导热系数的测量实验报告

合集下载

导热系数的测量实验报告

导热系数的测量实验报告

导热系数的测量(一)【实验目的】用稳态法测定出不良导热体的导热系数,并与理论值进行比较。

【实验仪器】导热系数测定仪、铜-康导热电偶、游标卡尺、数字毫伏表、台秤(公用)、杜瓦瓶、秒表、待测样品(橡胶盘、铝芯)、冰块【实验原理】根据傅里叶导热方程式,在物体内部,取两个垂直于热传导方向、彼此间相距为h 、温度分别为T 1、T 2的平行平面(设T 1>T 2),若平面面积均为S ,在t ∆时间内通过面积S 的热量Q ∆免租下述表达式:hT T S t Q )(21-=∆∆λ (3-26-1) 式中,tQ ∆∆为热流量;λ即为该物质的导热系数,λ在数值上等于相距单位长度的两平面的温度相差1个单位时,单位时间内通过单位面积的热量,其单位是)(K m W ⋅。

在支架上先放上圆铜盘P ,在P 的上面放上待测样品B ,再把带发热器的圆铜盘A 放在B 上,发热器通电后,热量从A 盘传到B 盘,再传到P 盘,由于A,P 都是良导体,其温度即可以代表B 盘上、下表面的温度T 1、T 2,T 1、T 2分别插入A 、P 盘边缘小孔的热电偶E 来测量。

热电偶的冷端则浸在杜瓦瓶中的冰水混合物中,通过“传感器切换”开关G ,切换A 、P 盘中的热电偶与数字电压表的连接回路。

由式(3-26-1)可以知道,单位时间内通过待测样品B 任一圆截面的热流量为221)(B BR h T T t Q πλ-=∆∆ (3-26-2) 式中,R B 为样品的半径,h B 为样品的厚度。

当热传导达到稳定状态时,T 1和T 2的值不变,遇事通过B 盘上表面的热流量与由铜盘P 向周围环境散热的速率相等,因此,可通过铜盘P 在稳定温度T 2的散热速率来求出热流量tQ ∆∆。

实验中,在读得稳定时T 1和T 2后,即可将B 盘移去,而使A 盘的底面与铜盘P 直接接触。

当铜盘P 的温度上升到高于稳定时的T 2值若干摄氏度后,在将A 移开,让P 自然冷却。

导热系数测量实验报告.doc

导热系数测量实验报告.doc

导热系数测量实验报告篇一:导热系数实验报告实验2.8 用稳态平板法测定不良导体的导热系数实验报告一、实验目的.(1)用稳态平板法测定不良导体的导热系数. (2)利用物体的散热速率求传热速率. 二、实验器材.实验装置、红外灯、调压器、杜瓦瓶、数字式电压表. 三、实验原理.导热是物体相互接触时,由高温部分向低温部分传播热量的过程.当温度的变化只是沿着一个方向(设z方向)进行时,热传导的基本公式可写为dTdQ=?λ ?????????---------------------------------------------(2.8.1)它表示在dt时间内通过dS面积的热量dQλ为导热系数,它的大小由物体????dT本身的物理性质决定,单位为W????1????1,它是表征物质导热性能大小的物理量,式中符号表示热量传递向着温度降低的方向进行.在图中,B为待测物,它的上下表面分别和上下铜、铝盘接触,热量由高温铝盘通过待测物B向低温铜盘传递.若B 很薄,则通过B侧面向周围环境的散热量可以忽略不计,视热量只沿着垂直待测板B的方向传递.那么在稳定导热(即温度场中各点的温度不随时间而变)的情况下,在?t时间内,通过面积为S、厚度为L的匀质圆板的热量为????????? ---------------------------------------------(2.8.2)式中,???为匀质圆板两板面的恒定温差,若把(2.8.2)式写成?Q=?λ??????=?λ?? ---------------------------------------------(2.8.3)的形式,那么???便为待测物的导热速率,只要知道了导热速率,由(2.8.3)式即可求出λ. 实验中,使上铝盘A和下铜盘P分别达到恒定温度??1、??2,并设??1??2,即热量由上而下传递,通过下铜盘P向周围散热.因为??1和??2不变,所以,通过B的热量就等于C向周围散发的热量,即B 的导热速率等于C的散热速率.因此,只要求出了C在温度??2时的散热速率,就求出了B的导热速率???.因为P的上表面和B的下表面接触,所以C的散热面积只有下表面面积和侧面积之和,设为????,而实验中冷却曲线是C全部裸露于空气中测出来的,即在P的上下表面和侧面积都散热的情况下记录的.设其全部表面积为??全,根据散热速率与散热面积成正比的关系可得??? ????????????部全=??部全---------------------------------------------(2.8.4)式中,???为??部面积的散热速率,???为??全面积的散热速率.而散热速率???就部全部?????????等于(2.8.3)式中的导热速率,这样(2.8.3)式便可写作????????? =?λ?? 部---------------------------------------------(2.8.5)设下铜盘直径为D,厚度为δ,那么有??部??全??2=?? +????????2=2?? +??????---------------------------------------------(2.8.6)???由比热容的基本定义c=Δ????Δ??‘,得ΔQ=cmΔ??’,故???cmΔ??’= 全---------------------------------------------(2.8.7)将(2.8.6)式、(2.8.7)式代入(2.8.4)式得?????+4?? =?????? 部---------------------------------------------(2.8.8)将(2.8.8)式代入(2.8.5)式得λ=?????????????/2---------------------------------------------(2.8.9)式中,m为下铜盘的质量,c为下铜盘的比热容. 四、实验内容.(1)用游标卡尺多次测量下铜盘的直径D、厚度δ和待测物厚度L,然后取其平均值.下铜盘质量m由天平测出,其比热容c=3.850×102??? kg?℃?1.(2)实验时,先将待测样品放在散热盘P上面,然后将发热铝盘A放在样品盘P上方,再调节三个螺栓,使样品盘的上下两个表面与发热铝盘A和散热铜盘P紧密接触.(3)将集成温度传感器插入散热盘P侧面的小孔中,并将集成温度传感器接线连接到仪器面板的传感器插座.用专用导线将仪器机箱后部插座与加热组件圆铝盘上的插座加以连接.为了保证温度测量的准确性,采用同一个温度传感器测温,在需要测量发热盘A和散热盘P温度时,采用手动操作,变换温度传感器的测温对象.(4)接通电源,在“温度控制”仪表上设置加温的上限温度.按加热开关,如果仪器上限温度设置为100℃,那么当传感器的温度达到100℃,大约加热40分钟后,发热铝盘A、散热铜盘P的温度不再上升时,说明系统已达到稳态,这时每间隔5分钟测量并记录??1和??2的值.(5)测量散热盘在稳态值??2附近的散热速率.移开发热铝盘A,取下待测盘,并将发热铝盘A的底面和铜盘P直接接触,当P盘的温度上升到高于稳态值??2值若干度(例如5℃左右)后,再将发热铝盘A移开,让散热铜盘P自然冷却.这时候,每隔30s记录此时的??2值并记录.五、实验数据记录与处理.表一下铜盘直径、厚度,待测物厚度实验结果记录表下铜盘质量为m=655 g.取平均值,稳态时,??1=102.3℃、??2=79.2℃.表三测下铜盘散热速率实验结果记录表利用作图法求下铜盘的散热速率得下铜盘散热速率为K=0.02976T????1. 由(2.。

导热系数实验报告

导热系数实验报告

实验内容: 1.用游标卡尺测量A.B 两板的直径、厚度(每个物理量测量3次);2.正确组装仪器后, 打开加热装置, 将电压调至250V 左右进行加热至一定温度;3.将电压调至125V 左右, 寻找稳定的温度(电压), 使得板上下面的温度(电压)10分钟内不变化, 记录稳定的两个电压值;4.直接加热A 板, 使得其温度相对于T2上升10度左右;5、每隔30s 记录一个温度(电压)值, 取相对T2最近的上下各6个数据正式记录下来;6.整理仪器;数据处理。

表一: A.B 板的几何尺寸测量结果A 质量m=1136.6g,热容c=0.3709kJ/kgK 。

稳定温度(电压值): T1: 2.93mV T2: 2.29mV数据处理:将导热系数的公式变形为dt dVh D V V D h D mch A A B A A B ⋅+-+=)2)(()4(2212πλA 盘直径的平均值mm mm D D D D A A A A 132.093132.08132.08132.103321=++=++=B 盘直径的平均值mm mm D D D D B B B B 82.128382.12884.12880.1283321=++=++=A 盘厚度的平均值mm mm h h h h A A A A 90.9390.990.990.93321=++=++=B 盘厚度的平均值mm mm h h h h B B B B 59.7358.77.607.603321=++=++=利用ORIGIN 作图得到dV/dt:U /m Vt/s图一: A 盘散热过程线形拟合图Linear Regression for Data1_B: Y = A + B * X Parameter Value Error------------------------------------------------------------ A 2.44364 0.00306B -8.64802E-4 1.3869E-5------------------------------------------------------------R SD N P------------------------------------------------------------ -0.99872 0.00498 12 <0.0001------------------------------------------------------------ 从中得到dV/dt=0.86×10-3mV/s 于是计算有:)/(19.0)/()1090.9213209.0()29.293.2(12882.014.31086.0)1090.9413209.0(1059.7103709.0137.12)2)(()4(2323333212K m W K m W dtdVh D V V D h D h mc A A B A A B ⋅=⋅⨯⨯+⨯-⨯⨯⨯⨯⨯⨯+⨯⨯⨯⨯⨯⨯=⋅+-+=----πλ测量列D A 的标准差为mmmm n D DD iAi AA 01.013)08.13209.132()08.13209.132()10.13209.132(1)()(2222=--+-+-=--=∑σ取P=0.68, 查表得t 因子tP=1.32, 那么测量列DA 的不确定度的A 类评定为mm mm n D t A P01.0301.032.1)(=⨯=σ仪器(游标卡尺)的最大允差Δ仪=0.02mm, 人读数的估计误差可取为Δ估=0.02mm (一格), 于是有mmmm gu yi 03.002.002.02222=+=∆+∆=∆游标卡尺为均匀分布, 取P=0.68, 故DA 的不确定度的B 类评定为mm mm C D u A B 02.0303.0)(==∆=于是合成不确定度68.0,02.0)02.01(01.0)]([]3)([)(2222==⨯+=+=P mm mm D u k D t D U A B P A PA σ类似可以计算得(P 均为0.68): U (DB )=0.03mm, U (hA )=0.02mm, U (hB )=0.02mm 。

导热系数测定实验报告

导热系数测定实验报告

导热系数测定实验报告导热系数,作为材料的一项重要物理性质,能够评估材料传导热量的能力。

通过测定导热系数,可以了解材料的导热性能以及在不同工况下的散热能力。

本实验旨在通过实际操作测定不同材料的导热系数,并分析结果对比。

一、实验目的本实验的主要目标是测定不同材料的导热系数,了解热量在材料之间的传导规律,并比较不同材料的导热性能。

通过实验数据的处理和分析,探究导热系数与材料性质之间的关系。

二、实验装置和方法实验所用的装置包括热导率仪和不同材料的试样。

热导率仪由热源、测温探头和显示器组成,用于测量不同材料在不同温度下的热传导情况。

实验的具体步骤如下:1. 准备试样:根据需要测量的材料种类和厚度,制备相应的试样切片。

2. 测量温度:先将测温探头放在设定温度的热源上,进行温度校准,确保准确测量。

3. 安装试样:将试样放置在热导率仪的传热平台上,保持试样与测温探头的接触完全。

4. 测量实验:通过控制热源的温度,使其保持在恒定状态。

记录热导率仪上显示的温度变化情况,并计算得出试样的导热系数。

三、实验数据处理和分析在实验中,我们选择了金属、塑料和木材作为不同材料的代表,分别测量了它们的导热系数,并进行对比分析。

通过实验数据的处理和分析,我们可以得到各材料的导热系数数值。

可以发现,金属材料的导热系数相对较高,这与金属的导电性质有关。

塑料材料的导热系数比金属低,这主要是由于塑料材料结构中有许多绝缘空隙的存在。

木材的导热系数相对较低,并且呈现出随纤维方向变化的趋势,这是因为木材的导热性能与其组织结构有着密切的关系。

导热系数除了与材料的物性有关外,还受到温度的影响。

在不同温度下,导热系数可能会发生变化。

实验中我们选择了不同温度下的测量点,以了解导热系数与温度之间的变化规律。

通过实验数据的分析,我们可以得出导热系数随温度的变化呈现出一定的规律性,不同材料的导热系数随温度变化的趋势可能不同。

四、实验结果与讨论根据实验数据的处理和分析,得出了不同材料在不同温度下的导热系数。

导热系数的测量实验报告

导热系数的测量实验报告

导热系数的测量实验报告一、实验目的:1.了解导热系数的概念和定义。

2.掌握导热系数的测量方法。

3.熟悉导热系数的影响因素。

二、实验仪器及材料:1.导热系数测量仪:包括加热装置、温度计、样品支架等。

2.导热系数标准样品:如铜、铝等。

3.测温仪:用于测量样品温度。

三、实验原理及方法:导热系数(thermal conductivity)是指单位时间、单位面积、温度差为1摄氏度时,单位厚度物质所导热量。

常用单位为W/(m·K)。

1.实验原理:根据傅立叶热传导定律,导热系数的计算公式为:λ=Q*(d/(A*ΔT))其中,λ为导热系数,Q为单位时间单位厚度物质所导热量,d为物质厚度,A为传热面积,ΔT为温度差。

2.实验方法:(1)测量导热系数仪的加热功率和样品厚度。

(2)连接加热装置和温度计,将样品放在样品支架上。

(3)将样品置于恒定温度环境下,记录样品初始温度。

(4)通过调节加热功率,使样品温度升高一定值,记录此时的时间。

(5)根据测温仪结果计算出样品的导热系数。

四、实验步骤:1.根据实验原理设置导热系数仪的参数。

2.将所选样品(如铝)放在样品支架上,并记录样品的厚度。

3.连接加热装置和温度计,校准温度计。

4.将样品置于恒定温度环境中,记录样品的初始温度。

5.通过调节加热功率,使样品温度升高一定值(如10℃),记录此时的时间。

6.根据测温仪结果,计算出样品的导热系数。

7.重复2-6步骤,三次测量后取平均值。

五、实验数据及结果:样品:铝厚度:2.5cm初始温度:25℃升温时间:300s根据计算公式,可得到样品的导热系数为:λ=Q*(d/(A*ΔT))=Q*(0.025/(1*10))取三次实验的结果求平均值,最终得到样品铝的导热系数为0.15W/(m·K)。

六、误差分析:1.温度测量误差:由于温度计精度有限,测量结果可能存在误差。

2.加热功率测量误差:加热装置的功率测量也可能存在误差,会影响导热系数测量的准确性。

导热系数的测定实验报告

导热系数的测定实验报告

导热系数的测定实验报告导热系数的测定实验报告引言:导热系数是衡量物体传热性能的重要参数,对于热工学、材料科学等领域具有重要意义。

本实验旨在通过测定不同材料的导热系数,探究不同材料的传热性能差异,并了解导热系数的测定方法。

实验装置与方法:实验装置包括导热仪、不同材料样品、温度计等。

首先,将导热仪预热至稳定状态,然后将不同材料样品放置在导热仪的测试台上。

接下来,将测试台加热到一定温度,同时记录下测试台和样品的温度变化情况。

根据测得的温度和时间数据,通过导热仪的计算软件计算出不同材料的导热系数。

实验结果与分析:我们选择了铜、铝和玻璃作为实验样品,分别进行了导热系数的测定。

实验结果显示,铜的导热系数最高,铝次之,玻璃的导热系数最低。

这与我们的预期相符,因为铜和铝是金属材料,具有良好的导热性能,而玻璃是非金属材料,导热性能较差。

进一步分析发现,导热系数与材料的物理性质密切相关。

铜和铝具有较高的电子迁移率和热导率,因此导热系数较高。

而玻璃由于其分子结构的特殊性,导致热传导受到限制,因此导热系数较低。

此外,我们还发现导热系数与温度的关系。

在实验中,我们分别在不同温度下测定了样品的导热系数。

结果显示,导热系数随温度的升高而增大。

这是因为随着温度升高,材料内部的分子振动增强,热传导更加迅速,导致导热系数的增加。

实验误差与改进:在实验过程中,我们注意到了一些误差来源。

首先,导热仪本身存在一定的测量误差,这可能会对实验结果产生影响。

其次,样品的几何形状和尺寸也会对测量结果产生一定的影响。

此外,实验中的温度测量也可能存在一定的误差。

为了减小误差,我们可以采取以下改进措施。

首先,选择更高精度的导热仪进行测量,以提高测量的准确性。

其次,对于样品的几何形状和尺寸,可以采用更加精确的测量方法,例如使用光学显微镜等。

此外,在温度测量方面,可以使用更加精确的温度计进行测量。

结论:通过本实验,我们成功测定了不同材料的导热系数,并了解了导热系数的测定方法。

导热系数测定实验报告

导热系数测定实验报告

导热系数测定实验报告实验目的:测定给定材料的导热系数。

实验原理:导热系数是描述材料导热能力的物理量,可以通过测量材料的热传导过程来确定。

传导过程中,热量沿着温度梯度从高温区传导到低温区。

根据热传导定律,导热流密度Q/t正比于温度梯度dT/dx,即Q/t = -k(dT/dx),其中k为导热系数。

在本实验中,我们采用平板法进行导热系数的测量。

在稳态条件下,选取一块厚度均匀的材料样品,在两侧施加恒定的温度差,通过测量材料两侧的温度来计算导热系数。

实验器材:1. 导热系数测定设备(包括导热板、温度传感器、温度控制仪等)2. 材料样品3. 温度计4. 计时器实验步骤:1. 准备工作:打开导热系数测定设备,确保设备正常工作。

2. 校准温度传感器:将温度传感器放入恒温水槽中,根据设备要求进行校准。

3. 安装材料样品:将材料样品放置在导热板上,并紧密密封以确保无热能损失。

4. 施加温度差:通过控制仪调节导热板两侧的温度,使其形成恒定的温度差。

5. 记录温度数据:使用温度传感器测量样品两侧的温度,并记录数据。

6. 测量时间:使用计时器测量样品温度变化的时间t。

7. 计算导热系数:利用测得的温度数据及时间t,根据导热定律计算导热系数k。

实验结果与分析:根据实验所得的温度数据及时间信息,计算出材料的导热系数k,并与已知数据进行比较。

分析测量误差的来源,并讨论可能的改进方法。

结论:本实验通过平板法测定了给定材料的导热系数,并得出了相应的结果。

通过分析实验误差与改进方法,进一步提高了实验结果的准确性。

实验存在的问题与建议:1. 实验过程中,温度传感器的校准可能存在误差,建议校准过程更加细致。

2. 材料样品的密封性可能不够好,导致热能损失,建议对样品密封进行改进。

3. 导热板的温度控制可能不够精确,导致温度差过大或过小,建议改进温度控制仪的精度。

参考文献:[1] 吴革南, 金宗俊. 传热学[M]. 高等教育出版社, 2002.[2] 冯德跃. 制冷与空调工程导论[M]. 高等教育出版社, 2004.。

稳态法测量实验报告

稳态法测量实验报告

一、实验目的1. 了解稳态法的基本原理和实验方法。

2. 掌握稳态法测量导热系数的实验步骤和数据处理方法。

3. 培养学生的实验操作技能和数据分析能力。

二、实验原理稳态法测量导热系数是通过测量材料的温度梯度和热流量来计算导热系数的。

在稳态条件下,热流密度与温度梯度成正比,即q = -k ∆T/∆x,其中q为热流密度,k为导热系数,∆T为温度梯度,∆x为材料厚度。

三、实验器材1. 导热系数测量装置:包括热源、试样、温度传感器、数据采集器等。

2. 精密天平:用于测量试样质量。

3. 温度计:用于测量试样温度。

4. 计算器:用于数据处理和计算。

四、实验步骤1. 准备实验装置,将试样放置在实验台上,确保试样与实验台面紧密接触。

2. 启动热源,调节温度,使试样达到稳态温度。

3. 使用温度传感器测量试样表面的温度,并记录数据。

4. 使用数据采集器记录温度传感器采集的温度数据。

5. 关闭热源,等待试样温度稳定。

6. 再次使用温度传感器测量试样表面的温度,并记录数据。

7. 重复步骤3-6,记录多次温度数据。

8. 使用精密天平测量试样质量,并记录数据。

9. 根据实验数据,计算导热系数。

五、数据处理1. 计算温度梯度:根据实验数据,计算试样表面的温度梯度∆T/∆x。

2. 计算热流密度:根据实验数据,计算热源与试样之间的热流密度q。

3. 计算导热系数:根据公式q = -k ∆T/∆x,计算导热系数k。

六、实验结果与分析1. 实验结果:根据实验数据,计算得到试样导热系数为k = ... (单位:W/(m·K))。

2. 分析:实验结果与理论值进行比较,分析误差产生的原因,如实验装置误差、温度测量误差等。

七、实验结论通过稳态法测量实验,成功测量了试样的导热系数。

实验结果表明,稳态法是一种有效的测量导热系数的方法,适用于不同材料的导热系数测量。

八、实验心得1. 稳态法测量导热系数的实验操作较为简单,但需要注意实验装置的稳定性和温度的准确性。

导热系数的测定实验

导热系数的测定实验
4
【 实验仪器 】
当待测样品为空气层时,可利用测片调节三螺旋头使散热盘与热盘相距 一定的距离 h ,此即待测定空气层的厚度。
A
F
B P
C
G H
D
E
3.000mv
调零
20mv 200mv
2v 20v
FPZ导热系数数字电压表 200v
电源 df
图1:稳态法测定导热系数实验装置图
A-带电热板的发热盘 B-样品 C-螺旋头 D-样品支架 E-风扇 F-热电偶 G-真空保温杯 H-数字电压表 P-散热盘
6
【 实验内容 】
8、移开加热板,在散热盘上放置胶木板,使散热盘自然冷却;稳定状
态时,通过样品上表面的热流量与由散热盘向周围环境散热的速率
相等,当散热盘冷却至稳态时的温度。记录此时的散热速率以求出
热流量。
根据上述装置,由傅立叶导热方程式可知,通过待测样品B盘的热流量,
ΔQ/Δt为:
QR212
t
h
(2)
式。该方程式指出,在物理内部,垂直于导热方向上,二个相距为h,面积为A,
温度分别为θ1 、θ2的平行平面,在Δt秒内,从一个平面传到另一个平面的热
量2
(1)
t
h
式中λ定义为该物质的导热系数,亦称热导率。由此可知,导热系数是——表 示物质热传导性能的物理量,其数值等于二相距单位长度的平行平面上,当温 度相差一个单位时,在单位时间内,垂直通过单位面积所流过的热量。
3、插好加热板的电源插头;再将驼线的一端与数字电压表相连,另一 端插在表盘的中间位置;
4、最后,分别接好导热系数测定仪与数字电压表的电源。 5、调节数字电压表的调零旋钮,再将加热开关拨至220V档,开始加热; 6、待稳定后,可以将切换开关分别拨至测1和测2端,记录此刻样品上、

导热系数的测量实验实训报告doc

导热系数的测量实验实训报告doc

导热系数的测量实验实训报告 .doc 导热系数测量实验实训报告一、实验目的本实验旨在通过测量物质的导热系数,深入理解导热系数的物理意义和影响因素,掌握导热系数测量的基本原理和方法,提高实验操作技能和数据处理能力。

二、实验原理导热系数是描述物质导热性能的重要参数,其大小反映了物质在单位时间内、单位温度差下通过单位面积的热流量。

根据傅里叶导热定律,稳态导热过程中,单位时间内通过单位面积的热流量Q与温度梯度ΔT成正比,与传热面积A和材料热阻R成反比,可用公式表示为:Q = -λAΔT/R其中,λ为导热系数,A为传热面积,R为材料热阻。

因此,通过测量热流量Q、温度梯度ΔT和传热面积A,可以计算出材料的导热系数λ。

三、实验步骤1.准备实验器材:导热系数测量仪、加热器、温度传感器、样品杯、天平、砝码、镊子、电源线等。

2.安装实验器材:将加热器放置在样品杯中央,将温度传感器插入加热器侧壁,将样品杯放置在导热系数测量仪平台上。

3.准备样品:选取具有不同导热系数的物质,如金属、陶瓷、塑料等,将其研磨成粉末,用天平称取一定质量,置于样品杯中。

4.开始测量:连接电源线,打开导热系数测量仪电源开关,设置加热器温度、测量时间等参数,启动测量程序。

5.记录数据:观察实验过程中温度变化情况,记录各个时间点的温度值。

6.数据处理:根据实验数据,计算导热系数,分析实验结果。

四、实验结果与分析1.数据记录:将各个时间点的温度值记录在表格中,计算温度梯度ΔT和热流量Q。

2.导热系数计算:根据公式λ = Q/(AΔT),计算物质的导热系数。

将计算结果记录在表格中。

3.结果分析:比较不同物质的导热系数大小,分析导热系数的影响因素。

可以从物质的结构、分子排列、分子量等方面进行讨论。

例如,金属的导热系数普遍较高,因为金属晶体中存在大量的自由电子,可以快速传递热量;而塑料和陶瓷的导热系数相对较低,因为它们存在大量的分子间空隙和缺陷,阻碍了热量的传递。

稳态法测导热系数实验报告

稳态法测导热系数实验报告

一、实验目的1. 理解稳态法测量导热系数的基本原理。

2. 掌握稳态法测量导热系数的实验步骤和操作技巧。

3. 通过实验,了解不同材料的导热性能差异。

4. 分析实验结果,验证理论公式,提高实验数据处理能力。

二、实验原理稳态法测量导热系数的原理基于傅里叶热传导定律。

在稳态条件下,物体内部的热量传递达到平衡,即单位时间内通过单位面积的热量与温度梯度成正比。

其数学表达式为:\[ q = -k \cdot A \cdot \frac{dT}{dx} \]其中,\( q \) 为热流密度(单位:W/m²),\( k \) 为导热系数(单位:W/(m·K)),\( A \) 为传热面积(单位:m²),\( \frac{dT}{dx} \) 为温度梯度(单位:K/m)。

通过测量物体两侧的温度差和物体厚度,即可计算出导热系数。

三、实验仪器与材料1. 导热系数测试仪2. 铝合金样品3. 热电偶4. 数据采集卡5. 实验台6. 温度计7. 计算机等四、实验步骤1. 将铝合金样品放置在实验台上,确保样品与实验台接触良好。

2. 将热电偶分别固定在样品两侧,并调整位置,使热电偶与样品表面紧密接触。

3. 打开导热系数测试仪,预热一段时间,使仪器达到稳态。

4. 启动数据采集卡,记录热电偶测量的温度数据。

5. 持续采集温度数据,直至数据稳定,即达到稳态。

6. 关闭数据采集卡,停止实验。

7. 将采集到的温度数据导入计算机,进行数据处理。

五、数据处理1. 计算样品两侧的温度差 \( \Delta T \)。

2. 计算样品厚度 \( L \)。

3. 根据公式 \( q = -k \cdot A \cdot \frac{dT}{dx} \),将 \( \Delta T \)、\( L \) 和 \( A \) 代入,求解导热系数 \( k \)。

六、实验结果与分析通过实验,测量得到铝合金样品的导热系数为 \( k = 237 \, \text{W/(m·K)} \)。

稳态法导热系数的测量实验报告

稳态法导热系数的测量实验报告

稳态法导热系数的测量实验报告一、实验目的1、了解稳态法测量导热系数的原理和方法。

2、掌握测量导热系数的实验技能。

3、学会使用相关实验仪器,并分析实验误差。

二、实验原理稳态法是利用热源在待测样品内形成稳定的温度场,通过测量传热速率和温度梯度来计算导热系数。

当热量在样品中稳定传递时,根据傅里叶定律,热流密度$q$ 与温度梯度$\frac{dT}{dx}$成正比,比例系数即为导热系数$\lambda$,即:$q =\lambda\frac{dT}{dx}$在实验中,我们通过测量加热功率$P$、样品的横截面积$A$、冷热面之间的温度差$\Delta T$ 以及样品的厚度$d$ 来计算导热系数$\lambda$。

其计算公式为:$\lambda =\frac{Pd}{A\Delta T}$三、实验仪器1、稳态法导热系数测定仪包括加热装置、冷却装置、测温热电偶等。

2、数字电压表用于测量热电偶的热电势。

四、实验步骤1、准备样品选取尺寸合适、表面平整的待测样品,将其安装在导热系数测定仪的样品架上。

2、连接线路将热电偶与数字电压表正确连接,确保测量信号的准确传输。

3、开启仪器打开加热装置和冷却装置,设置合适的加热功率和冷却温度。

4、测量温度待温度稳定后,读取冷热面热电偶的温度值,记录温度差$\Delta T$。

5、测量功率同时读取数字电压表上显示的加热功率$P$。

6、记录数据记录样品的横截面积$A$ 和厚度$d$ 等参数。

7、重复测量改变加热功率,重复上述步骤进行多次测量,以提高实验结果的准确性。

五、实验数据处理1、将测量得到的加热功率$P$、温度差$\Delta T$、样品的横截面积$A$、厚度$d$ 等数据代入公式$\lambda =\frac{Pd}{A\Delta T}$,计算出导热系数$\lambda$。

2、对多次测量的数据进行平均值计算,以减小随机误差。

3、分析实验数据的误差来源,如热电偶的测量误差、加热功率的不稳定、样品尺寸的测量误差等。

导热系数实验报告

导热系数实验报告

导热系数实验报告实验报告:导热系数的测量一、实验目的:本实验旨在通过测量不同材料的导热系数,了解不同材料的导热性能,并学习导热系数的测量方法。

二、实验原理:导热系数是指单位时间内单位面积上的热量流过某一材料时,单位温度差的比值。

导热系数的单位是W/(m·K)。

使用导热系数可以衡量材料的导热性能,通常情况下,导热系数越大,材料的导热性能越好。

在本实验中,我们采用热传导实验方法来测量导热系数。

热传导实验方法主要是通过测量两个温度的差异,以及材料的厚度和面积来计算导热系数。

三、实验器材:1. 导热系数测量仪:用于测量不同材料的导热系数。

2. 不同材料样品:如金属、塑料等。

3. 温度计:用于测量样品的温度。

四、实验步骤:1. 准备不同材料的样品,并记录其厚度和面积。

2. 打开导热系数测量仪的电源,预热一段时间,使其达到稳定状态。

3. 将待测材料样品放置在测量仪的样品夹中,并将温度计插入样品内部。

4. 等待一段时间,直到样品的温度稳定在一个恒定值。

5. 记录样品的两个温度,并计算其温度差。

6. 根据测量仪的读数和样品的尺寸,计算样品的导热系数。

7. 重复以上步骤,对其他材料进行测量,得到它们的导热系数。

五、实验数据处理:根据实验测量的数据,我们可以计算得到每个材料的导热系数。

对于每个样品,我们可以分别计算其平均导热系数和标准偏差,以评估实验的准确性。

六、实验结果和分析:根据实验数据处理的结果,我们可以得到不同材料的导热系数,并进行比较分析。

通常情况下,金属材料的导热系数较大,而塑料等非金属材料的导热系数较小。

七、实验误差和改进方案:在实验过程中,可能存在一些误差,如温度测量误差、尺寸测量误差等。

为了减小误差,可以采取以下改进方案:1. 提高温度测量的准确性,使用更为精确的温度计。

2. 提高尺寸测量的准确性,使用更为精确的测量工具。

3. 减小环境温度对实验的影响,避免温度波动较大的情况发生。

八、实验心得:通过本次实验,我了解了导热系数的测量方法,并了解了不同材料的导热性能。

稳态法测导热系数实验报告

稳态法测导热系数实验报告

稳态法测导热系数实验报告实验部分一、实验目的本实验旨在通过稳态法测量不同导热材料的热导系数,并掌握稳态法实验的基本步骤。

二、实验原理导热是热量由高温区流向低温区的物理现象,导热材料的导热性能与温度、物质的热物性等因素密切相关。

稳态法是通过固定一组温度差下的热流量,测量材料的导热系数的一种方法。

实验中,使用恒温水按一定时间间隔浸泡样品,保持样品表面温度不变,测量样品底部放热的热流。

三、实验器材和材料实验器材:导热系数仪、水槽、恒温水槽、电热水壶、电热炉、磨床、切割机、量热仪等。

实验用材料:不同材质导热材料试样、硅胶、石蜡等。

四、实验步骤1、将导热材料试样进行磨光、切割、调整大小,使大致与试样夹持器的内径相等,并与试样夹持器装配好;2、向量热仪中注入一定量的热水,开启加热装置加热水至一定温度下;3、在恒温水槽中浸泡待测样品至达到平衡态;4、调整好导热系数仪的测试参数并测量相应的热流量;5、待稳定后记录相应温度数据,并根据数据计算样品的导热系数;6、重复上述实验步骤,测量其他不同材质的导热材料试样。

实验结果实验中我们测试了不同材质的导热材料试样,并得出了如下的测试结果:样品导热系数 W/m·K铝材 217黄铜 168不锈钢 16.3实验分析通过实验测试,我们可以得到不同材质导热材料的导热系数,铝材、黄铜的导热性能比不锈钢强。

在测量中,需注意调整好测量参数并等待恒定状态下才能测量,避免测试数据的误差。

实验中导热系数仪的规格、仪器的精度等因素也会对测试结果产生一定的影响。

在接下来的实验中需注意这些细节,避免测量数据误差的产生。

总结本实验采用稳态法对不同材质的导热材料进行了测试,并得到了它们的导热系数,通过实验我们掌握了稳态法实验的基本步骤和注意事项,加深了我们对导热材料的认识。

导热系数的测定实验报告

导热系数的测定实验报告

3.由实验要求测得的一组散热盘温度随时间变化的数据后,以 时间 为纵坐标,温度
为横坐标,在方格纸上绘出 散热盘的冷却曲线图 。在曲线上通过相应于
的点,作该曲线 切线 ,则该点斜率
即是 散热盘的冷却速率 。
=
4. 若 散 热 盘 的 质 量 和 比 热 已 知 , 则 散 热 盘 在 温 度 为 时 的 散 热 速 率 为
散热盘质量 = 800g
样品及铜盘尺寸:
原始数据记录
同实验者
教师签字
散热盘比热 = 370.8J/(kg·K)
次数 内容
1
2
3
平均值
直径 dB(mm)
131.8
131.8
131.8
131.8
厚度 hB(mm)
7.88
7.88
7.88
7.88
直径 dp(mm)
135.8
135.8
135.8
135.8
厚度 hp(mm)
次数
1 内容
直径 dB(mm) 厚度 hB(mm) 直径 dp(mm) 厚度 hp(mm)
131.8 7.88 135.8 7.14
2
131.8 7.88 135.8 7.14
散热盘比热 = 370.8J/(kg·K)
3
131.8 7.88 135.8 7.14
平均值
131.8 7.88 135.8 7.14
7.14
3.29
= 2.30
每隔 30 秒钟散热盘自然冷却时温差电动势变化记录表
2.96 2.90 2.84 2.79 2.74 2.69 2.64 2.59 2.54 2.50 2.45
2.41 2.37 2.33 2.29 2.25 2.21 2.17 2.14 2.10

导热系数测量实验报告

导热系数测量实验报告

导热系数测量实验报告一、实验目的导热系数是表征材料导热性能的重要参数,准确测量材料的导热系数对于研究材料的热传递特性、优化热设计以及保证热设备的正常运行具有重要意义。

本实验的目的是通过实验方法测量不同材料的导热系数,并掌握导热系数测量的基本原理和实验技能。

二、实验原理导热系数的测量方法有多种,本次实验采用稳态法测量。

稳态法是指在传热过程达到稳定状态时,通过测量传热速率和温度梯度来计算导热系数。

在实验中,将待测材料制成一定形状和尺寸的样品,放置在两个平行的热板之间。

其中一个热板作为热源,保持恒定的温度$T_1$;另一个热板作为冷源,保持恒定的温度$T_2$($T_1 > T_2$)。

当传热达到稳定状态时,通过样品的热流量$Q$ 等于样品在温度梯度$\frac{dT}{dx}$方向上的导热量。

根据傅里叶定律,热流量$Q$ 与温度梯度$\frac{dT}{dx}$和传热面积$A$ 成正比,与导热系数$\lambda$ 成反比,即:$Q =\lambda A\frac{dT}{dx}$在实验中,通过测量热板的温度$T_1$ 和$T_2$,以及样品的厚度$d$ 和传热面积$A$,可以计算出温度梯度$\frac{dT}{dx} =\frac{T_1 T_2}{d}$。

同时,通过测量加热功率$P$,可以得到热流量$Q = P$。

将这些测量值代入上述公式,即可计算出材料的导热系数$\lambda$。

三、实验设备1、导热系数测量仪:包括加热装置、冷却装置、温度传感器、测量电路等。

2、待测样品:本实验选用了几种常见的材料,如铜、铝、橡胶等。

3、游标卡尺:用于测量样品的尺寸。

四、实验步骤1、准备样品用游标卡尺测量样品的厚度、长度和宽度,记录测量值。

确保样品表面平整、无缺陷,以保证良好的热接触。

2、安装样品将样品放置在导热系数测量仪的两个热板之间,确保样品与热板紧密接触。

调整热板的位置,使样品处于均匀的温度场中。

3、设定实验参数设置加热板的温度$T_1$ 和冷却板的温度$T_2$,通常$T_1 T_2$ 的差值在一定范围内。

导热系数实验报告.(总9页)

导热系数实验报告.(总9页)

导热系数实验报告.(总9页)实验目的:1. 学习导热系数的概念和计算方法;2. 掌握测量导热系数的方法。

实验仪器:导热仪、样品、卡尺、直尺、计时器。

实验原理:导热系数是一种表征物质导热性能的物理量,它的定义是单位时间内通过单位面积的热量,使物质温度升高单位温度的比值。

导热系数与物质的热传导能力有关,它决定了物质在不同温度下的热传导速率。

如何测量导热系数?一般采用热板法、绝热杆法、横向热流法、纵向热流法等方法。

本实验采用热板法测量导热系数。

热板法是将被测样品夹在两块热板之间,使样品的一面与热板接触,另一面与另一块热板接触,通过热板加热和冷却两种情况下,测量样品的温度变化,从而计算出导热系数。

具体实验方法如下。

实验步骤:1. 准备被测样品,用卡尺和直尺测量样品的厚度、宽度和长度,并计算样品的体积。

2. 将样品放在上热板上,并将下热板放在样品下面。

调整样品和热板的接触状态,使接触面没有空气层和接触不紧密的情况。

3. 打开热板开关,将上热板加热至一定温度,记录下升温时间t1 和升温的温度Δt1,然后关闭热板开关。

4. 记录下上热板冷却至给定温度的时间t2 和温度变化Δt2,并关闭下热板的继电器开关。

5. 计算样品的热扩散系数α,用公式:α=(D2/2t)(D2/4- D1/4)/(LΔt1)(其中D1和D2为样品的外径和内径,L为样品的长度,t为时间),并将结果记录下来。

6. 计算样品的导热系数λ,用公式:λ=αCρ(其中C为样品的比热容,ρ为样品的密度),并将结果记录下来。

7. 将样品换成另一个样品,重复上述步骤,进行多次测量,计算出样品的平均导热系数和标准差。

实验数据:样品1:宽度w=3.0 cm,长度l=8.0 cm,厚度h=0.5 cm,体积V=12.0 cm^3。

升温时间t1=35.0 s,Δt1=30.0 ℃,t2=110.0 s,Δt2=-10.0 ℃。

样品2:宽度w=3.0 cm,长度l=8.0 cm,厚度h=1.0 cm,体积V=24.0 cm^3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导热系数的测量
导热系数(又称导热率)是反映材料热性能的重要物理量,导热系数大、导热性能好的材料称为良导体,导热系数小、导热性能差的材料称为不良导体。

一般来说,金属的导热系数比非金属的要大,固体的导热系数比液体的要大,气体的导热系数最小。

因为材料的导热系数不仅随温度、压力变化,而且材料的杂质含量、结构变化都会明显影响导热系数的数值,所以在科学实验和工程设计中,所用材料的导热系数都需要用实验的方法精确测定。

一.实验目的
1.用稳态平板法测量材料的导热系数。

2.利用稳态法测定铝合金棒的导热系数,分析用稳态法测定不良导体导热系数存在的缺点。

二.实验原理
热传导是热量传递过程中的一种方式,导热系数是描述物体导热性能的物理量。

h
T T S t Q )
(21-••=∆∆λ 单位时间内通过某一截面积的热量dQ/dt 是一个无法直接测定的量,我们设法将这个量转化为较容易测量的量。

为了维持一个恒定的温度梯度分布,必须不断地给高温侧铜板加热,热量通过样品传到低温侧铜板,低温侧铜板则要将热量不断地向周围环境散出。

单位时间通过截面的热流量为:
B B h T T R t Q )(212-•••=∆∆πλ
当加热速率、传热速率与散热速率相等时,系统就达到一个动态平衡,称之为稳态,此时低温侧铜板的散热速率就是样品内的传热速率。

这样,只要测量低温侧铜板在稳态温度 T2 下散热的速率,也就间接测量出了样品内的传热速率。

但是,铜板的散热速率也不易测量,还需要进一步作参量转换,我们知道,铜板的散热速率与冷却速率(温度变化率)dQ/dt=-mcdT/dt 式中的 m 为铜板的质量, C 为铜板的比热容,负号表示热量向低温方向传递。

由于质量容易直接测量,C 为常量,这样对铜板的散热速率的测量又转化为对低温侧铜板冷却速率的测量。

铜板的冷却速率可以这样测量:在达到稳态后,移去样品,用加热
铜板直接对下铜板加热,使其温度高于稳态温度 T2(大约高出 10℃左右),再让其在环境中自然冷却,直到温度低于 T2,测出 温度在大于T2到小于T2区间中随时间的变化关系,描绘出 T —t 曲线(见图 2),曲线在T2处的斜率就是铜板在稳态温度时T2下的冷却速率。

应该注意的是,这样得出的
t
T
∆∆是铜板全部表面暴露于空气中的冷却速率, 其散热面积为 2πRp2+2πRphp (其中 Rp 和 hp 分别是下铜板的半径和厚度),然而, 设样品截面半径为R ,在实验中稳态传热时,铜板的上表面(面积为 πRp2)是被 样品全部(R=Rp )或部分(R<Rp )覆盖的,由于物体的散热速率与它们的面积 成正比,所以稳态时,铜板散热速率的表达式应修正为:
)22()
2(22P P P P P h R R h R R t T C m t Q ππππ++•∆∆••=∆∆
将上式代入热传导定律表达式,考虑到 ds=πR2,可以得到导热 系数:
2
211)()22()2(B
P P B P P R T T h R h h R t T C m ••-•++•∆∆••=πλ
式中的 R 为样品的半径、h 为样品的高度、m 为下铜板的质量、c 为铜的比 热容、Rp 和
hp 分别是下铜板的半径和厚度。

各项均为常量或直接易测量。

三.主要实验仪器
TC -3B 型导热系数测试仪,测试样品(硬铝、硅橡胶、胶木板、空气等)、游标卡尺等。

四.实验内容
不良导体导热系数的测量
(1)用游标卡尺测量样品、下铜盘的几何尺寸,5次测量取平均值。

(2)设定一个加热温度。

(3)先放置好待测样品及下铜盘(散热盘),调节下圆盘托架上的三个微调螺丝,使待测样品与上、下铜盘接触良好。

(4)将集成温度传感器插入散热盘P 侧面的小孔中,并将集成温度传感器接线连接到仪器面板的传感器插座。

为了保证温度测量的准确性,采用同一个温度传感器测温,在需要测量发热盘A 和散热盘P 时手动调节测温对象。

(5)记录稳态时 T1、T2 值后,移去样品,继续对下铜盘加热,当下铜盘温 度比 T2(对金属样品应为 T3)高出5℃左右时,移去圆筒,让下铜盘所有表面均暴露于空气中,使下铜盘自然冷却,每隔 30 秒读一次下铜盘的温度示值并记录。

根据测量值求出t
T
∆∆。

金属导热系数的测量
(1)将金属铝棒至于发热盘和散热盘之间。

(2)当发热盘与散热盘达到稳定温度时,记录上下两面温度。

此时散热盘温度为T3,重复之前步骤测量该温度下的散热速率。

(3)此时热导系数为:
2
211
)(P
P R T T h t T C m ••-•∆∆••=πλ
空气的导热系数的测量
调节三个螺栓,使发热盘也散热盘平行,它们之间的距离为h ,用塞尺测量它们之间的距离。

此距离即为空气层的厚度。

(注意:由于存在空气对流,所以此距离不宜过大。


五.实验数据及处理
(1)不良导体导热系数的测量 散热盘P M=658g
样品
T2=56.8℃T1=71.2℃
11··09197.0--=C g Cal C O
铜板比热容
由以上数据可得散热盘半径 R1=4.918cm 待测样品半径为 R2=4.987cm
s C t T t T C
T C
T O /0198.0960
19
4430)7.572.588.584.590.606.602.618.61(8.562.710201≈=⨯⨯----+++=∆∆=∆∆==速率:
再由表中数据算得散热稳态时:K
m W C cm Cal R T T h R h h R t T C m O B P P B P P ⋅=⋅⋅⨯=•⨯
-⨯⨯+⨯⨯⨯+⨯
⨯⨯=••-•++•∆∆••=---/2043.0)(108807.4987.41
)8.562.71()928.02918.42(791.0)928.02918.40198.009197.06581
)()22()2(1142
2
21ππλ(由公式得:
(2)金属导热系数的测量
T1=61.4℃ T2=56.5℃ T3=55.8℃
s C t T
O /0204.0=∆∆
K
m W C s cm Cal R T T h t T C m O P
P ·/9.116)(2793.0409.11
5.56-4.61914.60204.009197.06581
)(1112
2
21=⋅⋅⋅=⨯⨯
⨯⨯⨯=••-•∆∆••=---ππλ由公式得:
(3)空气的导热系数的测量 h=1.98mm T1=71.1℃ T2=45.1℃
s C t T
/0125.00=∆∆
%
26.231
.031.0-0317.0·/0317.0)(···100758.0918.41
1.45-1.71198.00125.009197.06581
)(113-2
2
21≈==⨯=•⨯
⨯⨯⨯=••-•∆∆••=--ηππλ相对误差由公式得:
K
m W C s cm Cal R T T h t T C m O P
P
六.实验结论及误差分析。

时的标准值有一定误差因此与在时测得的数据,,由于是在相对误差时的散热系数为空气在时的散热系数为金属铜在时的散热系数为待测不良导体在由以上实验测得:
C C T K m W C T K m W C T K W C T O O O O O 1001.45%26.2·/0317.01.45.3·/9.1168.55.2m /2043.08.56.1=≈====⋅==ηλλλ
【参考文献】
[1]周殿清,张文炳,冯辉 基础物理实验[M]. 北京:科学出版社,2009。

相关文档
最新文档