abaqus混凝土本构数据

合集下载

基于ABAQUS梁单元的钢筋混凝土框架结构数值模拟共3篇

基于ABAQUS梁单元的钢筋混凝土框架结构数值模拟共3篇

基于ABAQUS梁单元的钢筋混凝土框架结构数值模拟共3篇基于ABAQUS梁单元的钢筋混凝土框架结构数值模拟1钢筋混凝土框架结构是一种常见的建筑结构形式,具有较高的承载能力和良好的抗震性能。

数值模拟是研究结构力学性能和优化设计的重要手段之一。

本文将介绍基于ABAQUS梁单元的钢筋混凝土框架结构数值模拟方法和实现步骤。

ABAQUS是一种广泛应用于结构力学和工程分析的有限元分析软件,可以模拟不同类型的结构,包括钢筋混凝土框架结构。

在ABAQUS中,钢筋混凝土框架结构使用的是梁单元(B31)和三角形单元(C3D4)。

本文将重点介绍梁单元的应用。

首先,建立模型,包括结构几何形状、截面形状、材料特性等信息。

在ABAQUS中,可以通过建立草图、绘制型材、定义截面属性等方式来创建模型。

需要注意的是,建立的模型必须符合实际结构的几何形状和尺寸要求。

其次,定义材料特性,包括钢筋混凝土的弹性模量、泊松比、屈服强度、极限强度、裂缝韧度等参数。

这些参数对于结构的强度、刚度、稳定性等性能都有很大的影响,需要根据实际情况进行精确的定义。

然后,给结构施加荷载,包括静态荷载、动态荷载、地震荷载等。

在ABAQUS中,可以通过绘制荷载分布或者定义节点荷载、边界约束等方式来施加荷载。

需要注意的是,荷载的大小和方向必须符合实际情况。

最后,进行数值模拟,求解结构的应力、应变、变形等参数。

在ABAQUS中,可以通过指定分析步数、时间步长、求解器、后处理选项等方式来进行数值模拟。

需要注意的是,模拟结果的准确性和可靠性与模型的精度、材料参数和荷载条件等因素密切相关,需要认真评估和验证。

总的来说,基于ABAQUS梁单元的钢筋混凝土框架结构数值模拟是一项复杂的工程计算工作,需要具备专业的结构力学知识和ABAQUS软件的使用技能。

在模拟过程中,需要考虑许多因素,如模型准确性、材料参数、荷载条件、求解器选项等。

因此,需要认真分析和解决各种问题,确保模拟结果的准确性和可靠性,为结构设计和施工提供科学依据。

Abaqus火灾后钢管混凝土柱混凝土本构数据计算法

Abaqus火灾后钢管混凝土柱混凝土本构数据计算法

溶. 砌体 受压应 力一应 变关 系[ J ] . 郑州 大学学
大; 极差小就 表示 该因素 的水平变 动对试 验结果 的影 响小 。板厚 格竖 直方 向间距 的极差 R= 5 1 9 4 . 5 5 。从极差 的数值 能看 出板厚
稍稍 大于框格水 平方 向的极差 。所 以密肋 复合墙 板 框格影 响因 距 。在试 验设计时选择板厚 递增指数 为一次 5 0 m m, 而框 格 间距
作 用机 理研 究[ J ] . 西安工业大 学学报 , 2 0 0 7 ( 6 ) : 5 7 8 - 5 8 2 .
次 1 0 0 m m, 但是 框格 间距 的影 响程 度仍 然远 远小 于板厚 对其 [ 5 ] 唐 珊珊. 基 于正交试 验的密肋复 合墙体优 化设计研 究 [ D] . 受 力 情 况 的 影 响 。但 是 只从 粮仓 的储 温 隔 热 性 能 上 看 , 密 肋复合 北京 : 北京 交通 大学 , 2 0 0 7 .
1 钢 管混 凝 土 中混凝 土材 料 火灾 过程 中关 系模 型
1 . 1 火 灾全过程 混凝 土本 构 关 系
此本 构关 系采用 宋天诣 博士 论文 中混凝 土应力 应变 关系
模型。
其中' , 为混凝土 圆柱 体抗 压强 度 , MP a ;  ̄为 常温 阶段 约束
效 应 系 数 , = 丢, A 和 A 分 别 为 钢 管 和 其 核 心 混 凝 土 的 横 截
能, 2 5 0 m m厚 的墙 板不能很好地保证 能起 到保 温隔热 的作用 。
过于笨重 , 并不利 于装配 构件 的施 工 , 也就 没有利 用到其 便 利快
极差 分析 中指 出 , 可 以采 用 同一 个影 响成 分在 不 同的 比重 速施工 的优越性 。因此 结合 试验 结果 及其传 统平 房仓 的结 构构

abaqus中混凝土cdp计算程序

abaqus中混凝土cdp计算程序

在Abaqus中,可以使用Concrete Damage Plasticity(CDP)模型来进行混凝土的计算。

CDP模型是一种用于分析混凝土材料的非线性行为的计算模型,它考虑了混凝土的损伤和塑性行为。

以下是一个简单的Abaqus中使用CDP模型进行混凝土计算的示例程序:1. 首先,定义材料属性:```*Material, name=Concrete*Density2300,,*Elastic15000, 0.15,*Plastic0.0, 0.0, 0.0, 0.0, 0.0, 0.0```2. 定义混凝土的本构模型:```*Damage Evolution, type=DISPLACEMENT1.0, 0.0, 1.0, 0.0, 0.0, 0.0*Plastic, hardening=ISOTROPIC0.0, 0.0, 0.0```3. 定义混凝土的截面积:```*Solid Section, elset=ConcreteSection, material=Concrete```4. 创建一个模型:```*Part, name=ConcretePart*End Part```5. 定义一个实例:```*Instance, name=ConcreteInstance, part=ConcretePart```6. 创建一个节点集合:```*Nset, nset=ConstrainedNodes1, 0, 0```7. 创建一个固定约束条件:```*BoundaryConstrainedNodes, 1, 3```8. 创建一个荷载:```*Step*Static0.1, 1.0, 1.0e-05, 0.1```9. 创建一个加载条件:```*CloadConstrainedNodes, 2, -10.0```10. 定义分析类型和输出请求:```*End Step*Output, field, variable=PRESELECT*End Assembly```11. 运行计算:```*Job, name=ConcreteAnalysis*Submit```以上是一个简单的Abaqus中使用CDP模型进行混凝土计算的示例程序,具体情况可能需要根据你的具体问题进行调整和修改。

abaqus混凝土本构解析

abaqus混凝土本构解析

Copyright 2002 Hibbitt, Karlsson & Sorensen, Inc.
Overview of ABAQUS Version 6.3
介绍
加强筋(REBAR)选项提供非常全面的几何设计: Rebar可以是单独的筋,也可以是夹层,加强筋和夹层 的方向是任意的
可以加载初始应力,初始应力可以为“pre-tensioned” (灌浆前后都可以) 也可以为“post-tensioned” (通常无灌 浆).
高压 (equivalent pressure stress many times larger than uniaxial compression failure stress) 混凝土的压碎(crushing) 是主导行为
大荷载 (非弹性) 单调荷载、循环荷载都可以
Copyright 2002 Hibbitt, Karlsson & Sorensen, Inc.
Triaxial concrete behavior
Chen (1982)
Copyright 2002 Hibbitt, Karlsson & Sorensen, Inc.
Ov
Mechanical Behavior of Plain Concrete
Overview of ABAQUS Version 6.3
Mechanical Behavior of Plain Concrete
混凝土双轴强度包络图
Biaxial strength envelope of concrete
Kupfer et al. (1969)
Failure modes of biaxially loaded concrete

混凝土mazars本构模型在abaqus中的数值实现及验证

混凝土mazars本构模型在abaqus中的数值实现及验证
Numerical Implementation and Validation of Concrete MAZARS Constitutive Model in ABAQUS
HAN Feng1 XU Lei2 JIN Yongmiao2 WANG Shaozhou2 CUI Shanshan2
1. Zhejiang Water Resources and Hydropower Survey and Design Institute Hangzhou 310002 Zhejiang China
等效应变为损伤演化方程的自变量 k 且令其初值为
第 46 卷第 5 期
2020 年 5 月
水力发电
混凝土 MAZARS 本构模型在
ABAQUS 中的数值实现及验证
韩 峰1 ꎬ 徐 磊2 ꎬ 金永苗2 ꎬ 王绍洲2 ꎬ 崔姗姗2
(1 浙江省水利水电勘测设计院ꎬ 浙江 杭州 310002ꎻ
2 河海大学水利水电工程学院ꎬ 江苏 南京 210098)
correctness of numerical implementation is verified through the simulation of the uniaxial tensile fracturing process of concrete
followed by the applications of the developed UMAT subroutine in the damage and failure analysis of concrete gravity dam and
摘 要: 由于对混凝土的非线性力学行为具有良好的模拟能力ꎬ 在损伤力学框架内建立起来的 MAZARS 本构模型已

4.1ABAQUS中的混凝土本构模型(5页)

4.1ABAQUS中的混凝土本构模型(5页)

14 ABAQUS中的混凝土本构模型4.1 概述A wide variety of materials is encountered in stress analysis problems, and for any one of these materials a range of constitutive models is available to describe the material's behavior. For example, a component made from a standard structural steel can be modeled as an isotropic, linear elastic, material with no temperature dependence. This simple model would probably suffice for routine design, so long as the component is not in any critical situation. However, if the component might be subjected to a severe overload, it is important to determine how it might deform under that load and if it has sufficient ductility to withstand the overload without catastrophic failure. The first of these questions might be answered by modeling the material as a rate-independent elastic, perfectly plastic material, or—if the ultimate stress in a tension test of a specimen of the material is very much above the initial yield stress—isotropic work hardening might be included in the plasticity model. A nonlinear analysis (with or without consideration of geometric nonlinearity, depending on whether the analyst judges that the structure might buckle or undergo large geometry changes during the event) is then done to determine the response. But the severe overload might be applied suddenly, thus causing rapid straining of the material. In such circumstances the inelastic response of metals usually exhibits rate dependence: the flow stress increases as the strain rate increases. A ―viscoplastic‖ (rate-dependent) material model might, therefore, be required. (Arguing that it is conservative to ignore this effect because it is a strengthening effect is not necessarily acceptable—the strengthening of one part of a structure might cause load to be shed to another part, which proves to be weaker in the event.) So far the analyst can manage with relatively simple (but nonlinear) constitutive models. But if the failure is associated with localization—tearing of a sheet of material or plastic buckling—a more sophisticated material model might be required because such localizations depend on details of the constitutive behavior that are usually ignored because of their complexity (see, for example, Needleman, 1977). Or if the concern is not gross overload, but gradual failure of the component because of creep at high temperature or because of low-cycle fatigue, or perhaps a combination of these effects, then the response of the material during several cycles of loading, in each of which a small amount of inelastic deformation might occur, must be predicted: a circumstance in which we need to model much more of the detail of the material's response.So far the discussion has considered a conventional structural material. We can broadly classify the materials of interest as those that exhibit almost purely elastic response, possibly with some energy dissipation during rapid loading by viscoelastic response (the elastomers, such as rubber or solid propellant); materials that yield andexhibit considerable ductility beyond yield (such as mild steel and other commonly used metals, ice at low strain rates, and clay); materials that flow by rearrangement of particles that interact generally through some dominantly frictional mechanism (such as sand); and brittle materials (rocks, concrete, ceramics). The constitutive library provided in Abaqus contains a range of linear and nonlinear material models for all of these categories of materials. In general the library has been developed to provide those models that are most usually required for practical applications. There are several distinct models in the library; and for the more commonly encountered materials (metals, in particular), several ways of modeling the material are provided, each suitable to a particular type of analysis application. But the library is far from comprehensive: the range of physical material behavior is far too broad for this ever to be possible. The analyst must review the material definitions provided in Abaqus in the context of each particular application. If there is no model in the library that is useful for a particular case, Abaqus/Standard contains a user subroutine—UMAT—and, similarly, Abaqus/Explicit contains a user subroutine—VUMAT. In these routines the user can code a material model (or call other routines that perform that task). This ―user subroutine‖ capability is a powerful resource for the sophisticated analyst who is able to cope with the demands of programming a complex material model.Theoretical aspects of the material models that are provided in Abaqus are described in this chapter, which is intended as a definition of the details of the material models that are provided: it also provides useful guidance to analysts who might have to code their own models in UMAT or VUMAT.From a numerical viewpoint the implementation of a constitutive model involves the integration of the state of the material at an integration point over a time increment during a nonlinear analysis. (The implementation of constitutive models in Abaqus assumes that the material behavior is entirely defined by local effects, so each spatial integration point can be treated independently.) Since Abaqus/Standard is most commonly used with implicit time integration, the implementation must also provide an accurate ―material stiffness matrix‖ for use in fo rming the Jacobian of the nonlinear equilibrium equations; this is not necessary for Abaqus/Explicit.The mechanical constitutive models that are provided in Abaqus often consider elastic and inelastic response. The inelastic response is most commonly modeled with plasticity models. Several plasticity models are described in this chapter. Some of the constitutive models in Abaqus also use damage mechanics concepts, the distinction being that in plasticity theory the elasticity is not affected by the inelastic deformation (the Young's modulus of a metal specimen is not changed by loading it beyond yield, until the specimen is very close to failure), while damage models include the degradation of the elasticity caused by severe loading (such as the loss of elastic stiffness suffered by a concrete specimen after it has been subjected to large uniaxial compressive loading).2In the inelastic response models that are provided in Abaqus, the elastic and inelastic responses are distinguished by separating the deformation into recoverable (elastic) and nonrecoverable (inelastic) parts. This separation is based on the assumption that there is an additive relationship between strain rates:where is the total strain rate, is the rate of change of the elastic strain, and isthe rate of change of inelastic strain.A more general assumption is that the total deformation, , is made up of inelasticdeformation followed by purely elastic deformation (with the rigid body rotation added in at any stage in the process):In ―The additive strain rate decomposition,‖ Section 1.4.4, the circumstances are discussed under which Equation 4.1.1–1is a legitimate approximation to Equation 4.1.1–2. We conclude that, if1.the total strain rate measure used in Equation 4.1.1–1is the rate ofdeformation:where is the velocity and is the current spatial position of a material point;and2.the elastic strains are small,then the approximation is consistent. Abaqus uses the rate of deformation as the strain rate measure in finite-strain problems for this reason. (The distinction between different strain measures matters only when the strains are not negligible compared to unity; that is, in finite-strain problems.) The elastic strains always remain small for many materials of practical interest; for example, the yield stress of a metal is typically three orders of magnitude smaller than its elastic modulus, implying elasticstrains of order . However, some materials (polymers, for example) can undergo large elastic straining and also flow inelastically, in which case the additive strain rate decomposition is no longer a consistent approximation.Various elastic response models are provided in Abaqus. The simplest of these is linear elasticity:where is a matrix that may depend on temperature but does not depend on the deformation (except when such dependency is introduced in damage models). This elasticity model is intended to be used for small-strain problems or to model the elasticity in an elastic-plastic model in which the elastic strains are always small.An extension of the elastic type of behavior is the hypoelastic model:where now may depend on the deformation. In this case the elasticity may be nonlinear, but the implementation in Abaqus still assumes that the elastic strains will always be small. In porous and granular media, the elastic properties are strongly dependent on the volume strain; porous elastic behavior is described in ―Porous elasticity,‖ Section 4.4.1.The most general type of nonlinear elastic behavior is the hyperelastic model, in which we assume that there is a strain energy density potential—U—from which the stresses are defined (to within a hydrostatic stress value if the material is fully incompressible) bywhere and are any work conjugate stress and strain measures. This form of elasticity model is generally used to model elastomers: materials whose long-term response to large deformations is fully recoverable (elastic). The hyperelasticity modeling provided in Abaqus is described in ―Large-strain elasticity,‖ Section 4.6. The hyperelasticity models cannot be used with the plastic deformation models in the program, but can be combined with viscoelastic behavior, as described in ―Finite-strain viscoelasticity,‖ Section 4.8.2.The plasticity models offered in Abaqus are discussed in general terms in ―Plasticity overview,‖ Section 4.2. Both rate-independent and rate-dependent models, with and without yield surfaces, are offered. Models are included in the program that are intended for applications to metals (―Metal plasticity,‖ Section 4.3) as well as some nonmetallic materials such as soils, polymers, and crushable foams (―Pl asticity for non-metals,‖ Section 4.4). The jointed material model (―Constitutive model for jointed materials,‖ Section 4.5.4) and the concrete model (―An inelastic constitutive model for concrete,‖ Section 4.5.1) also include plasticity modeling.The constitutive routines in Abaqus exist in a library that can be accessed by any of the solid or structural elements. This access is made independently at each ―constitutive calculation point.‖ These points are the numerical integration points in the elements. Thus, the constitutive routines are concerned only with a single calculation point. The element provides an estimate of the kinematic solution to the problem at the point under consideration. These kinematic data are passed to the constitutive routines as the deformation gradient——or, more typically, as the strain and rotation increments—and . The constitutive routines obtain the state atthe point under consideration at the start of the increment from the ―material point data base.‖ The state variables include the stress and any state variables used in the constitutive models—plastic strains, for example. The constitutive routines also look up the constitutive definition. Their function then is to update the state to the end of the increment and, if the procedure uses implicit time integration and if Newton's method is being used to solve the equations, to define the material contribution to theJacobian matrix, . For material models that are defined in rate form and, therefore, require integration (such as incremental plasticity models), this Jacobian contribution depends on the model and also on the integration method used for the model. Its derivation is, therefore, discussed in some detail in the sections that define such models.Reference―Material library: overview,‖ Section 18.1.1 of the Abaqus Analysis User's Manual。

abaqus钢筋混凝土参数

abaqus钢筋混凝土参数

abaqus钢筋混凝土参数ABAQUS是一款有限元分析软件,可用于模拟精细结构的力学行为。

当涉及到钢筋混凝土时,ABAQUS可以模拟该材料的多种行为,例如拉伸、压缩、弯曲、剪切和断裂。

钢筋混凝土的ABAQUS参数包括材料参数和几何参数。

在ABAQUS 中,材料性质是一种材料的定量描述,它们定义了材料如何响应外力和变形。

以下是ABAQUS用于描述钢筋混凝土材料的参数:1.弹性模量:弹性模量是衡量材料弹性变形能力的属性。

其参数通常用MPa表示。

钢筋混凝土的弹性模量可以根据不同荷载下的变形曲线来确定。

2.泊松比:泊松比是描述材料在压力作用下沿着其它两个方向膨胀的程度的属性。

它是无量纲的,通常用0.2到0.3的值表示。

3.抗拉强度:抗拉强度是材料在拉力作用下抵抗破坏的能力,其通常用MPa表示。

在ABAQUS中,抗拉强度可以通过实验测定或根据弹性模量和泊松比计算得出。

4.压缩强度:压缩强度是材料在受压时抵抗破坏的能力,其通常用MPa表示。

在ABAQUS中,压缩强度可以通过实验测定或根据弹性模量和泊松比计算得出。

5.剪切强度:剪切强度是材料在受到剪切力时抵抗破坏的能力,其通常用MPa表示。

在ABAQUS中,剪切强度可以通过实验测定或根据抗拉和压缩强度计算得出。

6.断裂韧性:断裂韧性是材料在塑性变形条件下能够吸收的能量。

钢筋混凝土的断裂韧性可根据三点弯曲试验测定,其参数通常用J/m²表示。

此外,在ABAQUS中,几何参数包括钢筋混凝土样本的尺寸、几何形状和荷载位置等。

这些参数对于建立有效的数值模型非常重要。

总之,ABAQUS对于钢筋混凝土等材料的模拟分析非常重要。

钢筋混凝土作为一种常见材料类型,在土建工程中使用广泛。

ABAQUS提供了丰富的材料参数和几何参数,使得我们可以更准确地预测钢筋混凝土结构的行为,并优化设计。

用于ABAQUS显式分析梁单元的混凝土单轴本构模型_王强

用于ABAQUS显式分析梁单元的混凝土单轴本构模型_王强

2011年7月第27卷第4期沈阳建筑大学学报(自然科学版)Journal of Shenyang Jianzhu University (Natural Science )Jul .2011Vol .27,No .4收稿日期:2010-12-31基金项目:住房和城乡建设部科技基金项目(2008-K1-15)作者简介:王强(1971—),男,副教授,博士,主要从事工程结构抗震研究.文章编号:2095-1922(2011)04-0679-06用于ABAQUS 显式分析梁单元的混凝土单轴本构模型王强,潘天林,刘明,李哲(沈阳建筑大学土木工程学院,辽宁沈阳110168)摘要:目的为实现采用梁单元进行钢筋混凝土杆系结构的弹塑性响应分析,对其混凝土本构关系进行二次开发,使ABAQUS 软件提供的混凝土材料模型能用于三维梁单元.方法利用ABAQUS 用户自定义材料程序VUMAT 接口,开发用于显式动力分析的梁单元混凝土单轴本构模型,并编制相应的计算程序,对低周往复加载下的钢筋混凝土柱进行数值模拟计算.结果数值模拟结果能够较好地反映轴力对钢筋混凝土构件滞回性能的影响以及钢筋混凝土柱的双向弯曲耦合性能.结论笔者所开发的混凝土本构模型能够用于多维受力状态下钢筋混凝土梁柱构件的受力行为分析,满足钢筋混凝土杆系结构动力弹塑性分析的需求.关键词:混凝土;滞回性能;本构模型;ABAQUS ;VUMAT 中图分类号:TU375.3文献标志码:AStudy on a Uniaxial Constitutive Model of Concrete for Explicit Dynamic Beam Elements of ABAQUSWANG Qiang ,PAN Tianlin ,LIU Ming ,LI Zhe(School of Civil Engineering ,Shenyang Jianzhu University ,Shenyang ,China ,110168)Abstract :In order to use the beam element of FEM software ABAQUS for analyzing the elastic-plastic dy-namic response of RC truss structures ,it is necessary to carry out a secondary development of the concrete constitutive for spatial beam element.In this paper ,a uniaxial constitutive model of concrete is established.The material subroutine of this model is successfully developed and applied to explicit dynamic module ofABAQUS by means of user-defined subroutine interface VUMAT.Afterwards ,the hysteretic performance of RC columns under cyclic loading is numerically simulated and compared with experiment results.The results show that the uniaxial constitutive model can rightly simulate the influence on the hysteretic performance of RC columns under varies axial load ,as well as the bi-axes bending coupling performance.The established model can meet the demand of analyzing the elastic-plastic dynamic response of RC frame structures.Key words :concrete ;hysteretic performance ;constitutive model ;ABAQUS ;VUMAT混凝土结构在大震作用下通常会进入塑性状态,采用弹性分析方法进行结构的受力分析不能真实反映结构实际受力情况.进行结构的动力弹塑性响应分析,特别是基于构件材料层次分析模型的弹塑性响应分析,能够较为准确地把握结构在大震作用下的非线性形态,对于评估结构的抗680沈阳建筑大学学报(自然科学版)第27卷震安全性具有重要意义.目前各国学者及工程界已开始致力于此方面的研究[1-4].通用有限元软件ABAQUS 具有较好的计算稳定性、丰富的单元材料模型以及强大的前后处理功能,目前已在结构构件的非线性分析中得到了广泛的应用[5-7],特别是其显式分析模块(ABAQUS /EXPLICIT ),由于其采用中心差分法求解动力平衡方程,计算中无需形成结构的整体刚度矩阵,具有计算收敛性好的特点,更适于结构动力弹塑性响应分析.但在ABAQUS 显式分析模块中,软件提供的混凝土材料模型不能用于三维梁单元.若采用实体单元进行高层建筑等杆系结构的整体分析,则计算工作量较大,难以满足工程计算需求.笔者基于纤维模型[8],利用ABAQUS 显式分析模块的用户自定义材料子程序VU-MAT ,对梁单元的混凝土材料模型进行二次开发,以满足结构动力弹塑性响应分析的需求.1纤维梁单元模型基于材料单轴本构关系的纤维模型是将构件沿纵向划分为若干子段,再沿构件横截面划分成纤维束.每个纤维只考虑它的轴向本构关系,且可定义不同的本构关系.柱横截面变形符合平截面假定.对截面纤维的当前状态积分就可以得到截面的双向抗弯刚度、双向抵抗矩以及轴力,进而沿杆长进行积分,就可以得到精确的杆件单元刚度矩阵.纤维模型可以自然、简单地描述构件的双向弯曲-轴力耦合效应.1.1基本假定(1)构件截面变形满足平截面假定;(2)不考虑钢筋与混凝土之间的相对滑移;(3)不考虑构件的剪切非线性及与其他变形的耦合关系.1.2单元截面刚度矩阵梁单元类型为ABAQUS 显式分析模块中的B31梁单元[9].该单元是基于铁摩辛柯(Timosh-enko )梁理论构建的,可以考虑剪切变形.B31梁单元具有两个节点,一个积分点,转角和位移采用线性插值,如图1(a )所示.采用GREEN 应变计算公式,可考虑大应变.单元质量阵为对角阵形式.采用矩形梁截面描述构件截面中的混凝土部分,将其划分为25个积分点或更多,如图1(b )所示;同时采用箱型截面按等面积原则、等位置代替截面中的钢筋,划分为16个积分点或更多,如图1(c )所示.每个积分点即为一个纤维.图1B31梁单元的积分点设置Fig.1Integration points of B31beam element假设梁单元的横截面坐标轴分别为y 、z 轴,纵向坐标轴为x 轴.由单元节点位移通过插值函数可以得到轴向积分点处变形向量d (x )={Φz (x )Φy (x )ε0(x )}T .(1)根据截面积分点的位置,由轴向积分点处变形向量可以得到纤维的应变向量ε(x )25ˑ1=H 25ˑ3d (x ).(2)其中截面纤维几何位置转换矩阵H =[H 1H 2…H 25]T,H i =[-y iz i1],i =1,2, (25)由纤维的应变向量与材料的本构关系可得截面应力向量σ=E ε,其中E 为纤维切线刚度对角阵.截面恢复力向量F (x )={M zM yN }T =H T A σ=H T AE ε=H T AEH d (x ).(3)式中:M z ,M y ,N 分别为截面上绕y 、z 轴的弯矩及轴向力;A 为纤维面积对角阵.整理可得单元截面的刚度矩阵为K sec =H T AEH .(4)运用单元形函数矩阵,可以从截面刚度矩阵推得单元刚度矩阵K e =∫lB T KsecB d x.式中,B 为单元形函数矩阵,l 为单元长度.第27卷王强等:用于ABAQUS 显式分析梁单元的混凝土单轴本构模型6812材料的本构模型2.1钢筋的本构模型钢筋在反复荷载作用下本构模型采用ABAQUS 中自带的随动强化模型[9],并考虑钢筋屈服硬化,钢筋屈服后刚度取E =0.01E 0,对应的单轴本构模型如图2所示.其中E 0为初始弹性模量,E 为屈服后弹性模量,f y 为屈服应力,εy 为屈服应变.图2钢筋的本构模型Fig.2Constitutive model of steel2.2混凝土的本构模型笔者采用基于文献[10]提出的混凝土本构模型,如图3所示.其中E c 0为原点切线模量;E cr 为损伤后弹性模量;εcm 为混凝土所经历的最大压应变;f c 为混凝土抗压强度;ε0为混凝土峰值应力所对应的应变,ε0=0.002;εu 为混凝土的极限压应变,εu =4ε0.混凝土受压骨架曲线采用Kent 和Park 所提出并由B.D.Scott 改进的混凝土应力-应变曲线[11].由于混凝土的抗拉强度很低,且在滞回过程中一旦开裂,混凝土就不能再承受拉力,因此抗拉强度对混凝土构件滞回性能影响较小[12-13].故在本构模型中忽略混凝土的抗拉强度,并忽略裂面效应影响.混凝土卸载及再加载曲线均取为直线形式.卸载时考虑刚度的退化,卸载模量按式(7)确定:E cr =E c0εc ≤ε0,E c0ε0ε()cm0.9εc >ε0{.(7)当混凝土卸载至零压应力时,如继续卸载则材料应力保持为零.若混凝土卸载至零压应力之前又开始加载,则沿原路径返回.再加载时加载曲线始终指向骨架曲线上所经历的最大应变点.若应力超过骨架曲线上的相应点,则沿骨架曲线加载.若混凝土应力在达到骨架曲线之前开始卸载,则按照所经历的最大压应变来确定卸载刚度.图3混凝土的本构模型Fig.3Constitutive model of concrete3用户自定义材料子程序(VU-MAT )实现依据前述的混凝土本构模型,笔者基于用户自定义材料子程序VUMAT 接口,编制了计算程序,并嵌入ABAQUS /EXPLICIT 模块中[9].主程序通过ABAQUS 输入文件中的关键字“*USER-MATERIAL ”来判断是否使用了用户自定义材料,并提供混凝土本构模型所需的材料参数[11].在ABAQUS 中对编制的VUMAT 子程序进行调试,来跟踪每一步调用子程序时变量的更新情况,从而及时发现所产生的错误.调试时要在com-mand 窗口中输入“abaqus -j 文件名.inp -user程序名.for -debug -explicit ”,在VISUAL STU-DIO 开发环境中打开子程序,然后设置断点进行调试.在VUMAT 中只有程序中定义的数组和变量能够进行新旧变量更替,如果另定义更新变量必须特别声明存储特性,否则子程序不会保存上一步变量数值.编程中还应避免除零问题.为保证程序编制思路的可靠性,笔者在进行混凝土本构模型开发之前,首先编制了理想弹塑性材料的VUMAT ,并与ABAQUS 自带理想弹塑性模型进行对比,得到的结果基本一致.4算例验证为充分验证模型的有效性,笔者分别对不同加载制度下的钢筋混凝土柱滞回性能进行计算分析.试件情况见文献[14],构造和配筋如图4所682沈阳建筑大学学报(自然科学版)第27卷示.各试件的加载规则见表1,其中试件SP1与SP2为笔者构造的加载制度,SP3与SP4则为文献[14]中的试件TP74和TP77.材料参数取值见表2.图4钢筋混凝土柱试件Fig.4Reinforced concrete column specimens表1算例加载制度Table 1Loading pattern of example试件编号加载图示加载规则轴力/kN备注SP1-轴向往复加载SP20无轴压单向往复侧推SP3160有轴压单向往复侧推SP4160有轴压双向往复侧推表2材料基本参数Table 2Basic parameters of materials参数项屈服强度/MPa 屈服应变泊松比弹性模量/104MPa 混凝土29.660.0020.252钢筋3570.00170.320由于采用显式动力方法进行拟静力分析,必须减小惯性力对整个构件的影响.采取的措施是降低加载速率和减小计算时步,这样可以使加速度趋近于很小,从而忽略惯性力影响.图5为计算所得试件SP1在轴向往复拉压时,ABAQUS 计算输出的角部混凝土纤维受压应力应变曲线(压为负).该曲线符合笔者所给出混凝土的本构模型,表明笔者编制的材料本构子程序是正确的.图6为试件SP2计算所得的水平加载滞回曲线.可以看出无轴压时构件的滞回曲线呈梭形,且较为饱满,属于典型的受弯构件滞回性能[15].而且对试验的“超前指向”现象也有所表现,即加载曲线并不指向前一循环的开始卸载点,而是指向前一循环的开始卸载点位移更大的一点.图5试件SP1角部混凝土纤维的应力应变关系Fig.5Stress-strain relationship of corner concrete fiber of specimenSP1图6试件SP2计算所得滞回曲线Fig.6Calculated hysteresis curve of specimen SP2图7、8分别为试件SP3的试验实测与计算所得滞回曲线,二者对比可以发现在加载初期0 20mm 时实验曲线与计算曲线基本一致,只是峰值点处计算值略小,这可能是对于混凝土受箍筋第27卷王强等:用于ABAQUS 显式分析梁单元的混凝土单轴本构模型683约束使得强度提高考虑不足.在后期加载20 60mm 时,计算所得滞回曲线较为丰满.造成此现象的原因主要是没有考虑钢筋的滑移,特别是加载后期实际构件已产生滑移,而计算模型并没有表现出来.而且采用的钢筋本构模型为线性强化模型,与真实钢筋的本构关系有一定误差,耗能能力更强一些,所以导致计算所得的滞回曲线比试验所得的曲线要饱满一些.对于试验结果中的“超前指向”现象,计算结果同样能够予以较好的描述.此外由图8与图6对比可以看出轴压力的存在使得构件极限承载力略有提高,而滞回曲线产生捏拢现象.图7试件SP3实测滞回曲线Fig.7Hysteresis curve of specimenSP3图8试件SP3计算所得滞回曲线Fig.8Calculated hysteresis curve of specimen SP3图9、10分别为试件SP4的实验与计算结果.由计算结果可以看出,当方向1保持位移恒定,方向2的加载使得方向1产生荷载跌落现象,反之亦然,这在试验曲线中有相应的体现.可以认为计算模型能够较好地反映钢筋混凝土柱的双向弯曲耦合性能.计算所得滞回曲线仍较试验曲线丰满,计算峰值略低于实验值.图9SP4试验滞回曲线Fig.9Hysteresis curve ofSP4图10SP4计算滞回曲线Fig.10Calculated hysteresis curve of SP4684沈阳建筑大学学报(自然科学版)第27卷5结论(1)笔者建立的模型可以正确反映轴力对钢筋混凝土构件滞回性能的影响,能够较好地模拟钢筋混凝土柱的双向弯曲耦合性能以及滞回曲线中的超前指向与捏拢现象,可以用于多维受力状态下钢筋混凝土梁柱构件的受力行为分析,能够满足空间框架结构动力弹塑性分析的需求.(2)采用箱型截面等效代替考虑钢筋混凝土杆件中的钢筋,有效地解决了杆件采用梁单元模型时难以考虑钢筋作用的问题.(3)由于采用的模型未考虑钢筋的滑移,对整个结果的精确性有一定的影响,有待于进一步研究.参考文献:[1]秦从律,张爱晖.基于截面纤维模型的弹塑性时程分析方法[J].浙江大学学报,2005(7):1003-1008.(Qin Conglü,Zhang Aihui.Non linear time historyanalysis based on section fiber model[J].Journal ofZhejiang University(Engineering Science),2005(7):1003-1008.)[2]Li Kangning.3-D Analysis of RC f rame-w al l building damaged in the1995hyogoken-nanbu earth-quake[C]//Process of the12th World Conference onEarthquake Engineering,New Zealand:Auckland,2000.[3]Mazzoni S,Mckenna F,Scott M H,et al.Opensees command language manual[R].PEER,Berkeley:U-niversity of California,2004.[4]汪训流,陆新征,叶列平.往复荷载下钢筋混凝土柱受力性能的数值模拟[J].工程力学,2007(12):76-81.(Wang Xunliu,Lu Xinzheng,Ye Lieping.Numericalsimulation for the hysteresis behavior of RC columnsunder cyclic loads[J]Engineering Mechanics,2007,24(12):76-81.)[5]王金昌,陈页开.ABAQUS在土木工程中的应用[M].杭州:浙江大学出版社,2006.(Wang Jinchang,Chen Yekai.Application ofABAQUS in civil engineering[M].Hangzhou:Zhe-jiang University Press,2006.)[6]Navalurkar R K,Hsu C T.Fracture analysis of high strength concrete members[J].Journal of Materialsin Civil Engineering,2001,13(3):185-193.[7]Chung W,Sotelino E D.Nonlinear finite-element a-nalysis of composite steel girder bridges[J].Journalof Structural Engineering,2005,131(2):304-313.[8]Spacone E,Fillippou F C,Taucer F.Fiber beam-col-umn model for non-liner analysis of R/C frames[J].Journal of Earthquake Engineering and Structur-al Dynamics,1996,25:711-725.[9]庄茁,由小川,廖剑辉,等.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社,2009.(Zhuang Zhuo,You Xiaochuan,Liao Jianhui,et al.FEM analysis and application based on ABAQUS[M].Beijing:Tsinghua University Press,2009.)[10]王强,吕西林,雷淑忠.离散单元法在钢筋混凝土构件非线性分析的应用[J].沈阳建筑大学学报:自然科学版,2005(2):91-95.(Wang Qiang,Lu Xilin,Lei Shuzhong.Applicationof the DEM on the nonlinear analysis of reinforcedconcrete members[J].Journal of Shenyang JianzhuUniversity:Natural Science,2005(2):91-95.)[11]Scott B D,Park R,Priestley M J N.Stress-strain be-havior of concrete confined overlapping hoops at lowand high strain rates[J].ACI Journal,1982,79(1):13-27.[12]Légeron F,Paultre P.Uniaxial confinement model for normal and high-strength concrete columns[J].Jour-nal of Structural Engineering,2003,129(2):241-252.[13]Mander J B,Priestley M J N,Park R.Theoretical stress-strain model for confined concrete[J].Journalof Structural Engineering,1988,114(8):1804-1825.[14]Kawashima K,Watanabe G,Hayakawa R.Seismic performance of RC bridge columns subjected to bi-lateral excitation[C]//Proc.35th joint meeting,pan-el on wind and seismic effects,Japan:Tsukuba Sci-ence City,2003.[15]张新培.钢筋混凝土抗震结构非线性分析[M].北京:科学出版社,2003.(Zhang Xinpei.Nonlinear seismic study on rein-forced concrete structures[M].Beijing:SciencePress,2003.)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档