCQ重叠部分图形的面积为Scm2,点P 的运动时间为ts.(1)当t为何值时,点A′与点C重合;(2)用含t的代数式表示QF的长;(3)求S与t的函数关系式;(4)请直接写出当射线PQ将▱A′PBE分成的两部分图形的面积之比是1:3时t 的值.参考答案一、选择题(每小题3分,共24分)1.C.2.A.3.B.4.B.5. A.6.D.7.D.8.C.二、填空题(每小题3分,共18分)9.1.10.(2a+4)11.30度.12.6.13.y=﹣x2+2x+3.14.4.三、解答题(本大题10小题,共78分)15.(5分)化简:÷.考点:分式的乘除法.专题:计算题.分析:原式利用除法法则变形,约分即可得到结果.解答:解:原式=•=.点评:此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.16.(6分)在一个不透明的盒子中放有三张卡片,分别标记为A、B、C,每张卡片除了标记不同外,其余均相同.某同学第一次从盒子中随机抽取一张卡片,卡片放回,第二次又随机抽取一张卡片.请用画树状图(或列表)的方法,求两次抽取的都是A的概率.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽取的都是A的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有9种等可能的结果,两次抽取的都是A的有1种情况,∴两次抽取的都是A的概率为:.点评:本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.(6分)某车间接到加工200个零件的任务,在加工完40个后,由于改进了技术,每天加工的零件数量是原来的2.5倍,整个加工过程共用了13天完成.求原来每天加工零件的数量.考点:分式方程的应用.分析:设原来每天加工零件的数量是x个,根据整个加工过程共用了13天完成,列出方程,再进行检验即可.解答:解:设原来每天加工零件的数量是x个,根据题意得:+=13,解得:x=8将检验x=8是原方程的解,答:原来每天加工零件的数量是8个.点评:本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.涉及到的公式:工作时间=工作总量÷工作效率.18.(7分)如图,在矩形ABCD中,以点D为圆心,DA长为半径画弧,交CD于点E,以点A为圆心,AE长为半径画弧,恰好经过点B,连结BE、AE.求∠EBC的度数.考点:矩形的性质;等腰直角三角形.分析:根据题意可得AD=DE,AE=AB,再根据矩形的性质可得∠D=∠ABC=∠DAB=90°,然后根据等腰三角形的性质分别算出∠DAE和∠EAB,再根据叫的和差关系可得答案.解答:解:由题意得:AD=DE,AE=AB,∵四边形ABCD是矩形,∴∠D=∠ABC=∠DAB=90°,∵AD=DE,∴∠DAE=45°,∴∠EAB=45°,∵AE=AB,∴∠EBA=∠AEB==67.5°,∴∠EBC=90°﹣67.5°=22.5°.点评:此题主要考查了矩形的性质,以及等腰三角形的性质,关键是掌握矩形的四个角都是直角.19.(7分)周末,小强在文化广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为58°,已知风筝线BC的长为10米,小强的身高AB为1.55米.请你帮小强画出测量示意图,并计算出风筝离地面的高度(结果精确到0.1米).(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)考点:解直角三角形的应用-仰角俯角问题.分析:根据题意画出图形,根据sin58°=可求出CE的长,再根据CD=CE+ED即可得出答案.解答:解:如图,过点C作地面的垂线CD,垂足为D,过点B作BE⊥CD于E.在Rt△CEB中,∵sin∠CBE=,∴CE=BC•sin58°=10×0.85≈8.5m,∴CD=CE+ED=8.5+1.55=10.05≈10.1m,答:风筝离地面的高度约为10.1m.点评:本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.(8分)为了了解某市初中学生上学的交通方式,从中随机调查了a名学生的上学交通方式,统计结果如图.(1)求a的值;(2)补全条形统计图并求出乘坐公共汽车上学占上学交通方式百分比的扇形圆心角的度数;(3)该市共有初中学生15000名,请估计其中坐校车上学的人数.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用乘坐私家车的人数除以其所占的百分比即可确定a值;(2)总数减去其他交通方式出行的人数即可确定乘坐校车的人数,从而补全统计图;(3)用学生总数乘以乘坐校车的所占的百分比即可.解答:解:(1)观察两种统计图知:乘坐私家车上学的有600人,占20%,∴a=600÷20%=3000人;(2)乘坐校车的有3000﹣600﹣600﹣300﹣300=1200人,统计图为:乘坐公共汽车上学占上学交通方式百分比的扇形圆心角的度数为×360°=120°;(3)初中学生15000名中,坐校车上学的人数有15000×=6000人.点评:本题考查了条形统计图及扇形统计题的知识,解题的关键是从两种统计图中整理出进一步解题的有关信息,难度适中.21.(8分)一辆轿车从甲地驶往乙地,到达乙地后返回甲地,速度是原来的1.5倍,共用t 小时;一辆货车同时从甲地驶往乙地,到达乙地后停止.两车同时出发,匀速行驶.设轿车行驶的时间为x(h),两车到甲地的距离为y(km),两车行驶过程中y与x之间的函数图象如图.(1)求轿车从乙地返回甲地时的速度和t的值;(2)求轿车从乙地返回甲地时y与x之间的函数关系式,并写出自变量x的取值范围;(3)直接写出轿车从乙地返回甲地时与货车相遇的时间.考点:一次函数的应用.分析:(1)利用行驶的速度变化进而得出时间变化,进而得出t的值;(2)利用待定系数法求一次函数解析式进而利用图象得出自变量x的取值范围;(3)利用函数图象交点求法得出其交点横坐标,进而得出答案.解答:解:(1)∵一辆轿车从甲地驶往乙地,到达乙地后返回甲地,速度是原来的1.5倍,∴行驶的时间分别为:=3小时,则=2小时,∴t=3+2=5;∴轿车从乙地返回甲地时的速度是:=120(km/h);(2)∵t=5,∴此点坐标为:(5,0),设轿车从乙地返回甲地时y与x之间的函数关系式为:y=kx+b,∴,解得:,∴轿车从乙地返回甲地时y与x之间的函数关系式为:y=﹣120x+600(3≤x≤5);(3)设货车行驶图象解析式为:y=ax,则240=4a,解得:a=60,∴货车行驶图象解析式为:y=60x,∴当两图象相交则:60x=﹣120x+600,解得:x=,故﹣3=(小时),∴轿车从乙地返回甲地时与货车相遇的时间小时.点评:此题主要考查了一次函数的应用以及待定系数法求一次函数解析式等知识,利用数形结合得出函数解析式是解题关键.22.(9分)如图,在四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=DC,连接AC、BD.在四边形ABCD的外部以BC为一边作等边三角形BCE,连接AE.(1)求证:BD=AE;(2)若AB=2,BC=3,求BD的长.考点:全等三角形的判定与性质;等边三角形的判定与性质.分析:(1)由∠ADC=60°,AD=DC,易得△ADC是等边三角形,又由△BCE是等边三角形,可证得△BDC≌△EAC(SAS),即可得BD=AE;(2)由△BCE是等边三角形,∠ABC=30°,易得∠ABE=90°,然后由勾股定理求得AE的长,即可求得BD的长.解答:(1)证明:∵在△ADC中,AD=DC,∠ADC=60°,∴△ADC是等边三角形,∴DC=AC,∠DCA=60°;又∵△BCE是等边三角形,∴CB=CE,∠BCE=60°,∴∠DCA+∠ACB=∠ECB+∠ACB,即∠DCB=∠ACE,在△BDC和△EAC中,,∴△BDC≌△EAC(SAS),∴BD=AE;(2)解:∵△BCE是等边三角形,∴BE=BC=3,∠CBE=60°.∵∠ABC=30°,∴∠ABE=∠ABC+∠CBE=90°.在Rt△ABE中,AE===,∴BD=AE=.点评:此题考查了全等三角形的判定与性质、等边三角形的判定与性质以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.23.(10分)如图①,在平面直角坐标系中,点A是抛物线y=x2在第一象限上的一个点,连结OA,过点A作AB⊥OA,交y轴于点B,设点A的横坐标为n.【探究】:(1)当n=1时,点B的纵坐标是2;(2)当n=2时,点B的纵坐标是5;(3)点B的纵坐标是n2+1(用含n的代数式表示).【应用】:如图②,将△OAB绕着斜边OB的中点顺时针旋转180°,得到△BCO.(1)求点C的坐标(用含n的代数式表示);(2)当点A在抛物线上运动时,点C也随之运动.当1≤n≤5时,线段OC扫过的图形的面积是2.考点:二次函数综合题.分析:探究;依据直角三角形的射影定理即可求得B点的坐标.应用:(1)依据全等三角形的性质即可求得C点的坐标,(2)通过(1)可求得C1、C2的坐标,从而得出矩形面积和三角形的面积,最后求得当1≤n≤5时,线段OC扫过的图形的面积.解答:解:探究(3)如图1所示:设点A的横坐标为n,点A是抛物线y=x2在第一象限上的一个点;∴A(n,n2);∴AD=n,OD=n2;在Rt△ACB中,AD2=OD•BD;设B点的纵坐标为y1,则n2=n2•(y1﹣n2),解得:y1=n2+1,∴点B的纵坐标是n2+1.应用:(1)点B的纵坐标是n2+1,A点的纵坐标是n2,∴BD=1,根据旋转的定义可知CE=AD=n,OE=BD=1;∴C点的坐标为:(﹣n,1);(2)当n=1时C点的坐标为C1(﹣1,1),当n=5时C点的坐标为C2(﹣5,1),如上图所示;S=S﹣S=×1×5﹣×1×1=2.∴当1≤n≤5时,线段OC扫过的图形的面积是2.点评:本题考查了直角三角形的射影定理的应用,全等三角形的性质,直角坐标系中面积求法是本题的关键.24.(12分)如图,在Rt△ABC中,∠ACB=90°,AC=8cm,AB=10cm.点P从点A出发,以5cm/s的速度从点A运动到终点B;同时,点Q从点C出发,以3cm/s的速度从点C运动到终点B,连结PQ;过点P作PD⊥AC交AC于点D,将△APD沿PD翻折得到△A′PD,以A′P和PB为邻边作▱A′PBE,A′E交射线BC于点F,交射线PQ于点G.设▱A′PBE与四边形PDCQ重叠部分图形的面积为Scm2,点P的运动时间为ts.(1)当t为何值时,点A′与点C重合;(2)用含t的代数式表示QF的长;(3)求S与t的函数关系式;(4)请直接写出当射线PQ将▱A′PBE分成的两部分图形的面积之比是1:3时t的值.考点:相似形综合题;解一元一次不等式组;等腰三角形的判定与性质;勾股定理;平行四边形的性质;相似三角形的判定与性质.专题:压轴题.分析:(1)易证△ADP∽△ACB,从而可得AD=4t,由折叠可得AA′=2AD=8t,由点A′与点C重合可得8t=8,从而可以求出t的值.(2)根据点F的位置不同,可分点F在BQ上(不包括点B)、在CQ上(不包括点Q)、在BC的延长线上三种情况进行讨论,就可解决问题.(3)根据点F的位置不同,可分点F在BQ上(不包括点B)、在CQ上(不包括点Q)、在BC的延长线上三种情况进行讨论,就可解决问题.(4)可分①S△A′PG:S四边形PBEG=1:3,如图7,②S△BPN:S四边形PNEA′=1:3,如图8,两种情况进行讨论,就可解决问题.解答:解:(1)如图1,由题可得:PA′=PA=5t,CQ=3t,AD=A′D.∵∠ACB=90°,AC=8,AB=10,∴BC=6.∵∠ADP=∠ACB=90°,∴PD∥BC.∴△ADP∽△ACB.∴==.∴==.∴AD=4t,PD=3t.∴AA′=2AD=8t.当点A′与点C重合时,AA′=AC.∴8t=8.∴t=1.(2)①当点F在线段BQ上(不包括点B)时,如图1,则有CQ≤CF<CB.∵四边形A′PBE是平行四边形,∴A′E∥BP.∴△CA′F∽△CAB.∴=.∴=.∴CF=6﹣6t.∴3t≤6﹣6t<6.∴0<t≤.此时QF=CF﹣CQ=6﹣6t﹣3t=6﹣9t.②当点F在线段CQ上(不包括点Q)时,如图2,则有0≤CF<CQ.∵CF=6﹣6t,CQ=3t,∴0≤6﹣6t<3t.∴<t≤1.此时QF=CQ﹣CF=3t﹣(6﹣6t)=9t﹣6.③当点F在线段BC的延长线上时,如图3,则有AA′>AC,且AP<AB.∴8t>8,且5t<10.∴1<t<2.同理可得:CF=6t﹣6.此时QF=QC+CF=3t+6t﹣6=9t﹣6.综上所述:当0<t≤时,QF=6﹣9t;当<t<2时,QF=9t﹣6.(3)①当0<t≤时,过点A′作A′M⊥PG,垂足为M,如图4,则有A′M=CQ=3t.∵==,==,∴=,∵∠PBQ=∠ABC,∴△BPQ∽△BAC.∴∠BQP=∠BCA.∴PQ∥AC.∵AP∥A′G.∴四边形APGA′是平行四边形.∴PG=AA′=8t.∴S=S△A′PG=PG•A′M=×8t×3t=12t2.②当<t≤1时,过点A′作A′M⊥PG,垂足为M,如图5,则有A′M=QC=3t,PQ=DC=8﹣4t,PG=AA′=8t,QG=PG﹣PQ=12t﹣8,QF=9t﹣6..∴S=S△A′PG﹣S△GQF=PG•A′M﹣QG•QF=×8t×3t﹣×(12t﹣8)×(9t﹣6)=﹣42t2+72t﹣24.③当1<t<2时,如图6,∵PQ∥AC,PA=PA′∴∠BPQ=∠PAA′,∠QPA′=∠PA′A,∠PAA′=∠PA′A.∴∠BPQ=∠QPA′.∵∠PQB=∠PQS=90°,∴∠PBQ=∠PSQ.∴PB=PS.∴BQ=SQ.∴SQ=6﹣3t.∴S=S△PQS=PQ•QS=×(8﹣4t)×(6﹣3t)=6t2﹣24t+24.综上所述:当0<t≤时,S=12t2;当<t≤1时,S=﹣42t2+72t﹣24:当1<t<2时,S=6t2﹣24t+24.(4)①若S△A′PG:S四边形PBEG=1:3,过点A′作A′M⊥PG,垂足为M,过点A′作A′T⊥PB,垂足为T,如图7,则有A′M=PD=QC=3t,PG=AA′=8t.∴S△A′PG=×8t×3t=12t2.∵S△APA′=AP•A′T=AA′•PD,∴A′T===t.∴S▱PBEA′=PB•A′T=(10﹣5t)×t=24t(2﹣t).∵S△A′PG:S四边形PBEG=1:3,∴S△A′PG=×S▱PBEA′.∴12t2=×24t(2﹣t).∵t>0,∴t=.②若S△BPN:S四边形PNEA′=1:3,如图8,同理可得:∠BPQ=∠A′PQ,BQ=6﹣3t,PQ=8﹣4t,S▱PBEA′=24t(2﹣t).∵四边形PBEA′是平行四边形,∴BE∥PA′.∴∠BNP=∠NPA′.∴∠BPN=∠BNP.∴BP=BN.∵∠BQP=∠BQN=90°,∴PQ=NQ.∴S△BPN=PN•BQ=PQ•BQ=(8﹣4t)×(6﹣3t).∵S△BPN:S四边形PNEA′=1:3,∴S△BPN=×S▱PBEA′.∴(8﹣4t)×(6﹣3t)=×24t(2﹣t).∵t<2,∴t=.综上所述:当射线PQ将▱A′PBE分成的两部分图形的面积之比是1:3时,t的值为秒或秒.点评:本题考查了相似三角形的判定与性质、等腰三角形的判定与性质、平行四边形的性质、解一元一次不等式组、勾股定理等知识,还考查了分类讨论的思想,有一定的综合性.。

2015年江苏省苏锡常镇四市高三教学情况调研(一)数学(一模)试题及答案

2015年江苏省苏锡常镇四市高三教学情况调研(一)数学(一模)试题及答案

(第6题)EPDCBA2015年度苏锡常镇四市高三教学情况调研(一)数学Ⅰ试题2015.3一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1.已知集合{}{}11,0A x x B x x =-<<=>,则A B = ▲ .2.若复数512im +-(i 为虚数单位)为纯虚数,则实数m = ▲ . 3.双曲线2212y x -=的离心率为 ▲ .4.在一次满分为160分的数学考试中,某班40名学生的考试成绩分布如下:在该班随机抽取一名学生,则该生在这次考试中成绩在120分以上的概率为 ▲ .5.函数2ln(2)y x =-的定义域为 ▲ .6.如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,底面ABCD 是矩形,2AB =,3AD =,4PA =,点E 为棱CD 上一点,则三棱锥E -P AB 的体积为 ▲ .7.右图是一个算法流程图,则输出的x 的值为 ▲ .8.已知等比数列{}n a 的各项均为正数,若242a a =,24516a a +=,则5a9.若曲线321:612C y ax x x =-+与曲线2:e x C y =在1x =垂直,则实数a 的值为 ▲ .10.设函数π()sin())(0,)2f x ωx φωx φωφ=++><且满足()()f x f x -=,则函数()f x 的单调增区间为 ▲ .11.如图,在平行四边形ABCD 中,E 为DC 的中点,AE 与BD 交于点AB 1AD =,且16MA MB ⋅=-,则AB AD ⋅= ▲ . 12.在平面直角坐标系xOy 中,已知圆C :22(3)2x y +-=,点A 是x 轴上的一个动点,AP ,AQ 分别切圆C 于P ,Q 两点,则线段 PQ 长的取值范围为 ▲ .(第7题)13.已知直线1y kx =+与曲线11()f x x x x x=+--恰有四个不同的交点,则实数k 的取值 范围为 ▲ .14.已知实数,x y 满足0x y >>,且2x y +…,则213x y x y++-的最小值为 ▲ .二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证 明过程或演算步骤. 15.(本题满分14分)已知向量πsin(),36α⎛⎫=+ ⎪⎝⎭a ,(1,4cos )a =b ,(0,π)α∈.(1)若a ⊥b ,求tan α的值;(2)若a ∥b ,求α的值.16.(本题满分14分)如图,四边形11AA C C 为矩形,四边形11CC B B 为菱形,且平面11CC B B ⊥平面11AA C C ,D ,E 分别为边11A B ,1C C 的中点.(1)求证:1BC ⊥平面1AB C ; (2)求证:DE ∥平面1AB C .C 1B 1A 1(第16题)ECBAD17.(本题满分14分)如图,有一段河流,河的一侧是以O为圆心,半径为OCD ,河的另一侧是一段笔直的河岸l ,岸边有一烟囱AB (不计B 离河岸的距离),且OB 的连线恰好与河岸l 垂直,设OB 与圆弧CD 的交点为E .经测量,扇形区域和河岸处于同一水平面,在点C ,点O 和点E 处测得烟囱AB 的仰角分别为45︒,30︒和60︒. (1)求烟囱AB 的高度;(2)如果要在CE 间修一条直路,求CE 的长.18.(本题满分16分)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(0)a b >>,过椭圆的左顶点A 作直线l x ⊥轴,点M 为直线l 上的动点,点B 为椭圆右顶点,直线BM 交椭圆C 于P . (1)求椭圆C 的方程; (2)求证:AP OM ⊥;(3)试问OP OM ⋅是否为定值?若是定值,请求出该定值;若不是定值,请说明理由.(第17题)l19.(本题满分16分)已知函数2()e (0)x f x x a a =-…. (1)当1a =时,求()f x 的单调减区间;(2)若方程()f x m =恰好有一个正根和一个负根,求实数m 的最大值.20.(本题满分16分)已知数列{}n a 的前n 项和为n S ,设数列{}n b 满足112()()()n n n n n n b S S S n S S n *++=--+∈N . (1)若数列{}n a 为等差数列,且0n b =,求数列{}n a 的通项公式;(2)若11a =,23a =,且数列{}21n a -,{}2n a 都是以2为公比的等比数列,求满足不等式221n n b b -<的所有正整数n 的集合.D(第21A 题)2014-2015学年度苏锡常镇四市高三教学情况调研(一)数学ⅠI (附加题)试题21.A .如图,AB 为圆O 的切线,A 为切点,C 为线段AB 中点,过C 作圆O 的割线CED (E 在C ,D 之间), 求证:∠CBE =∠BDE .B . 求曲线1x y +=在矩阵M 10103⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦对应的变换作用下得到的曲线所围成图形的面积.C .在极坐标系中,曲线C 的极坐标方程为2cos 2sin rq q =+,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为1,x t y =+⎧⎪⎨=⎪⎩ (t 为参数),求直线l 被曲线C所截得的弦长.D .求函数y =(第22题)22.如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,底面ABCD 60︒,PA =M 为PC 的中点.(1)求异面直线PB 与MD 所成的角的大小;(2)求平面PCD 与平面P AD 所成的二面角的正弦值.23.若存在n 个不同的正整数12,,,n a a a ,对任意1i jn <剟,都有i j i ja a a a +∈-Z ,则称这n 个不同的正整数12,,,n a a a 为“n 个好数”. (1)请分别对2n =,3n =构造一组“好数”;(2)证明:对任意正整数(2)n n …,均存在“n 个好数”.苏锡常镇四市高三教学情况调研(一)数学参考答案一、填空题1.{}01x x << 2.1- 3 4.0.3 5.((),2,-∞+∞6.4 7.16 8.1329.13e - 10.π[π,π],()2k k k -+∈Z11.34 12. 13.11{,0,}88- 14 二、解答题15.解:(1)因为a ⊥b ,所以πsin()12cos 06αα++=, ……………………………2分1cos 12cos 02ααα++=25cos 02αα+=, …………………4分又cos 0α≠,所以tan α=. ………………………………………………6分 (2)若a ∥b ,则π4cos sin()36αα+=, ……………………………………………8分即14cos cos )32ααα+=,2cos22αα+=, ………………………………………………………10分所以πsin(2)16α+=, ………………………………………………………………11分因为(0,π)α∈,所以ππ13π2(,)666α+∈, ………………………………………13分 所以ππ262α+=,即π6α=. ……………………………………………………14分 16.证明:(1)∵四边形11AA C C 为矩形,∴AC ⊥1C C ,………………………………2分 又平面11CC B B ⊥平面11AA C C ,平面11CC B B平面11AA C C =1CC ,∴AC ⊥平面11CC B B , ……………………………………………………………3分 ∵1C B ⊂平面11CC B B ,∴AC ⊥1C B , ……………………………………………4分 又四边形11CC B B 为菱形,∴11B C BC ⊥, …………………………………………5分 ∵1B CAC C =,AC ⊂平面1AB C ,1B C ⊂平面1AB C ,∴1BC ⊥平面1AB C .…………………………………………………………………7分(2)取1AA 的中点F ,连DF ,EF ,∵四边形11AA C C 为矩形,E ,F 分别为1C C ,1AA 的中点, ∴EF ∥AC ,又EF ⊄平面1AB C ,AC ⊂平面1AB C ,∴EF ∥平面1AB C , ………………………………………………………………10分 又∵D ,F 分别为边11A B ,1AA 的中点,∴DF ∥1AB ,又DF ⊄平面1AB C ,1AB ⊂平面1AB C , ∴DF ∥平面1AB C ,∵EFDF F =,EF ⊂平面DEF ,DF ⊂平面DEF ,∴平面DEF ∥平面1AB C ,…………………………………………………………12分 ∵DE ⊂平面DEF ,∴DE ∥平面1AB C .…………………………………………14分 17.解:(1)设AB 的高度为h ,在△CAB 中,因为45ACB ∠=︒,所以CB h =, ………………………………1分 在△OAB 中,因为30AOB ∠=︒,60AEB ∠=︒, ………………………………2分所以OB =,EB =, ………………………………………………………4分-=15h =. ………………………………………6分 答:烟囱的高度为15米. ……………………………………………………………7分(2)在△OBC 中,222cos 2OC OB BC COB OC OB+-∠=⋅56==, …………………10分所以在△OCE 中,2222cos CE OC OE OC OE COE =+-⋅∠ 53003006001006=+-⨯=. …………………13分答:CE 的长为10米. ……………………………………………………………14分18.解:(1)∵椭圆C :22221x y a b+=(0)a b >>,∴222a c =,则222a b =,又椭圆C 过点,∴221312a b+=.…………2分∴24a =,22b =,则椭圆C 的方程22142x y +=. …………………………………………………4分(2)设直线BM 的斜率为k ,则直线BM 的方程为(2)y k x =-,设11(,)P x y ,将(2)y k x =-代入椭圆C 的方程22142x y +=中并化简得:2222(21)4840k x k x k +-+-=,………………………………………………………6分解之得2124221k x k -=+,22x =,∴1124(2)21ky k x k -=-=+,从而222424(,)2121k k P k k --++.………………………………8分令2x =-,得4y k =-,∴(2,4)M k --,(2,4)OM k =--. ………………………9分又222424(2,)2121k k AP k k --=+++=22284(,)2121k kk k -++, …………………………………11分∴2222161602121k k AP OM k k -⋅=+=++,∴AP OM ⊥. ………………………………………………………………………13分 (3)222424(,)(2,4)2121k k OP OM k k k --⋅=⋅--++ =2222284168442121k k k k k -+++==++.∴OP OM ⋅为定值4. …………………………………………………………16分19.解:(1)当1a =时,221,e (1),()1,e (1),x x x xf x x x ⎧>-⎪=⎨-⎪⎩… …………………………………1分 当1x >时,2()e (21)x f x x x '=+-,由()0f x '…,解得1x --,所以()f x 的单调减区间为[11]--, ………………………………………3分 当1x …时,2()e (21)x f x x x '=-+-,由()0f x '…,解得1x -…x -…所以()f x 的单调减区间为[-, ……………………………………………5分综上:()f x 的单调减区间为[-,[11]--. ………………………6分 (2) 当0a =时,2()e x f x x =⋅,则2()e 2e e (2)x x x f x x x x x '=⋅+⋅=+,令()0f x '=,得0x =或2x =-,所以()f x 有极大值24(2)e f -=,极小值(0)0f =,…………………………………7分当0a>时,22e(),()e(),xxxx af xa x x⎧>-⎪=⎨-⎪⎩…同(1)的讨论可得,()f x在(,1)-∞上增,在(1,上减,在(1)上增,在1上减,在)+∞上增,……………8分且函数()y f x=有两个极大值点,1(1)2e1)f==,…………………………9分11)1)f==,……………………………10分且当1x a=+时,12(1)e(1)1)af a a a++=++>>所以若方程()f x m=恰好有正根,则1)m f>(否则至少有二个正根).……………………………………11分又方程()f x m=恰好有一个负根,则(1)m f=.………………………12分令()e(1),1xg x x x-=+…,则()e0xg x x-'=-<,所以()e(1)xg x x-=+在1x…时单调减,即2()(1)eg x g=…,………………………13分等号当且仅当1x=时取到.所以22(1)()ef…,等号当且仅当0a=时取到.且此时11)1)0f==,………………………………………14分即(1)f>1)f,…………………………………………………15分所以要使方程()f x m=恰好有一个正根和一个负根,m的最大值为24e.………16分20.解:(1)设等差数列{}n a的公差为d,所以11na a nd+=+,1(1)2nn nS na d-=+,…………………………………………1分由112()()()n n n n n nb S S S n S S n*++=--+∈N,得112(2)n n n n nb a S n S a++=-+,及由0nb=,又由0nb=,得[]1111(1)2()2(1)02n na nd na d n na n n d a nd-⎡⎤++-+-++=⎢⎥⎣⎦对一切n*∈N都成立,………………………………………………………………3分即()222211111(32)20d d n a d d a n a a d a-+--+--=对一切n*∈N都成立.令1n=,2n=,解之得10,0,da=⎧⎨=⎩或11,1,da=⎧⎨=⎩经检验,符合题意,所以{}n a 的通项公式为0n a =或n a n =. …………………………………………5分 (2)由题意得1212n n a --=,1232n n a -=⨯,2213(21)424n n n n S =-+-=⨯-,11212242432524n n n n n n S S a ---=-=⨯--⨯=⨯-.…………………………………6分 221222122(2)n n n n n b a S n S a ++=-+22(424)2(8282)n n n n n =⨯⨯⨯--⨯-+122(294)16n n n n ++=--+. ……………………………………………………7分 212212122(21)(2)n n n n n b a S n S a ---=--+111162(524)(21)(102832)n n n n n ----=⨯⨯⨯---⨯-+⨯112(3022611)168n n n n --=⨯--+-. ………………………………………8分12112212(294)16[2(3022611)168]n n n n n n b b n n n n ++----=--+-⨯--+-121552(25)8282(5)22n n n n n n --=--+=+-+. ………………………9分记215282)()2(5n n n f n -=+-+,即15()2[2(5)]228n n f n n =⨯-++, ……………10分记15()2(5)22n g n n =⨯-+,则111515(1)()2(5)252222n n g n g n n n ++-=⨯-+-⨯++1252n =⨯-,当1n =,2,3时,(1)()0g n g n +-<,当*n ∈N 时,4n ≥,(1)()g n g n +-12502n =⨯->, …………………………12分因为1n =时,13(1)02g =-<,所以(4)0g <;且1(6)02g =-<;53(7)02g =>. 所以15()2[2(5)]228n n f n n =⨯-++在7(*)n n ∈≥N 时也是单调递增, …………14分1n =时,(1)50f =-<; 2n =时,(2)340f =-<; 3n =时,(3)1000f =-<; 4n =时,(4)2240f =-<; 5n =时,(5)3600f =-<; 6n =时,(6)240f =-<; 7n =时,(7)34000f =>,所以满足条件的正整数n 的集合为{1,2,3,4,5,6}.………………………16分21、A .证明:因为CA 为圆O 的切线,所以2CA CE CD =⋅, ………………………………………………………………3分 又CA CB =,所以2CB CE CD =⋅,即CB CDCE CB=, …………………………5分 又BCD BCD ∠=∠,所以BCE D ∽DCB D , …………………………………8分 所以∠CBE =∠BDE . ………………………………………………………………10分B . 解:设点00(,)x y 为曲线1x y +=上的任一点,在矩阵10103M ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦对应的变换作用下得到的点为(,)x y '',则由0010103x x y y ⎡⎤'⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎢⎥⎣⎦,………………………………………………………………3分得:00,1,3x x y y '=⎧⎪⎨'=⎪⎩ 即00,3,x x y y '=⎧⎨'=⎩ ………………………………………………………5分 所以曲线1x y +=在矩阵10103M ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦对应的变换作用下得到的曲线为31x y +=, ………………………………………………………………………………8分所围成的图形为菱形,其面积为1222233⨯⨯=. …………………………………10分C .解:曲线C 的直角坐标方程为22220x y x y +--=,圆心为(1,1)…………………………………………………………3分0y -=, ………………………………………5分所以圆心到直线的距离为12d ==, ………………………………8分所以弦长== ………………………………………………………10分 D .选修4—5:不等式选讲解:因为22= 120(3332)(1)33x x -+++=≤, ……………………………………………3分所以y=.………………………………………………5分等号当且仅当3332113x x-+=,即712x=时成立.………………………………8分所以y…………………………………………………………10分22.解:(1)设AC与BD交于点O,以O为顶点,向量OC,OD为x,y轴,平行于AP且方向向上的向量为z轴建立直角坐标系.………………………………………………1分则(1,0,0)A-,(1,0,0)C,(0,B,D,(P-,所以M,MD=,(1,PB=,……………………3分cos,0MD PAMD PAMD PA⋅<>===.…………………………………4分所以异面直线PB与MD所成的角为90︒.…………………………………………5分(2)设平面PCD的法向量为1111(,,)x y z=n,平面P AD的法向量为2222(,,)x y z=n,因为(CD=-,(1PD=,(0,0,PA=,由11111110,0,CD xPD x⎧⋅=-=⎪⎨⋅=+=⎪⎩nn令11y=,得1=n,……………………7分由22222260,0,PAPD x z⎧⋅=-=⎪⎨⋅=-=⎪⎩nn令21y=-,得21,0)=-n,…………………8分所以121212cos,⋅<>===n nn nn n12sin,<>=n n10分23.解:(1)当2n=时,取数11a=,22a=,因为21312+=-∈-Z,…………………1分当3n=时,取数12a=,23a=,34a=,则12125a aa a+=-∈-Z,23237a aa a+=-∈-Z,13133a aa a+=-∈-Z,…………………………………………………3分即12a=,23a=,34a=可构成三个好数.………………………………………4分(2)证:①由(1)知当2,3n =时均存在,②假设命题当(2,)n k k k Z=≥∈时,存在k个不同的正整数12,,,ka a a,其中12ka a a<<<,使得对任意1i j k<剟,都有i ji ja aa a+∈-Z成立,…………………………………5分则当1n k=+时,构造1k+个数12,,,,kA A a A a A a+++,,(*)其中123k A a =⨯⨯⨯⨯,若在(*)中取到的是A 和()i A a i k +…,则21i i iA A a AA A a a ++=--∈--Z ,所以成立,若取到的是()i A a i k +…和()j A a j k +…,且i j <, 则2+i j i j i ji j i j A a A a a a AA a A a a a a a ++++=+----,由归纳假设得i j i ja a a a +∈-Z ,又j i k a a a -<,所以j i a a -是A 的一个因子,即2i jAa a ∈-Z , 所以2+i j i j i ji j i jA a A a a a A A a A a a a a a ++++=∈+----Z , ………………………………………8分 所以当1n k =+时也成立. ………………………………………………………9分 所以对任意正整数(2)n n …,均存在“n 个好数” ……………………………10分。

【真题】2015年江西省中考数学一模试卷及参考答案PDF

【真题】2015年江西省中考数学一模试卷及参考答案PDF

2015年江西省中考数学模拟试卷(一)一、选择题(本题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.(3分)下列计算正确的是()A.﹣3﹣(﹣2)=﹣1 B.﹣3﹣2=﹣1 C.﹣3÷2×2=﹣D.﹣(﹣1)2=1 2.(3分)已知多项式x2+a能用平方差公式在有理数范围内分解因式,那么在下列四个数中a可以等于()A.9 B.4 C.﹣1 D.﹣23.(3分)下列各等式中,正确的是()A.﹣=﹣3 B.±=3 C.()2=﹣3 D.=±34.(3分)如图是某手机店今年1﹣5月份音乐手机销售额统计图.根据图中信息,可以判断相邻两个月音乐手机销售额变化最大的是()A.1月至2月B.2月至3月C.3月至4月D.4月至5月5.(3分)如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120° D.130°6.(3分)一个几何体是由若干个相同的正方体组成的,其主视图和左视图如图所示,则这个几何体最多可由多少个这样的正方体组成()A.12个B.13个C.14个D.18个二、填空题(本题共8小题,每小题3分,共24分)7.(3分)已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为千克.8.(3分)化简:=.9.(3分)观察下列各式:x+1,x2+4,x3+9,x4+16,x5+25,…按此规律写出第n 个式子是.10.(3分)在直角坐标系中,△ABC的坐标分别是A(﹣1,2),B(﹣2,0),C(﹣1,1),若以原点O为位似中心,将△ABC放大到原来的2倍得到△A′B′C′,那么落在第四象限的A′的坐标是.11.(3分)五名同学投篮篮球,规定每人投20次,统计他们每人投中的次数,得到五个数据,若这五个数据的中位数是6,唯一众数是7,则他们投中次数的总和不会超过.12.(3分)已知圆柱按如图所示方式放置,其左视图的面积为48,则该圆柱的侧面积为.13.(3分)20××年3月份有5个星期六,它们的日期之和是80,若当月第三个星期六的日期为x,那么x=.14.(3分)已知x、y为直角三角形的两边的长,满足(x﹣2)2+|(y﹣2)(y ﹣3)|=0,则第三边的长为.三、(本题共4小题,每小题6分,共24分)15.(6分)解不等式组:,并在数轴上把解集表示出来.16.(6分)解方程:﹣=.17.(6分)如图,在平行四边形ABCD中,点E为AD的中点,试用无刻度的直尺分别在四边形的内部和外部各画一个与△ABE全等的三角形.18.(6分)如图所示(背面完全相同)A、B、C三张卡片,正面分别写上整式x2﹣4,x2,4;现将这三张卡片背面向上洗匀,从中随机抽取两张,然后将所抽取卡片上的两个整式分别放在“=”的两边,组成一个等式.(1)“抽取的卡片所组成的等式是一个一元二次方程”,这个事件是.A.必然事件B.不可能事件C.随机事件D.确定事件(2)求所抽取的卡片组成的等式不是一元二次方程的概率.四、(本题共4小题,每小题8分,共32分)19.(8分)2014年春晚小品《扶不扶》一时成为大家讨论的热点,于是某校七(2)班共有50名同学对老人自己不慎摔倒扶不扶,提出了4种不同观点,经统计得出了如下统计表和统计图,请根据图表中提供的信息解答下列问题:组别观点频数(人数)A应立即扶起,并送医院aB应赶快离开,省得惹事15C应只看热闹,不要行动bcD要老人走路小心,但不能扶(1)填空:a=,b=,c=;(2)请分别补全两个统计图;(3)在图2中,求代表B组“观点”的扇形圆心角度数.20.(8分)已知等腰△ABC的一边c=3,另两边a,b恰好是关于x的方程x2﹣(2k+1)x+4(k﹣)=0的两个根,求△ABC中a的边的长.21.(8分)如图1、2是两个全等的菱形,边长为2cm,最小内角为60°.(1)分别对图1、图2个各设计一个不同的分割方案,并将分割后的若干块拼成一个与原菱形等面积的矩形,要求:先在已知图1、2中画出分割线(虚线),再画出拼成的矩形并注明长、宽的长度;(2)分别求出第(1)问中矩形的长边与对角线所成的夹角的正弦值.22.(8分)如图,在平面直角坐标系中,动点P从原点O开始沿y轴的正方向运动,点B、C是一次函数y=kx+b与反比例函数y=(a>0,x>0)的图象的两个交点,且点B(m,2).当点P的坐标为(0,2)时,PC=BC,且∠PCB=90°.(1)试求反比例y=(a>0,x>0)和一次函数y=kx+b的解析式;(2)设a=|PB﹣PC|,当点P运动到何处时,m的值最大?最大值是多少?五、(本题共1小题,共10分)23.(10分)某校九年级某班学生准备去购买《英汉词典》一书,此书的标价为20元.现A、B两书店都有此书出售,A店按如下方法促销:若只购买1本,则按标价销售;当一次性购买多于1本,但不多于20本时,每多购买一本,每本的售价在标价的基础上优惠2%(例如,买2本每本的售价优惠2%,买3本每本的售价优惠4%,依此类推);当购买多于20本时,每本的售价为12元.B书店一律按标价的7折销售.(1)试分别写出在两书店购买此书的总价y A、y B与购书本数之间的函数关系式.(2)若该班一次购买多于20本,去哪家书店购买更合算?为什么?若要一次性购买不多于20本,先写出y(y=y A﹣y B)与购书本数x之间的函数关系式,画出其函数图象,再利用函数图象分析去哪家书店购买更合算.六、(本题共1小题,共12分)24.(12分)阅读下面材料:小明遇到这样一个问题:如图1,在边长为a(a>2)的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ 的面积.小明发现,分别延长QE,MF,NG,PH交FA,GB,HC,ED的延长线于点R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四个全等的等腰直角三角形(如图2)请回答:(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙不重叠),则这个新正方形的边长为;(2)求正方形MNPQ的面积.(3)参考小明思考问题的方法,解决问题:如图3,在等边△ABC各边上分别截取AD=BE=CF,再分别过点D,E,F作BC,AC,AB的垂线,得到等边△RPQ.若S△RPQ=,则AD的长为.2015年江西省中考数学模拟试卷(一)参考答案与试题解析一、选择题(本题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.(3分)下列计算正确的是()A.﹣3﹣(﹣2)=﹣1 B.﹣3﹣2=﹣1 C.﹣3÷2×2=﹣D.﹣(﹣1)2=1【分析】根据有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,求出每个算式的值是多少,即可判断出哪个算式的计算正确.【解答】解:∵﹣3﹣(﹣2)=﹣1,∴选项A正确;∵﹣3﹣2=﹣5,∴选项B不正确;∵﹣3÷2×2=﹣3,∴选项C不正确;∵﹣(﹣1)2=﹣1,∴选项D不正确.故选:A.2.(3分)已知多项式x2+a能用平方差公式在有理数范围内分解因式,那么在下列四个数中a可以等于()A.9 B.4 C.﹣1 D.﹣2【分析】利用平方差公式的结构特征判断即可确定出a的值.【解答】解:若a=﹣1,则有x2﹣1=(x+1)(x﹣1),故选:C.3.(3分)下列各等式中,正确的是()A.﹣=﹣3 B.±=3 C.()2=﹣3 D.=±3【分析】根据开方运算,可得一个数平方根、算术平方根.【解答】解:A、﹣=﹣3,故A正确;B、3,故B错误;C、被开方数是非负数,故C错误;D、=3,故D错误;故选:A.4.(3分)如图是某手机店今年1﹣5月份音乐手机销售额统计图.根据图中信息,可以判断相邻两个月音乐手机销售额变化最大的是()A.1月至2月B.2月至3月C.3月至4月D.4月至5月【分析】根据折线图的数据,分别求出相邻两个月的音乐手机销售额的变化值,比较即可得解.【解答】解:1月至2月,30﹣23=7万元,2月至3月,30﹣25=5万元,3月至4月,25﹣15=10万元,4月至5月,19﹣15=4万元,所以,相邻两个月中,音乐手机销售额变化最大的是3月至4月.故选:C.5.(3分)如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120° D.130°【分析】根据折叠的性质,对折前后角相等.【解答】解:根据题意得:∠2=∠3,∵∠1+∠2+∠3=180°,∴∠2=(180°﹣50°)÷2=65°,∵四边形ABCD是矩形,∴AD∥BC,∴∠AEF+∠2=180°,∴∠AEF=180°﹣65°=115°.故选:B.6.(3分)一个几何体是由若干个相同的正方体组成的,其主视图和左视图如图所示,则这个几何体最多可由多少个这样的正方体组成()A.12个B.13个C.14个D.18个【分析】易得此几何体有三行,三列,判断出各行各列最多有几个正方体组成即可.【解答】解:综合主视图与左视图,第一行第1列最多有2个,第一行第2列最多有1个,第一行第3列最多有2个;第二行第1列最多有1个,第二行第2列最多有1个,第二行第3列最多有1个;第三行第1列最多有2个,第三行第2列最多有1个,第三行第3列最多有2个;所以最多有:2+1+2+1+1+1+2+1+2=13(个),故选B.二、填空题(本题共8小题,每小题3分,共24分)7.(3分)已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为2.1×10﹣5千克.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 021=2.1×10﹣5.故答案为:2.1×10﹣5.8.(3分)化简:=a﹣c.【分析】利用平方差公式分解因式,再约分求解即可.【解答】解:==a﹣c.故答案为:a﹣c.9.(3分)观察下列各式:x+1,x2+4,x3+9,x4+16,x5+25,…按此规律写出第n 个式子是x n+n2.【分析】根据所给式子发现规律,即可解答.【解答】解:x+1=x+12,x2+4=x2+22,x3+9=x3+32,x4+16=x4+42,x5+25=x5+52,…第n个式子是x n+n2.故答案为:x n+n2.10.(3分)在直角坐标系中,△ABC的坐标分别是A(﹣1,2),B(﹣2,0),C(﹣1,1),若以原点O为位似中心,将△ABC放大到原来的2倍得到△A′B′C′,那么落在第四象限的A′的坐标是(2,﹣4).【分析】根据位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,即可得出A′的坐标.【解答】解:∵A(﹣1,2),以原点O为位似中心,将△ABC放大到原来的2倍得到△A′B′C′,∴落在第四象限的A′的坐标是:(2,﹣4).故答案为:(2,﹣4).11.(3分)五名同学投篮篮球,规定每人投20次,统计他们每人投中的次数,得到五个数据,若这五个数据的中位数是6,唯一众数是7,则他们投中次数的总和不会超过29.【分析】根据题意,可得最大的三个数的和是:6+7+7=20,两个较小的数一定是小于6的非负整数,且不相等,则可求得五个数的和的范围,进而判断.【解答】解:∵5个数据组中位数是6,唯一众数是7,∴最大的三个数的和是:6+7+7=20,则两个较小的数一定是小于6的非负整数,且不相等,即两个较小的数最大为4和5,故总和一定小于等于29.故答案为:29.12.(3分)已知圆柱按如图所示方式放置,其左视图的面积为48,则该圆柱的侧面积为48π.【分析】先由左视图的面积=底面直径×高,得出底面直径,再根据侧面积=底面周长×高即可求解.【解答】解:设圆柱的高为h,底面直径为d,则dh=48,解得d=,所以侧面积为:π•d•h=π××h=48π.故答案为48π.13.(3分)20××年3月份有5个星期六,它们的日期之和是80,若当月第三个星期六的日期为x,那么x=16.【分析】首先要明白每两个相邻的星期天相隔几天,即7天,然后设求知数,根据它们的日期之和为80,列方程计算.【解答】解:根据当月第三个星期六的日期为x,依题意得:x﹣14+x﹣7+x+7+x+x+14=80解得:x=16,即这个月第三个星期三是16号.故答案为:16.14.(3分)已知x、y为直角三角形的两边的长,满足(x﹣2)2+|(y﹣2)(y ﹣3)|=0,则第三边的长为2或或.【分析】先根据题意求出x、y的值,再分情况讨论,根据勾股定理即可求出第三边的长.【解答】解:∵(x﹣2)2+|(y﹣2)(y﹣3)|=0,∴x﹣2=0,(y﹣2)(y﹣3)=0,∴x=2,y=2,或y=3;(1)当x=2,y=2时,x、y为直角边长,斜边长==2;(2)当x=2,y=3时,分两种情况:①y为直角边长时,斜边长==;②y为斜边时,第三边长==;综上所述:第三边的长为2或或;故答案为:2或或.三、(本题共4小题,每小题6分,共24分)15.(6分)解不等式组:,并在数轴上把解集表示出来.【分析】分别解两个不等式,求出其解集,在数轴上表示出来,找出公共部分,即求出了不等式组的解集.【解答】解:解第一个不等式得x<1,解第二个不等式得x≥﹣2,所以不等式组的解集为﹣2≤x<1.其解集在数轴上表示为:16.(6分)解方程:﹣=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣1+2(x+1)=1,去括号得:x﹣1+2x+2=1,移项合并得:3x=0,解得:x=0,经检验x=0是分式方程的解.17.(6分)如图,在平行四边形ABCD中,点E为AD的中点,试用无刻度的直尺分别在四边形的内部和外部各画一个与△ABE全等的三角形.【分析】利用平行四边形的性质结合全等三角形的判定方法得出答案.【解答】解:如图所示:△ABE≌△DFE,△ABE≌△CDM.18.(6分)如图所示(背面完全相同)A、B、C三张卡片,正面分别写上整式x2﹣4,x2,4;现将这三张卡片背面向上洗匀,从中随机抽取两张,然后将所抽取卡片上的两个整式分别放在“=”的两边,组成一个等式.(1)“抽取的卡片所组成的等式是一个一元二次方程”,这个事件是 C .A .必然事件B .不可能事件C .随机事件D .确定事件(2)求所抽取的卡片组成的等式不是一元二次方程的概率.【分析】(1)根据随机事件的定义进行判断即可;(2)将所有等可能的结果列举出来,利用概率公式求解即可.【解答】解:(1)“抽取的卡片所组成的等式是一个一元二次方程”,这个事件是随机事件.故选C ;(2)共有x 2﹣4=x 2、x 2﹣4=4、4=x 2三种等可能的结果,为一元二次方程的有x 2﹣4=4、4=x 2两种是一元二次方程,故P (抽取的卡片组成的等式不是一元二次方程)=.四、(本题共4小题,每小题8分,共32分)19.(8分)2014年春晚小品《扶不扶》一时成为大家讨论的热点,于是某校七(2)班共有50名同学对老人自己不慎摔倒扶不扶,提出了4种不同观点,经统计得出了如下统计表和统计图,请根据图表中提供的信息解答下列问题:组别观点 频数(人数) A应立即扶起,并送医院 a B应赶快离开,省得惹事 15 C应只看热闹,不要行动 b D 要老人走路小心,但不能扶 c(1)填空:a=25,b=5,c=5;(2)请分别补全两个统计图;(3)在图2中,求代表B组“观点”的扇形圆心角度数.【分析】(1)由条形统计图可得a=25,由总人数是50,可得出c=5,即可得出b 的值;(2)先求出B类的百分比,C类的百分比,D类的百分比,再作图即可;(3)由B组“观点”的扇形圆心角度数=360°×对应的百分比求解即可.【解答】解:(1)由条形统计图可得a=25,∵总人数是50,∴c=50×10%=5,∴b=50﹣25﹣15﹣5=5.故答案为:25,5,5.(2)B类的百分比为:×100%=30%,C类的百分比为:×100%=10%,D类的百分比为:×100%=10%,如图:(3)B组“观点”的扇形圆心角度数=360°×=30%=108°.20.(8分)已知等腰△ABC的一边c=3,另两边a,b恰好是关于x的方程x2﹣(2k+1)x+4(k﹣)=0的两个根,求△ABC中a的边的长.【分析】分c=3为腰和底两种情况,根据三角形三边关系定理及等腰三角形的特点,确定另两边的长即可.【解答】解:当c=3为底边,则b,a为腰长,则b=a,则△=0.∴(2k+1)2﹣4×4(k﹣)=0,解得:k1=k2=.此时原方程化为:x2﹣4x+4=0∴x1=x2=2,即b=a=2.当c=3为腰长,则32﹣3(2k+1)+4(k﹣)=0,解得:k=2,此时原方程化为:x2﹣5x+6=0∴x1=2,x2=3,即a=2或3.综上所述:a的值为2或3.21.(8分)如图1、2是两个全等的菱形,边长为2cm,最小内角为60°.(1)分别对图1、图2个各设计一个不同的分割方案,并将分割后的若干块拼成一个与原菱形等面积的矩形,要求:先在已知图1、2中画出分割线(虚线),再画出拼成的矩形并注明长、宽的长度;(2)分别求出第(1)问中矩形的长边与对角线所成的夹角的正弦值.【分析】(1)分割线如图1沿着菱形的对角线分割即可,图2沿着菱形的两条高分割即可;拼成的矩形如图3、图4所示;(2)设矩形的长边与对角线所成的夹角为α,根据勾股定理求出矩形的对角线==,即可得到结果.【解答】解:(1)分割线如图1、图2所示拼成的矩形如图3、图4所示;(2)设矩形的长边与对角线所成的夹角为α,∵矩形的对角线==,∴sinα==.∴矩形的长边与对角线所成的夹角的正弦值为.22.(8分)如图,在平面直角坐标系中,动点P从原点O开始沿y轴的正方向运动,点B、C是一次函数y=kx+b与反比例函数y=(a>0,x>0)的图象的两个交点,且点B(m,2).当点P的坐标为(0,2)时,PC=BC,且∠PCB=90°.(1)试求反比例y=(a>0,x>0)和一次函数y=kx+b的解析式;(2)设a=|PB﹣PC|,当点P运动到何处时,m的值最大?最大值是多少?【分析】(1)作CA⊥PB于A,如图,由B(m,2),P(0,2)可判断BC∥x轴,根据等腰直角三角形的性质得CA=PA=BA=m,所以C(m,m+2),利用反比例函数图象上点的坐标特征得2m=m(m+2),解得m=0(舍去)或m=4,则把B(4,2)代入y=得a的值,于是反比例函数解析式为y=;然后把B(4,2),C(2,4)代入y=kx+b得,解方程组可得一次函数解析式为y=﹣x+6;(2)设P点坐标为(0,t),而B(4,2),C(2,4),根据三角形三边的关系得n=|PB﹣PC|≤BC(当点P为一次函数与y轴的交点时,取等号),则n的最大值为BC,此时P点坐标为(0,6),接着计算出BC=2,即当点P运动到(0,6)时,n的最大值是2.【解答】解:(1)作CA⊥PB于A,如图,∵B(m,2),P(0,2),∴BC∥x轴,∵CP=CB,∠PCB=90°,CA⊥PB,∴CA=PA=BA=m,∴C(m,m+2),∵点B、C是反比例函数y=(a>0,x>0)的点,∴2m=m(m+2),解得m=0(舍去)或m=4,∴B(4,2),C(2,4),把B(4,2)代入y=得a=4×2=8,∴反比例函数解析式为y=;把B(4,2),C(2,4)代入y=kx+b得,解得,∴一次函数解析式为y=﹣x+6;(2)设P点坐标为(0,t),而B(4,2),C(2,4),∵n=|PB﹣PC|≤BC(当点P为一次函数与y轴的交点时取等号),∴n的最大值为BC,此时P点坐标为(0,6),而BC==2,∴当点P运动到(0,6)时,n的值最大,最大值是2.五、(本题共1小题,共10分)23.(10分)某校九年级某班学生准备去购买《英汉词典》一书,此书的标价为20元.现A、B两书店都有此书出售,A店按如下方法促销:若只购买1本,则按标价销售;当一次性购买多于1本,但不多于20本时,每多购买一本,每本的售价在标价的基础上优惠2%(例如,买2本每本的售价优惠2%,买3本每本的售价优惠4%,依此类推);当购买多于20本时,每本的售价为12元.B书店一律按标价的7折销售.(1)试分别写出在两书店购买此书的总价y A、y B与购书本数之间的函数关系式.(2)若该班一次购买多于20本,去哪家书店购买更合算?为什么?若要一次性购买不多于20本,先写出y(y=y A﹣y B)与购书本数x之间的函数关系式,画出其函数图象,再利用函数图象分析去哪家书店购买更合算.【分析】(1)分别根据两个书店购书的优惠方案得出y与x的函数关系式即可;(2)首先得出y与x的函数关系式,进而画出图象,利用图象分析得出答案.【解答】解:(1)设购买x本,则在A书店购书的总费用为:y A=,在B书店购书的总费用为:y B=20×0.7x=14x;(2)当x>20时,显然y A<y B,即到A书店购买更合算,当0<x≤20时,y=y A﹣y B=﹣x2+x=﹣(x﹣8)2+25.6,当﹣(x﹣8)2+25.6=0时,解得:x1=0,x2=16,画出图象:由图象可得出:当0<x<16时,y>0,当x=16时,y=0,当20>x>16时,y<0,综上所述,若购书少于16本,则到B书店购买更合算;若购书16本,到A,B 购书的费用一样;若购书超过16本但不多于20本,则到A书店购书更合算.六、(本题共1小题,共12分)24.(12分)阅读下面材料:小明遇到这样一个问题:如图1,在边长为a(a>2)的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ 的面积.小明发现,分别延长QE,MF,NG,PH交FA,GB,HC,ED的延长线于点R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四个全等的等腰直角三角形(如图2)请回答:(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙不重叠),则这个新正方形的边长为a;(2)求正方形MNPQ的面积.(3)参考小明思考问题的方法,解决问题:如图3,在等边△ABC各边上分别截取AD=BE=CF,再分别过点D,E,F作BC,AC,AB的垂线,得到等边△RPQ.若S△RPQ=,则AD的长为.【分析】(1)四个等腰直角三角形的斜边长为a,其拼成的正方形面积为a2,边长为a;(2)如题图2所示,正方形MNPQ的面积等于四个虚线小等腰直角三角形的面积之和,据此求出正方形MNPQ的面积;(3)参照小明的解题思路,对问题做同样的等积变换.如答图1所示,三个等腰三角形△RSF,△QET,△PDW的面积和等于等边三角形△ABC的面积,故阴影三角形△PQR的面积等于三个虚线等腰三角形的面积之和.据此列方程求出AD的长度.【解答】解:(1)四个等腰直角三角形的斜边长为a,则斜边上的高为a,每个等腰直角三角形的面积为:a•a=a2,则拼成的新正方形面积为:4×a2=a2,即与原正方形ABCD面积相等,∴这个新正方形的边长为a;(2)∵四个等腰直角三角形的面积和为a2,正方形ABCD的面积为a2,=S△ARE+S△DWH+S△GCT+S△SBF=4S△ARE=4××12=2;∴S正方形MNPQ(3)如答图1所示,分别延长RD,QF,PE,交FA,EC,DB的延长线于点S,T,W.由题意易得:△RSF,△QET,△PDW均为底角是30°的等腰三角形,其底边长均等于△ABC的边长.不妨设等边三角形边长为a,则SF=AC=a.如答图2所示,过点R作RM⊥SF于点M,则MF=SF=a,在Rt△RMF中,RM=MF•tan30°=a×=a,∴S=a•a=a2.△RSF过点A作AN⊥SD于点N,设AD=AS=x,则AN=AD•sin30°=x,SD=2ND=2ADcos30°=x,∴S=SD•AN=•x•x=x2.△ADS=3×a2=a2,∵三个等腰三角形△RSF,△QET,△PDW的面积和=3S△RSF=S△ADS+S△CFT+S△BEW=3S△ADS,∴S△RPQ∴=3×x2,得x2=,解得x=或x=(不合题意,舍去)∴x=,即AD的长为.故答案为:a;.。

2015年中考第一次模拟考试数学试卷附答案

2015年中考第一次模拟考试数学试卷附答案

九年级数学试卷 第1页(共 10 页)2015年中考第一次模拟考试数学试卷注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.计算231⎪⎭⎫⎝⎛-•a a 的结果是( ▲ )A .aB .5aC .6aD .4a 2.下列无理数中,在-1与2之间的是( ▲ )A .3-B .2-C .2D .53.实数a ,b 在数轴上对应点的位置如图所示,则下列各式正确的是( ▲ )A . a >bB . a >-bC .-a >b4.如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,且DE //BC ,若S △ADE :S △ABC =4:9,则AD :AB =( ▲ )A .1∶2B .2∶3C .1∶3D .4∶95.一元二次方程2x 2-3x -5=0的两个实数根分别为1x 、2x ,则1x +2x 的值为( ▲ ) A .25 B .-25C .-32D .326.如图,在平面直角坐标系中,⊙M 与y 轴相切于原点O ,平行 于x 轴的直线交⊙M 于P ,Q 两点,点P 在点Q 的右方,若点P 的坐标是(-1,2),则点Q 的坐标是( ▲ ) A .(-4,2) B .(-4.5,2) C .(-5,2) D .(-5.5,2) 二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) ab(第3题) B九年级数学试卷 第2页(共 10 页)7.3-的倒数是 ▲ ;3-的相反数是▲.8.分解因式:29x y y -= ▲ ;计算:=-+⎪⎭⎫⎝⎛--12313312▲ .9.2015年3月1日傅家边梅花节在南京溧水区举办,截止4月1日约有53000名游客前来欣赏梅花.将53000用科学计数法表示为 ▲ . 10.使式子1+x +1有意义的x 的取值范围是 ▲ .11.2015年南京3月份某周7天的最低气温分别是 -1℃,2℃, 3℃,2℃ ,0℃, -1℃,2℃.则这7天最低气温的众数是 ▲ ℃,中位数是 ▲ ℃. 12.反比例函数xky -=1与x y 2=的图象没有交点,则k 的取值范围为 ▲ . 13.圆锥的底面直径是6,母线长为5,则圆锥侧面展开图的圆心角是 ▲ 度.14.如图,AB 为O ⊙的直径,CD 为O ⊙的弦,25ACD =o∠,则BAD ∠的度数为 ▲ °.15.如图,正六边形ABCDEF 的边长为2 3 cm ,点P 为六边形内任一点.则点P 到各边距离之和为 ▲ cm .16.现有一张边长大于4cm 的正方形纸片,如图从距离正方形的四个顶点2cm 处,沿45°角画线,将正方形纸片分成5部分,则中间一块阴影部分的面积为 ▲ cm 2. 三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式组⎩⎪⎨⎪⎧5+3x >18,x 3≤4-x -22. 并写出不等式组的整数解.18.(6分)化简232224a a a a a a ⎛⎫-÷⎪+--⎝⎭ 19.(8分)如图,在□ABCD 中,∠ABD 的平分线BE 交AD 于点E ,∠CDB 的平分线DF 交BC 于点F .(第15题)(第14题)(第16题)九年级数学试卷 第3页(共 10 页)(1)求证:△ABE ≌△CDF ;(2)若AB =DB ,求证:四边形DFBE 是矩形.20.(8分)某鞋店有A 、B 、C 、D 四款运动鞋,元旦期间搞“买一送一”促销活动,求下列事件的概率:(1)小明确定购买A 款运动鞋,再从其余三款鞋中随机选取一款,恰好选中C 款; (2)随机选取两款不同的运动鞋,恰好选中A 、C 两款.21.(8分)为了解某校初二学生每周上网的时间,两位学生进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间;小杰从全校400名初二学生中随机抽取了40名学生,调查了每周上网的时间.小丽与小杰整理各自样本数据,如下表所示.时间段 (小时/周)小丽抽样 人数小杰抽样 人数0~1 6 22 1~2 10 10 2~3 16 6 3~482(每组可含最低值,不含最高值)(1)你认为哪位同学抽取的样本不合理?请说明理由.(2)根据合理抽取的样本,把上图中的频数分布直方图补画完整;(3)专家建议每周上网2小时以上(含2小时)的同学应适当减少上网的时间,估计该校全体初二学生中有多少名同学应适当减少上网的时间?22.(8分)如图,跷跷板AB 的一端B 碰到地面时,AB 与地面的夹角为18°,且OA =OB =3m .ABC ADEF(第19题)九年级数学试卷 第4页(共 10 页)(1)求此时另一端A 离地面的距离(精确到0.1 m );(2)跷动AB ,使端点A 碰到地面,请画出点A 运动的路线(写出画法,并保留画图痕迹),并求出点A 运动路线的长.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)23.(8分)如图所示,某工人师傅要在一个面积为15m 2的矩形钢板上裁剪下两个相邻的正方形钢板当工作台的桌面,且要使大正方形的边长比小正方形的边长大1m .求裁剪后剩下的阴影部分的面积.24.(8分)二次函数y =2x 2+bx +c 的图象经过点(2,1),(0,1). (1)求该二次函数的表达式及函数图象的顶点坐标和对称轴;(2)若点P 12,3(y a +),Q 22,4(y a +)在抛物线上,试判断y 1与y 2的大小.(写出判断的理由)25.(8分)如图①,一条笔直的公路上有A 、B 、C 三地,B 、C 两地相距 150 千米,甲汽车从B 地乙汽车从C 地同时出发,沿公路匀速相向而行,分别驶往C 、B 两地.甲、乙ABO(第22题)18º九年级数学试卷 第5页(共 10 页)两车到A 地的距离y 1、y 2(千米)与行驶时间 x (时)的关系如图②所示.根据图象进行以下探究:(1)请在图①中标出 A 地的位置,并作简要的文字说明; (2)求图②中M 点的坐标,并解释该点的实际意义. (3)在图②中补全甲车的函数图象,求y 1与x 的函数关系式.26.(9分)已知,Rt △ABC 中,∠C =90°,AC =4, BC =3.以AC 上一点O 为圆心的⊙O 与BC 相切于点C ,与AC 相交于点D .(1)如图1,若⊙O 与AB 相切于点E ,求⊙O 的半径; (2)如图2,若⊙O 与AB 相交,且在AB 边上截得的弦FG=5,求⊙O 的半径.27.(11分)问题提出y (千米)x (时)乙甲图②图①B图1图2九年级数学试卷 第6页(共 10 页)把多边形的任一边向两方延长,如果其它各边都在延长线的同一旁,则这样的多边形为凸多边形.如平行四边形、梯形等都是凸多边形.我们教材中所说的多边形如没作特别说明,一般都是指凸多边形.把多边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的多边形叫做凹多边形.凹多边形会有哪些性质呢? 初步认识如图(1),四边形ABCD 中,延长BC 到M ,则边AB 、CD 分别在直线BM 的两旁,所以四边形ABCD 就是一个凹四边形.请你画一个凹五边形.(不要说明)性质探究请你完成凹四边形一个性质的证明:如图(2),在凹四边形ABCD 中,求证:∠BCD =∠A +∠B +∠D . 类比学习我们以前曾研究过凸四边形的中点四边形问题,如图(3),在四边形ABCD 中,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,则四边形EFGH 是平行四边形.当四边形ABCD 满足一定条件时,四边形EFGH 还可能是矩形、菱形或正方形.如图(4),在凹四边形ABCD 中,AB =AD ,CB =CD ,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,请判断四边形EFGH 的形状,并证明你的结论. 拓展延伸如图(5),在凹四边形ABCD 的边上求作一点P ,使得∠BPD =∠A +∠B +∠D .(不写作法、证明,保留作图痕迹)A BCMD(图1)A BCD(图2)A BCDEFG H(图3)(图4)EABC DFGH ABCD(图5)九年级数学试卷 第7页(共 10 页)2014~2015学年度第一次调研测试数学答案一、选择题(本大题共有6小题,每小题2分,共计12分.)1.A 2. C 3.C 4.B 5.D 6.A 二、填空题(本大题共10小题,每小题2分,共计20分.)7.31-,3 8.()()33-+x x y ,39- ; 9.5.3×104 ; 10.x ≥-1 ; 11.2,2; 12.k >1 ; 13.216; 14.65; 15.18 ; 16.8.三、解答题(本大题共11小题,共计88分.)17.解: 解不等式①,得x >133;…………………………2分解不等式②,得x ≤6. …………………………4分 所以原不等式组的解集为133<x ≤6.…………………5分它的整数解为5,6. …………………………………6分 18.解法1:原式=()()()()22222223-+÷⎪⎭⎫⎝⎛-+-+-a a a a a a a a a ………………2分 =()()()()aa a a a aa 22222822-+⨯-+-……………………………4分 = 4-a ………………………………………………………6分解法2:原式=()()222223-+÷⎪⎭⎫⎝⎛--+a a a a a a a ………………1分 =()()a a a a a a a222223-+⨯⎪⎭⎫⎝⎛--+………………2分 =()()221223+--a a …………………………4分 = 4-a ……………………………………………6分19.证明:(1)在□ABCD 中,AB =CD ,∠A =∠C .………………1分∵AB ∥CD ,∴∠ABD =∠CDB . ∵BE 平分∠ABD ,DF 平分∠CDB ,∴∠ABE =12∠ABD ,∠CDF =12∠CDB .∴∠ABE =∠CDF .………………………………………3分 在△ABE 和△CDF 中,∵∠A =∠C ,AB =CD ,∠ABE =∠CDF ,∴△ABE ≌△CDF . ………………………………………4分 (2)解法1:∵□ABCD 中,∴AD ∥BC ,AD =BC∵△ABE ≌△CDF . ∴AE =CF九年级数学试卷 第8页(共 10 页)∴DE =BF ,DE ∥BF∴四边形DFBE 是平行四边形…………………………………………6分 ∵AB =DB ,BE 平分∠ABD ,∴BE ⊥AD ,即∠DEB =90°.………7分 ∴四边形DFBE 是矩形. …………………………………………8分解法2:∵AB =DB ,BE 平分∠ABD ,∴BE ⊥AD ,即∠DEB =90°. ………5分∵AB =DB ,AB =CD ,∴DB =CD .∵DF 平分∠CDB ,∴DF ⊥BC ,即∠BFD =90°.……………………6分 在□ABCD 中,∵AD ∥BC ,∴∠EDF +∠DEB =180°.∴∠EDF =90°. ………………………………………………………7分 ∴四边形DFBE 是矩形. …………………………………………8分20. (1)因为选种B 、C 、D 三款运动鞋是等可能,所以选中C 款的概率是31…3分 (2)画树状图或列表正确……………………………………………………………6分 (只有部分正确给4分)因为选中(A B )、(A C )、(A D )、(B C )、(B D )、(C D )是等可能所以选中是(A C )的概率是61…………………………………………8分 21. (1)小丽;因为她没有从全校初二学生中随机进行抽查,不具有代表性.……3分(2)直方图正确. …………………………………………………………………5分 (4)该校全体初二学生中有80名同学应适当减少上网的时间 …………………8分 22.解:(1)过点A 作地面的垂线,垂足为C .…………………………1分在Rt △ABC 中,∠ABC =18°,∴AC =AB ·sin ∠ABC …………………………2分=6·sin18°≈6×0.31≈1.9. ………………………3分答:另一端A 离地面的距离约为1.9 m . …………4分 (2)画图正确;画法各1分…………………………6分画法:以点O 为圆心,OA 长为半径画弧,交地面于点D ,则⌒AD 就是端点A 运动的路线.端点A 运动路线的长为2×18×π×3180=3π5(m ).(公式正确1分)答:端点A 运动路线的长为3π5m .……………8分 23.解:设大正方形的边长x m ,则小正方形的边长为(x -1)m .……1分 根据题意得:x (2x -1)=15………………………………………………4分 解得:x 1=3,x 2=25(不合题意舍去) ……………………6分 小正方形的边长为(x -1)=3-1=2 ……………………7分裁剪后剩下的阴影部分的面积=15-22-32=2(m 2)答:裁剪后剩下的阴影部分的面积2m 2…………………………………8分 24.解:(1)根据题意,得8+2b +c =1且c =1,解得b =-4,所以该二次函数的表达式是y =2x 2-4x +1. …………2分AB O 18º C九年级数学试卷 第9页(共 10 页)将y =2x 2-4x +1配方得y =2(x -1)2 -1, ………………………3分 所以该二次函数图象的顶点坐标为(1,-1), ………………4分 对称轴为过点(1,-1)平行于y 轴的直线; ………………………5分 (或:对称轴为直线x=1)(2)∵4+a 2>3+a 2>1,……………………………………………………………6分∴P 、Q 都在对称轴的右边,………………………………………………7分 又∵2>0,函数的图象开口向上,在对称轴的右边y 随x 的增大而增大, ∴y 1<y 2(如直接代入计算出y 1与y 2,并比较大小正确参照给分)……8分 25.解: ⑴A 地位置如图所示.使点A 满足AB ∶AC =2∶3 . ……………… 2分(图大致正确1分,文字说明1分) ⑵乙车的速度150÷2=75千米/时,9075 1.2÷=,∴M (1.2,0) …………………3分 所以点 M 表示乙车 1.2 小时到达 A 地.… 4分 ⑶甲车的函数图象如图所示. ………… 6分当01x ≤≤时,16060y x =-+;…………7分当1 2.5x <≤时,16060y x =-. …………8分26.解:(1)连接OE ,因为⊙O 与AB 相切于点E ,所以OE ⊥AB设OE =x ,则CO =x ,AO =4-x 由Rt △AO E ∽Rt △ABC ,得ABAOBC OE =∴543x x -=,解得:x =23 ∴⊙O 的半径为23………………………………4分(2)过点O 作OH ⊥AB ,垂足为点H ,……………5分则H 为FG 的中点,FH=21FG =531……6分连接OF ,设OF =x ,则OA =4-x 由Rt △AOH ∽Rt △ABC 可得OH =5312x- 在Rt △OHF 中,据勾股定理得:OF 2=FH ∴x 2=(531)2+(5312x -)2……………8解得 x 1=74, x 2=254- (舍去) 图2 图1E九年级数学试卷 第10页(共 10 页)∴⊙O 的半径为74.…………………9分 27.答:初步认识:如图(图形正确即可…………………1分 性质探究:延长BC 交AD 于点E ∵∠BCD 是△CDE 的外角∴∠BCD =∠CED +∠D ……………………………………2分 同理,∠CED 是△ABE 的外角∴∠CED =∠A +∠B ………………………………………3分 ∴∠BCD =∠A +∠B +∠D …………………………………4分 (说明:连接AC ,利用外角来说明也可) 类比学习:证明:四边形EFGH 是矩形………………………………5分 连接AC ,BD ,交EH 于点M∵E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点 ∴EF =HG =AC 21,E F ∥HG ∥AC ∴四边形EFGH 是平行四边形,…………………………6分 ∵AB=AD ,BC=DC ,∴A 、C 在BD 的垂直平分线上,∴AM ⊥EH ,………………………………………………7分 已证E F ∥AC ,同理可证FG ∥BD ,∴∠EFG =90°∴□EFGH 是矩形 ………………………………………8分证明二:∵AB =AD ,CB =CD ,∴∠ABD =∠ADB ,∠CBD =∠∴∠ABC =∠ADC ,∴△ABC ≌△ADC 。

2015年中考模拟考试名校联合考试数学试题及答案

2015年中考模拟考试名校联合考试数学试题及答案

2015年中考模拟考试名校联合考试数学试题时间120分钟 满分150分 2015、3、18一、选择题(每小题3分,满分30分)1、2-的相反数是( )A 、2B 、-2C 、21 D 、21- 2、广州市番禺区莲花山旅游区是旅游热点,每年的春节期间是旅游的旺季,在2013年的春节期间,据不完全统计平均每天的客流量约为10万人左右,10万有科学记数法表示为( )A .1×106B .10×106C .1×105D .10×1053、下列运算中正确的是( )A .a a a =÷2B .422523a a a =+C .532)(ab ab =D .222)(b a b a +=+4、已知二元一次方程52=+y x ,且y x >,则此二元一次方程的正整数解为( )A .⎩⎨⎧==21y xB .⎪⎩⎪⎨⎧==232y x C .⎩⎨⎧==13y x D .⎩⎨⎧==05y x 5、(2013•重庆市•第4题)如图,直线a ,b ,c ,d ,已知c ⊥a ,c ⊥b ,直线b ,c ,d 交于一点,若∠1=50°,则∠2等于( ) A 、60° B 、50° C 、40° D 、30° 6、(2013•天津市河西区一模第9题)将抛物线y=2x 2向上平移5个单位,再向右平移3个单位,所得到的新抛物线的解析式为( )A 、3)5(22+-=x yB 、3)5(22++=x yC 、5)3(22+-=x yD 、5)3(22++=x y7、(2013•山东省济南市•第6题)不等式组31526x x ->⎧⎨⎩,≤的解集在数轴上表示正确的是( )8、在平面直角坐标系中,已知点A 的坐标是(2,3),点B 的坐标是(1,0),点C 是点A 关于点B 的对称点,则点C 的坐标是( ) A 、(2,-3) B 、(-2,-3) C 、(0,-2) D 、(0,-3)9、如图,在Rt △ABC 中,∠ACB=90°,∠BAC=30°,BC=2,Rt △ABC 绕点C 顺时针旋转90°得Rt △EDC,连结AE,则AE 的大小是( ) A 、32 B 、4图5水平线太阳光线D C BA图6DC B A 图2C B AE DC BAC 、24D 、510、(2013•广西河池市•第10题)如图,AB 为的直径,C 为⊙O 外一点, 过点C 作的⊙O 切线,切点为B ,连结AC 交⊙O 于D ,∠C =38°。

2015年内蒙古呼和浩特市中考一模数学试卷(解析版)

2015年内蒙古呼和浩特市中考一模数学试卷(解析版)

2015年内蒙古呼和浩特市中考数学一模试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列平面图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(3分)数轴上的点A到原点的距离是6,则点A表示的数为()A.6或﹣6B.6C.﹣6D.3或﹣3 3.(3分)为了实现医药卫生改革的目标,经初步测算,2011﹣2015年各级政府一共需要投入人民币8500亿元,这个数据用科学记数法可表示为()A.8.5×1012元B.8.5×1010元C.0.85×1012元D.8.5×1011元4.(3分)已知一组数据1,7,10,8,x,6,0,3,若,则x应等于()A.6B.5C.4D.25.(3分)一个锐角的余角加上90°,就等于()A.这个锐角的两倍数B.这个锐角的余角C.这个锐角的补角D.这个锐角加上90°6.(3分)方程x2+6x﹣5=0的左边配成完全平方后所得方程为()A.(x+3)2=14B.(x﹣3)2=14C.D.(x+3)2=4 7.(3分)如图,是一个几何体的三视图(主视图中的弧线是半圆),则该几何体的体积是()A.πB.2πC.4πD.8π8.(3分)下列运算正确的是()A.2a﹣2=B.(﹣a)9÷a3=a6C.D.(a2﹣a+)9.(3分)已知平行四边形ABCD的对角钱AC与BD相交于点O,AB⊥AC,若AB=2,AC=8,则对角线BD的长是()A.2B.2C.4D.410.(3分)已知k1<0<k2,则函数y=k1x和y=的图象大致是()A.B.C.D.二、填空题(共6小题,每小题3分,共18分)11.(3分)函数y=中,自变量x的取值范围是.12.(3分)从1,2,3,4中任意取出两个不同的数,其和为5的概率是.13.(3分)一个等腰但不等边的三角形,它的角平分线、高、中线的总条数为条.14.(3分)分解因式:2a3﹣8a=.15.(3分)已知圆锥的母线长为8,其侧面展开图是半圆,则这个圆锥的高为.16.(3分)已知a,b是方程x2+2x﹣5=0的两个实数根,则a2﹣ab+3a+b的值为.三、解答题(共9小题,满分72分)17.(10分)计算(1)解方程组(2)计算:(1﹣)0﹣tan30°+()﹣2.18.(7分)在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)若DE=BC,试判断四边形BFCE是怎样的四边形,并证明你的结论.19.(5分)已知不等式组的解集包含两个正整数,求a的取值范围.20.(6分)如图,要测量小山上电视塔BC的高度,在山脚下点A测得:塔顶B 的仰角为∠BAD=40°,塔底C的仰角为∠CAD=30°,AC=200米,求电视塔BC的高.(结果用含非特殊角的锐角三角函数及根式表示即可)21.(6分)某班计划组织部分同学义务植树180棵,由于同学们参与的积极性很高,实际参加植树活动的人数比原计划增加了50%,结果每人比原计划少栽了2棵树,问实际有多少人参加了这次植树活动?22.(10分)某校初一年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5;2,请结合图中相关数据回答下列问题:(1)求出样本容量,并补全直方图(在图中标出各组人数);(2)课堂发言次数的中位数落在哪个组;(3)该年级共有学生500人,请估计全年级在这天里发言次数不少于12次的人数.23.(7分)已知:如图.在平面直角坐标系xOy中,直线AB分别与x、y轴交于点B、A,与反比例函数的图象分别交于点C、D,CE⊥x轴于点E,,OB=4,OE=2.(1)求该反比例函数的解析式;(2)求△BOD的面积.24.(9分)如图,已知P A与圆O相切于点A,直径BC⊥OP,线段OP与圆O 交于点E,连接AB交PO于点D.(1)求证:∠P AD=∠ACB;(2)求证:AC•AP=AD•OC.25.(12分)已知二次函数y=kx2﹣4kx+3k(k≠0)(1)当k=1时,求该抛物线与坐标轴的交点的坐标;(2)当0≤x≤3时,求y的最大值;(3)若直线y=2k与二次函数的图象交于E、F两点,问线段EF的长度是否是定值?如果是,求出其长度;如果不是,请说明理由.2015年内蒙古呼和浩特市中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列平面图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:∵选项A中的图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,但它是轴对称图形,∴选项A不正确;∵选项B中的图形旋转180°后能与原图形重合,∴此图形是中心对称图形,它也是轴对称图形,∴选项B正确;∵选项C中的图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,但它是轴对称图形,∴选项C不正确;∵选项D中的图形旋转180°后能与原图形重合,∴此图形是中心对称图形,但它不是轴对称图形,∴选项D不正确.故选:B.2.(3分)数轴上的点A到原点的距离是6,则点A表示的数为()A.6或﹣6B.6C.﹣6D.3或﹣3【解答】解:当点A在原点左边时,为0﹣6=﹣6;点A在原点右边时为6﹣0=6.故选:A.3.(3分)为了实现医药卫生改革的目标,经初步测算,2011﹣2015年各级政府一共需要投入人民币8500亿元,这个数据用科学记数法可表示为()A.8.5×1012元B.8.5×1010元C.0.85×1012元D.8.5×1011元【解答】解:8500亿=8500 0000 0000=8.5×1011,故选:D.4.(3分)已知一组数据1,7,10,8,x,6,0,3,若,则x应等于()A.6B.5C.4D.2【解答】解:(1+7+10+8+x+6+0+3)÷8=535+x=40,x=5.故选:B.5.(3分)一个锐角的余角加上90°,就等于()A.这个锐角的两倍数B.这个锐角的余角C.这个锐角的补角D.这个锐角加上90°【解答】解:设这个锐角是x度,则它的余角是(90﹣x)度.那么90﹣x+90=180﹣x.而x+(180﹣x)=180.故选:C.6.(3分)方程x2+6x﹣5=0的左边配成完全平方后所得方程为()A.(x+3)2=14B.(x﹣3)2=14C.D.(x+3)2=4【解答】解:由原方程移项,得x2+6x=5,等式两边同时加上一次项系数一半的平方,即32,得x2+6x+9=5+9,∴(x+3)2=14.故选:A.7.(3分)如图,是一个几何体的三视图(主视图中的弧线是半圆),则该几何体的体积是()A.πB.2πC.4πD.8π【解答】解:观察该几何体的三视图发现:该几何体为圆柱的一半,其地面半径为1,高为2,故其体积为π×12×2=π,故选:A.8.(3分)下列运算正确的是()A.2a﹣2=B.(﹣a)9÷a3=a6C.D.(a2﹣a+)【解答】解:A、,故错误;B、(﹣a)9÷a3=﹣a6,故错误;C、,故错误;D、正确;故选:D.9.(3分)已知平行四边形ABCD的对角钱AC与BD相交于点O,AB⊥AC,若AB=2,AC=8,则对角线BD的长是()A.2B.2C.4D.4【解答】解:∵四边形ABCD是平行四边形,∴OA=OC=AC=4,OB=OD=BD,∵AB⊥AC,∴∠BAO=90°,∴OB===2,∴BD=2OB=4;故选:D.10.(3分)已知k1<0<k2,则函数y=k1x和y=的图象大致是()A.B.C.D.【解答】解:∵k1<0,∴函数y=k1x的图象是过原点,经过第二、四象限的直线,∵0<k2,∴y=的图象是在第一、三象限的双曲线.故选:A.二、填空题(共6小题,每小题3分,共18分)11.(3分)函数y=中,自变量x的取值范围是x≠2.【解答】解:要使分式有意义,即:x﹣2≠0,解得:x≠2.故答案为:x≠2.12.(3分)从1,2,3,4中任意取出两个不同的数,其和为5的概率是.【解答】解:列表得:∵共有12种等可能的结果,和为5的有4种,∴P(和为5)==.13.(3分)一个等腰但不等边的三角形,它的角平分线、高、中线的总条数为7条.【解答】解:等腰但不等边的三角形底边上的角平分线、中线、高线三线重合成一条;腰上的三条线不重合,因而共有7条线,故答案为:714.(3分)分解因式:2a3﹣8a=2a(a+2)(a﹣2).【解答】解:原式=2a(a2﹣4)=2a(a+2)(a﹣2),故答案为:2a(a+2)(a﹣2)15.(3分)已知圆锥的母线长为8,其侧面展开图是半圆,则这个圆锥的高为4.【解答】解:∵圆锥的侧面展开图是半径为8的半圆,∴轴截面是边长为8的等边三角形,∴圆锥的高为h=8×sin60°=4,故答案为:4.16.(3分)已知a,b是方程x2+2x﹣5=0的两个实数根,则a2﹣ab+3a+b的值为8.【解答】解:∵a是方程x2+2x﹣5=0的实数根,∴a2+2a﹣5=0,∴a2=5﹣2a,∴a2﹣ab+3a+b=5﹣2a﹣ab+3a+b=a+b﹣ab+5,∵a,b是方程x2+2x﹣5=0的两个实数根,∴a+b=﹣2,ab=﹣5,∴a2﹣ab+3a+b=﹣2+5+5=8.故答案为8.三、解答题(共9小题,满分72分)17.(10分)计算(1)解方程组(2)计算:(1﹣)0﹣tan30°+()﹣2.【解答】解:(1)组,化简得:,②﹣①得:4x=8,解得:x=2,把x=2代入①得:y=3,所以方程组的解为:;(2)(1﹣)0﹣tan30°+()﹣2=1﹣×+9=1﹣1+9=9.18.(7分)在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)若DE=BC,试判断四边形BFCE是怎样的四边形,并证明你的结论.【解答】(1)证明:∵CE∥BF,∴∠CED=∠BFD,∵D是BC边的中点,∴BD=DC,在△BDF和△CDE中,∴△BDF≌△CDE(AAS);(2)四边形BFCE是矩形,证明:∵△BDF≌△CDE,∴DE=DF,∵BD=DC,∴四边形BFCE是平行四边形,∵BD=CD,DE=BC,∴BD=DC=DE,∴∠BEC=90°,∴平行四边形BFCE是矩形.19.(5分)已知不等式组的解集包含两个正整数,求a的取值范围.【解答】解:,∵解不等式①得:x>,解不等式②得:x≤a,∴不等式组的解集为<x≤a,∵不等式组的解集包含两个正整数,∴4≤a<5,即a的取值范围为:4≤a<5.20.(6分)如图,要测量小山上电视塔BC的高度,在山脚下点A测得:塔顶B 的仰角为∠BAD=40°,塔底C的仰角为∠CAD=30°,AC=200米,求电视塔BC的高.(结果用含非特殊角的锐角三角函数及根式表示即可)【解答】解:在Rt△ADC中,∠ADC=90°,∠CAD=30°,AC=200米.∴CD=100米,∴AD=AC•cos∠CAD=200×=100,在Rt△ADB中,∠ADB=90°,∠BAD=40°,AD=100,∴BD=AD•tan∠BAD=100tan40°,∴BC=BD﹣CD=100tan40°﹣100(米).21.(6分)某班计划组织部分同学义务植树180棵,由于同学们参与的积极性很高,实际参加植树活动的人数比原计划增加了50%,结果每人比原计划少栽了2棵树,问实际有多少人参加了这次植树活动?【解答】解:设原计划有x人参加植树活动,则实际参加人数为1.5x人,根据题意得:﹣=2,解得x=30,经检验:x=30是方程的解,则实际参加这次植树活动的人数是:1.5x=45(人).答:实际有45人参加了这次植树活动.22.(10分)某校初一年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5;2,请结合图中相关数据回答下列问题:(1)求出样本容量,并补全直方图(在图中标出各组人数);(2)课堂发言次数的中位数落在哪个组;(3)该年级共有学生500人,请估计全年级在这天里发言次数不少于12次的人数.【解答】解:(1)∵B、E两组发言人数的比为5:2,E组发言人数占8%,∴B组发言的人数占20%,由直方图可知B组人数为10人,所以,被抽查的学生人数为:10÷20%=50人,∴样本容量为50人.F组人数为:50×(1﹣6%﹣20%﹣30%﹣26%﹣8%)=50×(1﹣90%)=50×10%,=5(人),C组人数为:50×30%=15(人),E组人数为:50×8%=4人补全的直方图如图;(2)发言次数的中位数在C组.(3)F组发言的人数所占的百分比为:10%,所以,估计全年级在这天里发言次数不少于12次的人数为:500×(8%+10%)=90(人).23.(7分)已知:如图.在平面直角坐标系xOy中,直线AB分别与x、y轴交于点B、A,与反比例函数的图象分别交于点C、D,CE⊥x轴于点E,,OB=4,OE=2.(1)求该反比例函数的解析式;(2)求△BOD的面积.【解答】解:(1)∵OB=4,OE=2,∴BE=2+4=6.∵CE⊥x轴于点E.tan∠ABO=.∴CE=3.(1分)∴点C的坐标为C(﹣2,3).(2分)设反比例函数的解析式为y=,(m≠0)将点C的坐标代入,得3=.(3分)∴m=﹣6.(4分)∴该反比例函数的解析式为y=﹣.(5分)(2)∵OB=4,∴B(4,0).(6分)∵tan∠ABO=,∴OA=2,∴A(0,2).设直线AB的解析式为y=kx+b(k≠0),将点A、B的坐标分别代入,得.(8分)解得.(9分)∴直线AB的解析式为y=﹣x+2.反比例函数的解析式y=﹣和直线AB的解析式为y=﹣x+2联立可得交点D 的坐标为(6,﹣1),则△BOD的面积=4×1÷2=2.故△BOD的面积为2.(10分).24.(9分)如图,已知P A与圆O相切于点A,直径BC⊥OP,线段OP与圆O 交于点E,连接AB交PO于点D.(1)求证:∠P AD=∠ACB;(2)求证:AC•AP=AD•OC.【解答】(1)证明:连接OA,∵P A与圆O相切于点A,∴OA⊥AP,∴∠OAD+∠DAP=90°,∵BC是⊙O的直径,∴∠OAD+∠OAC=90°,∵OC=OA,∴∠ACB=∠OAC,∴∠ACB=∠P AD;(2)解:由(1)知∠P AD=∠ACB,∵OP⊥BC,∴∠COA+∠AOP=90°,∵∠AOP+∠P=90°,∴∠COA=∠P,∴△ADP∽△COA,∴,∴AC•AP=AD•OC.25.(12分)已知二次函数y=kx2﹣4kx+3k(k≠0)(1)当k=1时,求该抛物线与坐标轴的交点的坐标;(2)当0≤x≤3时,求y的最大值;(3)若直线y=2k与二次函数的图象交于E、F两点,问线段EF的长度是否是定值?如果是,求出其长度;如果不是,请说明理由.【解答】解:(1)当k=1时,该抛物线为:y=x2﹣4x+3,x2﹣4x+3=0,解得:x1=1,x2=3,抛物线与x轴的交点的坐标为(1,0),(3,0),当x=0时,y=3,抛物线与y轴的交点的坐标为(0,3);(2)对称轴为:x=﹣=﹣=2,当k>0时,x=0时,y有最大值3k,当k<0时,y的最大值即顶点的纵坐标,为=﹣k,(3),解得:,,E(2+,2k),F(2﹣,2k),EF=2,∴EF为定值.。

2015江苏高考一模数学试题及答案(淮安宿迁连云港徐州四市)

2015江苏高考一模数学试题及答案(淮安宿迁连云港徐州四市)

高三年级第一次模拟考试数学注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,包含填空题(第1-14题)、解答题(第15题一第20题).本卷满分160分,考试时间为120分钟,考试结束后,请将本卷和答题卡一并交回.2.答题前,请您务必将自己的姓名,准考证号用0.5毫米黑色墨水的签字笔填写在试卷及请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效,作答必须 用0.5毫米黑色墨水的签字笔,注意字体工整,笔迹清楚.4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.5.请保持答题卡卡面清洁,不要折叠、破损.一、填空题:本大题共1 4小题,每小题5分,共计70分.不需写出解题过程,请把答案直接填写在答题卡相应位置上,1.己知集合 {}{}0,1,2,3,2,3,4,5A B ==,则 AB 中元素的个数为_______.2.设复数z 满足 (4)32i z i -=+(i 是虚数单位),则z 的虚部为_______.3.如图,茎叶图记录了甲、乙两组各3名同学在期末考试中的数 学成绩,则方差较小的那组同学成绩的方差为_______. 4.某用人单位从甲、乙、丙、丁4名应聘者中招聘2人,若每名应聘者被录用的机会均等,则甲、乙2人中至少有1入被录用的概率为 _______.5.如图是一个算法的流程图,若输入x 的值为2,则输出y 的值为_____.6. 已知圆锥的轴截面是边长为2的正三角形, 则该圆锥的体积为 ______.7. 已知 ()f x 是定义在R 上的奇函数,当 0x <时 2()log (2)f x x =-,则(0)(2)f f +的值为_____.8. 在等差数列{}n a 中,已知2811a a +=,则3113a a +的值为______.9. 若实数,x y 满足40x y +-≥,则226210z x y x y =++-+的最小值为_______.10. 已知椭圆22221(0)x y a b a b+=>>,点12,,,A B B F 依次为其左顶点、下顶点、上顶点和右焦点,若直线 2AB 与直线 1B F 的交点恰在椭圆的右准线上,则椭圆的离心 率为______.11.将函数 2sin()(0)4y x πωω=->的图象分别向左、向右各平移 4π个单位长度后,所得的两个图象对称轴重合,则 ω的最小值为______.12.己知a ,b 为正数,且直线 60ax by +-=与直线 2(3)50x b y +-+=互相平行,则2a+3b 的最小值为________.13.已知函数 22,0,()2,0x x f x x x x +⎧-≥⎪=⎨<⎪⎩,则不等式 (())3f f x ≤的解集为______.14.在△ABC 中,己知 3,45AC A =∠=,点D 满足 2CD BD =,且 AD =BC 的长为_______ .二、解答题:本大题共6小题.15~17每小题1 4分,18~20每小题1 6分,共计90分.请在答题卡指定的区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)己知向量 (1,2sin ),(sin(),1)3a b πθθ==+, R θ∈.(1)若 a b ⊥,求 tan θ的值:(2)若 //a b ,且 (0,)2πθ∈,求 θ的值.16.(本小题满分14分)如图,在三棱锥P- ABC 中,已知平面PBC ⊥平面ABC . (1)若AB ⊥ BC ,CD ⊥ PB ,求证:CP ⊥ PA :(2)若过点A 作直线l 上平面ABC ,求证:l //平面PBC .17.(本小题满分14分)在平面直角坐标系xOy 中,己知点 (3,4),(9,0)A B - ,C , D 分别为线段OA , OB 上的动点,且满足AC=BD.(1)若AC=4,求直线CD 的方程;(2)证明:∆ OCD 的外接圈恒过定点(异于原点O).18.(本小题满分16分)如图,有一个长方形地块ABCD ,边AB 为2km , AD 为4 km.,地块的一角是湿地(图中阴影部分),其边缘线AC 是以直线AD 为对称轴,以A 为顶点的抛物线的一部分.现要铺设一条过边缘线AC 上一点P 的直线型隔离带EF ,E ,F 分别在边AB ,BC 上(隔离带不能穿越湿地,且占地面积忽略不计).设点P 到边AD 的距离为t(单位:km),△BEF 的面积为S(单位: 2km ). (I)求S 关于t 的函数解析式,并指出该函数的定义域;(2)是否存在点P ,使隔离出的△BEF 面积S 超过3 2km ?并说明理由.19.(本小题满分16分)在数列 {}n a 中,已知 12211,2,n n n a a a a a n N λ*++==+=+∈,λ为常数. (1)证明: 14,5,a a a 成等差数列;(2)设 22n n a a n c +-=,求数列 的前n 项和 n S ;(3)当0λ≠时,数列 {}1n a -中是否存在三项 1111,1,1s t p a a a +++---成等比数列, 且,,s t p 也成等比数列?若存在,求出,,s t p 的值;若不存在,说明理由.20.(本小题满分16分)己知函数 21()ln ,2f x x ax x a R =-+∈(1)若 (1)0f =,求函数 ()f x 的单调递减区间;(2)若关于x 的不等式 ()1f x ax ≤-恒成立,求整数 a 的最小值:(3)若 2a =-,正实数 12,x x 满足 1212()()0f x f x x x ++=,证明: 1212x x +≥高三年级第一次模拟考试 数学II(附加题部分)注意事项1.本试卷共2页,均为解答题(第21题~第23题,共4题).本卷满分为40分,考试时间为30分钟。

大连市2015年一模数学答案

大连市2015年一模数学答案

大连市2015年初中毕业升学考试试测(一)数学参考答案与评分标准一、选择题1.D ; 2.A ; 3.C ; 4.B ; 5.C ; 6.C ; 7.B ; 8.D . 二、填空题9.a (a -2); 10.110; 11.33; 12.y <-2; 13.41; 14.425>k ;15.-5; 16.2500α-.三、解答题17.解:原式=313245++--………………………………………………………8分 =325-. ………………………………………………………………9分18.解:⎪⎩⎪⎨⎧≤->+.265,312x x x 解不等式①得:x >1.…………………………………………………………………3分解不等式②得:x ≤2.…………………………………………………………………6分 ∴不等式组的解集为1<x ≤2. ……………………………………………………9分 19.证明:∵四边形ABCD 是矩形,∴AB =DC ,∠B =∠C .…………………………………4分 ∵BE =FC ,∴BE +EF =FC +EF ,即BF =EC .………………………6分 ∴△ABF ≌△DCE .……………………………………8分 ∴∠F AB =∠EDC . ……………………………………9分 20.(1)60,50; ………………………………………………………………………4分 (2)200,30,5; …………………………………………………………………10分 (3)解:960200100601200=+⨯. ……………………………………………………11分 答:估计全校学生平均每天参加体育锻炼时间不少于1 h 的有960人.…………12分 四、解答题21.解:设现在平均每天生产x 台机器,则60540900-=x x .…………………………………………………………………………3分 ∴5(x -60)=3 x .① ②解得x =150.……………………………………………………………………………6分检验:当x =150时,x (x -60)≠0. ………………………………………………7分 ∴原分式方程的解为x =150.…………………………………………………………8分 答:现在平均每天生产150台机器.…………………………………………………9分22.解:(1)设直线OA 的解析式为y =kx ,则4=15k , 154=k .即x y 154=.………1分设直线BC 的解析式为y =mx +n ,则⎩⎨⎧=+=+.045,430n m n m 解得⎪⎩⎪⎨⎧=-=.12,154n m ∴12154+-=x y .……………………………3分∴所求解析式为⎪⎪⎩⎪⎪⎨⎧≤≤+-<≤<≤=).4530(12154),3015(4),150(154x x x x x y ………………………………………5分(2)设直线OD 的解析式为y =k′ x ,则4=45k ′,454'=k .即x y 454=.…………6分①当0≤x <15时,2454154=-x x ,解得445=x .②当15≤x <30时,24544=-x ,解得245=x .由题意知,甲离开学校245min 后到与乙相遇时,两人相距小于2 km .∴在两人相遇前,甲离开学校445 min 、245min 时与乙相距2 km .…………9分23.(1)证明:∵AB 是⊙O 的直径,∴∠ACB =90°.………………………………………………………………………1分 ∵AC ∥OD , ∴∠OFB =∠ACB =90°.………………………………………………………………2分 ∵DE 是⊙O 的切线, ∴∠ODE =90°. ………………………………………………………………………3分 ∴∠OFB =∠ODE .……………………………………………………………………4分 ∴CB ∥DE .……………………………………………………………………………5分 (2)解:连接AD ,设AD 与CB 相交于点G . ∵OA=OD ,AC ∥OD ,∴∠OAD =∠ODA =∠CAD =∠CBD .…………………………………………………7分 ∵AB 是⊙O 的直径, ∴∠ADB =90°=∠BDG .∴△DGB ∽△DBA .……………………………8分 ∴DA DB DB DG =,即10351010-=DG ,DG =2.…9分 ∴AG=AD -DG =5-2=3. 由(1)知CB ∥DE .∴GD AG BE AB =,即3352=⨯=AG DG AB BE .…………………………………………10分 五、解答题 24.(1)23;………………………………………………………………………………1分 解:(2)当0<x ≤23时,S=x 2.由题意知BC=2.………………………………3分 当点E 恰好在AB 上时(如图1), ∵四边形CDEF 是正方形, ∴ED ∥BC .∴△AED ∽△ABC .…………………………………4分∴AC AD BC ED =,即6,23223=-=AC ACAC .…………………5分 当23<x ≤2时,设DE 、EF 与AB 分别相交于点G 、H (如图2).同理ACAD BCGD =,即()x DG x DG -=-=631,662. (6)分同理BC BF CA FH =,即()x FH x FH -=-=23,226.………7分∴S =S △ABC -S △AGD -S △HBF()()()()68352322163162126212-+-=-⨯---⨯--⨯⨯=x x x x x x .……8分当2<x ≤6时,如图3.∴()()x x x x S S S AGD ABC 2163162126212+-=-⨯--⨯⨯=-=∆∆.⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤<-+-≤<=).62(261),223(6835),230(222x x x x x x x x S 即…………………9分G(3)由(2)知,当x =2时,.5310628435<=-⨯+⨯-=S 当x =6时,.56623661>=⨯+⨯-=S∴S 的值能为5,此时x 的范围为2<x <6.………………………………………10分当52612=+-x x 时,即.030122=+-x x6661>+=x (舍去),.662-=x 即66-=x 时,S =5.……………………………………………………………11分25.(1)存在,CF =BE .…………………………………………………………………1分 证明:如图1,延长EF 、BA ,设两延长线相交于点G .∵AB =AC ,∴∠B =∠C .………………………………………2分 又∵DE ∥AC ,∴∠BED =∠C =∠B ,∠DEG =∠EFC .…………3分 ∴ED=BD . ∵BD= EF ,∴ED==EF .………………………………………4分 ∵∠BEF =∠BAC , ∴∠CEF =∠GAF . 又∵∠CFE=∠GF A , ∴∠C =∠G .……………………………………………………………………………5分 ∴△ECF ≌△DGE .……………………………………………………………………6分 ∴CF =GE . 又∵∠G =∠C =∠B , ∴GE =BE . ……………………………………………………………………………7分 ∴CF =BE . ……………………………………………………………………………8分 (2)解:延长EF 、BA ,设两延长线相交于点G .作DH ⊥BC ,垂足为H .设BE =x . 由(1)知BD =ED ,GE =BE =x .在△BED 中,BE =2BH =2BD cos B ,∴32432x x BD =⨯=.………………………………………9分 同理BG =2BE cos B =x x 23432=⨯. …………………10分 ∵DE ∥AC ,∴DGDAEGEF =,即323232x xm x k x --=. 解得569+=k mkx .……………………………………………………………………12分 26.(1)(-1,0),(0,34). …………………………………………………………1分 (2)解:作AH ⊥直线l ′,CK ⊥x 轴,垂足分别为H 、K . ∵直线l ′∥x 轴, ∴KC =AH . ∵直线l 与直线l ′关于直线CA 对称,∴∠DCA=∠ACH .……………………………………2分 ∵AD ⊥直线l , ∴DA =AH =KC . ………………………………………3分 ∵∠KEC=∠DEA ,∠CKE=∠ADE , ∴△KCE ≌△DAE . …………………………………4分 ∴KE =DE ,EC =EA . …………………………………6分 设点C 的坐标为)3434,(+t t ,则KE CE ED CE CD +=+=,即()8)1()3434(122=--+⎥⎦⎤⎢⎣⎡+-+--t t t ∴,43434,4-=+-=t t即点C 的坐标为(-4,-4).………………………………………………………7分 ∴414)14(22=-++-=-=-=EO EC EO EA OA ,即点A 的坐标为(4,0).……………………………………………………………8分∴⎪⎪⎩⎪⎪⎨⎧-=+-=++.4313416,0313416n n m n n m 解得⎪⎪⎩⎪⎪⎨⎧=-=.21,9625n m ∴抛物线的解析式为6132196252++-=x x y . ……………………………………10分 (3)所求点P 的坐标⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛812817,2,或.…………………………………………12分HK。

东北三省四市教研联合体2015届高考数学一模试卷理(含解析)

东北三省四市教研联合体2015届高考数学一模试卷理(含解析)

东北三省四市教研联合体2 015届高考数学一模试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)设集合M={x|﹣2<x<3},N={x|2x+1≤1},则M∩(∁R N)=()A.(3,+∞)B.(﹣2,﹣1] C.(﹣1,3)D.[﹣1,3)2.(5分)复数(i是虚数单位)在复平面所对应的点位于的象限()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)下列四个命题中真命题的个数是()①“x=1”是“x2﹣3x+2=0”的充分不必要条件②命题“∀x∈R,sinx≤1”的否定是“∃x∈R,sinx>1”③“若am2<bm2,则a<b”的逆命题为真命题④命题p;∀x∈[1,+∞),lgx≥0,命题q:∃x∈R,x2+x+1<0,则p∨q为真命题.A.0 B.1 C.2 D.34.(5分)执行如图所示的程序框图,则输出的结果为()A.20 B.30 C.40 D.505.(5分)将函数f(x)=cos2x的图象向右平移个单位后得到函数g(x),则g(x)具有性质()A.最大值为a,图象关于直线x=对称B.在(0,)上单调递增,为奇函数C.在(﹣,)上单调递增,为偶函数D.周期为π,图象关于点(,0)对称6.(5分)等比数列{a n}中,a4=2,a7=5,则数列{lga n}的前10项和等于()A.2 B.lg50 C.10 D.57.(5分)某由圆柱切割获得的几何体的三视图如图所示,其中俯视图是圆心角为60°的扇形,则该几何体的侧面积为()A.12+B.6+C.12+2πD.6+4π8.(5分)已知抛物线y2=2px(p>0)与椭圆(a>b>0)有相同的焦点F,点A是两曲线的一个公共点,且AF⊥x轴,则椭圆的离心率为()A.﹣1 B.﹣1 C.D.9.(5分)已知∠ABC=90°,PA⊥平面ABC,若PA=AB=BC=1,则四面体PABC的外接球(顶点都在球面上)的表面积为()A.πB.πC.2πD.3π10.(5分)在如图所示的坐标平面的可行域内(阴影部分且包括边界),若目标函数z=x+ay 取得最小值的最优解有无数个,则的最大值是()A.B.C.D.11.(5分)设G是△ABC的重心,a,b,c分别是角A,B,C的对边,若a+b+c=,则角A=()A.90°B.60°C.45°D.30°12.(5分)已知数列{a n}中,a n>0,a1=1,a n+2=,a100=a96,则a2014+a3=()A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分.)13.(5分)设随机变量x服从正态分布N(1,4),若P(x>a+1)=P(x<2a﹣5),则a=.14.(5分)设a=2xdx,则(ax﹣)6的展开式中常数项为.15.(5分)在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2,AD=1,梯形所在平面内一点P满足,则=.16.(5分)已知函数f(x)=x(e x﹣e﹣x)﹣(2x﹣1)(e2x﹣1﹣e1﹣2x),则满足f(x)>0的实数x的取值范围为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,B=,tan(A+)=﹣.(Ⅰ)求角C;(Ⅱ)若b﹣c=,求△ABC的面积.18.(12分)2014年7月16日,中国互联网络信息中心发布《第三十四次中国互联网发展状况报告》,报告显示:我国网络购物用户已达3.32亿.为了了解网购者一次性购物金额情况,某统计部门随机抽查了6月1日这一天100名网购者的网购情况,得到如下数据统计表.已知网购金额在2000元以上(不含2000元)的频率为0.4.网购金额(元)频数频率(0,500] 5 0.05(500,1000] x p(1000,1500] 15 0.15(1500,2000] 25 0.25(2000,2500] 30 0.3(2500,3000] y q合计100 1.00(Ⅰ)确定x,y,p,q的值,并补全频率分布直方图;(Ⅱ)为进一步了解网购金额的多少是否与网龄有关,对这100名网购者调查显示:购物金额在2000元以上的网购者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的网购者中网龄不足3年的有20人.①请将列联表补充完整;网龄3年以上网龄不足3年合计购物金额在2000元以上35购物金额在2000元以下20合计100②并据此列联表判断,是否有97.5%的把握认为网购金额超过2000元与网龄在三年以上有关?参考数据:P(K2≥k)0.15 0.10 0.05 0.025 0.010 0.005 0.001k 2.072 2.706 3.841 5.024 6.635 7.879 10.828(参考公式:K2=,其中n=a+b+c+d)19.(12分)已知四棱锥P﹣ABCD,侧面PAD⊥底面ABCD,侧面PAD为等边三角形,底面ABCD 为棱形且∠DAB=.(Ⅰ)求证:PB⊥AD;(Ⅱ)求平面PAB与平面PCD所成的角(锐角)的余弦值.20.(12分)设抛物线的顶点在坐标原点,焦点F在y轴正半轴上,过点F的直线交抛物线于A,B两点,线段AB的长是8,AB的中点到x轴的距离是3.(Ⅰ)求抛物线的标准方程;(Ⅱ)在抛物线上是否存在不与原点重合的点P,使得过点P的直线交抛物线于另一点Q,满足PF⊥QF,且直线PQ与抛物线在点P处的切线垂直?并请说明理由.21.(12分)已知函数f(x)=alnx﹣ax﹣3(a≠0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)+(a+1)x+4﹣e≤0对任意x∈[e,e2]恒成立,求实数a的取值范围(e为自然常数);(Ⅲ)求证ln(22+1)+ln(32+1)+ln(42+1)+…+ln(n2+1)<1=2lnn!(n≥2,n∈N*)(n!=1×2×3×…×n).四、请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.(一)选修4-1:几何证明选讲22.(10分)如图,A,B,C为⊙O上的三个点,AD是∠BAC的平分线,交⊙O于点D,过B作⊙O的切线交Ad的延长线于点E.(Ⅰ)证明:BD平分∠EBC;(Ⅱ)证明:AE•DC=AB•BE.(二)选修4-4:坐标系与参数方程23.设函数f(x)=|x+2|+|2x﹣4|,g(x)=a+x.(Ⅰ)当a=3时,解不等式f(x)≥g(x);(Ⅱ)画出函数y=f(x)的图象,根据图象求使f(x)≥g(x)恒成立的实数a的取值范围.三、选修4-5:不等式选讲24.已知在直角坐标系xOy中,圆锥曲线C的参数方程为(θ为参数),定点A(0,﹣),F1、F2是圆锥曲线C的左、右焦点.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求经过点F1且平行于直线AF2的直线l的极坐标方程;(Ⅱ)设(Ⅰ)中直线l与圆锥曲线C交于M,N两点,求|F1M|•|F1N|.东北三省四市教研联合体2015届高考数学一模试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)设集合M={x|﹣2<x<3},N={x|2x+1≤1},则M∩(∁R N)=()A.(3,+∞)B.(﹣2,﹣1] C.(﹣1,3)D.[﹣1,3)考点:交、并、补集的混合运算.专题:集合.分析:求出N中不等式的解集确定出N,进而求出N的补集,找出M与N补集的交集即可.解答:解:由N中不等式变形得:2x+1≤1=20,即x+1≤0,解得:x≤﹣1,即N=(﹣∞,﹣1],∴∁R N=(﹣1,+∞),∵M=(﹣2,3),∴M∩(∁R N)=(﹣1,3),故选:C.点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.(5分)复数(i是虚数单位)在复平面所对应的点位于的象限()A.第一象限B.第二象限C.第三象限D.第四象限考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则和几何意义即可得出.解答:解:复数===i+1在复平面所对应的点(1,1)位于第一象限.故选:A.点评:本题考查了复数的运算法则、几何意义等基础知识,属于基础题.3.(5分)下列四个命题中真命题的个数是()①“x=1”是“x2﹣3x+2=0”的充分不必要条件②命题“∀x∈R,sinx≤1”的否定是“∃x∈R,sinx>1”③“若am2<bm2,则a<b”的逆命题为真命题④命题p;∀x∈[1,+∞),lgx≥0,命题q:∃x∈R,x2+x+1<0,则p∨q为真命题.A.0 B.1 C.2 D.3考点:命题的真假判断与应用.专题:综合题;推理和证明.分析:对四个,命题分别进行判断,即可得出结论.解答:解:①由x=1,则12﹣3×1+2=0,即x2﹣3x+2=0成立,反之,由x2﹣3x+2=0,得:x=1,或x=2.所以,“x=1”是“x2﹣3x+2=0”的充分不必要条件,故正确;②命题“∀x∈R,sinx≤1”的否定是“∃x∈R,sinx>1”,正确;③“若am2<bm2,则a<b”的逆命题为“若a<b,则am2<bm2”是假命题,故不正确;④命题p:∀x∈[1,+∞),lgx≥0,正确,命题q:∃x∈R,x2+x+1<0错误,因为x2+x+1=>0恒成立,p∨q为真,故正确.故选:D.点评:此题注重对基础知识的考查,特别是四种命题之间的真假关系,复合命题的真假关系,特称命题与全称命题的真假及否定,是学生易错点,属中档题.4.(5分)执行如图所示的程序框图,则输出的结果为()A.20 B.30 C.40 D.50考点:程序框图.专题:常规题型;算法和程序框图.分析:根据程序框图,列出每次执行循环体后的S,i,T的值,当满足条件T>S时,退出循环体,输出T的值.解答:解:根据程序框图,第一次执行循环体后S=7,i=3,T=3;第二次执行循环体后S=13,i=6,T=9;第三次执行循环体后S=19,i=9,T=18;第四次执行循环体后S=25,i=12,T=30;满足条件T>S,退出循环体,输出T=30.故选B.点评:本题通过程序框图考查了算法的三种结构,解决题目的关键是正确列出每次执行循环体后得到的S,i,T的值.5.(5分)将函数f(x)=cos2x的图象向右平移个单位后得到函数g(x),则g(x)具有性质()A.最大值为a,图象关于直线x=对称B.在(0,)上单调递增,为奇函数C.在(﹣,)上单调递增,为偶函数D.周期为π,图象关于点(,0)对称考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:由条件根据诱导公式、函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,再利用正弦函数的图象性质得出结论.解答:解:将函数f(x)=cos2x的图象向右平移个单位后得到函数g(x)=cos2(x﹣)=sin2x 的图象,故当x∈(0,)时,2x∈(0,),故函数g(x)在(0,)上单调递增,为奇函数,故选:B.点评:本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象性质,属于基础题.6.(5分)等比数列{a n}中,a4=2,a7=5,则数列{lga n}的前10项和等于()A.2 B.lg50 C.10 D.5考点:等比数列的前n项和.专题:等差数列与等比数列.分析:由等比数列的性质和对数的运算可得S=lga1a2…a10=lg105,化简可得.解答:解:∵等比数列{a n}中,a4=2,a7=5,∴a1a10=a2a9=…=a4a7=10,∴数列{lga n}的前10项和S=lga1+lga2+…+lga10=lga1a2…a10=lg105=5故选:D点评:本题考查等比数列的性质和求和公式,涉及对数的运算,属基础题.7.(5分)某由圆柱切割获得的几何体的三视图如图所示,其中俯视图是圆心角为60°的扇形,则该几何体的侧面积为()A.12+B.6+C.12+2πD.6+4π考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:由俯视图为扇形及正视及侧视图为矩形知,该几何体由圆柱切割而成,故分矩形及曲面求侧面积.解答:解:该几何体的侧面积由矩形的面积及曲面面积构成,其中矩形的面积为2×3×2=12,曲面的面积为×2×3=2π,故其侧面积S=12+2π,故选C.点评:三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,本题考查了学生的空间想象力,识图能力及计算能力.8.(5分)已知抛物线y2=2px(p>0)与椭圆(a>b>0)有相同的焦点F,点A是两曲线的一个公共点,且AF⊥x轴,则椭圆的离心率为()A.﹣1 B.﹣1 C.D.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:如图所示,由AF⊥x轴,可得=c,分别代入椭圆与抛物线标准方程可得:A,即A(c,2c).代入椭圆的方程可得:=1,又b2=a2﹣c2,利用离心率计算公式即可得出.解答:解:如图所示,∵AF⊥x轴,∴=c,把x=代入抛物线方程可得:y2=,解得y=p.∴A,即A(c,2c).代入椭圆的方程可得:=1,又b2=a2﹣c2,∴=1,化为e4﹣6e2+1=0,0<e<1.解得e2=3﹣2,∴﹣1.故选:B.点评:本题考查了椭圆与抛物线的标准方程及其性质、一元二次方程的解法,考查了推理能力与计算能力,属于中档题.9.(5分)已知∠ABC=90°,PA⊥平面ABC,若PA=AB=BC=1,则四面体PABC的外接球(顶点都在球面上)的表面积为()A.πB.πC.2πD.3π考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:取PC的中点O,连结OA、OB.由线面垂直的判定与性质,证出BC⊥PB且PA⊥AC,得到△PAC与△PBC是具有公共斜边的直角三角形,从而得出OA=OB=OC=OP=PC,所以P、A、B、C四点在以O为球心的球面上.根据题中的数据,利用勾股定理算出PC长,进而得到球半径R=,利用球的表面积公式加以计算,可得答案.解答:解:取PC的中点O,连结OA、OB∵PA⊥平面ABC,BC⊂平面ABC,∴PA⊥BC,又∵AC⊥BC,PA∩AC=A,∴BC⊥平面PAC,∵PB⊂平面PAC,∴BC⊥PB,∵OB是Rt△PBC的斜边上的中线,OB=PC.同理可得:Rt△PAC中,OA=PC,∴OA=OB=OC=OP=PC,可得P、A、B、C四点在以O为球心的球面上.Rt△ABC中,AB=BC=1,可得AC=,Rt△PAC中,PA=1,可得PC=.∴球O的半径R=PC=,可得球O的表面积为S=4πR2=3π.故选:D.点评:本题给出特殊的三棱锥,由它的外接球的表面积.着重考查了线面垂直的判定与性质、勾股定理与球的表面积公式等知识,属于中档题.10.(5分)在如图所示的坐标平面的可行域内(阴影部分且包括边界),若目标函数z=x+ay 取得最小值的最优解有无数个,则的最大值是()A.B.C.D.考点:简单线性规划.专题:不等式的解法及应用.分析:由题设条件,目标函数z=x+ay,取得最小值的最优解有无数个知取得最优解必在边界上而不是在顶点上,故目标函数中y的系数必为负,最小值应在左上方边界AC上取到,即x+ay=0应与直线AC平行,进而计算可得a值,最后结合目标函数的几何意义求出答案即可.解答:解:由题意,最优解应在线段AC上取到,故x+ay=0应与直线AC平行,∵k AC==,∴﹣=,∴a=﹣3,则=表示点P(﹣3,0)与可行域内的点Q(x,y)连线的斜率,由图得,当Q(x,y)=C(4,2)时,其取得最大值,最大值是=.故选A.点评:本题考查线性规划最优解的判定,属于该知识的逆用题型,利用最优解的特征,判断出最优解的位置求参数,属于中档题.11.(5分)设G是△ABC的重心,a,b,c分别是角A,B,C的对边,若a+b+c=,则角A=()A.90°B.60°C.45°D.30°考点:余弦定理;平面向量的基本定理及其意义.专题:计算题;平面向量及应用.分析:根据三角形重心的性质得到,可得.由已知向量等式移项化简,可得=,根据平面向量基本定理得到,从而可得a=b=c,最后根据余弦定理加以计算,可得角A的大小.解答:解:∵G是△ABC的重心,∴,可得.又∵,∴移项化简,得.由平面向量基本定理,得,可得a=b=c,设c=,可得a=b=1,由余弦定理得cosA===,∵A为三角形的内角,得0°<A<180°,∴A=30°.故选:D点评:本题给出三角形中的向量等式,求角A的大小,着重考查了三角形重心的性质、平面向量基本定理和利用余弦定理解三角形等知识,属于中档题.12.(5分)已知数列{a n}中,a n>0,a1=1,a n+2=,a100=a96,则a2014+a3=()A.B.C.D.考点:数列递推式.专题:点列、递归数列与数学归纳法.分析:由数列递推式求出a3,结合a100=a96求得a96,然后由a n+2=可得a2014=a96,则答案可求.解答:解:∵a1=1,a n+2=,∴,由a100=a96,得,即,解得(a n>0).∴.则a2014+a3=.故选:C.点评:本题考查了数列递推式,解答此题的关键是对数列规律性的发现,是中档题.二、填空题(本大题共4小题,每小题5分,共20分.)13.(5分)设随机变量x服从正态分布N(1,4),若P(x>a+1)=P(x<2a﹣5),则a=2.考点:正态分布曲线的特点及曲线所表示的意义.专题:计算题;概率与统计.分析:根据随机变量符合正态分布,又知正态曲线关于x=1对称,得到两个概率相等的区间关于x=1对称,得到关于a的方程,解方程即可.解答:解:∵随机变量ξ服从正态分布N(1,4),P(x>a+1)=P(x<2a﹣5),∴2a﹣5+a+1=2,∴3a=6,∴a=2,故答案为:2.点评:本题考查正态分布曲线的特点及曲线所表示的意义,考查曲线关于x=1对称,是一个基础题.14.(5分)设a=2xdx,则(ax﹣)6的展开式中常数项为﹣540.考点:二项式系数的性质;定积分.专题:二项式定理.分析:求定积分得到a的值,在(ax﹣)6的二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项.解答:解:a=2xdx=x2=4﹣1=3,则(ax﹣)6=(3x﹣)6的展开式的通项公式为T r+1=•(﹣1)r•36﹣r•x6﹣2r,令6﹣2r=0,求得 r=3,可得(ax﹣)6的展开式中常数项为﹣•33=﹣540,故答案为:﹣540.点评:本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题.15.(5分)在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2,AD=1,梯形所在平面内一点P满足,则=﹣1.考点:平面向量数量积的运算.专题:平面向量及应用.分析:建立坐标系,得到A,B,C,D的坐标,由得到P的坐标,再由向量的数量积运算解答.解答:解:如图在坐标系中,A(0,2),B(0,0),C(2,0),D(1,2),所以=(0,2),=(2,0),由,得到=(1,1),所以=(1,﹣1)(0,1)=﹣1;故答案为:﹣1.点评:本题考查了向量数量积的坐标运算;关键是距离坐标系,利用坐标法解答本题.16.(5分)已知函数f(x)=x(e x﹣e﹣x)﹣(2x﹣1)(e2x﹣1﹣e1﹣2x),则满足f(x)>0的实数x的取值范围为(,1).考点:利用导数研究函数的单调性.专题:导数的综合应用.分析:根据条件构造函数g(x),利用函数的奇偶性和单调性的性质解不等式即可解答:解:构造函数g(x)=x2(e x+e﹣x),则g(x)=x(e x﹣e﹣x)为偶函数,且当x>0时,g(x)单调递增,则由f(x)>0,得x(e x﹣e﹣x)>(2x﹣1)(e2x﹣1+e1﹣2x),即g(x)>g(2x﹣1),∴不等式等价为g(|x|)>g(|2x﹣1|),即|x|>|2x﹣1|,即x2>(2x﹣1)2,∴3x2﹣4x+1<0,解得:<x<1,故答案为:(,1).点评:本题主要考查不等式的解法,利用条件构造函数,利用函数的奇偶性和单调性是解决本题的关键三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,B=,tan(A+)=﹣.(Ⅰ)求角C;(Ⅱ)若b﹣c=,求△ABC的面积.考点:正弦定理;余弦定理.专题:解三角形.分析:(1)由题意和内角和定理求出A的范围,再求出A+的范围,结合条件求出角A,由内角和定理即可求出角C;(2)根据正弦定理求出的值,代入b﹣c=,求出b、c的值,利用两角和的正弦公式求出sinA的值,再代入三角形的面积公式求解.解答:解:(1)由题意知,B=,则0<A<,∴<A+<π,∵tan(A+)=﹣,∴A+=,则A=,…(2分)∴C=π﹣A﹣B=…(4分)(2)由正弦定理得,则==,①…(6分)∵b﹣c=,②,由①②得,b=、c=(8分)∵sinA=sin(B+C)==…(10分)∴S△ABC===…(12分)点评:本题考查正弦定理,两角和的正弦公式,以及三角形的面积公式,注意角的范围确定,属于中档题.18.(12分)2014年7月16日,中国互联网络信息中心发布《第三十四次中国互联网发展状况报告》,报告显示:我国网络购物用户已达3.32亿.为了了解网购者一次性购物金额情况,某统计部门随机抽查了6月1日这一天100名网购者的网购情况,得到如下数据统计表.已知网购金额在2000元以上(不含2000元)的频率为0.4.网购金额(元)频数频率(0,500] 5 0.05(500,1000] x p(1000,1500] 15 0.15(1500,2000] 25 0.25(2000,2500] 30 0.3(2500,3000] y q合计100 1.00(Ⅰ)确定x,y,p,q的值,并补全频率分布直方图;(Ⅱ)为进一步了解网购金额的多少是否与网龄有关,对这100名网购者调查显示:购物金额在2000元以上的网购者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的网购者中网龄不足3年的有20人.①请将列联表补充完整;网龄3年以上网龄不足3年合计购物金额在2000元以上35购物金额在2000元以下20合计100②并据此列联表判断,是否有97.5%的把握认为网购金额超过2000元与网龄在三年以上有关?参考数据:P(K2≥k)0.15 0.10 0.05 0.025 0.010 0.005 0.001k 2.072 2.706 3.841 5.024 6.635 7.879 10.828(参考公式:K2=,其中n=a+b+c+d)考点:独立性检验.专题:应用题;概率与统计.分析:(1)求出网购金额在2000元以上的人数,可得x,y的值,由此能求出x,y,p,q 的值,并补全频率分布直方图.(2)由数据可得列联表,利用公式,可得结论.解答:解:(1)因为网购金额在2000元以上的频率为0.4,所以网购金额在2000元以上的人数为100×0.4=40所以30+y=40,所以y=10,…(1分)x=15,…(2分)所以p=0.15,q=0.1…(4分)所以频率分布直方图如右图…(5分)(2)由题设列联表如下网龄3年以上网龄不足3年合计购物金额在2000元以上35 5 40购物金额在2000元以下40 20 60合计75 25 100…(7分)所以K2=≈5.56>5.024…(10分)所以据此列联表判断,有97.5%的把握认为网购金额超过2000元与网龄在三年以上有关.…(12分)点评:本题考查频率分布直方图,考查独立性检验的运用,考查学生的计算能力,属于中档题.19.(12分)已知四棱锥P﹣ABCD,侧面PAD⊥底面ABCD,侧面PAD为等边三角形,底面ABCD 为棱形且∠DAB=.(Ⅰ)求证:PB⊥AD;(Ⅱ)求平面PAB与平面PCD所成的角(锐角)的余弦值.考点:二面角的平面角及求法;平面与平面垂直的性质.专题:空间位置关系与距离;空间角.分析:(Ⅰ)取AD中点O,连结PO,BO,由等边三角形性质得PO⊥AD,由菱形性质得BO⊥AD,从而AD⊥平面POB,由此能证明PB⊥AD.(Ⅱ)以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,设AB=2,求出平面PAB的法向量和平面PCD的法向量,由此利用向量法能求出平面PAB与平面PCD所成的角(锐角)的余弦值.解答:(Ⅰ)证明:取AD上点O,连结PO,BO,∵侧面PAD为等边三角形,∴PO⊥AD,∵底面ABCD为棱形且∠DAB=,∴BO⊥AD,又PO∩BO=O,∴AD⊥平面POB,又PB⊂平面POB,∴PB⊥AD.(Ⅱ)解:∵四棱锥P﹣ABCD,侧面PAD⊥底面ABCD,∴PO⊥平面ABCD,又OA⊥OB,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,设AB=2,则A(1,0,0),B(0,,0),P(0,0,),C(﹣2,,0),D(﹣1,0,0),=(1,0,﹣),=(0,),设平面PAB的法向量=(x,y,z),则,取y=,得=(3,),=(﹣2,),=(﹣1,0,﹣),设平面PCD的法向量=(a,b,c),则,取c=,得=(﹣3,﹣,),设平面PAB与平面PCD所成的角(锐角)为θ,cosθ=|cos<>|=||=||=.平面PAB与平面PCD所成的角(锐角)的余弦值为.点评:本题主要考查直线与平面、平面与平面之间的平行、垂直等位置关系,考查线线垂直、二面角的概念、求法等知识,考查空间想象能力和逻辑推理能力,是中档题.20.(12分)设抛物线的顶点在坐标原点,焦点F在y轴正半轴上,过点F的直线交抛物线于A,B两点,线段AB的长是8,AB的中点到x轴的距离是3.(Ⅰ)求抛物线的标准方程;(Ⅱ)在抛物线上是否存在不与原点重合的点P,使得过点P的直线交抛物线于另一点Q,满足PF⊥QF,且直线PQ与抛物线在点P处的切线垂直?并请说明理由.考点:直线与圆锥曲线的关系;抛物线的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)设抛物线的方程为x2=2py,由抛物线的定义和已知条件可得p的方程,解p 可得;(Ⅱ)设P(x1,y1),x1≠0,Q(x2,y2),由切线和垂直关系以及韦达定理可得y1的方程,解y1进而可得x1,可得符合题意的点P.解答:解:(Ⅰ)设抛物线的方程为x2=2py(p>0),设A(x A,y A),B(x B,y B),由抛物线定义可知y A+y B+p=8,又AB中点到x轴的距离为3,∴y A+y B=6,∴p=2,∴抛物线的标准方程是x2=4y;(Ⅱ)设P(x1,y1),x1≠0,Q(x2,y2),则x2=4y在P处的切线方程是y=x﹣y1,直线PQ:y=﹣x+2+y1代入x2=4y得x2+x﹣4(2+y1)=0,由韦达定理可得x1+x2=,x1x2=﹣8﹣4y1,∴x2=﹣x1,y2=+y1+4,而=y12﹣2y1﹣﹣7=0,整理可得y13﹣2y12﹣7y1﹣4=0,(y1>0),分解因式可得(y1+1)2(y1﹣4)=0,解得y1=4,故存在点P(±4,4)满足题意.点评:本题考查直线和圆锥曲线的位置关系,涉及抛物线的标准方程和韦达定理的应用,属中档题.21.(12分)已知函数f(x)=alnx﹣ax﹣3(a≠0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)+(a+1)x+4﹣e≤0对任意x∈[e,e2]恒成立,求实数a的取值范围(e为自然常数);(Ⅲ)求证ln(22+1)+ln(32+1)+ln(42+1)+…+ln(n2+1)<1=2lnn!(n≥2,n∈N*)(n!=1×2×3×…×n).考点:利用导数研究函数的单调性;函数恒成立问题;不等式的证明.专题:计算题;证明题;压轴题;函数的性质及应用;导数的综合应用;等差数列与等比数列;不等式的解法及应用.分析:(Ⅰ)求导f′(x)=(x>0),从而判断函数的单调性;(Ⅱ)令F(x)=alnx﹣ax﹣3+(a+1)x+4﹣e=alnx+x+1﹣e,从而求导F′(x)=,再由导数的正负讨论确定函数的单调性,从而求函数的最大值,从而化恒成立问题为最值问题即可;(Ⅲ)令a=﹣1,此时f(x)=﹣lnx+x﹣3,从而可得f(1)=﹣2,且f(x)=﹣lnx+x﹣3在(1,+∞)上单调递增,从而可得﹣lnx+x﹣1>0,即lnx<x﹣1对一切x∈(1,+∞)成立,从而可得若n≥2,n∈N*,则有ln(+1)<<=﹣,从而化ln(22+1)+ln(32+1)+ln(42+1)+…+ln(n2+1)<1+2lnn!(n≥2,n∈N*)为ln(+1)+ln(+1)+…+ln(+1)<1(n≥2,n∈N*);从而证明.解答:解:(Ⅰ)f′(x)=(x>0),当a>0时,f(x)的单调增区间为(0,1],单调减区间为[1,+∞);当a<0时,f(x)的单调增区间为[1,+∞),单调减区间为(0,1];(Ⅱ)令F(x)=alnx﹣ax﹣3+(a+1)x+4﹣e=alnx+x+1﹣e,则F′(x)=,若﹣a≤e,即a≥﹣e,F(x)在[e,e2]上是增函数,F(x)max=F(e2)=2a+e2﹣e+1≤0,a≤,无解.若e<﹣a≤e2,即﹣e2≤a<﹣e,F(x)在[e,﹣a]上是减函数;在[﹣a,e2]上是增函数,F(e)=a+1≤0,即a≤﹣1.F(e2)=2a+e2﹣e+1≤0,即a≤,∴﹣e2≤a≤.若﹣a>e2,即a<﹣e2,F(x)在[e,e2]上是减函数,F(x)max=F(e)=a+1≤0,即a≤﹣1,∴a<﹣e2,综上所述,a≤.(Ⅲ)证明:令a=﹣1,此时f(x)=﹣lnx+x﹣3,所以f(1)=﹣2,由(Ⅰ)知f(x)=﹣lnx+x﹣3在(1,+∞)上单调递增,∴当x∈(1,+∞)时,f(x)>f(1),即﹣lnx+x﹣1>0,∴lnx<x﹣1对一切x∈(1,+∞)成立,∵n≥2,n∈N*,则有ln(+1)<<=﹣,要证ln(22+1)+ln(32+1)+ln(42+1)+…+ln(n2+1)<1+2lnn!(n≥2,n∈N*),只需证ln(+1)+ln(+1)+…+ln(+1)<1(n≥2,n∈N*);ln(+1)+ln(+1)+…+ln(+1)<(1﹣)+(﹣)+…+(﹣)=1﹣<1;所以原不等式成立.点评:本题考查了导数的综合应用,放缩法证明不等式,裂项求和法等的应用,同时考查了恒成立问题及分类讨论的数学思想应用,属于难题.四、请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.(一)选修4-1:几何证明选讲22.(10分)如图,A,B,C为⊙O上的三个点,AD是∠BAC的平分线,交⊙O于点D,过B作⊙O的切线交Ad的延长线于点E.(Ⅰ)证明:BD平分∠EBC;(Ⅱ)证明:AE•DC=AB•BE.考点:相似三角形的判定;与圆有关的比例线段.专题:计算题;直线与圆.分析:(1)由BE是⊙O的切线,可得∠EBD=∠BAD,又∠CBD=∠CAD,∠BAD=∠CAD,从而可求∠EBD=∠CBD,即可得解.(2)先证明△BDE∽△ABE,可得,又可求∠BCD=∠DBC,BD=CD,从而可得,即可得解.解答:解:(1)因为BE是⊙O的切线,所以∠EBD=∠BAD…(2分)又因为∠CBD=∠CAD,∠BAD=∠CAD…(4分)所以∠EBD=∠CBD,即BD平分∠EBC.…(5分)(2)由(1)可知∠EBD=∠BAD,且∠BED=∠BED,有△BDE∽△ABE,所以,…(7分)又因为∠BCD=∠BAE=∠DBE=∠DBC,所以∠BCD=∠DBC,BD=CD…(8分)所以,…(9分)所以AE•DC=AB•BE…(10分)点评:本题主要考查了相似三角形的判定,与圆有关的比例线段的应用,解题时要认真审题,注意圆的切线的性质的灵活运用,属于中档题.(二)选修4-4:坐标系与参数方程23.设函数f(x)=|x+2|+|2x﹣4|,g(x)=a+x.(Ⅰ)当a=3时,解不等式f(x)≥g(x);(Ⅱ)画出函数y=f(x)的图象,根据图象求使f(x)≥g(x)恒成立的实数a的取值范围.考点:绝对值不等式的解法;指数函数的图像变换.专题:不等式的解法及应用.分析:(Ⅰ)当a=3时,化简函数f(x)的解析式,分类讨论求得不等式f(x)≥g(x)的解集.(2)画出函数f(x)的图象,数形结合求得f(x)的最小值为f(2)=4,由题意可得f(2)≥g(2),由此求得a的范围.解答:解:(Ⅰ)当a=3时,函数f(x)=|x+2|+|2x﹣4|=,不等式即f(x)≥x+3.∴①或②或③.解①求得x<﹣2,解②求得﹣2≤x≤,解③求得x≥,综上可得,不等式的解集为(﹣∞,]∪[,+∞).(2)根据f(x)的解析式,画出函数f(x)的图象,如图所示:数形结合求得f(x)的最小值为f(2)=4,由于g(x)=a+x结合由题意可得f(2)≥g(2),即4≥a+2,求得a≤2.点评:本题主要考查带有绝对值的函数,函数的恒成立问题,绝对值不等式的解法,体现了转化、数形结合、分类讨论的数学思想,属于中档题.三、选修4-5:不等式选讲24.已知在直角坐标系xOy中,圆锥曲线C的参数方程为(θ为参数),定点A(0,﹣),F1、F2是圆锥曲线C的左、右焦点.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求经过点F1且平行于直线AF2的直线l的极坐标方程;(Ⅱ)设(Ⅰ)中直线l与圆锥曲线C交于M,N两点,求|F1M|•|F1N|.考点:简单曲线的极坐标方程;参数方程化成普通方程.专题:坐标系和参数方程.分析:(1)利用cos2θ+sin2θ=1可得曲线C的普通方程,即可得出焦点坐标,得到直线l 的点斜式方程,化为极坐标方程即可;(2)直线的参数方程是(为参数),代入椭圆方程得5t2﹣4t﹣12=0,利用参数的意义即可得出.解答:解:(1)圆锥曲线C的参数方程为(θ为参数),∴普通方程为C:=1,A(0,﹣),F1(﹣1,0),F2(1,0),=,直线l的方程为y=(x+1),∴直线l极坐标方程为:,化为=.(2)直线的参数方程是(为参数),代入椭圆方程得5t2﹣4t﹣12=0,∴.∴|F1M|•|F1N|=.点评:本题考查了直线的直角坐标方程化为极坐标、椭圆的参数方程化为普通方程、参数的应用,考查了推理能力与计算能力,属于中档题.。

【初中数学】北京市各区县2015年中考一模数学试题集(共15套) 通用4

【初中数学】北京市各区县2015年中考一模数学试题集(共15套) 通用4

东城区2014—2015学年第二学期初三综合练习(一) 数学试题 2015.5学校 班级 姓名 考号一律填涂或书写在答题卡上一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.与2-的和为0的数是 A .2- B .12-C .12D .22.2015年元旦期间,北京各大公园接待游客达245 000万人次。

其中, “冰雪乐园”吸引了大批游客亲身感受冰雪带来的快乐,一起为北京申办2022年冬奥会助力加油.用科学记数法表示245 000 ,正确的是A .424.510⨯ B .52.4510⨯C .62.4510⨯ D .60.24510⨯ 3.一个几何体的三视图如图所示,则这个几何体是 A .圆柱 B .球 C .圆锥 D . 棱柱4.在某校初三年级古诗词比赛中,初三(1)班42名学生的成绩统计如下,则该班学生成绩的 中位数和众数分别是5. 在六张卡片上分别写有π,, 1.5,3,0,3-,从中任意抽取一张,卡片上的数为无理数的概率是6.正五边形的每个外角等于A. 36︒B. 60︒C. 72︒D. 108︒ 7.如图,AB 是O 的直径,点C 在O 上,过点C 作O 的切线交AB 的延长线于点D ,连接OC ,AC . 若50D ∠=︒,则A ∠的度数是A. 20︒ B .25︒C .40︒D .50︒8.小李驾驶汽车以50千米/小时的速度匀速行驶1小时后,途中靠边停车接了半小时电话,然后继续匀速行驶.已知行驶路程y (单位:千米)与行驶时间t (单位:小时)的函数图象大致如图所示,则接电话后小李的行驶速度为 A. 43.5 B. 50 C. 56 D. 589. 如图,已知∠MON =60°,OP 是∠MON 的角平分线 ,点A 是OP 上一点,过点A 作ON 的平行线交OM 于点B,AB=4.则直线AB 与ON 之间的距离是A.B.2C.D.410. 如图1, ABC △和DEF △都是等腰直角三角形,其中90C EDF ∠=∠=︒,点A 与点D 重合,点E 在AB 上,4AB =,2DE =.如图2,ABC △保持不动,DEF △沿着线段AB 从点A 向点B 移动, 当点D 与点B 重合时停止移动.设AD x =,DEF △与ABC △重叠部分的面积为S ,则S 关于x 的函数图象大致是A B C D二、填空题(本题共18分,每小题3分)11.分解因式:224mx my -= . 12 .13. 关于x 的一元二次方程230x x m +-=有两个不相等的实数根,则实数m 的取值范围 是 .14. 北京的水资源非常匮乏,为促进市民节水,从2014年5月1日起北京市居民用水实行阶梯水价,实施细则如下表:北京市居民用水阶梯水价表 单位: 元/立方米某户居民从2015年1月1日至4月30日,累积用水190立方米,则这户居民4个月共需缴纳水费 元.15.已知女排赛场球网的高度是2.24米,某排球运动员在一次扣球时,球恰好擦网而过,落在对方场地距离球网4米的位置上,此时该运动员距离球网1.5米,假设此次排球的运行路线是直线,则该运动员击球的高度是 米.图1 图216.在平面直角坐标系xOy 中,记直线1y x =+为l .点1A 是直线l 与y 轴的交点,以1AO 为 边做正方形111AOC B ,使点1C 落在在x 轴正半轴上,作射线11C B 交直线l 于点2A ,以 21A C 为边作正方形2122A C C B ,使点2C 落在在x 轴正半轴上,依次作下去,得到如图所示的图形.则点4B 的坐标是 ,点n B 的坐标是 . 三、解答题(本题共30分,每小题5分)17.如图,AC 与BD 交于点O ,OA OC =,OB OD =.求证:DC AB ∥.18. 计算:()1136043-⎛⎫--︒+-+- ⎪⎝⎭π.19.解不等式组:()2131,5 4.2x x x x --⎧⎪⎨-+⎪⎩><20.先化简,再求值:222442111a a a a a a -+-+÷+--,其中1a =. 21.列方程或方程组解应用题:2015年“植树节”前夕,某小区为绿化环境,购进200棵柏树苗和120棵枣树苗,且两种树苗所需费用相同.每棵枣树苗的进价比每棵柏树苗的进价的2倍少5元,每棵柏树苗的进价是多少元?F(1)求反比例函数的解析式; (2)求△BOD 的面积. 四、解答题(本题共20分,每小题5分)23. 如图,ABC △中,90BCA ∠=︒,CD 是边AB 上的中线,分别过点C ,D 作BA ,BC的平行线交于点E ,且DE 交AC 于点O ,连接AE . (1)求证:四边形ADCE 是菱形; (2)若2AC DE =,求sin CDB ∠的值.24.为弘扬中华传统文化,某学校决定开设民族器乐选修课.为了更贴合学生的兴趣,对学生最喜爱的一种民族乐器进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题: (1)在这次抽样调查中,共调查 名学生; (2)请把条形图(图1)补充完整;(3)求扇形统计图(图2)中,二胡部分所对应的圆心角的度数; (4)如果该校共有学生1500名,请你估计最喜爱古琴的学生人数.25. 如图,在⊙O 中,AB 为直径,OC AB ⊥,弦CD 与OB 交于点F ,过点,D A 分别作⊙O 的切线交于点G ,且GD 与AB 的延长线交于点E .(1)求证:12∠=∠;(2)已知::1:3OF OB =,⊙O 的半径为3,求AG 的长.26. 在四边形ABCD 中,对角线AC 与BD 交于点O ,E 是OC 上任意一点,AG BE ⊥于点G ,交BD 于点F .(1)如图1,若四边形ABCD 是正方形,判断AF 与BE 的数量关系;明明发现,AF 与BE 分别在AOF △和BOE △中,可以通过证明AOF △和BOE △全等,得到AF 与BE 的数量关系;请回答:AF 与BE 的数量关系是 .(2) 如图2,若四边形ABCD 是菱形, 120ABC ∠=︒,请参考明明思考问题的方法,求AFBE的值.图1 图2五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)27.在平面直角坐标系xOy 中,抛物线()210y ax bx a =++≠过点()1,0A -,()1,1B ,与y轴交于点C .(1)求抛物线()210y ax bx a =++≠的函数表达式;(2)若点D 在抛物线()210y ax bx a =++≠的对称轴上,当ACD △的周长最小时,求点D 的坐标;(3)在抛物线()210y ax bx a =++≠的对称轴上是否存在点P ,使ACP △成为以AC为直角边的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.28. 已知:Rt △A ′BC ′和 Rt △ABC 重合,∠A ′C ′B =∠ACB =90°,∠BA ′C ′=∠BAC =30°,现将Rt △A ′BC ′ 绕点B 按逆时针方向旋转角α(60°≤α≤90°),设旋转过程中射线C ′C 和线段AA ′相交于点D ,连接BD .(1)当α=60°时,A ’B 过点C ,如图1所示,判断BD 和A ′A 之间的位置关系,不必证明; (2)当α=90°时,在图2中依题意补全图形,并猜想(1)中的结论是否仍然成立,不必证明;(3)如图3,对旋转角α(60°<α<90°),猜想(1)中的结论是否仍然成立;若成立,请证明你的结论;若不成立,请说明理由.29.定义符号{}min a b ,的含义为:当a b≥时,{}min a b b =,;当a b <时, {}min a b a =,.如:{}m i n 122-=-,,{}min 121-=-,. (1)求{}2min x -1,-2;(2)已知2min{2,3}3x x k -+-=-, 求实数k 的取值范围;(3) 已知当23x -≤≤时,22min{215,(1)}215x x m x x x --+=--.直接写出实数m 的取值范围.东城区2014-2015学年第二学期初三综合练习(一)数学试题参考答案及评分标准 2015.517. 证明:∵在ODC △和OBA △中,∵,,,OD OB DOC BOA OC OA =⎧⎪∠=∠⎨⎪=⎩∴ODC OBA △≌△. …………3分 ∴C A ∠=∠. …………4分 ∴DC AB ∥. …………5分()()1118.36043134415-⎛⎫-︒+-+- ⎪⎝⎭=-+=-解:π分分19. ()2131,8x x x x --⎧⎪⎨-+⎪⎩①②>解:5<2,2x 由①得,<, …………2分 1x -由②得,>, …………4分所以,不等式组的解集为12x -<<. …………5分()()()22224421112211112221131a a a a a a a a a a a a a a a a a -+-+÷+----=+⋅++---=+++=+20.解:分当1a =时,2=原式.…………5分 21.解:设每棵柏树苗的进价是x 元,则每棵枣树苗的进价是()25x -元. …………1分根据题意,列方程得:200=120(25)x x -,…………3分 解得: 15x =. …………5分 答:每棵柏树苗的进价是15元. 22. 解:(1)过点C 向x 轴作垂线,垂足为E . ∵CE x ⊥轴,AB x ⊥轴,()4,2A -, ∴CE AB ∥,()4,0B -. ∴12OE OC CE OB OA AB ===. ∵4OB =,2AB =, ∴2OE =,1CE =.∴()2,1C -. …………2分 ∵双曲线ky x=经过点C , ∴2k =-.∴反比例函数的解析式为2y x=-. …………3分 (2)∵点D 在AB 上,∴点D 的横坐标为4-. ∵点D 在双曲线2y x=-上, ∴点D 的纵坐标为12. …………4分∴BOD S △11141222OB BD =⋅⋅=⨯⨯=.…………5分 四、解答题(本题共20分,每小题5分) 23.(1)证明:∵DE BC ∥,CE AB ∥,∴四边形DBCE 是平行四边形. ∴CE BD =.又∵CD 是边AB 上的中线,∴BD AD =. ∴CE DA =. 又∵CE DA ∥,∴四边形ADCE 是平行四边形.∵90BCA ∠=︒,CD 是斜边AB 上的中线, ∴AD CD =.∴四边形ADCE 是菱形. …………3分 (2)解:作CF AB ⊥于点F .由(1) 可知, .BC DE =设BC x =,则2AC x =. 在Rt ABC △中,根据勾股定理可求得AB =. ∵1122AB CF AC BC ⋅=⋅,∴AC BC CF x AB ⋅==.∵12CD AB x ==, ∴4sin 5CF CDB CD ∠==.…………5分 24.解:(1)20÷10%=200(名),…………1分 答:一共调查了200名学生; (2)最喜欢古筝的人数:200×25%=50(名), 最喜欢琵琶的人数:200×20%=40(名); 补全条形图如图; …………3分 (3)二胡部分所对应的圆心角的度数为:60200×360°=108°; …………4分 (4)1500×30200=225(名). …………5分答:1500名学生中估计最喜欢古琴的学生人数为225. 25.(1)证明:连结OD ,如图.∵DE 为⊙O 的切线,OD 为半径, ∴OD DE ⊥.∴90ODE ∠=︒,即290ODC ∠+∠=︒.26. 解:(1)AF =BE ; …………1分(2)AF BE=. …………2分 理由如下:∵四边形ABCD 是菱形,120ABC ∠=︒,∴AC BD ⊥,60ABO ∠=︒.∴90FAO AFO ∠+∠=︒.∵AG BE ⊥,∴90EAG BEA ∠+∠=︒.∴AFO BEA ∠=∠.又∵90AOF BOE ∠=∠=︒,∴AOF BOE △∽△. …………3分∴AF AO BE OB= . ∵60ABO ∠=︒,AC BD ⊥,∴tan 60AO OB=︒=.∴AF BE = …………5分 五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.解:(1)∵抛物线()210y ax bx a =++≠过点()1,0A -,()1,1B , ∴10,1 1.a b a b -+=⎧⎨++=⎩∴1,21.2a b ⎧=-⎪⎪⎨⎪=⎪⎩ ∴抛物线的函数关系式为211122y x x =-++. …………2分 (2)∵122b x a =-=,()0,1C ∴抛物线211122y x x =-++的对称轴为直线12x =. 设点E 为点A 关于直线12x =的对称点,则点E 的坐标为()2,0. 连接EC 交直线12x =于点D ,此时ACD △的周长最小. 设直线EC 的函数表达式为y kx m =+,代入,E C 的坐标,则2m 0,1.k m +=⎧⎨=⎩解得1,21.k m ⎧=-⎪⎨⎪=⎩所以,直线EC 的函数表达式为112y x =-+. 当12x =时,34y =. ∴ 点D 的坐标为13,24⎛⎫⎪⎝⎭. …………4分 (3)存在.①当点A 为直角顶点时,过点A 作AC 的垂线交y 轴于点M ,交对称轴于点1P . ∵AO OC ⊥,1AC AP ⊥,∴90AOM CAM ∠=∠=︒.∵()0,1C ,()1,0A -,∴1OA OC ==.∴45CAO ∠=︒.∴45OAM OMA ∠=∠=︒.∴1OA OM ==.∴点M 的坐标为()0,1-.设直线AM 对应的一次函数的表达式为11y k x b =+,代入,A M 的坐标, 则1110,1.k b b -+=⎧⎨=-⎩ 解得111,1.k b =-⎧⎨=-⎩ 所以,直线AM 的函数表达式为1y x =--. 令12x =,则32y =-. ∴点1P 的坐标为13,22⎛⎫-⎪⎝⎭. …………5分 ②当点C 为直角顶点时,过点C 作AC 的垂线交对称轴于点2P ,交x 轴于点N . 与①同理可得Rt CON △是等腰直角三角形,∴1OC ON ==.∴点N 的坐标为()1,0.∵2CP AC ⊥,1AP AC ⊥,∴21CP AP ∥.∴直线2CP 的函数表达式为1y x =-+. 令12x =,则12y =. ∴点2P 的坐标为11,22⎛⎫ ⎪⎝⎭. …………6分 综上,在对称轴上存在点1P 13,22⎛⎫-⎪⎝⎭,2P 11,22⎛⎫ ⎪⎝⎭,使ACP △成为以AC 为直角边的直角三角形.…………7分28.解:(1) 当60α=︒时, BD A A '⊥. ------------1分(2)补全图形如图1,B D A A '⊥仍然成立;------------3分(3)猜想BD A A '⊥仍然成立.证明:作AE C C '⊥,A F C C ''⊥,垂足分别为点,E F ,如图2,则90AEC A FC ''∠=∠=︒. ∵BC BC '=,∴BCC BC C ''∠=∠.∵90ACB A C B ''∠=∠=︒,∴90ACE BCC '∠+∠=︒,'90A C F BC C ''∠+∠=︒. ∴ACE A C F ''∠=∠.在AEC △和A FC ''△中,90,,,AEC A FC ACE A C F AC A C ''∠=∠=︒⎧⎪''∠=∠⎨⎪''=⎩∴AEC A FC ''△≌△. 图2图1∴AE A F '=.在AED △和A FD '△中,90,,,AEC A FD ADE A DF AE A F '∠=∠=︒⎧⎪'∠=∠⎨⎪'=⎩∴AED A FD '△≌△.∴AD A D '=.∵AB A B '=,∴'ABA △为等腰三角形.∴BD A A '⊥------------7分29.解:(1)∵20x ≥,∴2x -1≥-1.∴2-x -1>2.∴{}2min 2x =--1,-2. ┉┉2分(2) ∵()2211x x k x k -+=-+-2, ∴()2111x k k -+--≥. ∵2min{2,3}3x x k -+-=-, ∴13k --≥. ∴2k -≥. ┉┉5分(337m -≤≤. ┉┉8分。

2015中考一模数学试卷附答案

2015中考一模数学试卷附答案

2015中考一模数学试卷考生须知:本试卷分试题卷和答题卷两部分.满分120分,考试时间100分钟.答题时,不能使用计算器,在答题卷指定位置内写明校名,姓名和班级,填涂考生号. 所有答案都做在答题卡标定的位置上,请务必注意试题序号和答题序号相对应.参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标(-a b 2,ab ac 442-)一.仔细选一选 (本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列实数中是无理数的是( )A .tan30°B .38C .31 D .492.在⊙O 上作一条弦AB ,再作一条与弦AB 垂直的直径CD ,CD 与AB 交于点E ,则下列结论中不一定...正确是( ) A .AE =BE B .⌒AC =⌒BC C .CE =EO D .⌒AD = ⌒BD3.二次根式2)3(+x 中字母x 的取值范围是( ) A .x ≠-3 B .x ≥-3 C .x >-3 D .全体实数4.下列说法中错误的是( ) A .一个锐角的补角一定是钝角; B .同角或等角的余角相等;C .两点间的距离是连结这两点的线段的长度;D .过直线l 上的一点有且只有一条直线垂直于l .5.如图,M ,N 两点在数轴上表示的数分别是m ,n ,则下列 式子中成立的是( )A .m -1<n -1B .-m <-nC .|m |-|n |>0D .m +n <06.下列各项结论中错误的是( )A .二元一次方程22=+y x 的解可以表示为⎪⎩⎪⎨⎧-==21m y mx (m 是实数);B .若⎩⎨⎧-==21y x 是二元一次方程组⎩⎨⎧=-=+123y x n m y x 的解,则m +n 的值为0; C .设一元二次方程0432=-+x x 的两根分别为m 、n ,则m +n 的值为-3;D .若-5x 2y m 与x ny 是同类项,则m +n 的值为3.7.2015年1月1日起,杭州市城区实行全新的阶梯水价,之前为了解某社区居民的用水情况,随机对该社区20户居民进行了调查,下表是这20户居民2014年8月份用水量的调查结果:那么关于这次用水量的调查和数据分析,下列说法错误的是( )A .平均数是10(吨)B .众数是8(吨)C .中位数是10(吨)D .样本容量是208.已知四边形ABCD 是平行四边形,再从①AB =BC ,②∠ABC =90°,③AC =BD ,④AC ⊥BD 四个条件中,选两个作为补充条件后,使得四边形ABCD 是正方形,现有下列四种选法,其中错误的是( )A .选①②B .选②③C .选①③D .选②④9.把一枚均匀的骰子连续抛掷两次,则两次朝上面的点数之积为3的倍数的概率是( ) A .31B .3615C .114D .9510.在△ABC 中,AB =AC =10,点D 是边BC 上一动点(不与B ,C 重合),连结AD ,作∠ADE=∠B=α,DE 交AC 于点E ,且cos α=54.有下列结论:①△ADE∽△ACD; ②当BD =6时,△ABD 与△DCE 全等;③当△DCE 为直角三角形时,BD =8;④3.6≤AE <10.其中正确的结论是( )A .①③B .①④C .①②④D .①②③二.认真填一填 (本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.有底面为正方形的直四棱柱容器A 和圆柱形容器B ,容器材质相同,厚度忽略不计.如果..它们的主视图是完全相同的矩形,那么将B 容器盛满水,全部倒入A 容器,问:结果会 (“溢出”、“刚好”、“未装满”,选一个)12.如图是某班对40名学生上学出行方式调查的扇形 统计图,问:(1)该班乘坐公交车上学的有 人;(2)表示骑自行车上学的扇形对应的圆心角是 度.13.如图,BD 平分∠ABC ,DE ∥BC ,若∠2=62°,则∠1= . 14.已知一次函数的图像经过点A (0,2)和点B (2,-2):(1)求出y关于x 的函数表达式为 ;(2)当-2<y <4时,x 的取值范围是 .15.已知等腰△ABC 的两条边长分别为4cm 和6cm ,则等腰△ABC 的内切圆半径为 cm .16.设二次函数y =ax 2+bx +c (a ≠0)的图象经过点(3,0),(7,– 8),当3≤x ≤7时,y 随x 的增大而减小,则实数a 的取值范围是 .三.全面答一答 (本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以. 17.(本小题6分) 求一元一次不等式组⎩⎨⎧->-<43343x x x 的整数解,将解得的整数分别写在相同的卡片上,背面朝上,随机抽取一张,不放回,再抽出一张,把先抽出的数字作为横坐标,后抽出的作为纵坐标,这样的点在平面直角坐标系内有若干个,请用列表或树状图等方法表示出来,并求出点在坐标轴上的概率.18.(本小题8分)某公园有一座雕塑D ,在北门B 的正南方向,BD 为100米,小树林A 在北门的南偏西60°方向,荷花池C 在北门B 的东南方向,已知A ,D ,C 三点在同一条直线上且BD ⊥AC : (1)分别求线段AB 、BC 、AC 的长(结果中保留根号,下同);(2)若有一颗银杏树E 恰好位于∠BAD 的平分线与BD 的交点,求BE 的距离.19.(本小题8分)正方形纸片ABCD 的对称中心为O ,翻折∠A 使顶点A 重合于对角线AC 上一点P ,EF 是折痕: (1)证明:AE =AF ;(2)尺规作图:在图中作出当点P 是OC 中点时的△EFP (不写画法,保留作图痕迹);完成作图后,标注所作△EFP 的外接圆心M.20.(本小题10分)(1)将下列各式进行分解因式:①142++x x ; ② 22818b a -(2)先化简,再求值:(1-1212+-x x )÷(122--x x -2),其中34=x ;完成对分式的化简求值后,填空:要使该分式有意义,x 的取值应满足 .21.(本小题10分)平面直角坐标系中,点A 在函数y 1=x 2(x >0)的图象上,点B 在y 2=-x2(x <0)的图象上,设A 的横坐标为a ,B 的横坐标为b :(1)当|a |=|b |=5时,求△OAB 的面积; (2)当AB∥x 轴时,求△OAB 的面积;(3)当△OAB 是以AB 为底边的等腰三角形,且AB 与x 轴不平行时,求a²b 的值.22.(本小题12分)已知抛物线p :123)1(2-++-=kx k x y 和直线l :2k kx y +=: (1)对下列命题判断真伪,并说明理由:①无论k 取何实数值,抛物线p 总与x 轴有两个不同的交点; ②无论k 取何实数值,直线l 与y 轴的负半轴没有交点;(2)设抛物线p 与y 轴交点为C ,与x 轴的交点为A 、B ,原点O 不在线段AB 上;直线l 与x 轴的交点为D ,与y 轴交点为C 1,当OC 1=OC +2且OD 2=4AB 2时,求出抛物线的解析式及最小值.23.(本小题12分)菱形ABCD 的边长为2,∠BAD =60°,对角线AC ,BD 相交于点O ,动点P 在线段AC 上从点A 向点C 运动,过P 作PE ∥AD ,交AB 于点E ,过P 作PF ∥AB ,交AD 于点F ,四边形QHCK 与四边形PEAF 关于直线BD 对称. 设菱形ABCD 被这两个四边形盖住部分的面积为S 1,AP =x : (1)对角线AC 的长为 ;S菱形ABCD = ; (2)用含x 的代数式表示S 1;(3)设点P 在移动过程中所得两个四边形PEAF 与QHCK 的重叠部分面积为S 2,当S 2=21S 菱形ABCD 时,求x 的值.2015中考一模数学答案一.仔细选一选 ACDDA BCBDC二.认真填一填 (本题有6个小题,每小题4分,共24分)11.未装满 12.(1)16;(2)108 13.31° 14.(1)22+-=x y ;(2)-1<x <215.2或773 16.-21≤ a <0或0<a ≤21(16题仅写-21≤ a , a ≤21每个得1分)三.全面答一答(本题有7个小题,共66分) 17.(6分)不等式组解得-1<x <3 ------------------------1分 ; 整数解 0,1,2 -----------------------------1分,6个点:(0,1);(0,2);(1,0);(1,2);(2,0);(2,1)不论列表还是树状图或枚举,---------3分 点在坐标轴上的概率为32.-------------------------------------------------------------------------------------1分(说明:①用列表中和树状图表示点,可不必再写点的坐标;②如第一部分整数解求错,第二部分按求错的整数来解,结果正确,原来的满分4分扣掉1分) 18.(8分)(1)AB =200(米),BC =1002(米),-----------------2分(各1分) ∵AD=1003,DC =100,------------------------------------1分∴A C =AD +DC =(1003+100)米-----------------------1分(2)作EF ⊥AB ,根据角平分线性质,得△AE F ≌△A ED∴AF =AD =1003--------------------------------------------1分 又BE =2BF---------------------------------------------------------1分∴BE =2(AB -AF )=2(200-1003)=400-2003=(米)----------------------2分 19.(8分)(1) 证明:设AP 交EF 于点Q ,∵P 是A 的对称点, ∴AP ⊥EF ,------------------1分在△AEQ 和△AFQ 中:∵点P 在AC 上,∴∠EAQ =∠FAQ =45°AQ 公共边,∠AQE =∠AQF =90°∴△AEQ ≌△AFQ (ASA )-------------------2分∴AE =AF-----------------------------------------1分(注:也可以证明△AEP ≌△AFP ,或证AEPF 是正方形.同样给分)(2)尺规作图:OC 中点P----------------------------------------------------1分 作AP 垂直平分线EF 、 或PE 、PF 用角平分线、或过P 作垂直线等方法获得△EFP ----------2分△EFP 的外接圆心M 的位置是EF 与AC 的交点(位置正确即可)-----------------------------1分 20.(10分) (1)①142++x x 2)12(+=x----------2分;②22818b a -)23)(23(2b a b a -+=---------2分(2)(1-1212+-x x )÷(122--x x -2)=22)1(2--x x x 122--÷x x x -------------------------------------2分 =22)1(2--x x x ³xx x 212--=11-x -------------1分; 将34=x 代入11-x 得3=x ---------------1分要使该分式有意义,x的取值应满足x ≠0且x ≠1且x ≠2----------------------------------------2分(注:只写出其中的一个或二个得1分,三个全写出得2分;如果“且”字没写,不扣分) 21.(10分)(1)∵a >0,b <0,当|a |=|b |=5时,可得A (5,52),B(-5,52) ----------------------2分∴S △OAB =21³10³52=2-------------------------------------------------------------------------1分 (2)设A (a ,a 2),B(b ,b 2-),当AB ∥x 轴时,a 2=b 2-,∴a =-b ------------------2分 ∴S △OAB =21³(a -b )³a 2=21³2 a ³a 2=2-----------------------------------------------------1分(3)设A (a ,a 2),B(b ,b 2-),∵△OAB 是以AB 为底边的等腰三角形, OA =OB由OA 2=a 2+(a 2)2 , OB 2=a 2+(a 2)2 ,∴a 2+(a 2)2=b 2+(b 2-)2-------1分整理得:( a 2―b 2)(1224b a -)=0 ----------------------------------------------1分∵AB 与x 轴不平行,∴|a |≠| b |,∴1224b a -=0 ∴a²b =±2------------1分∵a >0,b <0,∴a²b =-2--------------------------------------------------------1分 22.(12分) (1)①正确---------------------------------------------------------------------------------------------1分∵0123)1(2=-++-kx k x 的解是抛物线与x 轴的交点, 由判别式△=)123(4)1(2--+k k =542+-k k =01)2(2>+-k-----------------------2分∴无论k 取何实数值,抛物线总与x 轴有两个不同的交点; ②正确----------------------------------------------------------------------------------------------------1分∵直线2k kx y +=与y 轴交点坐标是(0,2k )--------------------------------------------------1分而无论k 取何实数值2k ≥0,∴直线与y 轴的负半轴没有交点-----------------------------1分(2)∵|OD|=|―k | ,|AB|=542+-k k ∴OD 2=4AB 2⇒2016422+-=k k k 解得310k 2==或k-----------------------------------------------------------------------------------2分又∵OC 1=2k ,OC =123-k >0,∴2k =123-k +2,解得21k 2-==或k ------------2分综上得k =2,∴抛物线解析式为232+-=x x y ,最小值为41-------------------------2分 23.(12分) 解:(1)AC=23;S菱形ABCD=23-------------------------------------------------------------2分(2)根据题设可知四边形PEAF 是菱形,有一个角是60°,菱形的较短对角线与边长相等, ① 当0≤x ≤3时:∵AP =x ,得菱形PEAF 的边长AE =EF =33x -----------------1分 S 菱形PEAF =21AP ²EF =x x 3321⋅=263x ,∴S 1= 2 S菱形PEAF=233x ----------------------------------------------2分②当3<x ≤23时:S 1等于大菱形ABCD 减去未被遮盖的两个小菱形,由菱形PEAF 的边长AE 为33x ,∴BE =2-33x ------------1分∴S 菱形BEMH =2³2)332(43x -=322632+-x x∴S 1=23-2S 菱形BEMH =…=324332-+-x x ------------2分(3)∵有重叠,∴3<x ≤23,此时OP =3-x ------------------------------------------1分∴重叠菱形QMPN 的边长MP =MN =2332-x ∴S 2=21P Q²MN =21³2(3-x )(2332-x )=3243322+-x x -----------------------2分 令3243322+-x x =3,解得263±=x ,符合题意的是263+=x ------------------1分。

东北三省四市教研联合体2015届高三第一次模拟考试数学(理)试题(扫描版)

东北三省四市教研联合体2015届高三第一次模拟考试数学(理)试题(扫描版)

2015年数学科模拟试题答案(理科) 12 3 4 5 6 7 8 9 10 11 12 DA DB B DC B C AD C 13. 2 14. 540- 15. -1 16. )1,31( 17.(1)解:ππππ<+<∴<<44,430A A 125,324,πππ=∴=+∴A A ……………………2分 3π=∴C ……………………4分 (2)23sin ,22sin ==C B 3:2:=∴c b ……………………6分3,2,32==∴-=-c b c b ……………………8分426)sin(sin +=+=C B A ……………………10分 4334263221sin 21+=+⨯⨯⨯==∴∆A bc S ABC ……………………12分 18.答案:⑴因为网购金额在2000元以上的频率为40., 所以网购金额在2000元以上的人数为10040.⨯=40 所以4030=+y ,所以10=y ,……………………1分 15=x ,……………………2分 所以10150.,.==q p ……………………4分 所以频率分布直方图如右图……………………5分⑵由题设列联表如下0.5 1 1.5 2 2.5 3 0.20.10.3 0.40.50.6(千元) 组距频率……………………7分 所以))()()(()(d b c a d c b a bc ad n K ++++-=22=5656040257554020351002.)(≈⨯⨯⨯⨯-⨯……………………9分 因为0245565..>……………………10分所以据此列联表判断,有597.%的把握认为网购金额超过2000元与网龄在三年以上有关. ……………………12分19.证明:(1)取AD 中点O ,连结BO PO ,.侧面PAD 为等边三角形,底面ABCD 为菱形且3π=∠DABAD BO AD PO ⊥⊥∴,……………………2分POB AD O BO PO 面⊥∴=⋂,……………………4分AD PB ⊥∴……………………5分(2)侧面PAD ⊥底面ABCD ,侧面PAD 底面ABCD =AD ,ABCD PO 面⊂∴, AD PO ⊥ABCD PO 面⊥∴……………………7分以O 为坐标原点,OA 方向为x 轴,OB 方向为y 轴,OP 方向为z 轴建立空间直角坐标系,设A 点坐标为)0,0,1( 则)0,3,2(),0,0,1(),3,0,0(),0,3,0(--C D P B)0,3,1(),3,0,1(),3,0,1(-=--=-=∴AB PD PA ……………………8分设面PAB 的法向量为),,(1111z y x n =→, 则⎩⎨⎧=+-=-03031111y x z x ,令31=x ,解得)1,1,3(1=→n ……………………9分设面PCD 的法向量为),,(2222z y x n =→,同理解得)1,1,3(2-=→n ……………………10分网龄3年以上 网龄不足3年 合计 购物金额在2000元以上35 5 40 购物金额在2000元以下40 20 60 合计75 25 1005355113cos 2121=⨯-+=⋅⋅=∴→→→→n n n n θ 面PAB 与面PCD 所成的角(锐角)的余弦值为53……………………12分 20.解:(1)设抛物线的方程是)0(22>=p py x ,),(),,(B B A A y x B y x A ,由抛物线定义可知8=++p y y B A ……………………2分又AB 中点到x 轴的距离为3,∴6=+B A y y ,∴p =2,所以抛物线的标准方程是y x 42=.……………………4分(2)设),(,0),,22111y x Q x y x P ≠(,则y x 42=在P 处的切线方程是112y x x y -=,直线1122:y x x y PQ ++-=代入y x 42=得0)2(48112=+-+y x x x ,……………………6分 故12112148,8y x x x x x --=-=+,所以44,8112112++=--=y y y x x x ……………………8分 而=⋅FQ FP =07421121=---y y y ……………………10分 047212131=---y y y )0(1>y ,得0)4()1(121=-+y y ,所以41=y ,存在点)4,4(±P .……………………12分(说明:没求出1y ,但说明关于1y 的方程047212131=---y y y )0(1>y 有解,也给分。

2014-2015学年度第一次四校联考数学试卷和答案

2014-2015学年度第一次四校联考数学试卷和答案

2014-2015学年度第一次四校联考数学试卷和答案1 / 6 绝密★启用前 2014-2015学年度第一次四校联考 数学试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题) 一、选择题(每小题4分,共40分) 1.在﹣2,﹣1,0,2这四个数中,最大的数是【 】. (A )﹣2 (B )﹣1 (C )0 (D )2 2.下列式子从左到右变形是因式分解的是【 】 A . B . C . D .3.函数中的自变量的取值范围是【 】.(A ) (B ) (C ) (D )且4.下列各根式中与3是同类二次根式的是【 】 A B C D 5.抛物线y=ax 2+bx+c 与x 轴的公共点是(-1,0),(3,0),则这条抛物线的对称轴是直线【 】 A. 直线x=1 B.直线x=0 C.直线x=-1 D.直线x=3 6.二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系中的大致图象是【 】.7.如图,正比例函数y=x 与反比例函数的图象交于A (2,2)、B (﹣2,﹣2)两点,当y=x 的函数值大于的函数值时,x 的取值范围是【 】 A .x >2 B .x <﹣2 C .﹣2<x <0或0<x <2 D .﹣2<x <0或x >2(第7题图) (第8题图)8.如图,已知二次函数,则关于x 的方程ax 2+bx +c-8=0的根的情况是【 】 A 、有两个不相等的的正实数根 B 、有两个异号的实数根C 、有两个相等的实数根D 、没有实数根 9.如图,点A 在反比例函数的图象上,点B 在反比例函数的图象上,AB ⊥x 轴于点M ,且AM :MB=1:2,则k 的值为【 】A 、-1.5B 、-6C 、1.5D 、6(第9题图) (第10题图)10.如图是二次函数y=ax 2+bx+c 的图象的一部分,对称轴是直线x=1.①b 2>4ac ;②4a ﹣2b+c<0;③不等式ax 2+bx+c >0的解集是x≥3.5;④若(﹣2,y 1),(5,y 2)是抛物线上的两点,则y 1<y 2.上述4个判断中,正确的是【 】A .①②B .①④C .①③④D .②③④ 第II 卷(非选择题)二、填空题(每小题5分,共20分) ()2a 4a 21a a 421+-=+-()()2a 4a 21a 3a 7+-=-+()()2a3a 7a 4a 21-+=+-()22a 4a 21a 225+-=+-1y x =+x x ≥01x ≠-0x >x ≥01x ≠-2y ax bx c =++ay x =y bx c =+4y x=4y x=2y ax bx c =++()3y=x 0x >()k y=x 0x >第3页 共6页◎ 第4页 共6页 11.小明带7元钱去买中性笔和橡皮(两种文具都买),中性笔每支2元,橡皮每块1元,那么中性笔最多能买 支.12.如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的两条对角线的长分别是6和4.反比例函数ky (x 0)x =<的图象经过顶点C ,则k 的值为 .13.已知二次函数2y ax bx c =++中,函数y 与x 的部分对应值如下:则当y 5<时,x 的取值范围是 .2的图像与x 轴只有一个交点,则交点坐标为三、解答题(每小题8分,共16分)15.解不等式()x 2131->()2123-x 。

山西省2015年中考模拟考试一模名校联考数学试题及答案

山西省2015年中考模拟考试一模名校联考数学试题及答案

山西省2015年中考模拟考试一模名校联考数学试题考试时间:120分钟 满分:120分一、选择题(每小题3分共18分) 2015、2、101.13-的倒数是A .13B .3-C .3D . 13-2. 下列计算正确的是 A .()623a a -=- B .222()ab a b -=- C .235325a a a += D .336a a a =÷3.地球与月球的平均距离大约为384000千米.将数384000用科学记数法表示为 A .60.38410⨯B .63.8410⨯C .53.8410⨯D .338410⨯4.已知一元二次方程的两根分别是3和-5,则这个一元二次方程是A .x 2-2x+15=0B .x 2+2x -15=0C .x 2-x -6=0D .x 2-2x -15=0 5.如图,在Rt△ABC 中,∠C=90°,sinA=32,那么tanB 的值是 A .25B .35 C .552 D .326.已知二次函数2(0)y ax bx c a =++≠的图像如图所示,且关于x一元二次方程20ax bx c m ++-=有实数根,下列结论: ①abc >0;②24b ac ->0;③m >2- 其中,正确的个数是A .0B .1C .2D .3二、填空题(每小题3分共30分):7.使式子有意义的x 的取值范围是 .8.一组数据3、-4、1、-2的极差为 . 9.因式分解:a 3-a =_____________.10.一个圆锥的侧面积是6π,母线长为3,则此圆锥的底面半径为 . 11.如图,四边形ABCD 是⊙O 的内接四边形,如果∠AOC +∠ABC =90°,那么∠ADC 的度数为 .(第11题)(第12题) (第13题)(第5题)(第6题)12.如图,在2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一点C ,使△ABC 为等腰三角形的概率是 .13.如图,AB 为半圆的直径,且AB=3,半圆绕点B 顺时针旋转45°,点A 旋转到A′的位置,则图中阴影部分的面积为 (结果保留π).14.Rt△ABC 中,∠C=90°,AB=9,点G 是△ABC 的重心,则CG 的长为 . 15.抛物线2y x =-沿y 轴向上平移若干个单位长度后,新抛物线与x 轴的两个交点和顶点构成等腰直角三角形,则新抛物线的解析式为 . 16.如图,在△ABC 中,D 、E 分别是AB 、BC 上的点,且DE∥AC,若S △DEC :S △ADC =1:3,则S △BDE :S △ACD = .三、解答题(共72分)17.(本题12分)计算: (1)21()4sin 60tan 452--- 21)218.(本题8分)先化简,再求值:22111121x x x x x x -⎛⎫+÷ ⎪+--+⎝⎭,其中1x =19.(本题8分)作为某市政府民生实事之一的公共自行车建设工作已基本完成,某部门对2014年九月份中的7天进行了公共自行车日租车量的统计,结果如图:(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中的平均数估计九月份(30天)共租车多少万车次; (3)市政府在公共自行车建设项目中共投入7650万元,若 2014年 各月份的租车量与九月份的租车量基本相同,每车次平均收入租 车费0.1元,请估计2014年租车费收入占总投入的百分率.20.(本题8分)(1)如图,△ABC是直角三角形,∠ACB=90°,利用直尺和圆规,按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)①作∠BAC的平分线,交BC于点O;②以O为圆心,OC为半径作圆.(2)在你所作的图中,①AB与⊙O的位置关系是______;(直接写出答案)②若AC=6,BC=8,求⊙O的半径.21.(本题10分)在一个不透明的箱子里,装有2个红球和2个黄球,它们除了颜色外均相同.(1)随机地从箱子里取出1个球,则取出红球的概率是多少?(2)小明、小亮都想去观看足球比赛,但是只有一张门票,他们决定通过摸球游戏确定谁去.规则如下:随机地从该箱子里同时取出2个球,若两球颜色相同,小明去;若两球颜色不同,小亮去.这个游戏公平吗?请你用树状图或列表的方法,帮小明和小亮进行分析.22.(本题10分)我国深潜器目前最大的深潜极限为7062.68m,某天深潜器在海面下1800米处作业(如图),测得正前方海底沉船C 的俯角为45°,该深潜器在同一深度向正前方直线航行2000米到B 点,此时测得海底沉船C 的俯角为60°。

(完整版)江苏省南京市联合体2015届中考一模数学试题(含答案)参考资料

(完整版)江苏省南京市联合体2015届中考一模数学试题(含答案)参考资料

2015年中考数学模拟试题(一)注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效. 4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.2-等于 ( ▲ )A .2B .-2C .±2D .±122.使2有意义的x 的取值范围是 ( ▲ ) A .x >1B .x ≥1C .x <1D .x ≤13.计算(2a 2) 3的结果是 ( ▲ )A .2a 5B .2a 6C .6a 6D .8a 64.如图所示几何体的俯视图是 ( ▲ )A .B .C .D .5.在□ABCD 中,AB =3,BC =4,当□ABCD 的面积最大时,下列结论正确的有 ( ▲ )①AC =5; ②∠A +∠C =180°; ③AC ⊥BD ; ④AC =BD .A .①②③B .①②④C .②③④D .①③④6.如图,在矩形ABCD 中,AB =5,BC =7,点E 是AD 上一个动点,把△BAE 沿BE 向矩形内部折叠,当点A 的对应点A 1恰好落在∠BCD 的平分线上时,CA 1的长为 ( ▲ )A .3或4 2B .4或32C .3或4D .32或42二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡...相应位置....上) 7.计算 (-1)3+(14)-1= ▲ . EDCBAA'( 第6题 )8.计算 23+13= ▲ . 9.方程3x -4 x -2=12-x的解为x = ▲ . 10.南京地铁三号线全长为44830米,将44830用科学记数法表示为 ▲ .11.已知关于x 的方程x 2-m x +m -2=0的两个根为x 1、x 2,则x 1+ x 2-x 1x 2= ▲ .12.某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是 ▲ 岁.13.如图,正六边形ABCDEF 的边长为2,则对角线AC = ▲ .14.某体育馆的圆弧形屋顶如图所示,最高点C 到弦AB 的距离是20 m ,圆弧形屋顶的跨度AB 是80 m ,则该圆弧所在圆的半径为_____▲_____m .156的正方形ABCD 绕点C 顺时针旋转30°得到正方形A ′B ′CD ′(结果保留π)16是反比例函数y = k x 图像上关于原点O 对称的两点,BC ⊥x 轴,垂足为D (0,-1.5),若△ABC 的面积为7,则点B 的坐标为 ▲ . 三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)化简: x -1 x +2 ÷(3x +2-1).18.(6分)解不等式组:⎩⎪⎨⎪⎧1- x +13≥0,3+4(x -1)>1.19.(8分)如图,E 、F 是四边形ABCD 的对角线AC 上两点,AE =CF ,DF ∥BE ,DF =BE .(1)求证:四边形ABCD 是平行四边形;(2)若AC 平分∠BAD ,求证:□ABCD 为菱形.20.(8分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是____▲______. (2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关..的概率. (3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)21.(8分)国家环保局统一规定,空气质量分为5级.当空气污染指数达0—50时为1级,质量为优;51—100(第19题)A BCDE FF E D ( 第13题 )CO B A (第14题)(第16题)A BD A'D' B'(第15题)时为2级,质量为良;101—200时为3级,轻度污染;201—300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2015年某些天的空气质量检测结果,并整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了____▲___天的空气质量检测结果进行统计; (2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为____▲____°;(4)如果空气污染达到中度污染或者以上........,将不适宜进行户外活动,根据目前的统计,请你估计2015年该城市有多少天不适宜开展户外活动.(2015年共365天)22.(8分)已知P (-5,m )和Q (3,m )是二次函数y =2x 2+b x +1图像上的两点.(1)求b 的值;(2)将二次函数y =2x 2+b x +1的图像沿y 轴向上平移k (k >0)个单位,使平移后的图像与x 轴无交点,求k 的取值范围.23.(8分)如图,“和谐号”高铁列车的小桌板收起时近似看作与地面垂直,小桌板的支架底端与桌面顶端的距离OA =75厘米.展开小桌板使桌面保持水平,此时CB ⊥AO ,∠AOB =∠ACB =37°,且支架长OB 与桌面宽BC 的长度之和等于OA 的长度.求小桌板桌面的宽度BC .(参考数据sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)24.(8分)水池中有水20 m 3,12:00时同时打开两个每分钟出水量相等且不变的出水口,12:06时王师傅打开一个每分钟进水量不变的进水口,同时关闭一个出水口,12:14时再关闭另一个出水口,12:20时水池中有水56 m 3,王师傅的具体记录如下表.设从12:00时起经过t min 池中有水y m 3,右图中折线ABCD 表示y 关于t 的函数图像.)每个出水口每分钟出水 ▲ m 3,表格中a = ▲ ; (2)求进水口每分钟的进水量和b 的值; (3)在整个过程中t 为何值时,水池有水16 m 3 ? 25.(9分)如图,四边形ABCD 是⊙O 的内接四边形,AC 为直径, ⌒ BD = ⌒AD ,DE ⊥BC ,垂足为E . (1)求证:CD 平分∠ACE ;OC BA空气质量等级天数统计图空气质量等级天数占所抽取天数百分比统计图 时间 池中有水(m 3) 12:00 20 12:04 12 12:06 a12:14 b a y /m 320b56A BCD(2)判断直线ED与⊙O的位置关系,并说明理由;(3)若CE=1,AC=4,求阴影部分的面积.26.(9分)某水果超市以8元/千克的单价购进1000千克的苹果,为提高利润和便于销售,将苹果按大小分两种规格出售,计划大、小号苹果都为500千克,大号苹果单价定为16元/千克,小号苹果单价定为10元/千克,若大号苹果比计划每增加1千克,则大苹果单价减少0.03元,小号苹果比计划每减少1千克,则小苹果单价增加0.02元.设大号苹果比计划增加x千克.(1)大号苹果的单价为▲ 元/千克;小号苹果的单价为▲ 元/千克;(用含x的代数式表示) (2)若水果超市售完购进的1000千克苹果,请解决以下问题:①当x为何值时,所获利润最大?②若所获利润为3385元,求x的值.27.(10分)【回归课本】我们曾学习过一个基本事实:两条直线被一组平行线所截,所得的对应线段成比例.【初步体验】(1)如图①,在△ABC中,点D、F在AB上,E、G在AC上,DE∥FC∥BC.若AD=2,AE=1,DF=6,则EG=▲ , FBGC=▲ .(2)如图②,在△ABC中,点D、F在AB上,E、G在AC上,且DE∥BC∥FG.以AD、DF、FB 为边构造△ADM(即AM=BF,MD=DF);以AE、EG、GC为边构造△AEN(即AN=GC,NE=EG).求证:∠M=∠N.【深入探究】上述基本事实启发我们可以用“平行线分线段成比例”解决下列问题:(3)如图③,已知△ABC和线段a,请用直尺与圆规作△A′B′C′.满足:①△A′B′C′∽△ABC;②△A′B′C′的周长等于线段a的长度.(保留作图痕迹,并写出作图步骤)图③aAB CAB CD EGF图①图②AB CD EGFMN参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分) 二、填空题(本大题共10小题,每小题2分,共20分)三、解答题(本大题共11小题,共88分)7.解:原式= x -1 x +2÷3-x -2x +2……………………………………………………………………………2分= x -1 x +2× x +21-x …………………………………………………………………………………4分 =-1 …………………………………………………………………………………………6分18.解:解不等式①,得x ≤2. …………………………………………………………………………2分解不等式②,得x >12.…………………………………………………………………………4分所以,不等式组的解集是12<x ≤2. …………………………………………………………6分19.证明:(1)∵DF ∥BE ,∴∠AFD =∠CEB , ……………………………………………………………1分 ∵AE =CF ,∴AF =CE .∵AF =CE ,DF =BE ,…………………………………………………………2分∴△ADF ≌△CBE . ……………………………………………………3分∴AD =BC ,∠DAF =∠BCE ,∴AD ∥BC ,∴四边形ABCD 是平行四边形. ………………………………………………4分 (2)∵AC 平分∠BAD ,∴∠DAC =∠BAC .…………………………………………………………………5分 ∵四边形ABCD 是平行四边形, ∴CD ∥AB , ∴∠DCA =∠BAC .∴∠DCA =∠DAC , ………………………………………………………………6分 ∴AD =DC ,…………………………………………………………………………7分 ∴□ABCD 为菱形. ………………………………………………………………8分20.解:(1)31------------------------------------------------------------------------------------------------------------2分 (2)树状图或列表正确---------------------------------------------------------------------------------------------5分 将第一题中的三个选项记作A 1、B1、C1,第二题中去掉一个错误选项后的三个选项分别记作A2、B2、C2,其中A1、A2分别是两题的正确选项.列表如下:共有9种等可能的结果,其中,同时答对2题通关有1种结果, ∴P(同时答对两题)=19·······························……………………………………………………··········7分 (3)第一题··································………………………………………………………………·················8分 21.解:(1)50; ·······································································································································2分 (2)5·································································4分 (3)72;····················································································································································6分(4)365×24+650=219天····························································································································8分22.解:(1)∵点P、Q是二次函数y=2x2+bx+1图像上的两点,∴此抛物线对称轴是直线x=-1.·······························································································2分∴有-b2×2=-1.∴b=4.·········································································································4分(2)平移后抛物线的关系式为y=2x2+4x+1-k.∵平移后的图像与x轴无交点,∴△=16-8+8k<0··················································································································6分解得k>1 (8)分23.解:设小桌板桌面宽度BC的长为x 厘米,则支架OB的长为(75-x)厘米.延长CB交OA于点D,由题意知,CD⊥OA,…………………………1分在Rt△OBD中,OD=OB cos37°=0.8(75-x)=60-0.8x,………2分BD=OB sin37°=0.6(75-x)=45-0.6x,…………………………4分所以CD=CB+BD=45+0.4x,AD=15+0.8x,所以tan37°=AD CD……………………………………………………………6分即0.75=15+0.8x45+0.4x,解之得,x=37.5答:小桌板桌面宽度BC的长为37.5厘米. ……………………………………8分24.解:(1)1,8 …………………………………………………………………………2分(2)设进水口每分钟进水x m3,由题意得:8+(x-1)(14-6)+ x(20-14)=56解得x=4 ……………………………………………………………………3分所以b=8+(4-1)×8=32 m3 ……………………………………………4分OC B AD(3)在0~6分钟:y =20-2t当y =16时,16=20-2t ,……………………………………………………5分 解得t =2…………………………………………………………………………6分 在6~14分钟:y =kt +b (k ≠0)把(6,8)(14,32)得:解得⎩⎪⎨⎪⎧k =3,b =﹣10.即y =3t -10当y =16时,16=3t -10,t =263………………………………………………8分则t =2和t =263水池有水16 m 3.25.解:(1)∵四边形ABCD 是⊙O 内接四边形,∴∠BAD +∠BCD =180°,∵∠BCD +∠DCE =180°,∴∠DCE =∠BAD ,………………………………………………………1分 ∵ ⌒ BD = ⌒AD ,∴∠BAD =∠ACD ,………………………………………………………………………2分 ∴∠DCE =∠ACD ,∴CD 平分∠ACE .………………………………………………………………3分 (2)ED 与⊙O 相切.………………………………………………………………………………………4分 理由:连接OD ,∵OC =OD ,∴∠ODC =∠OCD , ∵∠DCE =∠ACD ,∴∠DCE =∠ODC ,∴OD ∥BE ,∵DE ⊥BC ,∴OD ⊥DE ,∴ED 与⊙O 相切. …………………………………………………………6分 (3)∵AC 为直径,∴∠ADC =90°=∠E ,∵∠DCE =∠ACD ,∴△DCE ∽△ACD ,…………………7分 ∴CE CD =CD CA ,即1CD =CD4,∴CD =2,………………………………………………………………………8分 ∵OC =OD =CD =2,∴∠ DOC =60°,∴S 阴影=S 扇形-S △OCD =23π-3.…………………………9分26.解:(1)16-0.03x ;10+0.02x ; ………………………………………………………………2分 (2)①设售完购进1000千克的苹果所获利润为y 元,由题意得:y =38000)02.010)(500()03.016)(500(=-+-+-+x x x x ………………………………····5分=﹣0.05x 2+x +5000 x =﹣b2a=10,y =5005.当x =10时,所获最大利润为5005元. ………………………………………………………····6分 ②由题意,列方程:33858000)02.010)(500()03.016)(500(=-+-+-+x x x x ……………7分 化简,整理得032300202=--x x ………………………………………………………………····8分解得:190=x 或170-=x ………………………………………………………………………····9分 答:大号苹果比计划增加190千克或减少170千克时,才能确保这批苹果的利润为3385元. 27.解:(1)3;2.……………………………………………………………………………………····2分 (2)证明:∵DE ∥FG ,∴AD AE = DF EG .………………………………………………………………………………………····3分 ∵DE ∥FG ∥BC , ∴DF EG =FB GC, ∴AD AE = DF EG =FB GC ,即AD AE = MD NE =AM AN,………………………………………………………····5分 ∴△AMD ∽△ANE , ……………………………………………………………………………····6分 ∴∠M =∠N . ………………………………………………………………………………····7分 (3)简要步骤:第一步:在射线DM 上截取△ABC 的三边.第二步:在射线DN 上截取DH =a ,连接HG ,作FI ∥C'E ∥HG , 第三步:以DC'、C'I 、IH 为边构造△A' B' C'.………………………………………………………………………………………………····10分MD(A') E F G NH IC'B'CAB。

2015年初三一模数学试卷及答案

2015年初三一模数学试卷及答案

2015年高级中等学校招生模拟考试(一)数 学 试 卷 2015.5考生须知 1.本试卷共6页,共五道大题,页,共五道大题,2929道小题,满分120分.考试时间120分钟。

分钟。

2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。

.在试卷和答题卡上准确填写学校名称、姓名和准考证号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4. 在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

铅笔作答,其他试题用黑色字迹签字笔作答。

5. 考试结束,请将本试卷、答题卡一并交回。

考试结束,请将本试卷、答题卡一并交回。

一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的.是符合题意的. 1.把8000用科学计数法表示是A .28010´ B .3810´ C .40.810´ D .4810´ 2.数轴上有A ,B ,C ,D 四个点,其中绝对值相等的点是四个点,其中绝对值相等的点是 A.A.点点A 与点D B. 点A 与点C C. 点B 与点CD. 点B 与点D 3.下列手机软件图标中,既是轴对称图形又是中心对称图形的是.下列手机软件图标中,既是轴对称图形又是中心对称图形的是A B C D 4. 小华的老师让他在无法看到袋子里小球的情形下,从袋子里模出一个小球从袋子里模出一个小球. . 袋子里各种颜色小球的数量统计如表所示所示..小华模到褐色小球的概率为小华模到褐色小球的概率为 A .101 B .51C .41D .21 5. 如图,如图,AD AD 是∠EAC 的平分线,AD∥BC,∠B=30°,的平分线,AD∥BC,∠B=30°,则∠C 为A .30°.30°B B .60°.60°C C .80°.80°D D .120°.120°6.如图,已知⊙O 的半径为1010,弦,弦AB 长为1616,则点,则点O 到AB 的距离是的距离是 A. 3 B. 4 C. 5 D. 67.某校在“中国梦.我的梦”演讲比赛中,有11名学生参加决赛,他们决赛的最终成绩各不相同.其颜色颜色 红色红色 橙色橙色 黄色黄色 绿色绿色 蓝色蓝色 紫色紫色 褐色褐色 数量数量 6433225xD CB A 123–1–2–3O中的一名学生想要知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的绩的A .平均数.平均数B .众数.众数C .中位数.中位数D .方差.方差 8.如图,已知正方形ABCD 中,中,G G 、P 分别是DC DC、、BC 上的点,上的点,E E 、F 分别分别 是AP AP、、GP 的中点,当P 在BC 上从B 向C 移动而G 不动时,不动时, 下列结论成立的是下列结论成立的是A .线段.线段EF 的长逐渐增大的长逐渐增大B B .线段EF 的长逐渐减小的长逐渐减小C .线段.线段EF 的长不改变的长不改变D D .线段EF 的长不能确定的长不能确定 9.如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3),), 则不等式2x≥ax+4的解集为的解集为 A .x≥B. x≤3x≤3C . x ≤D .x ≥3≥310.如图1,在等边△ABC 中,点E 、D 分别是AC ,BC 边的中点,点P 为AB 边上的一个动点,连接PE ,PD ,PC ,DE .设AP =x ,图1中某条线段的长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的中的A .线段PDB .线段PC C .线段PED .线段DE 二、填空题(本题共18分,每小题3分) 1111.函数.函数y=1x-3中自变量x 的取值范围是的取值范围是___________________________________________________.. 1212.请写出一个过一、三象限的反比例函数的表达式.请写出一个过一、三象限的反比例函数的表达式.请写出一个过一、三象限的反比例函数的表达式___________________________________________________.. 1313.下面有五个图形,与其它图形众不同的是第.下面有五个图形,与其它图形众不同的是第.下面有五个图形,与其它图形众不同的是第 个.GFEPDCBA①②③④ ⑤xy图2OPEDCBA图11414..如图,在矩形ABCD 中,=,以点B 为圆心,BC 长为半径画弧,交边AD 于点E .若AE •ED =16=16,,则矩形ABCD 的面积为的面积为. 15.当三角形中一个内角α是另一个内角β的一半时,的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”. 如果一个“半角三角形”的“半角”为20°,那么这个,那么这个“半角三角形”的最大内角的度数为__________.16.2014年5月1日开始,北京市开始实施居民用水阶梯水价.具体方案如下:户年用水量180立方米立方米(含)(含)(含)内,内,内,每立方米每立方米5元;181立方米至260立方米(含)内,每立方米7元;260立方米以上,每立方米9元.阶梯水价以日历年(每年1月1日到12月31日)为周期计算. 小王家2014年4月30日抄表示数550立方米,立方米,55月1日起实施阶梯水价,日起实施阶梯水价,66月抄表时因用户家中无人未见表,家中无人未见表,88月12日抄表示数706立方米,那么小王家本期用水量为立方米,那么小王家本期用水量为 立方米,本期用水天数104天,日均用水量为日均用水量为 立方米立方米. . 如果按这样每日用水量计算,如果按这样每日用水量计算,小李家今小李家今后每年的水费将达到后每年的水费将达到 元(一年按365天计算)天计算). . 三、解答题(本题共30分,每小题5分)1717.如图,点.如图,点C ,D 在线段BF 上,AB DE ∥,AB DF =,A F Ð=Ð.求证:BC DE =.18. 计算:011(20152014)82cos 45()2--+-°+1919.解不等式组:.解不等式组:240,3(1) 2.x x x -<ìí+³+î2020.已知.已知32a b =,求代数式2243(3)9a ba b a b ++-的值的值. .21.列方程或方程组解应用题:为了培育和践行社会主义核心价值观,引导学生广泛阅读古今文学名著,传承优秀传统文化传承优秀传统文化,,我区某校决定为初三学生购进相同数量的名著《三国演义》和《红岩》其中《三国演义》的单价比《红岩》的单价多比《红岩》的单价多282828元元.若学校购买《三国演义》用了若学校购买《三国演义》用了120012001200元,购买《红岩》用了元,购买《红岩》用了元,购买《红岩》用了400400400元,求《三元,求《三国演义》和《红岩》的单价各多少元国演义》和《红岩》的单价各多少元. .FEDCB A2222.已知.已知.已知::关于x 的一元二次方程2(41)330kx k x k -+++=(k 是整数).(1)求证:方程有两个不相等的实数根;方程有两个不相等的实数根; (2)若方程的两个实数根都是整数,求k 的值. 四、解答题(本题共20分,每小题5分)23. 如图,如图,BD 是△ABC 的角平分线,点E ,F 分别在BC ,AB 上,且DE ∥AB ,BE =AF . (1)求证:四边形ADEF 是平行四边形;是平行四边形;(2)若∠ABC =60°,BD =4=4,求平行四边形,求平行四边形ADEF 的面积.的面积.24.某公司有5个股东,每个股东的利润相同,有100名工人,每名工人的工资相同.2015年第一个季度工人的工资总额与公司个季度工人的工资总额与公司 的股东总利润情况见右表:的股东总利润情况见右表: 该公司老板根据表中数据,该公司老板根据表中数据,作出了图作出了图1,并声称股东利润和工人工资同步增长,并声称股东利润和工人工资同步增长,公司和工人做到了公司和工人做到了“有福同享”.针对老板的说法,解决下列问题:针对老板的说法,解决下列问题: (1)这三个月工人个人的月收入分别是)这三个月工人个人的月收入分别是 万元;万元;(2)在图2中,已经做出这三个月每个股东利润统计图,请你补出这三个月工人个人月收入的统计图;图; (3)通过完成第(1),(2)问和对图2的观察,你如何看待老板的说法?(用一两句话概括)的观察,你如何看待老板的说法?(用一两句话概括)月份月份 工人工资总额(万元)工人工资总额(万元) 股东总利润(万元)股东总利润(万元) 1 28 14 2 30 16 33218股东利润工人工资40302010月份(万元)总额1234O 图11231234股东月份(万元)个人收入O 图225. 如图,如图,AB AB 是⊙是⊙O O 的直径,的直径,C C 是弧AB 的中点,的中点,D D 是⊙是⊙O O 的 切线CN 上一点,上一点,BD BD 交AC 于点E ,且BA= BD . (1)求证:∠)求证:∠ACD=45ACD=45ACD=45°;°;°; (2)若OB=2OB=2,求,求DC 的长.的长.2626.阅读下面材料:.阅读下面材料:.阅读下面材料:小聪遇到这样一个有关角平分线的问题:如图1,在△,在△ABC ABC 中,中,∠A ∠A=2=2=2∠B,∠B,∠B,CD CD 平分∠A 平分∠ACB CB CB,,AD=2.2AD=2.2,,AC=3.6求BC 的长的长. .小聪思考:因为CD 平分∠A 平分∠ACB CB CB,所以可在,所以可在BC 边上取点E ,使EC=AC EC=AC,连接,连接DE. 这样很容易得到△DEC ≌△DAC ,经过推理能使问题得到解决(如图2). 请回答:(1)△)△BDE BDE 是__________________三角形三角形三角形. .(2)BC 的长为的长为__________. __________. 参考小聪思考问题的方法,解决问题:参考小聪思考问题的方法,解决问题:如图3,已知△,已知△ABC ABC 中,中,AB=AC, AB=AC, ∠A ∠A=20=20=20°,°,°, BD 平分∠平分∠ABC,BD=ABC,BD=2.3,BC=2.求AD 的长的长. . 五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)2727.在平面直角坐标系.在平面直角坐标系xOy 中,二次函数y=y=((a-1a-1))x 2+2x+1与x 轴有交点,轴有交点,a a 为正整数为正整数. . (1)求a 的值的值. . (2)将二次函数y=y=((a-1a-1))x 2+2x+1的图象向右平移m 个单位,个单位,向下平移m 2+1个单位,当个单位,当 -2 -2≤x ≤1时,二次函数有最小值时,二次函数有最小值-3-3-3,, 求实数m 的值的值. .A B C D图1 ED C B A图2 ABC D图3 NED CBA Oyx11O27题图题图2828..在等边△在等边△ABC ABC 外侧作直线AP ,点B 关于直线AP 的对称点为D ,连接BD,CD BD,CD,,其中CD 交直线AP 于点E .(1)依题意补全图1; (2)若∠)若∠PAB=30PAB=30PAB=30°,求∠°,求∠°,求∠ACE ACE 的度数;的度数;(3)如图2,若6060°°<∠PAB <120<120°,判断由线段°,判断由线段AB,CE,ED 可以构成一个含有多少度角的三角形,并证明形,并证明. .29. 对某种几何图形给出如下定义:对某种几何图形给出如下定义:符合一定条件的动点所形成的图形,叫做符合这个条件的点的轨迹的轨迹..例如例如,,平面内到定点的距离等于定长的点的轨迹平面内到定点的距离等于定长的点的轨迹,,是以定点为圆心是以定点为圆心,,定长为半径的圆定长为半径的圆. . (1)如图1,在△,在△ABC ABC 中,中,AB=AC AB=AC AB=AC,∠,∠,∠BAC=9BAC=9BAC=90°,0°,0°,A(0A(0A(0,,2)2),,B 是x 轴上一动点,当点B 在x 轴上运动时,点C 在坐标系中运动,点C 运动形成的轨迹是直线DE DE,且,且DE DE⊥⊥x 轴于点G. G. 则直线DE 的表达式是的表达式是 . .(2)当△)当△ABC ABC 是等边三角形时,在(是等边三角形时,在(11)的条件下,动点C 形成的轨迹也是一条直线形成的轨迹也是一条直线. . .①当点B 运动到如图2的位置时,的位置时,AC AC AC∥∥x 轴,则C 点的坐标是点的坐标是 . .②在备用图中画出动点C 形成直线的示意图,并求出这条直线的表达式形成直线的示意图,并求出这条直线的表达式. .③设②中这条直线分别与x,y 轴交于E,F 两点,当点C 在线段EF 上运动时,点H 在线段OF 上运动,(不与O 、F 重合),且CH=CE,CH=CE,则则CE 的取值范围是的取值范围是 . .xy AOxyA O图1AB CP AB CP图2 图2xy A C BO图1xy GDE CBAO数学试卷答案及评分参考一、选择题(本题共30分,每小题3分) 题 号12345 6 7 8 9 10 答 案 BC B B ADCCAC二、填空题(本题共18分,每小题3分)题号题号 1111 12121313 14 15 1616答案答案x ≠3k ›0即可即可不唯一不唯一60120o156,1.5,4047.5三、解答题(本题共30分,每小题5分) 17.(本小题满分5分)分) 证明:∵ AB ∥DE∴ ∠B = ∠EDF ; 在△ABC 和△和△F F DE 中A F AB DF B EDF Ð=Ðìï=íïÐ=Ðî…………………………3分∴△ABC ≌△FDE (ASA)(ASA),…………………,…………………4分 ∴BC=DE. …………………………………5分18.18.解:原式解:原式解:原式=1+=1+22-2222´+……………………………………4分=1+22-2+2 =3+2…………………………………………………………5分 19. 解①得:x<2,…………………………………………………………2分 解②得:解②得:x x ≥1-2,……………………………………………………4分 所以不等式组的解集为:1-2≤x<2. ……………………………5分2020..解:2243(3)9a ba b a b ++-43(3)(3)(3)a b a b a b a b +=++- 433a ba b+=-……………………………………………3分∵32a b =,∴23a b =. ………………………………………………4分 ∴原式=662aa a=--.……………………………………5分21.解:设《红岩》的单价为x 元,则《三国演义》的单价为(x+28)元. ……………1分.由题意,得120040028x x=+……………………………………3分. 解得x=14.x=14.……………………………………4分. 经检验,经检验,x=14x=14x=14是原方程的解,且符合题意是原方程的解,且符合题意是原方程的解,且符合题意. . ∴x+28=42.答:《红岩》的单价为14元,《三国演义》的单价为42元. ……………………5分.2222..(1)证明:△2(41)4(33)k k k =+-+ 2(21)k =-·………………………………………1分.∵2(41)330kx k x k -+++=是一元二次方程,∴k ≠0, ∵k 是整数是整数∴12k ¹即210k -¹. ∴△2(21)0k =->∴方程有两个不相等的实数根∴方程有两个不相等的实数根..………………………………………2分(2)解方程得:2(41)(21)2k k x k+±-=……………………………………3分.∴3x =或11x k=+………………………………………4分∵k 是整数,方程的根都是整数,∴k =1或-1…………………………………5分.四、解答题(本题共20分,每小题5分)23. (1)证明:∵BD 是△ABC 的角平分线,的角平分线, ∴∠ABD =∠DBE ,∵DE ∥AB , ∴∠ABD =∠BDE , ∴∠DBE =∠BDE ,∴,∴BE=DE; BE=DE; ∵BE =AF ,∴AF=DE;∴四边形ADEF 是平行四边形是平行四边形. .………………………………………2分(2)解:过点D 作DG ⊥AB 于点G ,过点E 作EH ⊥BD 于点H , ∵∠ABC =60°,BD 是∠ABC 的平分线,的平分线, ∴∠ABD =∠EBD =30°,=30°,∴DG =BD =×4=24=2,………………………………………,………………………………………3分∵BE =DE ,∴BH =DH =2=2,, ∴BE ==433,∴DE =433,………………………………………4分 ∴四边形ADEF 的面积为:DE •DG =833.………………………………………5分24. 解:(1)0,28,0.3,0.32. ……………………………3分(2)补图如右图:………………………………4分 (3)答案不唯一)答案不唯一..…………………………………5分25. (1)证明:∵)证明:∵C C 是弧AB 的中点,∴弧AC=AC=弧弧BC,∴AC=BC. ∵AB 是⊙是⊙O O 的直径,的直径, ∴∠∴∠ACB=90ACB=90ACB=90°°,∴∠∴∠BAC=BAC=BAC=∠∠CBA=45CBA=45°°, 连接OC, ∵OC=OA, ∴∠∴∠AC0=45AC0=45AC0=45°°. ∵CN 是⊙是⊙O O 切线,∴∠切线,∴∠OCD=90OCD=90OCD=90°°,∴∠∴∠ACD=45ACD=45ACD=45°°.………………………………2分. (2) 解:作BH BH⊥⊥DC 于H 点,…………………………3分. ∵∠∵∠ACD=45ACD=45ACD=45°°,∴∠∴∠DCB=135DCB=135DCB=135°°, ∴∠∴∠BCH=45BCH=45BCH=45°°, ∵OB=2OB=2,∴,∴,∴BA= BD=4,AC= BC=BA= BD=4,AC= BC=22. ∵BC=22,∴BH= CH=2, 设DC=x,DC=x,在在Rt Rt△△DBH 中,中,利用勾股定理:2222)24x ++=(,………4分解得:解得:x=x=223-±(舍负的),∴,∴x=x=223-+, ∴DC 的长为:223-+……………………………5分.2626.解:.解:(1)△)△BDE BDE 是等腰三角形………………………1分 (2)BC 的长为5.8.5.8.………………………………………………………………2分. ∵△∵△ABC ABC 中,中,AB=AC, AB=AC, ∠A ∠A=20=20=20°,°,°, ∴∠A ∴∠ABC=BC=BC=∠∠C= 80°,∵°,∵°,∵BD BD 平分∠平分∠B. B. ∴∠∴∠1=1=1=∠∠2= 40°,∠°,∠°,∠BDC= 60BDC= 60°,°,.在BA 边上取点E ,使BE=BC=2BE=BC=2,连接,连接DE DE,,. ………………………3分 则△DEB ≌△DBC ,∴∠,∴∠BED=BED=BED=∠∠C= 80°,°,°, ∴∠∴∠4=604=604=60°,∴∠°,∴∠°,∴∠3=603=603=60°,°,°,在DA 边上取点F ,使DF=DB DF=DB,连接,连接FE FE,…………………………,…………………………4分 则△BDE ≌△FDE ,∴∠,∴∠5=5=5=∠∠1= 40°,°,°,BE=EF=2, BE=EF=2, ∵∠A ∵∠A=20=20=20°,∴∠°,∴∠°,∴∠6=206=206=20°,∴°,∴°,∴AF=EF=2, AF=EF=2, ∵BD=DF=2.3, ∴AD = BD+BC=4.3.…………………………5分.654321F EDC BAHOABCDEN 1231234个人收入(万)月份工人股东O图2五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.27.解:解:(1)∵二次函数y=y=((a-1a-1))x 2+2x+1与x 轴有交点,轴有交点,令y=0y=0,则(,则(,则(a-1a-1a-1))x 2+2x+1=0+2x+1=0,, ∴=4-4(a-1)0D ³,解得a ≤2.2. …………………………………1分.∵a 为正整数为正整数..∴a=1、2 又∵又∵y=y=y=((a-1a-1))x 2+2x+1是二次函数,∴是二次函数,∴a-1a-1a-1≠≠0,∴,∴a a ≠1,∴a 的值为2.2.………………………………………2分 (2)∵a=2,∴二次函数表达式为y=x 2+2x+1+2x+1,,将二次函数y=x 2+2x+1化成顶点式y=y=((x+1x+1))2二次函数图象向右平移m 个单位,向下平移m 2+1个单位个单位后的表达式为y=y=((x+1-m x+1-m))2-(m 2+1+1)). 此时函数的顶点坐标为(此时函数的顶点坐标为(m-1, -m m-1, -m 2-1-1)).…………………………………4分当m-1m-1<<-2,即m <-1时,时, x=-2时,二次函数有最小值时,二次函数有最小值-3-3-3,, ∴-3=(-1-m -1-m))2-(m 2+1+1)),解得32m =-且符合题目要求且符合题目要求.. ………………………………5分当 -2≤m-1m-1≤≤1,1,即即-1-1≤≤m ≤2,2,时,当时,当时,当 x= m-1时,二次函数有最小值时,二次函数有最小值-m -m 2-1=-3-1=-3,, 解得2m =±.∵-2m =不符合不符合-1-1-1≤≤m ≤2的条件,舍去的条件,舍去.. ∴2m =.……………………………………6分当m-1m-1>>1,即m >2时,当时,当 x=1时,二次函数有最小值时,二次函数有最小值-3-3-3,,∴-3=(2-m 2-m))2-(m 2+1+1)),解得32m =,不符合m >2的条件舍去的条件舍去..综上所述,m 的值为32-或2 ……………………………………7分 2828.解:.解:(1)补全图形,如图1所示所示. .……………………………1分 (2)连接AD AD,如图,如图2.2.∵点∵点D 与点B 关于直线AP 对称,∴对称,∴AD=AB AD=AB AD=AB,∠,∠DAP =∠BAP =30°. ∵AB=AC, ∠BAC =60°. ∴AD=AC, ∠DAC =120°.∴2∠ACE+60°+60°=180°∴∠ACE =30°……………………………3分PEDCBA 图1PEDCBA图2(3)线段AB,CE,ED 可以构成一个含有60°角的三角形°角的三角形..…………………………… 4分证明:连接AD ,EB ,如图3.∵点D 与点B 关于直线AP 对称,对称, ∴AD=AB AD=AB,,DE=BE DE=BE,, 可证得∠EDA = ∠E BA .∵AB=AC,AB=AD.AB=AC,AB=AD. ∴AD=AC, ∴∠ADE = ∠ACE. ∴∠ABE = ∠ACE.ACE.设设AC AC,,BE 交于点F, 又∵∠AFB = ∠CFE.CFE.∴∠∴∠∴∠B B AC =∠BEC=60°. ∴线段AB,CE,ED 可以构成一个含有60°角的三角形°角的三角形..………7分29. 解:(1)x=2.x=2.…………………………1分. (2)①)①C C 点坐标为点坐标为: :43,23()…………………………3分.②由①②由①C C 点坐标为点坐标为: :43,23()再求得其它一个点C 的坐标,如(3,1),或(,或(00,-2-2)等)等)等代入表达式y=kx+b y=kx+b,解得,解得b=-23k ìïí=ïî. ∴直线的表达式是32y x =-.………………………5分.动点C 运动形成直线如图所示运动形成直线如图所示..……………6分.③423393EC £<.…………………………8分.图3FP CBADExy FAEO。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图①
D
E
F
G C
(2)如图②,在△ABC 中,点 D、F 在 AB 上,E、G 在 AC 上,且 DE∥BC∥FG.以 AD、DF、FB 为边构造△ADM(即 AM=BF,MD=DF) ;以 AE、EG、GC 为边构造△AEN(即 AN=GC,NE= EG) . A 求证:∠M=∠N. M N D F B
13. 2 3
14. 50
3 16.( ,3) 2
三、解答题(本大题共 11 小题,共 88 分) 7.解:原式= = x-1 3-x-2 ÷ „„„„„„„„„„„„„„„„„„„„„„„„„„„„„2 分 x+2 x+2
x-1 x+2 × „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„4 分 x+2 1-x
=-1 „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„6 分 18.解:解不等式①,得 x≤2. „„„„„„„„„„„„„„„„„„„„„„„„„„„„2 分 1 解不等式②,得 x> .„„„„„„„„„„„„„„„„„„„„„„„„„„„„4 分 2 1 所以,不等式组的解集是 <x≤2. …………………………………………………………6 分 2 19.证明:(1)∵DF∥BE, ∴∠AFD=∠CEB, ……………………………………………………………1 分 ∵AE=CF,∴AF=CE. ∵AF=CE,DF=BE,…………………………………………………………2 分 ∴△ADF≌△CBE. ……………………………………………………3 分 ∴AD=BC,∠DAF=∠BCE, ∴AD∥BC, ∴四边形 ABCD 是平行四边形. ………………………………………………4 分 (2)∵AC 平分∠BAD, ∴∠DAC=∠BAC.…………………………………………………………………5 分 ∵四边形 ABCD 是平行四边形, ∴CD∥AB, ∴∠DCA=∠BAC. ∴∠DCA=∠DAC, ………………………………………………………………6 分 ∴AD=DC,…………………………………………………………………………7 分 ∴□ABCD 为菱形. ………………………………………………………………8 分
22. (8 分)已知 P(-5,m)和 Q(3,m)是二次函数 y=2x2+b x+1 图像上的两点. (1)求 b 的值; (2)将二次函数 y=2x2+b x+1 的图像沿 y 轴向上平移 k(k>0)个单位,使平移后的图像与 x 轴无 交点,求 k 的取值范围. 23. (8 分)如图,“和谐号”高铁列车的小桌板收起时近似看作与地面垂直,小桌板的支架底端与桌面顶端 的距离 OA=75 厘米.展开小桌板使桌面保持水平,此时 CB⊥AO,∠AOB=∠ACB=37° ,且支架长 OB 与桌面宽 BC 的长度之和等于 OA 的长度.求小桌板桌面的宽度 BC. (参考数据 sin37° ≈0.6, cos37° ≈0.8,tan37° ≈0.75)
D(0,-1.5) ,若△ABC 的面积为 7,则点 B 的坐标为 ▲ . 三、解答题(本大题共 11 小题,共 88 分.请在答题卡指定区域 内作答,解答时应写出文字说明、证明过 ....... 程或演算步骤) 17.(6 分)化简: x-1 3 ÷ ( -1) . x+2 x+2
x+1 1- 3 ≥0, 18. (6 分)解不等式组: 3+4(x-1)>1. 19. (8 分)如图,E、F 是四边形 ABCD 的对角线 AC 上两点,AE=CF,DF∥BE,DF=BE. (1)求证:四边形 ABCD 是平行四边形; D (2)若 AC 平分∠BAD,求证:□ABCD 为菱形. F E A B
C
(第 19 题)
20. (8 分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有 3 个选项,第 二道单选题有 4 个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让 主持人去掉其中一题的一个错误选项) . (1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是____▲______. (2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关 的概率. .. (3)从概率的角度分析,你建议小明在第几题使用“求助”. (直接写出答案) 21. (8 分) 国家环保局统一规定, 空气质量分为 5 级. 当空气污染指数达 0—50 时为 1 级, 质量为优; 51—100 时为 2 级,质量为良;101—200 时为 3 级,轻度污染;201—300 时为 4 级,中度污染;300 以上时为 5 级,重度污染.某城市随机抽取了 2015 年某些天的空气质量检测结果,并整理绘制成如下两幅不完 整的统计图.请根据图中信息,解答下列各题: (1)本次调查共抽取了____▲___天的空气质量检测结果进行统计; (2)补全条形统计图; (3)扇形统计图中 3 级空气质量所对应的圆心角为____▲____° ; (4)如果空气污染达到中度污染或者以上 ,将不适宜进行户外活动,根据目前的统计,请你估计 2015 ........ 年该城市有多少天不适宜开展户外活动. (2015 年共 365 天) 空气质量等级天数统计图 空气质量等级天数占所抽取天数 百分比统计图


⌒,DE⊥BC,垂足为 E. 25. (9 分)如图,四边形 ABCD 是⊙O 的内接四边形,AC 为直径, ⌒ BD= AD (1)求证:CD 平分∠ACE; (2)判断直线 ED 与⊙O 的位置关系,并说明理由; (3)若 CE=1,AC=4,求阴影部分的面积.
(第 25 题)
26. (9 分)某水果超市以 8 元/千克的单价购进 1000 千克的苹果,为提高利润和便于销售,将苹果按大小 分两种规格出售,计划大、小号苹果都为 500 千克,大号苹果单价定为 16 元/千克,小号苹果单价定 为 10 元/千克,若大号苹果比计划每增加 1 千克,则大苹果单价减少 0.03 元,小号苹果比计划每减少 1 千克,则小苹果单价增加 0.02 元.设大号苹果比计划增加 x 千克. (1) 大号苹果的单价为 ▲ 元/千克; 小号苹果的单价为 ▲ 元/千克; (用含 x 的代数式表示) (2)若水果超市售完购进的 1000 千克苹果,请解决以下问题: ① 当 x 为何值时,所获利润最大? ② 若所获利润为 3385 元,求 x 的值.
56 D
时间 12:00 12:04 12:06 12:14 12:20
池中有水(m3) 20 12 a b 56
20 12 a O (第 24 题) 4 6 b A C
B 14 20 t/min
(1)每个出水口每分钟出水 ▲ m3,表格中 a= (2)求进水口每分钟的进水量和 b 的值; (3)在整个过程中 t 为何值时,水池有水 16 m3 ?
x 1 有意义的 x 的取值范围是 2
A.x>1 B.x≥1
3.计算(2a 2) 3 的结果是 A.2a 5 4.如图所示几何体的俯视图是
A.
B.
C.
D.
5.在□ABCD 中,AB=3,BC=4,当□ABCD 的面积最大时,下列结论正确的有 ( ▲ ) ①AC=5; ②∠A+∠C=180°; ③AC⊥BD; ④AC=BD. A.①②③ B.①②④ C.②③④ D.①③④
6.如图,在矩形 ABCD 中,AB=5,BC=7,点 E 是 AD 上一个动点,把△BAE 沿 BE 向矩形内部折叠, 当点 A 的对应点 A1 恰好落在∠BCD 的平分线上时,CA1 的长为 A.3 或 4 2 B.4 或 3 2 C .3 或 4 A ( ▲ ) D.3 2或 4 2 E D
A'
图②
E G C
【深入探究】 上述基本事实启发我们可以用“平行线分线段成比例”解决下列问题: (3)如图③,已知△ABC 和线段 a,请用直尺与圆规作△A′B′C′. 满足:①△A′B′C′∽△ABC;②△A′B′C′的周长等于线段 a 的长度. (保留作图痕迹,并写出作图步骤)
A B C
a
图③
2015 年中考数学模拟试题(一)参考答案及评分标准
10.南京地铁三号线全长为 44830 米,将 44830 用科学记数法表示为 ▲ . 2 11.已知关于 x 的方程 x -m x+m-2=0 的两个根为 x1、x2,则 x1+ x2-x1x2= ▲ . 12.某校九年级(1)班 40 名同学中,14 岁的有 1 人,15 岁的有 21 人,16 岁的有 16 人,17 岁的有 2 人, 则这个班同学年龄的中位数是 ▲ 岁. 13.如图,正六边形 ABCDEF 的边长为 2,则对角线 AC= ▲ . 14.某体育馆的圆弧形屋顶如图所示,最高点 C 到弦 AB 的距离是 20 m,圆弧形屋顶的跨度 AB 是 80 m, 则该圆弧所在圆的半径为_____▲_____m. B A F A C D
27. (10 分) 【回归课本】我们曾学习过一个基本事实: 两条直线被一组平行线所截,所得的对应线段成比例. A 【初步体验】 (1)如图①,在△ABC 中,点 D、F 在 AB 上,E、G 在 AC 上,DE∥FC∥BC. 若 AD=2,AE=1,DF=6,则 EG= ▲ , FB = GC ▲ . B
B
( 第6题 )
C
二、填空题(本大题共 10 小题,每小题 2 分,共 20 分.不需写出解答过程,请把答案直接填写在答题卡 ... 相应位置 上) .... 7.计算 (-1)3+( 8.计算 9.方程 2 + 3 1 -1 ) = 4 ▲ ▲ . . ▲ .
1 = 3
3x-4 1 = 的解为 x= x-2 2-x
( 第 13 题 )
C
A
A' D D' B' A C (第 15 题)
y B O D xB来自CEO
(第 14 题)
B
(第 16 题)
15.如图,将边长为 6 的正方形 ABCD 绕点 C 顺时针旋转 30° 得到正方形 A′B′CD′,则点 A 的旋转路径长 为 ▲ . (结果保留 π) 16.如图,A、B 是反比例函数 y= k 图像上关于原点 O 对称的两点,BC⊥x 轴,垂足为 C,连线 AC 过点 x
相关文档
最新文档