江苏省南通市海门中学高一数学(苏教版)教学案 必修3 第二章 第一节 抽样方法
高中数学新苏教版精品教案《苏教版高中数学必修3 2.1.3 分层抽样》2
![高中数学新苏教版精品教案《苏教版高中数学必修3 2.1.3 分层抽样》2](https://img.taocdn.com/s3/m/5e218c877e21af45b207a853.png)
高中数学必修3《分层抽样》教学设计一、教材分析《分层抽样》是必修三第2章第一节的第三课时。
必修三的关于统计的这一教学内容,作用是让学生感受统计的“用样本估计总体”的思想,学会收集数据,进而对其进行整理,选用合适的方法进行分析,最后能用特征数反映总体的特征。
初步掌握在实际问题中,用统计知识分析、解释生活现象的基本方法。
分层抽样这一节内容是对前面简单随机抽样和系统抽样方法的一个补充,学完这节课后,学生可以形成较为完整的抽样方法体系,为后面对总体的分析打下坚实的基础,所以本节课起到承上启下的作用,也是高考的考点之一。
二、学情分析在必修三的学习中,由于教材的内容在苏教版初中教材中已有涉及,学生对统计的思想有初步的了解,学生对这部分内容比较熟悉,教学上更应侧重于应用和实践操作。
所以设置什么样案例,让问题更有代表性,怎样进行课题实践操作,让每个学生参与其中,得到体验和提升,是本节课成败的关键所在,也是教者着力最多的地方。
三、教学目标(一)知识与技能1、正确理解分层抽样的概念;2、掌握分层抽样的一般步骤;3、区分简单随机抽样、系统抽样和分层抽样,并选择适当正确的方法进行抽样。
(二)过程与方法通过对现实生活中实际问题进行分层抽样,感知应用数学知识解决实际问题的方法。
(三)情感、态度与价值观通过对统计学知识的研究,感知数学知识中“估计与精确性”的矛盾统一,培养学生的辩证唯物主义世界观与价值观。
四、教学重难点教学重点:正确理解分层抽样的定义,灵活应用分层抽样抽取样本。
教学难点:恰当的选择三种抽样方法解决现实生活中的抽样问题。
五、教学过程(一)复习导入1目前为止,学过哪几种抽样方法?2从50个产品中随机抽取10个进行检查,则总体个数为,样本容量为。
用什么抽样方法?3某班级共有学生52名,现将所有学生按01,02,03…,52随机编号,若用系统抽样的方法抽取一个容量为4的样本。
已知04号,17号,43号学生在样本中,那么样本中还有一名学生的编号是。
高中数学第2章统计2.1抽样方法2.1.1简单随机抽样教案苏教版必修3
![高中数学第2章统计2.1抽样方法2.1.1简单随机抽样教案苏教版必修3](https://img.taocdn.com/s3/m/e6e7996e6bec0975f565e2a4.png)
第2章统计本章概述现代社会是信息化社会,人们面临形形色色问题,把问题用数量化形式表示出来,是利用数学工具解决问题根底.对于数量化表示问题,需要收集数据、分析数据、解答问题.统计学是研究如何收集、整理、分析数据科学,它可以为人们制定决策提供依据.在客观世界中,需要认识现象无穷无尽.要认识某现象第一步就是通过观察或试验取得观测资料,然后通过分析这些资料来认识此现象.如何取得有代表性观测资料并能够正确地加以分析,是正确地认识未知现象根底,也是统计所研究根本问题.现代社会是信息化社会,数字信息随处可见,因此专门研究如何收集、整理、分析数据科学——统计学就备受重视了.一、课标要求通过实际问题情境,学习抽样方法、用样本估计总体、线性回归根本方法;了解用样本估计总体及其特征思想,体会统计思维与确定性思维差异;通过实例,较为系统地经历数据收集与处理全过程,进一步体会统计思维与确定性思维差异.〔1〕通过实际问题情境,了解随机抽样必要性和重要性.〔2〕了解简单随机抽样方法,会用抽签法与随机数表法从总体中抽取样本;了解系统抽样方法,会用系统抽样方法从总体中抽取样本;了解分层抽样方法,会用分层抽样方法从总体中抽取样本.〔3〕了解各种抽样方法适用范围,能区分简单随机抽样、系统抽样和分层抽样,会选择适当方法进展抽样.〔4〕了解可以通过试验、查阅资料、设计调查问卷等方法收集数据.通过实例了解分布意义和作用.会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,体会它们各自特点;会用样本频率分布估计总体分布.〔1〕会根据实际问题需求,合理地选取样本,掌握从样本数据中提取根本数字特征〔平均数、标准差〕方法.〔2〕理解样本数据平均数意义和作用;会计算样本数据平均数;能用样本数据平均数估计总体平均数.〔3〕理解样本数据标准差意义和作用;会计算样本标准差;能用样本标准差估计总体标准差.〔4〕初步体会样本频率分布和数字特征随机性;了解样本信息与总体信息存在一定差异;理解随机抽样根本方法和样本估计总体思想,能解决一些简单实际问题;了解统计思维与确定性思维差异;会对数据处理过程进展初步评价.〔1〕能通过收集现实问题中两个有关联变量数据作出散点图,并利用散点图直观认识变量间相关关系.〔2〕了解线性回归方法;了解用最小二乘法研究两个变量线性相关问题思想方法;会根据给出线性回归方程系数公式建立线性回归方程〔不要求记忆系数公式〕.二、本章编写意图与教学建议1.要让学生通过具体操作,或对已有经历回忆,感受抽样方法合理性:既保证抽样随机性,又保证样本代表性.要引导学生体会统计作用和根本思想,使学生体会统计思维与确定性思维差异,注意到统计结果随机性,统计推断是有可能犯错误.2.应引导学生根据实际问题需求自主探索,通过比拟选择不同方法合理地选取样本〔这里方法指:简单随机抽样、系统抽样、分层抽样〕.要使学生了解三种抽样方法差异和不同适用范围,会从样本数据中提取需要数字特征.教师应该讲清楚这些数字特征作用和意义,不应把统计处理成数字运算和画图表,不必引导学生去探究这些概念确切定义,不应追求严格形式化定义.3.教学中应注意知识体系前后贯穿.抽样操作步骤、统计分析根本流程都表达了算法思想;线性回归方程与函数一章中数据拟合相照应.4.统计教学必须通过案例来进展.教学中应通过对一些典型案例处理,使学生经历较为系统数据处理全过程,在此过程中学习一些数据处理方法,并运用所学知识、方法去解决实际问题、理解统计思想,而不是死记硬背概念和公式.三、教学内容及课时安排建议本章教学时间约12课时:简单随机抽样1课时系统抽样1课时分层抽样1课时频率分布表1课时频率分布直方图与折线图1课时茎叶图1课时平均数及其估计1课时方差与标准差1课时线性回归方程2课时本章复习2课时2.1 抽样方法2.1.1 简单随机抽样整体设计教材分析本课通过气象工作者对过去北京假设干年7月下旬到8月下旬日最高气温进展抽样研究,从而得到对北京一般年份7月25日到8月8日与8月10日到8月24日两个时段高温分布状况估计,作出合理决策来启发学生思考,从而引入了“抽样方法〞这节内容,并随之介绍了两种简单随机抽样方法〔抽签法和随机数表法〕.简单随机抽样是各种随机抽样中最根本抽样方法,是本节课重点,也是其他各种随机抽样方法赖以存在根底.对于简单随机抽样,我们要详细介绍抽签法和随机数表法,这两种方法都不需要太多设备就可以实现.也可以利用计算机或计算器来产生抽取简单样本随机数法,其特点是效率高,可以节省时间、人力和物力〔在实际中,常借助于计算机产生随机数〕.需要注意是抽签法可以产生真正简单随机样本;而随机数表法产生只是近似程度很高简单随机样本.为了克制本节难点“对样本随机性正确理解〞,教师教学时要以学生熟悉事情来帮助他们形象直观地分散对难点理解〔如电脑派位就读中学等〕.另外可以通过提问〔如本节开头探究问题中,教师可设置如下问题“再一次搅拌所有小包装饼干,然后不放回地取出所得到样本是否与前一次得到样本一样?〞〕引导学生体会样本随机性,理解在同一个总体中不同随机抽样所得样本可以不同道理.本课研究核心问题是“怎样从总体中科学地抽取样本〞,因此,在讲解简单随机抽样方法时须紧扣“一个好样本应该能很好地代表总体〞,让学生体会抽样中“公平性〞原那么〔每个个体被抽中概率都相等〕.三维目标1.了解简单随机抽样〔抽签法和随机数表法〕概念与要求及抽样调查中,样本选择重要性、代表性.2.会用简单随机抽样这种常用抽样方法从总体中抽取样本,掌握简单随机抽样方法原理与步骤.3.通过对具体抽样案例分析,激发学生自主探究生活中数学问题兴趣和动机,体会数学实用性,培养学生分析问题和解决问题能力.重点难点教学重点:理解随机抽样必要性和重要性,会用简单随机抽样方法从总体中抽取样本.教学难点:会用简单随机抽样方法从总体中抽取样本,对样本随机性正确理解.课时安排1课时教学过程复习〔生思考、答复,师点拨〕在统计里,我们把“考察对象全体〞叫总体,其中“每一个被考察对象〞叫个体,从总体中“抽取局部个体组成全体〞叫一个样本,样本中“个体数量〞叫做样本容量.导入新课在电视上,我们见到过一些节目中进展抽奖活动,以对热心参与节目观众进展奖励.比方,江苏省电视台?绝对现场?、江苏省体育彩票摇奖等节目.中奖号码是如何产生呢?这里有没有什么规律呢?是从一些号码中随便抽出来,应该没有什么规律吧!那么,又怎样“随便抽〞呢?这就是我们今天所要研究内容——简单随机抽样.请举一个你身边与抽奖类似例子.推进新课新知探究让学生举例:为了了解全班50名学生视力状况,从中抽取10名学生进展检查.如何抽取呢?〔学生思考,也可以互相交流〕有认为可以先将50名学生混合地站在一起,然后从中任意地抽出10名同学即可.也有学生认为可以先将50名学生从1到50进展编号,再制作1到5050个号签,把50个号签集中在一起充分搅匀,然后随机地从中抽10个号签,最后把编号与抽中号码相一致学生抽出即可.一般地,从个体数为N总体中不重复地取出n(n<N)个个体,每个个体都有一样时机被取到.这样抽样方法称为简单随机抽样.简单随机抽样特点与使用范围:〔1〕它要求被抽取样本总体个体数是有限,以便对其中各个个体被抽取概率进展分析;〔2〕这种抽样是从总体中不重复地进展抽取,这样才能使得总体中每个个体被抽到时机相等,才能使得抽取样本具有代表性,这就使得它具有可操作性.这种可操作性主要表达在用这种方法抽取样本简单易行,且抽出样本中个体性质能很好地代表总体中个体性质;〔3〕这是一种不放回抽样〔当个体被抽出后不放回总体中〕.由于在抽样实践中常常采用不放回抽样,使简单随机抽样具有较广泛实用性,而且由于在所抽取样本中没有被重复抽取个体,所以便于进展分析与计算;〔4〕这是一种等可能性抽样,不仅从总体中抽取一个个体时,每个个体被抽取可能性相等,而且在整个抽样过程中,各个个体被抽取可能性也相等,从而保证了这种抽样方法公平性.这里所说“等可能性〞是指在抽样时,总体中每个个体被抽到时机或者说概率是相等.简单随机抽样适用范围是:总体中个体个数较少.实施简单随机抽样方法:抽签法和随机数表法.一般地,用抽签法从个体个数为N总体中抽取一个容量为k样本步骤为:〔1〕将总体中N个个体编号;〔2〕将这N个号码写在形状、大小一样号签上;〔3〕将号签放在同一箱子中,并搅拌均匀;〔4〕从箱中每次抽出1个号签,连续抽取k次;〔5〕将总体中与抽到号签编号一致k个个体取出.就得到一个容量为k样本.抽签法适用范围和特点:抽签法简单易行,当总体中个体不多时,适宜采用这种方法.当总体个体数较多时不宜采用这种方法,因为用这种方法抽样时需要对总体中个体标号和制作标签,当个体数较多时,标号和制作标签将是一个复杂过程,不易操作.抽签法优点和缺点:抽签法简单易行,当总体中个体不多时,使总体处于“均匀搅拌〞状态较容易,这时,每个个体有均等时机被抽出,从而能保证样本代表性.但是,抽签法也有缺点:当总体个体很多时,将总体“均匀搅拌〞就比拟困难,不能确证每个个体有均等时机被抽出,从而样本代表性就差.随机数表中数是用随机方法产生〔具体方法有:抽签法、抛掷骰子法和计算机生成法〕,表中数在每一个位置上出现时机是等可能.随机数表法就是我们在随机数表中,按一定规那么选取号码,从而抽取样本方法.4.对随机数表法抽取样本步骤是:〔1〕对总体个体进展编号〔每个号码位数一致〕;〔2〕在随机数表中任选一个数作为开场;〔3〕从选定数开场按一定方向读下去,假设得到数码在编号中,那么取出;假设得到号码不在编号中或前面已经取出,那么跳过,如此继续下去,直到取满为止;〔4〕根据选定号码抽取样本.利用随机数表抽取样本时,数表中数字可以两两连在一起,也可以三三连在一起,这就要视总体中个体个数而言.如果总体中个体个数不多于100个,我们一般用两位数表,即将数表中数码两两连在一起,如01,23,…;如果总体中个体个数多于100个而不多于1 000个,我们一般用三位数,就是将数码三三连在一起,如012,567,…,….除此之外,中选定开场读数数后,读数方向可以向右,也可以向左、向上、向下等等.随机数表法适用范围:适用于总体中个体个数较少时抽取样本抽样方法.当总体中个体数较多时,利用随机数表选数将变得比拟麻烦.应用例如例1 〔1〕样本容量是指〔〕〔2〕火车站为了了解某月每天乘车人数,抽查了其中10天每天乘车人数,所抽查10天中某一天乘车人数是这个问题〔〕〔3〕为了了解某地参加计算机水平测试5 000名学生成绩进展统计分析.在这个问题中,5 000名学生成绩全体是〔〕〔4〕一个总体中共有100个个体,用简单随机抽样方法从中抽取一个容量为10样本,那么某个个体被抽到百分率为________________.分析:根据总体、个体、样本、样本容量等概念及抽样等可能性解决问题.解:〔1〕B 〔2〕B 〔3〕A 〔4〕10%点评:进展了初高中衔接,使学生产生亲近感,易进入角色.例2 为了检验某种产品质量,决定从400件产品中抽取10件进展检查,你将采用什么方法进展抽取?请写出具体步骤.分析:因为此题中总体数目较多,故不宜采用“抽签法〞,一个有效方法是制作一个表,其中每个数都是用随机方法产生,这样表称为随机数表〔random number〕.于是,我们只要按一定规那么在随机数表中选取号码就可以了.解:在利用随机数表抽取这个样本时,可以按下面步骤进展:第一步,先将400件产品编号,可以编为000,001, (399)第二步,在教材附录随机数表中任选一个数作为开场,例如从第9行第4列数1开场,为便于说明,我们将附录1中第6行至第10行摘录如下.第三步,从选定数1开场向右读下去,得到一个三位数字号码112,由于112<399,将它取出;继续向右读,得到342,由于342<399,将它取出;继续向右读,得到978,由于978>399,将它去掉;再继续下去,这样相继得到号码:242、074、155、100、134、299、279、244,至此,10个样本号码取满,于是,所要抽取样本号码是112、342、242、074、155、100、134、299、279、244;第四步,根据选定号码抽取样本.点评:1.掌握随机数表法抽取样本步骤,特别要注意数表中数字很多,不要遗漏和重复某些数字.2.将总体中个体编号时从000开场,用意在于总体中所有个体均可用三位数字号码表示,便于运用随机数表.当随机地选定开场读数数后,读数方向可以向右,也可以向左、向上、向下等等,因为随机数表中每个位置上出现哪一个数字是等概率.读数时应去掉其中不在总体编号内和与前面重复号码.目是为确保各个个体被抽取概率相等.3.与抽签法相比,随机数表法抽选样本优点是节省人力、物力、财力和时间.缺点是所产生样本不是真正简单样本.例3 以下抽取样本方式是否属于简单随机抽样?说明道理.〔1〕从无限多个个体中抽出100个个体作样本;〔2〕盒子里共有80个零件,从中选出5个零件进展质量检验,在抽样操作时,从中任意拿出一个零件进展质量检验后再把它放回盒子里.分析:判断依据即简单随机抽样定义.解:〔1〕不是简单随机抽样,由于被抽取样本总体个体数是无限,而不是有限.〔2〕不是简单随机抽样,由于它是放回抽样.点评:简单随机抽样由其定义,应抓住以下几点理解:〔1〕它要求被抽取样本总体个体数有限;〔2〕它是从总体中逐个地进展抽取;〔3〕它是一种不放回式抽样.例4 假设要从高一全体同学〔450人〕中随机抽取50人参加一项活动,请用抽签法和随机数表法抽出人选,写出抽取过程.分析:结合抽签法和随机数表法实施步骤可解此题.解:〔1〕抽签法:对高一年级全体学生450人编号,将学生名字和对应编号分别写在卡片上,并把450张卡片放入一个容器中,搅拌均匀后,每次不放回地从中抽取一张卡片,连续抽取50次,就得到参加这项活动50名学生编号.〔2〕随机数表法第一步:先将450名学生编号〔可以编为000、001、002、…、449〕;第二步:在随机数表中任选一个数,例如选出第7行第5列数1;第三步:从选定数字1开场向右读,得到175,由于175<450,说明号码175在总体编号内,将它取出;继续向右读,得331,由于331<450,说明号码331在总体编号内,将它取出;继续向右读,得到572,由于572>450,将它去掉,按照这个方法继续向右读,依次下去,直至样本50个号码全部取出.这样我们就得到了参加这项活动50名学生.点评:掌握随机数表法抽取样本步骤.知能训练课本本节练习解答:1.制作1到47号47个形状、大小一样号签;取出1到15号号签放在一个大容器中,充分搅拌均匀;沉着器中随机地取出3个号签;取出16到35号号签放在一个大容器中,充分搅拌均匀;沉着器中随机地取出3个号签;取出36到47号号签放在一个大容器中,充分搅拌均匀;沉着器中随机地取出2个号签;将编号与以上号签对应题目取出,就得到了该学生所要答复以下问题.2.具体步骤如下:①将100件电子产品进展随机编号为001、002、 (099)②在附录随机数表中任选一个数作为开场,例如选择第8行第3列0作为起始数;③从0开场向右读下去,得到一个三位数016,由于016<100,将它取出;继续向右读,得到378,由于378>100,将它去掉;依次下去,直至样本25个号码全部取出;④抽出与号码对应电子产品组成一个样本.3.样本共10个,分别是:a,b;a、c;a、d;a、e;b、c;b、d;b、e;c、d;c、e;d、e.4.用随机数表法:①将200名学生进展随机编号为001、002、 (199)②在附录随机数表中任选一个数作为开场,例如选择第8行第25列5作为起始数;③从5开场向右读下去,得到一个三位数507,由于507>199,将它去掉;继续向右读,得到175,由于175<199,将它取出;依次下去,直至样本15个号码全部取出.④抽出与号码对应学生组成一个样本.点评:这组练习能让学生练习简单随机抽样中抽签法和随机数表法,但一定要让学生自己去实践.课堂小结本节课探讨了统计根本思想和简单随机抽样两种方法:〔1〕抽签法;〔2〕随机数表法.要了解两种方法各自优缺点.要明确简单随机抽样是不放回抽样,是一种等概率抽样方法.要掌握简单随机抽样方法解题步骤.作业以小组为单位,定一个调查主题,利用简单随机抽样方法得出调查结果.设计感想本课教学方法与教学理念是:利用已有教学资源和身边急需用数学解决数字化问题来激发学生学习兴趣,课堂上采用以学生思考活动为主体,教师启发和升华学生思维为命脉探究合作式教学模式.。
苏教版数学高一B版必修3教学案 2.1 随机抽样
![苏教版数学高一B版必修3教学案 2.1 随机抽样](https://img.taocdn.com/s3/m/270711d316fc700aba68fc0a.png)
4. 分层抽样
(1)定 义
当总体由差异明显的几部分组成时,为了使样本更充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占的比例进行抽样,这种抽样叫作分层抽样,其中所分成的各部分叫作层.
注:
第一,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,故分层抽样时,每一个个体被抽到的概率都是相等的.
第二,由于分层抽样充分利用了我们掌握的信息,使样本具有较好的代表性,而且在各层抽样时,可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.
5. 三种抽样方法的比较
类别
共同点
各自特点
相互联系
适用范围
简单随机抽样
抽样过程中每个个体被抽取的概率是相同的
从总体中逐个抽取
总体中的个体数较少
(2)问题1可用生活中常用的抽签法,而问题2和3个体的个数较多,并且问题3中的各个体间又存在明显差异,故用抽签法不方便.
(3)每个个体被抽取的概率均等.
2.建立模型
由问题1,2和3及讨论结果,归纳概括出三种抽样的概念.
1. 简单随机抽样
一般地,设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,并且每次抽取时各
注:
第一,当总体中的个体数不多时,适宜抽签法.
第二,从个体数为N的总体中抽取一个容量为n的样本,每个个体被抽到的概率都等于 .
3. 系统抽样
(1)定 义
当总体中的个体数较多时,采用简单随机抽样,就显得烦锁.这时,可将总体分成均衡的若干部分,然后按照预先定出的规则,从每一部分中抽取一个个体,得到需要的样本,这种抽样叫作系统抽样.
高中数学第2章统计2.1抽样方法2.1.2系统抽样教案苏教版必修3
![高中数学第2章统计2.1抽样方法2.1.2系统抽样教案苏教版必修3](https://img.taocdn.com/s3/m/45fb7bf2bb0d4a7302768e9951e79b8968026848.png)
2.1.2 系统抽样整体设计教材分析当总体中个体比拟多,抽签法与随机数表法用于选取样本就比拟烦琐,而且也不能保证样本代表性,所以本节课将要学习又一种新抽样方法——系统抽样.在教学时教师不仅要让学生了解系统抽样概念,而且还要让学生掌握如何进展系统抽样,以及在进展系统抽样时所要注意一些事项,如怎样进展分段,应该分成多少段,分段时如总体个数不能被样本容量整除怎么办等等.在教学中要教会学生会比拟各种方法适用范围与各自优缺点,并会根据实际情况选择恰当抽样方法,且在讲解系统抽样时必须紧扣“每个个体被抽取概率是相等〞理论依据.黑格尔说:“教师是学生心目中‘权威人物’,是儿童心目中最神圣偶像.〞因此,我们教师在教学中要建立民主师生关系,要有意突破常规,让学生敢于在课堂上表现自己,教师也要善于表扬他们.教学时,教师要让学生充分发挥自己潜能,培养他们会对现有知识独立钻研创新精神,并培养他们会用现有知识合理辐射数学思维,得出一些具有个人特色正确结论.三维目标了解系统抽样概念及抽样步骤,会用系统抽样从总体中抽取样本,能运用所学知识判断、分析与选择抽取样本方法.能从现实生活或其他学科提出有价值数学问题,并能加以解决,培养学生运用统计思想表达思考与解决现实世界中问题能力,让学生感受数学美学价值在于鲜活实际应用,立志于学习与研究数学,最大限度地用数学知识效劳于社会,同时自身也能获得最正确生存环境.重点难点教学重点:系统抽样应用.教学难点:对系统抽样中“系统〞思想理解;对样本随机性理解.课时安排1课时教学过程导入新课当总体中个体数比拟多时,采用抽签法或随机数表法那么比拟烦琐,那么该如何抽样?如:某校高一年级共有20个班,每班有50名学生.为了了解高一学生视力状况,从这1 000人中抽取一个容量为100样本进展检查,应该怎样抽取?学生思考,交流讨论,然后代表发言,教师修改总结.推进新课新知探究1.将总体平均分成几个局部,然后按照一定规那么,从每个局部中抽取一个个体作为样本,这样抽样方法称为系统抽样〔systematic sampling〕.2.假设要沉着量为N总体中抽取容量为n样本,系统抽样步骤为:〔1〕采用随机方式将总体中N 个个体编号;〔2〕将编号按间隔k 分段,当n N 是整数时,取k=n N ;当n N 不是整数时,从总体中剔除一些个体,使剩下总体中个体个数N′能被n 整除,这时取k=nN ,并将剩下总体重新编号; 系统抽样与简单随机抽样联系:将总体均分后每一局部进展抽样时,采用是简单随机抽样.系统抽样优点是简便易行,当对总体构造有一定了解时,充分利用已有信息对总体中个体进展排队再抽样,可提高抽样效率;当总体中个体存在一种自然编号时,便于施行系统抽样法.系统抽样缺点是在不了解样本总体情况下,所抽出样本具有一定偏差.〔3〕在第一段中用简单随机抽样确定起始个体编号l ;〔4〕按照一定规那么抽取样本,通常将编号为l,l+k,l+2k,…,l+(n-1)k 个体抽出.应用例如〔多媒体出示题目,学生思考〕例1 一条流水线生产某种产品,每天都可生产128件这种产品,我们要对一周内生产这种产品作抽样检验,方法是抽取这一周内每天下午2点到2点半之间下线8件产品作检验.这里采用了哪种抽取样本方法分析:此抽样选用了“等时〞抽样,与“等间距〞类似而作出判断.解:系统抽样.点评:解决此题要弄清楚目前所学两种抽样概念与特点.例2 某校为了了解全校住校生对学校食堂意见,打算从全校1 000名住校生中抽取50名进展调查,用系统抽样法进展抽取,并写出过程.分析:根据系统抽样步骤可解此题.解:首先将这1 000名学生从1开场进展编号,然后按号码顺1000=20,再从号码1~20第一段中序均分成50段,每段个体数为50用简单随机抽样抽取一个号码,假设抽到是9号,然后从9 开场,每隔20个号码抽取一个,这样就得到容量为50样本编号:9、29、49、…、989,这样,我们就得到一个容量为50样本,这种抽样方法就是系统抽样.N是整数.点评:此题“分段〞比拟方便,因为分段间隔k=n例3 某单位在岗职工共624人,为了调查工人用于上班途中所用时间,决定抽取10%工人进展调查,如何采用系统抽样方法完成这一抽样?分析:总体中每一个个体,都必须等可能地入样.为了实现“等距〞入样,且又等概率,应先剔除,再“分段〞,后定起始数.解:抽样过程如下:〔1〕先将在岗工人624人,用随机方式编号〔如按出生年月日编号〕:000,001,002, (623)〔2〕由题知应抽取62人作为样本,因为624不能被62整除,所以应从总体中剔除4个,将余下620人按编号顺序补齐000,001,002,…,619,并分成62个段,每段10人.〔3〕在第一段000,001,002,…,009这十个编号中,随机定一个起始号l 〔如006〕.〔4〕最后编号为006,016,026,…,59610名工人就为所要抽取样本.点评:1.系统抽样步骤可概括为:〔1〕编号〔采用随机方式将总体中个体编号,为简便起见,有时可直接利用个体所带号码,如考生准考证号、街道上各户门牌号,等等〕.n N 〔N 为总体中个体数,n 为样本容量〕是整数时, k=n N ;当n N 不是整数时,通过从总体中剔除一些个体,使剩下个体数N′能被n 整除,这时k=nN 〕. 〔3〕确定起始个体编号l 〔在第一段用简单随机抽样确定起始个体编号l 〕.〔4〕按照事先确定规那么.......抽取样本〔通常是将l 加上间隔k ,得第二个编号l+k ,再将〔l+k 〕加上k ,得第三个编号l+2k ,这样继续下去,直至获取整个样本〕.“事先确定规那么〞说明不一定按“通常〞方法〔即将l 加上间隔k ,得第二个编号l+k ,再将〔l+k 〕加上k ,得第三个编号l+2k ,这样继续下去,直至获取整个样本〕来抽取样本.2.学生解答,归纳步骤后由学生修改整理,教师巡视点拨,对整理较好同学进展及时表扬或鼓励,激发学生自信.思考:在用系统抽样方法抽样过程中,会用怎样“规那么〞来取除起始号以外其他编号呢?看例4.例4 一个总体中有100个个体,随机编号为0、1、2、 (99)依编号顺序平均分成10个小组,组号依次为1、2、3、…、10,现用系统抽样方法抽取一个容量为10样本,规定如果在第1组随机抽取号码为m,那么在第k(k≥2)组中抽取号码个位数字与m+k个位数字一样.假设m=6,那么第7组中抽取号码为__________________.分析:此题与课本中总结“通常〞方法〔即每隔10抽出一个号码〕有所不同,挖掘点在于条件“第一个号码m之后,在第k组中抽取号码个位数字与m+k个位数字一样〞.解:因为,第1组号码0~9;第2组号码10~19;第3组号码20~29;依次下去第7组中抽取号码十位数字是6.此题要求“在抽取了第一个号码m之后,在第k组中抽取号码个位数字与m+k 个位数字一样〞限制了各组抽出号码个位数.利用m及k值,求出m+k个位数字,即此题中由m=6,k=7得m+k=13,显然,m+k=13个位数字是3,故从第7组中抽取号码是63.所有被抽出号码依次为:6,18,29,30,41,52,63,74,85,96.它们“不等距〞.点评:此题是福建2004年高考卷第15〔文〕题,如果按照系统抽样经历做法“等间距〞做此题话,那么不达.一位教育专家曾指出:学习如果过分地依赖学习者经历或感情世界,即通过纯粹经历积累,而不是通过认知活动对经历进展加工,那么学习将会出现危机,因此必须重视人思维教育.所以,我们在教学时要留足够时间给学生探究,充分暴露学生思维,让学生自己打破思维中过多“经历〞束缚,展示学生创造性学习思维活动过程.知能训练课本本节练习.解答:1.系统抽样中总体与样本比必须是整数,而1 252被50整除余2,因此必须随机剔除2人.应选A.2.具体步骤为:第一步,将1 003名学生,用随机方式编号〔如按出生年月日编号〕:0000,0001,0002,…,1 002.第二步,由题知:应抽取20名学生作为样本,因为1 003不能被20整除,所以应从总体中随机剔除3名学生,将余下1 000名学生按编号顺序补齐为0000,0001,0002,…,0999,并分成20个段,每段50名学生.第三步,在第一段0000,0001,0002,…,0049这50个编号中,随机定一个起始号l〔如0006〕.第四步,编号为0006,0056,0106,…,095620名学生就是所要抽取样本.3.可选择在某个年级进展,如选择高一年级.先将所有学生随机地进展编号;然后将他们分成m段,每段n人〔如总人数不能被均分,可随机地剔除几个人再分〕;再从第一段随机抽取一个号码〔如l〕;那么编号为l,l+n,l+2n,…,l+(m-1)n学生就是需要.最后测量这些学生两臂平展长度及身高,再分别计算两组数据平均数.课堂小结〔先让一位同学总结,其他同学补充,教师完善,并用多媒体展示出来〕(1)系统抽样适用于总体中个数较多情况,因为这时采用简单随机抽样显得不方便.(2)系统抽样与简单随机抽样之间存在着密切联系,即在将总体中个体均分后每一段进展抽样时,采用是简单随机抽样.(3)与简单随机抽样一样,系统抽样也属于等概率抽样.作业为了了解某地参加英语口语水平测试5 027名学生成绩,从中抽取了200名学生成绩进展统计分析,请写出运用系统抽样抽取样本步骤.解:具体步骤为:第一步,将参加计算机水平测试5 027名学生用随机方式编号〔如按准考证编号〕0000,0001, (5026)第二步,由题知:应抽取200人作为样本,因为5 027不能被200整除,所以应从总体中剔除27个,将余下5 000人按编号顺序补齐0000,0001,…,4999,分成200个段,每段25人.第三步,在第一段0000,0001,…,0024这25个编号中,随机定一个起始号l〔如0022〕.第四步,编号为0022,0047,…,4997工人就为所要抽取样本.设计感想由于这局部内容比拟简单,所以整节课以学生为主,尤其是根底在中下游学生,要激发他们学习积极性,从而活泼课堂气氛,使每个学生都全身心投入,动脑、举例.。
高中数学2.1抽样方法教案苏教版必修3
![高中数学2.1抽样方法教案苏教版必修3](https://img.taocdn.com/s3/m/ec8b53b6dd88d0d233d46a87.png)
统计、抽样方法一、教学目标1.随机抽样。
2.用样本估计总体。
3.变量的相关性。
二、知识提要1.抽样当总体中的个体较少时,一般可用简单随机抽样;当总体中的个体较多时,一般可用系统抽样;当总体由差异明显的几部分组成时,一般可用分层抽样,而简单随机抽样作为一种最简单的抽样方法,又在其中处于一种非常重要的地位.实施简单随机抽样,主要有两种方法:抽签法和随机数表法.系统抽样适用于总体中的个体数较多的情况,因为这时采用简单随机抽样就显得不方便,系统抽样与简单随机抽样之间存在着密切联系,即在将总体中的个体均匀分后的每一段进行抽样时,采用的是简单随机抽样;与简单随机抽样一样,系统抽样也属于等概率抽样.分层抽样在内容上与系统抽样是平行的,在每一层进行抽样时,采用简单随机抽样或系统抽样,分层抽样也是等概率抽样.2.样本与总体用样本估计总体是研究统计问题的一种思想方法.当总体中的个体取不同数值很少时,其频率分布表由所取样本的不同数值及其相应的频率来表示,其几何表示就是相应的条形图,当总体中的个体取不同值较多,甚至无限时,其频率分布的研究要用到初中学过的整理样本数据的知识.用样本估计总体,除在整体上用样本的频率分布去估计总体的分布以外,还可以从特征数上进行估计,即用样本的平均数去估计总体的平均数,用关于样本的方差(标准差)去估计总体的方差(标准差).3.正态分布正态分布在实际生产、生活中有着广泛的应用,很多变量,如测量的误差、产品的尺寸等服从或近似服从正态分布,利用正态分布的有关性质可以对产品进行假设检验.4.线性回归直线设x、y是具有相关关系的两个变量,且相应于n组观察值的n个点大致分布在一条直线的附近,我们把整体上这n个点最接近的一条直线叫线性回归直线.三、基础训练1.一个总体中共有10个个体,用简单随机抽样的方法从中抽取一容量为3的样本,则某特定个体入样的概率是( )A.310C3B.89103⨯⨯ C.103D. 1012.(2004年江苏,6)某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示.根据条形图可得这50名学生这一天平均每人的课外阅读时间为( )h)A.0.6 hB.0.9 hC.1.0 hD.1.5 h3.如果随机变量ξ~N(μ,σ2),且Eξ=3,Dξ=1,则P(-1<ξ≤1)等于( )A.2Φ(1)-1B.Φ(4)-Φ(2)C.Φ(2)-Φ(4)D.Φ(-4)-Φ(-2)现要使销售额达到6万元,则需广告费用为______.(保留两位有效数字)四、典型例题【例1】某批零件共160个,其中,一级品48个,二级品64个,三级品32个,等外品16个.从中抽取一个容量为20的样本.请说明分别用简单随机抽样、系统抽样和分层抽样法抽取时总体中的每个个体被取到的概率均相同.【例2】已知测量误差ξ~N(2,100)(cm),必须进行多少次测量,才能使至少有一次测量误差的绝对值不超过8 cm的频率大于0.9?五、达标检测1.对总数为N的一批零件抽取一个容量为30的样本,若每个零件被抽取的概率为0.25,则N 等于( )A.150B.200C.120D.1002.设随机变量ξ~N(μ,σ),且P(ξ≤C)=P(ξ>C),则C等于( )A.0B.σC.-μD.μ3.(2003年全国,14)某公司生产三种型号的轿车,产量分别为1200辆、6000辆和2000辆,为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取______辆、______辆、______辆.4.某厂生产的零件外直径ξ~N(8.0,1.52)(mm),今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为7.9 mm和7.5 mm,则可认为( )A.上、下午生产情况均为正常B.上、下午生产情况均为异常C.上午生产情况正常,下午生产情况异常D.上午生产情况异常,下午生产情况正常5.随机变量ξ服从正态分布N(0,1),如果P(ξ<1)=0.8413,求P(-1<ξ<0).6.公共汽车门的高度是按照确保99%以上的成年男子头部不跟车门顶部碰撞设计的,如果某地成年男子的身高ξ~N(173,72)(cm),问车门应设计多高?基础训练1.解析:简单随机抽样中每一个体的入样概率为N n. 答案:C2.解析:一天平均每人的课外阅读时间应为一天的总阅读时间与学生数的比,即 5050.2105.1100.1205.050⨯+⨯+⨯+⨯+⨯=0.9 h.答案:B3.解析:对正态分布,μ=E ξ=3,σ2=D ξ=1,故P (-1<ξ≤1)=Φ(1-3)-Φ(-1-3)=Φ(-2)-Φ(-4)=Φ(4)-Φ(2). 答案:B4.解析:先求出回归方程y ˆ=bx+a ,令y ˆ=6,得x=1.5万元.答案:1.5万元 典型例题【例1】剖析:要说明每个个体被取到的概率相同,只需计算出用三种抽样方法抽取个体时,每个个体被取到的概率. 解:(1)简单随机抽样法:可采取抽签法,将160个零件按1~160编号,相应地制作1~160号的160个签,从中随机抽20个.显然每个个体被抽到的概率为16020=81.(2)系统抽样法:将160个零件从1至160编上号,按编号顺序分成20组,每组8个.然后在第1组用抽签法随机抽取一个号码,如它是第k 号(1≤k ≤8),则在其余组中分别抽取第k+8n (n=1,2,3,…,19)号,此时每个个体被抽到的概率为81.(3)分层抽样法:按比例16020=81,分别在一级品、二级品、三级品、等外品中抽取48×81=6个,64×81=8个,32×81=4个,16×81=2个,每个个体被抽到的概率分别为486,648,324,162,即都是81.综上可知,无论采取哪种抽样,总体的每个个体被抽到的概率都是81.评述:三种抽样方法的共同点就是每个个体被抽到的概率相同,这样样本的抽取体现了公平性和客观性.思考讨论:现有20张奖券,已知只有一张能获奖,甲从中任摸一张,中奖的概率为201,刮开一看没中奖.乙再从余下19张中任摸一张,中奖概率为191,这样说甲、乙中奖的概率不一样,是否正确?【例2】解:设η表示n 次测量中绝对误差不超过8 cm 的次数,则η~B (n ,p ).其中P=P (|ξ|<8)=Φ(1028-)-Φ(1028--)=Φ(0.6)-1+Φ(1)=0.7258-1+0.8413=0.5671.由题意,∵P (η≥1)>0.9,n 应满足P (η≥1)=1-P (η=0)=1-(1-p )n>0.9,∴n>)5671.01lg()9.01lg(--=4329.0lg 1-=2.75.因此,至少要进行3次测量,才能使至少有一次误差的绝对值不超过8 cm 的概率大于0.9. 达标检测1.解析:∵N 30=0.25,∴N=120.答案:C2.解析:由正态曲线的图象关于直线x=μ对称可得答案为D. 答案:D3.解析:因总轿车数为9200辆,而抽取46辆进行检验,抽样比例为920046=2001,而三种型号的轿车有显著区别.根据分层抽样分为三层按2001比例分别有6辆、30辆、10辆. 答案:6 30 104.解析:根据3σ原则,在8+3×1.5=8.45(mm )与8-3×1.5=7.55(mm )之外时为异常. 答案:C5.解:∵ξ~N (0,1),∴P (-1<ξ<0)=P (0<ξ<1)=Φ(1)-Φ(0)=0.8413-0.5=0.3413. 6.解:设公共汽车门的设计高度为x cm ,由题意,需使P (ξ≥x )<1%.∵ξ~N (173,72),∴P (ξ≤x )=Φ(7173-x )>0.99.查表得7173-x >2.33,∴x >189.31,即公共汽车门的高度应设计为190 cm ,可确保99%以上的成年男子头部不跟车门顶部碰撞.。
高中数学必修3第二章第一节《随机抽样》全套教案
![高中数学必修3第二章第一节《随机抽样》全套教案](https://img.taocdn.com/s3/m/0ba5255ecc175527072208b0.png)
随机抽样
简单随机抽样
【教学目标】
1.能从现实生活中或其他学科中提出具有一定价值的统计问题。
2.理解随机抽样的的必要性和重要性。
3.学会用简单随机抽样方法能从总体中抽取样本。
【教学重点难点】
重点:能从现实生活中或其他学科中提出具有一定价值的统计问题. 难点:学会用简单随机抽样方法能从总体中抽取样本
【学前准备】:多媒体,预习例题
系统抽样
【教学目标】
(1)正确理解系统抽样的概念;
(2)掌握系统抽样的一般步骤;
(3)正确理解系统抽样与简单随机抽样的关系;
【教学重难点】
正确理解系统抽样的概念,能够灵活应用系统抽样的方法解决统计问题。
【学前准备】:多媒体,预习例题
分层抽样
【教学目标】
1.学生通过微课自学“分层抽样”概念;
2.掌握分层抽样的一般步骤;
3.区分简单随机抽样、系统抽样和分层抽样,并选择适当正确的方法进行抽
样。
【教学重点】
掌握分层抽样的一般步骤。
【教学难点】
区分简单随机抽样、系统抽样和分层抽样,并选择适当正确的方法进行抽样。
【学前准备】:多媒体,预习例题。
高中数学苏教版必修三《2.1抽样方法》课件
![高中数学苏教版必修三《2.1抽样方法》课件](https://img.taocdn.com/s3/m/38ebcbbdac51f01dc281e53a580216fc700a53a0.png)
1.三种不同的容器中分别装有同一型号的零件分别为
400个、200个、150个,现在要从这750个零件中抽取一个容
量为50的样本,则应该采用的抽样方法是
(C )
A.分层抽样 B。简单随机抽样
C。系统抽样 D。抽签法
2.为了了解参加运动会的2000名运动员的年龄情况,从中抽
2、在随机数表中任取一个数作为开始。
3、从选定的数开始按一定的方向(或规则)读下 去,得到 的号码若不在编号中,则跳过;若在编号中则取出;如果得到 的号码前面已经取出,也跳过;如此继续下去,直到取满为止。
4、根据选定的号码抽取样本。
一编二定三取四抽
结论:如果用简单随机抽样从个体数为N的总体中
抽取一个容量为n的样本时,每个个体被抽到的概
[例2] 下面给出某村委调查本村各户收入情况作的抽样, 阅读并回答问题:
本村人口:1200人,户数300,每户平均人口数4人 应抽户数:30 抽样间隔:1200/30=40 确定随机数字:取一张人民币,后两位数为12 确定第一样本户:编号12的户为第一样本户 确定第二样本户:12+40=52,52号为第二样本户
9.已知某一议案与不同职业的人有比较密切的关系, 今要调查这一议案的拥护率,你将采取何种方法?略 述理由。
解:应采用分层抽样,因为采取简单随机抽样,容易产 生某种职业的人抽得偏多,而另一种职业的人抽得偏 少.而不同职业的人的意见可能相差很大,所以应该按 职业分层,对每层按比例进行抽样。
10.某单位有职工160名,其中业务人员96 名,管理人员40名,后勤服务人员24名.为了 了解职工的某种情况,要从中抽取一个容量
…… ①该村委采用了何种抽样方法? ②抽样过程存在哪些问题,试修改;
江苏省海门中学高一数学(苏教版)教学案 3 第二章 第一节 抽样方法
![江苏省海门中学高一数学(苏教版)教学案 3 第二章 第一节 抽样方法](https://img.taocdn.com/s3/m/130164eb10a6f524cdbf85db.png)
抽样方法苏教版必修3教学案
抽样方法——简单随机抽样
学生完成所需时间20分钟班级姓名第小组
一、学习目标
(1)正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;
(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本;
(3)感受抽样统计的重要性和必要性.
二、教学重、难点
正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。
三、知识导入
问题1.假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?
问题2.学校的投影仪灯泡的平均使用寿命是3000小时,“3000小时”这样一个数据是如何得出的呢?
四、学习内容
(一).统计的有关概念:
统计的基本思想:用样本去估计总体;
总体:
个体:
样本:;
样本容量: ;
抽样: .
(二).抽样的常见方法:
1.简单随机抽样的概念
2.简单随机抽样实施的方法:
情景:为了了解高一(1)班50名学生的视力状况,从中抽取10名学生进行检查,如何抽取呢?
(1)抽签法:
一般步骤:
说明:
(1)将个体编号时,可利用已有的编号,例如:学生的学号、座位号等.
(2)当总体个数不多时,适宜采用
(2)随机数表法:
一般步骤:。
2.1.系统抽样-苏教版必修3教案
![2.1.系统抽样-苏教版必修3教案](https://img.taocdn.com/s3/m/135813c3690203d8ce2f0066f5335a8103d26658.png)
2.1 系统抽样 - 苏教版必修3教案1. 前言在统计学习中,数据的收集是非常重要的一个环节。
如何采集合适的数据,使得数据的结果具有统计意义,成为了一个需要解决的问题。
本文将介绍统计学中一种常用的数据采集方法—系统抽样,以及如何在苏教版必修3中进行系统抽样的教学。
2. 系统抽样的定义系统抽样是指在一个总体中,按照一定的规则每隔若干个单位(也称作抽样间距)抽取一个样本单位的方法。
具体来说,假设总体大小为N,样本大小为n,抽样间距为k,则系统抽样的抽样过程是这样的:1.随机选取一个介于1到k之间的整数j,即起始点;2.从第j个个体开始,每k个单位取一个;再重复该过程n/k次,直至选出n 个单位为止。
3. 系统抽样的特点与随机抽样相比,系统抽样有如下几个特点:1.系统抽样比随机抽样更加容易实施,因为只需要确定抽样间距即可;2.系统抽样的样本单位期望均匀分布于总体中;3.系统抽样可以借助一些特殊的性质,如周期性等,更好地应用于某些场合。
4. 系统抽样在苏教版必修3中的教学在苏教版必修3(数学)中,系统抽样的教学可以在以下几个方面展开:4.1 系统抽样的基本方法在课堂上,教师可以通过讲解系统抽样的基本方法,让学生理解抽样间距对样本的影响,并演示如何进行系统抽样的具体操作。
同时,可以给学生提供课后练习,检验学生对于系统抽样的掌握情况。
4.2 系统抽样的应用举例在实际应用中,系统抽样可以用于生产工艺的监控、城市排放的监测、自然资源的调查等等。
在教学中,教师可以给学生提供实际应用的样例,让学生理解系统抽样在实际问题中的应用情况,并考虑如何合理设定抽样间距。
4.3 系统抽样与其他抽样方法的比较在教学中,可以让学生比较系统抽样与其他抽样方法(如随机抽样、分层抽样等)的区别与优缺点,帮助学生了解何时应该选择何种抽样方法。
5. 结论通过本文的介绍,我们了解到了系统抽样在统计学中的定义、特点以及在苏教版必修3中的教学方法。
高中数学第2章统计2.1抽样方法2.1.3分层抽样教案苏教版必修3
![高中数学第2章统计2.1抽样方法2.1.3分层抽样教案苏教版必修3](https://img.taocdn.com/s3/m/f9e57b0b7dd184254b35eefdc8d376eeaeaa17a6.png)
2.1.3 分层抽样整体设计教材分析本课是在学生已经学习了简单随机抽样与系统抽样之后所要学习又一种抽样方法——分层抽样.由前两节课我们知道简单随机抽样或系统抽样有时获得样本不具有很好代表性,比方,当个体间差异比拟大时,如果采用简单随机抽样,不同人就有可能得到差异很大结果;同样,如果采用系统抽样也很可能得不到具有代表性样本.为此,为了更大程度地提高样本代表性,我们需要事先对总体有一定了解,然后根据已有了解,再按照一定方式抽取,这就是分层抽样.本教案着眼点是让学生主体参与,让学生动手、动脑,并通过观察、分析、比拟、归纳等进展合情推理,鼓励学生积极活动,勇于探索.针对本节课概念性强、思维量大、例习题较多特点,本课教法是以启发学生观察思考分析讨论为主启发式教学.三维目标1.了解分层抽样概念,理解科学、合理选用抽样方法必要性.2.掌握分层抽样操作步骤,对实际问题比照分析.3.了解各种抽样方法使用范围,使学生能根据具体情况选择适当抽样方法.4.结合教学内容培养学生学习数学兴趣以及“用数学〞意识,培养学生科学探索精神.重点难点教学重点:通过实例了解分层抽样方法.教学难点:分层抽样步骤.课时安排1课时教学过程导入新课设计思路一:〔事例引入〕有一条消息“抽查局部考生成绩了解知道,江苏省2005年高考物理学科平均分约为95分.〞请问这个数据是用什么样抽样方法得到?分析:不能单纯地用简单随机抽样或系统抽样,因为江苏省有很多地区,而每个地区学生成绩不平衡,甚至相差太大.那么,设计抽样方法时,最核心问题是什么,应该注意什么呢?一定要使抽取样本具有很好代表性.为此,在设计抽样方法时,我们应充分利用自己对总体情况已有了解,选择适合抽样方法.师:请同学们一起来探讨一例,你认为应当怎样抽取样本?设计思路二:〔实例引入〕某校高一、高二与高三年级分别有学生1 000,800与700名,为了了解全校学生视力情况,欲从中抽取容量为100样本,怎样抽样较为合理?〔让中档生配合教师引入新课,增强他们赶超意识;优秀生补充,树立他们“我要更强〞竞争意识;后进生主动参与,提高他们课堂上有效思考活动时间〕分析:由于不同年级学生视力状况有一定差异,不能在2 500名学生中随机抽取100名学生,也不宜在三个年级平均抽取.为准确反映客观实际,不仅要使每个个体被抽到概率相等,而且要注意总体中个体层次性,所以,先将全体学生分成高一、高二与高三年级三层,分别抽样.三局部学生人数有较大差异,应考虑各层个体数在总体中所占比例.用各层个体数与总体个体数比乘以样本容量就可得各层所要抽取个体数.推进新课新知探究学生思考,交流讨论,然后代表发言.一般地,当总体由差异明显几个局部组成时,为了使样本更客观地反映总体情况,我们常常将总体中个体按不同特点分成层次比拟清楚几局部,然后按各局部在总体中所占比实施抽样,这种抽样方法叫做分层抽样〔stratified sampling〕,其中所分成各个局部称为“层〞.分层抽样步骤是:〔1〕将总体按一定标准分层;〔2)计算各层个体数与总体个体数比;〔3〕按各层个体数占总体个体数比确定各层应抽取样本容量;〔4〕在每一层进展抽样〔可用简单随机抽样或系统抽样〕.分层抽样特点是:分层抽样时,每个个体被抽到可能性是相等.由于分层抽样充分利用了信息,使样本具有较好代表性,而且在各层抽样时,可以根据具体情况采取不同抽样方法,因此分层抽样在实践活动中有着广泛应用.应用例如例1 某电视台在因特网上就观众对其某一节目喜爱程度进展调查,参加调查总人数为12 000人,其中持各种态度人数如下表所示:很喜爱喜爱一般不喜爱2 435 4 5673 926 1 072电视台为进一步了解观众具体想法与意见,打算从中抽选出60人进展更为详细调查,应怎样进展抽样?分析:因为总体中人数较多,所以不宜采取简单随机抽样,又由于持不同态度人数差异较大,故也不宜用系统抽样,而以分层抽样为妥.解:采用分层抽样.具体抽样步骤如下:①把总体分成四层:“很喜爱〞“喜爱〞“一般〞“不喜爱〞;②因为总人数为12 000人,所以各层个体数与总体个体数之比分别为“很喜爱〞占;“喜爱〞占;“一般〞占;“不喜爱〞占;③因为抽选出60人,所以从每层中抽出人数为:“很喜爱〞有×60≈12人,“喜爱〞有×60≈23人,“一般〞有×60≈20人,“不喜爱〞有×60≈5人.④在每层中用系统抽样方法抽取样本,把各层抽得个体合在一起就得到了所需样本.点评:〔1〕分层抽样四个步骤中按比例分配各层所要抽取个体数时,有时计算出个体数可能是一个近似数,但这并不影响样本容量.〔2〕分层抽样适用于总体由差异比拟明显几个局部组成情况,是等概率抽样,它是客观、公平.〔3〕分层抽样是建立在简单随机抽样或系统抽样根底上,由于它充分利用了调查者对被调查对象〔总体〕事先所掌握各种信息,并充分考虑了保持样本构造与总体构造一致性,从而使抽取样本具有较好代表性.并且在各层抽样时可以根据情况采用不同抽样方法,因此分层抽样在实践中有着非常广泛应用.例2 一工厂生产了某种产品16 800件,他们来自甲、乙、丙生产三条线.为检查这批产品质量,决定采用分层抽样方法进展抽样,从甲、乙、丙3条生产线抽取个体数组成一个等差数列,那么乙生产线生产了________________件产品.分析:审题是思维入口,抓住问题透露信息,进展分检、组合与加工,找出解题思路.非常有价值信息是从甲、乙、丙3条生产线抽取个体数组成一个等差数列.解法一:因为从甲、乙、丙3条生产线抽取个体数组成一个等差数列,故设从甲、乙、丙三条生产线抽出个体数分别为a,a+d,a+2d,那么各层抽出个体合在一起就得到了所需样本容量3a+3d,所以从各条生产线抽出个体数占总体比为.设乙生产线生产了x件产品,那么×x=a+d,x=5 600.解法二:设从甲、乙、丙三条生产线抽出个体数分别为:a-d,a,a+d,那么各层抽得个体合在一起就得到了所需样本容量为3a,所以从各条生产线抽出个体数占总体比为.设乙生产线生产了x件产品,那么×x=a,x=5 600.解法三:因为从甲、乙、丙3条生产线抽取个体数组成一个等差数列,由分层抽样原理知甲、乙、丙3条生产线生产产品件数也组成一个等差数列.故设甲、乙、丙生产线生产产品件数分别为y-m,y,y+m件,那么(y-m)+y+(y+m)=16 800,即y=5 600.点评:解法二妙在设三数时考虑了“三数成等差且它们与〞条件.解法三思路:由于此题采用分层抽样方法进展抽样,从甲、乙、丙3条生产线抽取个体数组成一个等差数列,那么甲、乙、丙3条生产线生产产品件数也组成一个等差数列.因为从各条生产线抽出人数占总体比〔设为k〕是不变,那么设从甲、乙、丙三条生产线抽出个体数分别为:a-d,a,a+d〔等差数列〕,那么甲、乙、丙3条生产线生产产品件数分别为:〔等差数列〕.思考:求出了乙生产线生产了5 600件产品,能否求出甲与丙生产线分别生产了多少件产品.如果不能,能否加一些条件,求出甲与丙生产线分别生产产品件数.解:不能,因d,k,a都不知.可以通过加条件求出甲与丙生产线分别生产产品件数,如a=56,d=4,那么k==1100,所以甲、丙生1,那么产线生产产品件数分别为:=5 200,=6 000.或者d=4,k=1001,所以a=56,以下解法同前.k=3a16 800=100例3 为了考察某校教学水平,将抽查这个学校高三年级局部学生本学年考试成绩.为了全面地反映实际情况,采用以下三种方式进展抽查〔该校高三年级共有20个教学班,并且每个班内学生已经按随机方式编好了学号,假定该校每班学生人数都一样〕:①从全年级20个班中任意抽取一个班,再从该班中任意抽取20人,考察他们学习成绩;②每个班抽取一人,共计20人,考察这20个学生成绩;③把学生按成绩分成优秀、良好、普通三个级别,从中抽取100名学生进展考察〔:假设按成绩分,该校高三学生中优秀生共150人,良好生共600人,普通生共250人〕.根据上面表达,试答复以下问题:〔1〕上面三种抽取方式中,其中总体、个体、样本分别指是什么?每一种抽取方式抽取样本中,其样本容量分别是多少?〔2〕上面三种抽取方式中各自采用何种抽取样本方法?〔3〕试分别写出上面三种抽取方式各自抽取样本步骤.分析:此题主要考察数理统计中一些根本概念与根本方法.做这种题目时,应该注意表达完整性与条理性.解:〔1〕这三种抽样方式中,其总体都是指该校高三全体学生本年度考试成绩,个体都是指高三年级每个学生本年度考试成绩.其中第一种抽取方式中样本为所抽取20名学生本年度考试成绩,样本容量为20;第二种抽取方式中样本为所抽取20名学生本年度考试成绩,样本容量为20;第三种抽取方式中样本为所抽取100名学生本年度考试成绩,样本容量为100.〔2〕上面三种抽样方式中,第一种方式采用方法是简单随机抽样法;第二种方式采用方法是系统抽样法与简单随机抽样法;第三种方式采用方法是分层抽样法与简单随机抽样法.〔3〕第一种方式抽样步骤如下:第一步:在这20个班中用抽签法任意抽取一个班;第二步:从这个班中按学号用随机数表法或抽签法抽取20名学生,考察其考试成绩.第二种方式抽样步骤如下:第一步:在第一个班中,用简单随机抽样法任意抽取某一个学生,记其学号为a;第二步:在其余19个班中,选取学号为a学生,共计19人.第三种方式抽样步骤如下:第一步:分层.因为假设按成绩分,其中优秀生共150人,良好生共600人,普通生共250人,所以在抽取样本时,应该把全体学生分成三个层次.第二步:确定各个层次抽取人数.因为样本容量与总体个体数比为:100∶1000=1∶10,所以在每个层次抽取个体数依次为,即15,60,25.第三步:按层次分别抽取.在优秀生中用简单随机抽样法抽取15人;在良好生中用简单随机抽样法抽取60人;在普通生中用简单随机抽样法抽取20人.点评:1.弄清考察对象是明确总体、个体、样本关键,这里考察对象指是数据.样本中有多少个个体,样本容量就是多少.总体、个体、样本考察对象是同一,所不同是范围大小.2.判断采用何种抽样方法时,应充分理解三种抽样方法定义.三种抽样方法共同点、各自特点、三者之间联系以及适用范围:类别共同点各自特点相互联系适用范围简单随机抽样抽样过程中每个个体被抽取概率相等从总体中逐个抽取总体中个数较少系统抽样将总体均分成几局部,按事先确定规那么分别在各局部中抽取在起始局部抽样时采用简单随机抽样总体中个数较多分层抽样将总体分成几层,分层进展抽取各层抽样时采用简单随机抽样或系统抽样总体由差异明显几局部组成例4 以下问题中,采用怎样抽样方法较为合理〔1〕从10台冰箱中抽取3台进展质量检查;〔2〕某电影院有32排座位,每排有40个座位,座位号为1~40.有一次报告会坐满了听众,报告会完毕后为听取意见,需留下32名听众进展座谈;〔3〕某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面意见,拟抽取一个容量为20样本.此题考察统计中抽样方法有关知识,要求学生会区别几种抽样方法.分析:此题特征是:总体情况来分析选择抽样方法.解:〔1〕总体容量比拟小,用抽签法或随机数表法都很方便. 〔2〕总体容量比拟大,用抽签法或随机数表法比拟麻烦.由于人员没有明显差异,且刚好32排,每排人数一样,可用系统抽样.具体做法是:将每排40人组成一组,共32组,从第1排至第32排分别为1~32组,先在第1排用简单随机抽样抽取一名听众,再将其他各排与此听众座位号一样听众全部取出.〔3〕由于学校各类人员对这一问题看法可能差异较大,故应采用分层抽样方法.具体做法是:总体容量为160,故样本中教师人数应为20×160120=15名,行政人员人数应为20×16016=2名,后勤人员应为20×16024=3名. 点评:此题考察统计中抽样方法有关知识,要求学生会区别几种抽样方法.知能训练1.在10 000个有时机中奖参加港澳七日游号码〔编号为0000~9999〕中,在公证部门监视下按照随机抽取方法确定后三位数为369号码为中奖号码.请你分析这里运用了哪种抽样方法来确定中奖号码?依次写出这10个中奖号码.2.某校共有118名教师,为了支援西部教育事业,现要从中抽出16名教师组成暑期西部讲师团.请用系统抽样法选出讲师团成员.3.某大学共有全日制学生15 000人,其中专科生3 788人、本科生9 874人、研究生1 338人,现为了调查学生上网查找资料情况,欲从中抽取225人,为了使样本具有代表性,应该怎样抽取样本?〔充分给予学生思考时间,由学生分析思路,写出详细解题过程,培养学生标准化书写解题过程意识,教师点拨与指导.出示投影片上准备好解题过程,让学生对照自己书写过程,扬长避短〕4.某市3个区共有高中学生2 000人,且3个区高中学生人数之比为2∶3∶5,现要用分层抽样方法从所有学生中抽取一个容量为200样本,这3个区分别应抽取多少人?写出抽样过程.解答:1.因为中奖号码后三位数一样,因此10个中奖号码依次为:0369,1369,2369,3369,4369,5369,6369,7369,8369,9369.它们间隔一样,因此采用是系统抽样方法.2.(1)对这118名教师进展编号1,2, (118)(2)计算间隔k=16118=7.375.由于k 不是一个整数,我们从总体中随机剔除6个样本,再来进展系统抽样.例如我们随机剔除了3、46、59、57、112、93这6名教师,然后再对剩余112名教师编号,计算间隔k=7.(3)在1~7之间随机选取一个数字,例如选5,将5加上间隔7得到第二个个体编号12,再加上7得到第三个个体编号19,依次进展下去,直到获取整个样本.3.采用分层抽样.具体抽样步骤如下:①将总体分成三层:“专科生〞“本科生〞“研究生〞;②因为总人数为15 000人,所以各层个体数与总体个体数之比分别为:“专科生〞占;“本科生〞占;“研究生〞占;③因为抽选出225人,所以从各层中抽出人数为:“专科生〞有×225≈57人;“本科生〞有×225≈148人;“研究生〞有×225≈20人;④在每层中用系统抽样方法抽取样本,把各层抽得个体合在一起就得到了所需样本.4.由分层抽样原理知从各层中抽取样本个数之比等于各层个体数之比,所以从各层中抽出人数为:“第一区〞有102×200=40人;“第二区〞有103×200=60 人;“第三区〞有105×200=100人;然后在每层中用系统抽样方法抽取样本,把各层抽得个体合在一起就得到了所需样本.点评:有针对性与例题配套,加强学生对上课例题理解.课堂小结〔先让一位同学总结,其他同学补充,教师完善,并用多媒体展示出来〕〔1〕分层抽样定义;〔2〕分层抽样实施方法及步骤;〔3〕简单随机抽样、系统抽样及分层抽样区别与联系.作业课本习题2.1 2、8.设计感想由于课程标准对分层抽样要求层次为“了解〞,因此没有在如何合理分层这个层面上花过多时间,而是以例题、习题形式补充了一些与学习、生活、生产相关背景材料,让学生感受分层抽样应用广泛性与必要性.习题详解1.解:采用分层抽样方法.具体为:①将全市800家企业分成四个层:“中外合资企业〞“私营企业〞“国有企业〞“其他性质企业〞;②“中外合资企业〞与全市企业总数之比为160∶800=1∶5;“私营企业〞与全市企业总数之比为320∶800=2∶5;“国有企业〞与全市企业总数之比为240∶800=3∶10;“其他性质企业〞与全市企业总数之比为80∶800=1∶10;③应抽取“中外合资企业〞40×51=8家 ;“私营企业〞40×52=16家;“国有企业〞 40×103=12家;“其他性质企业〞40×101=4家; ④将抽出40家企业合在一起就组成所要样本.2.解:由题意知:抽取高二年级学生15人.故抽取高二年级学生与高二年级学生总数之比为15∶300=1∶20,所以高一年级学生总数为20×20=400人,高三年级学生总数为10×20=200人,全校学生总数为400+300+200=900人.3.解:因为4个区学生人数之比为3∶2.8∶2.2∶2,因此各个区学生数分别占总数3∶(3+2.8+2.2+2)=3∶10,2.8∶(3+2.8+2.2+2)=7∶25, 2.2∶(3+2.8+2.2+2)=11∶50,2∶(3+2.8+2.2+2)=2∶10,所以应分别从各个区抽取学生200×103=60人,200×257=56人,200×5011=44人,200×102=40人. 4.解:可先将高一年级学生按年龄分为15岁、16岁、17岁,然后再将每一个年龄段内学生分为男、女调查他们身高,这样整个年级学生就可分为9个层,最后采用分层抽样方法抽取一些学生调查他们作为样本.5.解:可对全校学生分为三个层:“高一学生〞“高二学生〞“高三学生〞,然后在每一层中采用系统抽样方法抽取出各层学生,最后调查这些学生身高与心率,获得数据,制成表格.6.解:先将学生按年级分为几个局部,然后对每一局部学生采用随机抽样方法抽取一些学生组成样本,调查他们父母年龄,收集数据以制成表格.7.可对班级学生按男、女分为两个局部,然后按男、女生在班级所占比例在每一局部采用随机抽样方法抽取一些学生,以调查他们对这一问题看法.8.解:〔1〕采用分层抽样方法,具体步骤如下:①将500名学生分为4个层:“血型为O 型学生〞“血型为A 型学生〞“血型为B 型学生〞“血型为AB 型学生〞;②“血型为O 型学生〞占总人数比为,“血型为A 型学生〞占总人数比为,“血型为B 型学生〞占总人数比为,“血型为AB 型学生〞占总人数比为;③应抽取血型为O 型学生40×52=16人;血型为A 型学生40×41=10人;血型为B 型学生40×41=10人;血型为AB 型学生40×101=4人; ④从各层用随机抽样方法抽出学生组成样本.〔2〕AB 血型样本抽样过程〔抽签法〕步骤:①将血型为AB 型学生进展随机编号为1,2, (50)②用白纸做成形状、大小完全一样1至50号签;③把1至50号签集中在一起放在一个大容器中充分搅拌均匀; ④沉着器中随机地抽出4个签;⑤最后把编号与抽中号码相一致学生抽出即可.9.解:抽签法或随机数表法:如检查某个班级同学对英语单词掌握情况;系统抽样:检查高一年级同学对英语单词掌握情况;分层抽样:检查全校同学对英语单词掌握情况.10.略.。
苏教版高中数学必修三课件2.1抽样方法(1)
![苏教版高中数学必修三课件2.1抽样方法(1)](https://img.taocdn.com/s3/m/8c6792a7ec3a87c24028c488.png)
问题1.2008高考考试中,某地有考生有2万名, 如果为了了解这些考生数学的主观题的得分情 况,我们应该怎样做?
问题2.今有某灯泡厂生产的灯泡10000只,怎 样才能了解到这批灯泡的使用寿命呢? 总体的个数较多,采用简单随机抽样较为费事.
问题5:为了了解高一年级15个班的同学 (每班50名)的视力情况,从这15个班 中抽取一个容量为75的样本进行检查, 应如何抽取样本?
第一步,先将40件产品编号,可以编为00,01,02,,38,39.
所谓编号,实际上是编数字号码.不 要编号成:0,1,2,…,39
第二步,在附录1随机数表中任选一个数作为开始. 为了保证所选定数字的随机性,应在面对 随机数表之前就指出开始数字的纵横位置 第三步,获取样本号码.
问题4.为了检验某种产品的质量,决定从40件产品中抽取10件 进行检查,如何抽样? 例如选取第8行第9列开始.
方案:通常将各班同学平均分成5组,再在第一组用抽签法确 定一个学号的学生,按每组逐次加10的原则抽取5名代表, 例:抽取学号为02,12,22,32,42等5位代表.
将总体分成均衡的几个部分,然后按照预先定出的规则,从每 一部分抽取一个个体,得到所需要的样本,这种抽样叫做系统 抽样(也称为等距抽样).
抽签法
抽签法的一般步骤:
(1)将总体中所有个体编号(对已经有编号的个体, 可以省略编号的过程); (2)制作与个体编号相同的号签; (3)将号签放在一个箱子中搅匀; (4)按要求随机抽取号签,并记录; (5)将编号与号签一致的个体抽出.
抽签法的适用范围:
抽签法简单易行,适用于总体中个体数不多的情形.
问题6:为了了解参加某种知识竞赛的1000名学生的成绩,应 采用什么样的抽样方法恰当? 解:抽样过程如下: (1)随机将这1000名学生编号为1,2,3,……,1000(比 如可以利用准考证号); (2)将总体按编号顺序平均分成50部分,每部分包含20个 个体. (3)在第一部分的个体编号1,2,……,20中,利用简单 随机抽样抽取一个号码,比如是18; (4)以18为起始号,每间隔20抽取一个号码,这样就得到 一个容量为50的样本:18,38,58,……,978,998.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抽样方法苏教版必修3教学案
抽样方法——简单随机抽样
学生完成所需时间 20分钟班级姓名第小组
一、学习目标
(1)正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;
(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本;
(3)感受抽样统计的重要性和必要性.
二、教学重、难点
正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。
三、知识导入
问题1.假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?
问题2.学校的投影仪灯泡的平均使用寿命是3000小时,“3000小时”这样一个数据是如何得出的呢?
四、学习内容
(一).统计的有关概念:
统计的基本思想:用样本去估计总体;
总体:
个体:
样本:;
样本容量:;
抽样:。
(二).抽样的常见方法:
1.简单随机抽样的概念
2.简单随机抽样实施的方法:
情景:为了了解高一(1)班50名学生的视力状况,从中抽取10名学生进行检查,如何抽取呢?
(1)抽签法:
一般步骤:
说明:
(1)将个体编号时,可利用已有的编号,例如:学生的学号、座位号等.
(2)当总体个数不多时,适宜采用
(2)随机数表法:
一般步骤:
(三).例题:
例1.下列抽样的方式是否属于简单随机抽样?为什么?
(1)从无限多个个体中抽取50个个体作为样本。
(2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子。
例2.某车间工人加工一种轴100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?
五、学法指导
六、学习小结
七、达标检测
1.为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是
A.总体是240 B.个体是每一个学生()
C.样本是40名学生D.样本容量是40
2.为了正确所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是()
A.总体B.个体是每一个学生
C.总体的一个样本D.样本容量
3.一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,则某一特定个体被抽到的可能性是
4.课本第42页第3、4题.
八、学习反思
教学案抽样方法——系统抽样
编制人宋振苏
学生完成所需时间 20分钟班级姓名第小组
一、学习目标
(1)正确理解系统抽样的概念,掌握系统抽样的一般步骤;
(2)通过对解决实际问题的过程的研究学会抽取样本的系统抽样方法,体会系统抽样与简单随机抽样的关系。
二、教学重、难点
正确理解系统抽样的概念,能够灵活应用系统抽样的方法解决统计问题。
三、知识导入
情境:某校高一年级共有20个班级,每班有50名学生。
为了了解高一学生的视力状况,从这1000名学生中抽取一个容量为100的样本进行检查,应该怎样抽取?
四、学习内容
(一).系统抽样的定义:
说明:
由系统抽样的定义可知系统抽样有以下特证:
(1)当总体容量N较大时,采用系统抽样。
(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,这时间隔一般为[]N
k
n
(3)预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号在此编号的基础上加上分段间隔的整倍数即为抽样编号。
(4)系统抽样与简单随机抽样的联系在于:将总体均分后的每一部分进行抽样时,采用的是简单随机抽样;
(5)简单随机抽样和系统抽样过程中,每个个体被抽取的可能性是相等的。
(二)练习:
(1)你能举几个系统抽样的例子吗?
(2)下列抽样中不是系统抽样的是()
(A)从标有1~15号的15个小球中任选3个作为样本,按从小号到大号排序,随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样
(B)工厂生产的产品,用传关带将产品送入包装车间前,检验人员从传送
带上每隔五分钟抽一件产品检验
(C)搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止
(D)电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈
(三).系统抽样的一般步骤:
(四).例题:
例1.某单位在职职工共624人,为了调查工人用于上班途中的时间,决定抽取10%的工人进行调查,试采用系统抽样方法抽取所需的样本。
例2.从编号为150的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是()
C()2,4,6,16,32
D
A()3,13,23,33,43
B()1,2,3,4,5
()5,10,15,20,25
五、学习小结
六、达标检测
1.练习:课本第44页第1、2题
2.从2005个编号中抽取20个号码入样,采用系统抽样的方法,则抽样的间隔为()
(A)99(B)99.5(C)100(D)100.5
3.某校高中三年级的295名学生已经编号为1,2,……,295,为了了解学生的学习情况,要按1:5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程。
七、学习反思
教学案
抽样方法——分层抽样
编制人宋振苏
学生完成所需时间 20分钟班级姓名第小组
一、学习目标
(1)理解分层抽样的概念与特征,巩固简单随机抽样、系统抽样两种抽样方法;(2)掌握简单随机抽样、系统抽样、分层抽样的区别与联系.
二、教学重、难点
正确理解分层抽样的定义,灵活应用分层抽样抽取样本,并恰当的选择三种抽样方法解决现实生活中的抽样问题。
三、知识导入
1.复习简单随机抽样、系统抽样的概念、特征以及适用范围.
2.实例:某校高一、高二和高三年级分别有学生1000,800,700名,为了了解全校学生的视力情况,从中抽取容量为100的样本,怎样抽取较为合理
四、学习内容
(一).分层抽样:
说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相
等的;
②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表
性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.
(二).三种抽样方法对照表:
(三).分层抽样的步骤:
注:在抽样中,如果每次抽出个体后不再将它放回总体,称这样的抽样为不放回抽样;如果每次抽出个体后再将它放回总体,称这样的抽样为放回抽样.实际抽样多采用不放回抽样,我们介绍的三种抽样都是不放回抽样,而放回抽样则在理论研究中用得较多.
(四).例题.
例1.(1)工厂生产的某种产品用传输带将产品送入包装车间,检验人员从传送带上每隔5分钟抽一件产品进行检验,问这是一种什么抽样法?
(2)已知甲、乙、丙三个车间一天内生产的产品分别是150件、130件、120件,为了掌握各车间产品质量情况,从中取出一个容量为40的样本,该用什么抽样方法?简述抽样过程?
例2.一电视台在因特网上就观众对其某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如下表所示:
打算从中抽取60人进行详细调查,如何抽取?
说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值.
例3.下列问题中,采用怎样的抽样方法较为合理?
(1)从10台电冰箱中抽取3台进行质量检查;
(2)某电影院有32排座位,每排有40个座位,座位号为140。
有一次报告会坐满了听众,报告会结束后,为听取意见,需留下32名听众进行座谈;
(3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名,为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本
五、学习小结
1.分层抽样的概念与特征;
2.三种抽样方法相互之间的区别与联系
六、达标检测
1.练习:课本第42页第2、3题、第47页第1、2、3题.
2.课本第49页第1、2、3、8题..
七、学习反思。