高考平面向量知识点总结
高考数学平面向量考点及知识点总结解析(理科)
平行且|a|=1,则 a=a0.假命题的个数是
()
A.0
B.1
C.2
D.3
[解析] 向量是既有大小又有方向的量,a 与|a|a0 的模相同,
但方向不一定相同,故①是假命题;若 a 与 a0 平行,则 a 与 a0
的方向有两种情况:一是同向,二是反向,反向时 a=-|a|a0,
故②③也是假命题.综上所述,假命题的个数是 3.
3.如图,设O是正六边形ABCDEF的中心,则图中与 OC 相等 的向量有________.
答案: AB, ED,FO
4.如图,△ABC和△A′B′C′是在各边的
1 3
处相交的两个全等
的等边三角形,设△ABC的边长为a,图中列出了长度均为
a 3
的若干个向量,则
(1)与向量GH 相等的向量有________; (2)与向量GH 共线,且模相等的向量有________; (3)与向量 EA共线,且模相等的向量有________. 解析:向量相等⇔向量方向相同且模相等. 向量共线⇔表示有向线段所在的直线平行或重合. 答案:(1) LB, HC (2) EC, LE , LB,GB, HC (3) EF ,FB, HA, HK , KB
HF
=
1 4
AH ,∴ AH =45 AF , AF = AD+ DF =b+12a,∴ AH =45
b+12a=25a+45b,故选B. 答案:B
4. [考点二] 已知a,b是两个不共线的非零向量,且a与b起点
相同.若a,tb,
1 3
(a+b)三向量的终点在同一直线上,则t
=________.
解析:∵a,tb,
与向量 b 相同,且|aa|=|bb|,所以向量 a 与向量 b 方向相同,故
高三数学平面向量考点解析
高三数学平面向量考点解析1、高中数学知识点总结平面向量的概念:平面向量是既有大小又有方向的量。
向量和数量是数学中讨论的两种量的形式,数量是实数。
2、平面向量的三种形式:(1)字母形式:用单独的小写字母带箭头或者用两个大写字母带箭头表示向量;(2)几何形式;用平面内的有向线段表示向量,零向量是一个点;(3)坐标形式:向量可以在坐标平面内用坐标表示,向量坐标等于它的终点坐标减去始点坐标。
3、平面向量的相关概念,(1)模(绝对值):向量的大小或者向量的长度叫做向量的模,模是大于等于的实数。
模也叫作绝对值、大小、长度,这几个说法是一个意思。
(2)相等向量:方向相同、大小相等的向量叫做相等向量(或者叫相同向量),两个相等向量的x,y坐标对应相等。
(3)相反向量:方向相反、大小相等的向量叫做相反向量。
一个向量加负号即变为其相反向量,在向量化简和运算中很常见、很重要。
(4)平行(共线)向量:平面内两个向量所在的直线平行或者重合,则说这两个向量平行(或者共线),用平行符号表示。
因为向量可以自由平移,所以对向量来讲平行和共线是一个意思。
两个非零向量平行时,必定方向相同或相反。
规定零向量和任意向量都平行,但不能说零向量和其它向量方向相同或相反。
(5)垂直向量:两向量所在的直线垂直(或者说夹角为90度),则说这两个向量为垂直向量,用垂直符号表示。
规定零向量和任意向量都垂直,但不能说夹角90度。
(6)零向量:大小为零(或者说模、绝对值、长度为零都是一个意思)的向量叫做零向量,规定零向量的方向是任意的,不能讨论零向量和其它向量方向的关系及夹角问题。
规定零向量和任意向量都平行且垂直。
(7)单位向量:长度为1的向量叫做单位向量。
一个向量除以自己的模得到和这个向量同方向的单位向量;单位向量乘以一个向量的模得到这个向量。
(8)位置向量:向量AB可以表示点B相对点A的位置,所以向量AB可以叫做点B关于点A的位置向量。
(9)方向向量:一个非零向量与一条直线平行,则这个向量叫做这条直线的平行向量。
高中平面向量知识点详细归纳总结(附带练习)
向量的概念一、高考要求:理解有向线段及向量的有关概念,掌握求向量和与差的三角形法则和平行四边形法则,掌握向量加法的交换律和结合律.二、知识要点:1. 有向线段:具有方向的线段叫做有向线段,在有向线段的终点处画上箭头表示它的方向.以A 为始点,B 为终点的有向线段记作AB ,注意:始点一定要写在前面,已知AB ,线段AB 的长度叫做有向线段AB 的长(或模),AB 的长度记作AB ||.有向线段包含三个要素:始点、方向和长度.2. 向量:具有大小和方向的量叫做向量,只有大小和方向的向量叫做自由向量.在本章中说到向量,如不特别说明,指的都是自由向量.一个向量可用有向线段来表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.用有向线段AB 表示向量时,我们就说向量AB .另外,在印刷时常用黑体小写字母a 、b 、c 、…等表示向量;手写时可写作带箭头的小写字母a 、b 、c 、…等.与向量有关的概念有:(1) 相等向量:同向且等长的有向线段表示同一向量或相等的向量.向量a 和b 同向且等长,即a 和b 相等,记作a =b .(2) 零向量:长度等于零的向量叫做零向量,记作0.零向量的方向不确定.(3) 位置向量:任给一定点O 和向量a ,过点O 作有向线段OA a =,则点A 相对于点O 的位置被向量a 所唯一确定,这时向量a 又常叫做点A 相对于点O 的位置向量.(4) 相反向量:与向量a 等长且方向相反的向量叫做向量a 的相反向量,记作a -.显然,()0a a +-=.(5) 单位向量:长度等于1的向量,叫做单位向量,记作e .与向量a 同方向的单位向量通常记作0a ,容易看出:0a a a =│ │. (6) 共线向量(平行向量):如果表示一些向量的有向线段所在的直线互相平行或重合,即这些向量的方向相同或相反,则称这些向量为共线向量(或平行向量).向量a 平行于向量b ,记作a ∥b .零向量与任一个向量共线(平行).三、典型例题:例:在四边形ABCD 中,如果AB DC =且AB BC =│ │ │ │ ,那么四边形ABCD 是哪种四边形? 四、归纳小结:1. 用位置向量可确定一点相对于另一点的位置,这是用向量研究几何的依据.2. 共线向量(平行向量)可能有下列情况: (1)有一个为零向量;(2)两个都为零向量;(3)方向相同,模相等(即相等向量);(4)方向相同,模不等;(5)方向相反,模相等;(6)方向相反,模不等.五、基础知识训练:(一)选择题:1. 下列命题中: (1)向量只含有大小和方向两个要素. (2)只有大小和方向而无特定的位置的向量叫自由向量. (3)同向且等长的有向线段表示同一向量或相等的向量. (4)点A 相对于点B 的位置向量是BA . 正确的个数是( )A.1个B.2个C.3个D.4个2. 设O 是正△ABC 的中心,则向量,,AO OB OC 是( )A.有相同起点的向量B.平行向量C.模相等的向量D.相等向量3. a b =的充要条件是( )A.a b =│ │ │ │ B.a b =│ │ │ │ 且a b ∥ []l C.a b ∥ D.a b =│ │ │ │ 且a 与b 同向 4. AA BB ''=是四边形ABB A ''是平行四边形的( )A.充分条件B.必要条件C.充要条件D.既非充分又非必要条件5. 依据下列条件,能判断四边形ABCD 是菱形的是( )A.AD BC =B.AD BC ∥且AB CD ∥C.AB DC =且AB AD =│ │ │ │ D.AB DC =且AD BC = 6. 下列关于零向量的说法中,错误的是( )A.零向量没有方向B.零向量的长度为0C.零向量与任一向量平行D.零向量的方向任意7. 设与已知向量a 等长且方向相反的向量为b ,则它们的和向量a b +等于( )A.0B.0C.2aD.2b(二)填空题:8. 下列说法中: (1)AB 与BA 的长度相等 (2)长度不等且方向相反的两个向量不一定共线 (3)两个有共同起点且相等的向量,终点必相同(4)长度相等的两个向量必共线。
高中数学平面向量知识点总结
高中数学平面向量知识点总结一、平面向量的基本概念1. 定义:平面向量是有大小和方向的量,可以用有序实数对表示。
2. 表示法:通常用小写字母加箭头表示,如 $\vec{a}$。
3. 相等:两个向量大小相等且方向相同时,这两个向量相等。
4. 零向量:大小为零的向量,没有特定方向。
二、平面向量的运算1. 加法:- 规则:平行四边形法则或三角形法则。
- 交换律:$\vec{a} + \vec{b} = \vec{b} + \vec{a}$。
- 结合律:$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$。
2. 减法:- 规则:与加法类似,但方向相反。
- 逆向量:$\vec{a} - \vec{a} = \vec{0}$。
3. 数乘:- 定义:向量与实数相乘。
- 规则:$k\vec{a} = \vec{a}$ 的长度变为 $|k|$ 倍,方向与$k$ 的符号一致。
- 分配律:$(k + l)\vec{a} = k\vec{a} + l\vec{a}$。
- 结合律:$k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$。
三、平面向量的坐标表示1. 坐标表示:$\vec{a} = (x, y)$,其中 $x$ 和 $y$ 是向量在坐标轴上的分量。
2. 几何意义:$x$ 分量表示向量在 $x$ 轴上的长度,$y$ 分量表示向量在 $y$ 轴上的长度。
3. 坐标运算:- 加法:$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$。
- 减法:$(x_1, y_1) - (x_2, y_2) = (x_1 - x_2, y_1 - y_2)$。
- 数乘:$k(x, y) = (kx, ky)$。
四、平面向量的模与单位向量1. 模(长度):- 定义:向量从原点到其终点的距离。
(完整版)高中数学平面向量知识点总结
高中数学必修4之平面向量知识点归纳一.向量的基本概念与基本运算1、向量的概念:①向量:既有大小又有方向的量向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行③单位向量:模为1个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量⑤相等向量:长度相等且方向相同的向量2、向量加法:设,ABa BCb uu u ru uu r r r ,则a +b r =AB BC u u u r u u u r =ACuu u r (1)a a a 00;(2)向量加法满足交换律与结合律;AB BCCDPQQRAR u u u r u u u r u uu r u u u r u u u r u u u rL,但这时必须“首尾相连”.3、向量的减法:①相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下:(Ⅰ)a a ;(Ⅱ)当0时,λa 的方向与a 的方向相同;当时,λa 的方向与a 的方向相反;当0时,0a,方向是任意的5、两个向量共线定理:向量b 与非零向量a 共线有且只有一个实数,使得b =a6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,使:2211e ea,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底二.平面向量的坐标表示1平面向量的坐标表示:平面内的任一向量a r可表示成axi yj r rr ,记作a r=(x,y)。
2平面向量的坐标运算:(1)若1122,,,ax y bx y rr ,则1212,a bx x y y r r (2)若2211,,,y x B y x A ,则2121,AB x x y y u u u r(3)若a r =(x,y),则a r =(x, y)(4)若1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5)若1122,,,ax y bx y rr ,则1212a bx x y y r r 若ab rr ,则02121y y x x 三.平面向量的数量积1两个向量的数量积:已知两个非零向量a r 与b r,它们的夹角为,则a r ·b r =︱a r︱·︱b r ︱cos 叫做a r与b r 的数量积(或内积)规定00ar r 2向量的投影:︱b r ︱cos =||a b a r r r ∈R ,称为向量b r 在a r方向上的投影投影的绝对值称为射影3数量积的几何意义:a r ·b r 等于a r 的长度与b r 在a r方向上的投影的乘积4向量的模与平方的关系:22||a a a a r r r r 5乘法公式成立:2222a b ab a b a b r r r r r r r r ;2222abaa bb r r r r r r 222aa bbr r r r 6平面向量数量积的运算律:①交换律成立:a bb arr r r ②对实数的结合律成立:a b a b a bRr r r r r r ③分配律成立:abca cb c r r r r r r r ca br r r 特别注意:(1)结合律不成立:ab ca b c r r r r r r ;(2)消去律不成立a ba cr r r r 不能得到bc rr (3)a b r r =0不能得到a r =0r或b r =0r 7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)ax y b x y rr,则a r ·b r=1212x x y y 8向量的夹角:已知两个非零向量a r与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB=(01800)叫做向量a r 与b r 的夹角cos =cos,a b a ba b??r r r r r r =222221212121y x y x y y x x 当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r与b r 反方向时θ=1800,同时0r与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r⊥br 10两个非零向量垂直的充要条件:a ⊥ba ·b =O02121y y x x 平面向量数量积的性质一、选择题1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则().A .AB 与AC 共线B .DE 与CB 共线C .AD 与AE 相等D .AD 与BD 相等2.下列命题正确的是().A .向量AB 与BA 是两平行向量B .若a ,b 都是单位向量,则a =bC .若AB =DC ,则A ,B ,C ,D 四点构成平行四边形D .两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O 为坐标原点,已知两点A(3,1),B(-1,3),若点C满足OC =OA +OB ,其中,∈R ,且+=1,则点C 的轨迹方程为().A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=04.已知a 、b 是非零向量且满足(a -2b)⊥a ,(b -2a)⊥b ,则a 与b 的夹角是A .6B .3C .23D .565.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP =A .λ(AB +AD ),λ∈(0,1)B .λ(AB +BC ),λ∈(0,22)C .λ(AB -AD ),λ∈(0,1)D .λ(AB -BC ),λ∈(0,22)6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则DF =().(第1题)A.EF+ED B.EF-DE C.EF+AD D.EF+AF7.若平面向量a与b的夹角为60°,|b|=4,(a+2b)·(a-3b)=-72,则向量a的模为().A.2 B.4 C.6 D.128.点O是三角形ABC所在平面内的一点,满足OA·OB=OB·OC=OC·OA,则点O是△ABC的().A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点9.在四边形ABCD中,AB=a+2b,BC=-4a-b,DC=-5a-3b,其中a,b不共线,则四边形ABCD为().A.平行四边形B.矩形C.梯形D.菱形10.如图,梯形ABCD中,|AD|=|BC|,EF∥AB∥CD则相等向量是().A.AD与BC B.OA与OBC.AC与BD D.EO与OF二、填空题11.已知向量OA=(k,12),OB=(4,5),OC=(-k,10),且A,B,C三点共线,则k=.12.已知向量a=(x+3,x2-3x-4)与MN相等,其中M(-1,3),N(1,3),则x=.13.已知平面上三点A,B,C满足|AB|=3,|BC|=4,|CA|=5,则AB·BC +BC·CA+CA·AB的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+mb)⊥(a-b),则实数m 等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若OA+OB+OC=0,则O是△ABC的.16.设平面内有四边形ABCD和点O,OA=a,OB=b,OC=c, OD=d,若a+c=b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足AP=AB+λAC(λ∈R),试求λ为何值时,点P在第三象限内?(第10题)18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求DF.(第18题)19.如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE(利用向量证明).(第19题) 20.已知向量a=(cos θ,sin θ),向量b=(3,-1),则|2a-b|的最大值.一、选择题1.B 解析:如图,AB 与AC ,AD 与AE 不平行,AD 与BD 共线反向.2.A解析:两个单位向量可能方向不同,故B 不对.若AB =DC ,可能A ,B ,C ,D 四点共线,故C 不对.两向量相等的充要条件是大小相等,方向相同,故D 也不对.3.D解析:提示:设OC =(x ,y),OA =(3,1),OB =(-1,3),OA =(3,),OB =(-,3),又OA +OB =(3-,+3),∴(x ,y)=(3-,+3),∴33+=-=y x ,又+=1,由此得到答案为D .4.B解析:∵(a -2b)⊥a ,(b -2a)⊥b ,∴(a -2b)·a =a 2-2a ·b =0,(b -2a)·b =b 2-2a ·b =0,∴a 2=b 2,即|a|=|b|.∴|a|2=2|a||b|cos θ=2|a|2cos θ.解得cos θ=21.∴a 与b 的夹角是3π.5.A解析:由平行四边形法则,AB +AD =AC ,又AB +BC =AC ,由λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵AF =DE ,∴DF =DE +EF =EF +AF .7.C解析:由(a +2b)·(a -3b)=-72,得a 2-a ·b -6b 2=-72.而|b|=4,a ·b =|a||b|cos 60°=2|a|,∴|a|2-2|a|-96=-72,解得|a|=6.8.D 解析:由OA ·OB =OB ·OC =OC ·OA ,得OA ·OB =OC ·OA ,即OA ·(OC -OB )=0,故BC ·OA =0,BC ⊥OA ,同理可证AC ⊥OB ,∴O 是△ABC 的三条高的交点.9.C解析:∵AD =AB +BC +D C =-8a -2b =2BC ,∴AD ∥BC 且|AD |≠|BC |.∴四边形ABCD 为梯形.10.D解析:AD 与BC ,AC 与BD ,OA 与OB 方向都不相同,不是相等向量.(第1题)二、填空题11.-32.解析:A ,B ,C 三点共线等价于AB ,BC 共线,AB =OB -OA =(4,5)-(k ,12)=(4-k ,-7),BC =OC -OB =(-k ,10)-(4,5)=(-k -4,5),又A ,B ,C 三点共线,∴5(4-k)=-7(-k -4),∴k =-32.12.-1.解析:∵M(-1,3),N(1,3),∴MN =(2,0),又a =MN ,∴=4-3-2=3+2x x x 解得4=1=-1=-x x x 或∴x =-1.13.-25.解析:思路1:∵AB =3,BC =4,CA =5,∴△ABC 为直角三角形且∠ABC =90°,即AB ⊥BC ,∴AB ·BC =0,∴AB ·BC +BC ·CA +CA ·AB=BC ·CA +CA ·AB =CA ·(BC +AB )=-(CA )2=-2CA =-25.思路2:∵AB =3,BC =4,CA =5,∴∠ABC =90°,∴cos ∠CAB =CAAB =53,cos ∠BCA =CABC=54.根据数积定义,结合图(右图)知AB ·BC =0,BC ·CA =BC ·CA cos ∠ACE =4×5×(-54)=-16,CA ·AB =CA ·AB cos ∠BAD =3×5×(-53)=-9.∴AB ·BC +BC ·CA +CA ·AB =0―16―9=-25.14.323.解析:a +mb =(3+2m ,4-m),a -b =(1,5).∵(a +mb)⊥(a -b),∴ (a +mb)·(a -b)=(3+2m)×1+(4-m)×5=0m =323.15.答案:重心.解析:如图,以OA ,OC 为邻边作□AOCF交AC 于点E ,则OF =OA +OC ,又OA +OC =-OB ,(第15题)D(第13题)∴OF =2OE =-OB .O 是△ABC 的重心.16.答案:平行四边形.解析:∵a +c =b +d ,∴a -b =d -c ,∴BA =CD .∴四边形ABCD 为平行四边形.三、解答题17.λ<-1.解析:设点P 的坐标为(x ,y),则AP =(x ,y)-(2,3)=(x -2,y -3).AB +λAC =(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3,1)+λ(5,7)=(3+5λ,1+7λ).∵AP =AB +λAC ,∴ (x -2,y -3)=(3+5λ,1+7λ).∴713532yx 即7455yx 要使点P 在第三象限内,只需74055解得λ<-1.18.DF =(47,2).解析:∵A(7,8),B(3,5),C (4,3),AB =(-4,-3),AC =(-3,-5).又D 是BC 的中点,∴AD =21(AB +AC )=21(-4-3,-3-5)=21(-7,-8)=(-27,-4).又M ,N 分别是AB ,AC 的中点,∴F 是AD 的中点,∴DF =-FD =-21AD =-21(-27,-4)=(47,2).19.证明:设AB =a ,AD =b ,则AF =a +21b ,ED =b -21a .∴AF ·ED =(a +21b)·(b -21a)=21b 2-21a 2+43a ·b .又AB ⊥AD ,且AB =AD ,∴a 2=b 2,a ·b =0.∴AF ·ED =0,∴AF ⊥ED .本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a -b =(2cos θ-3,2sin θ+1),∴|2a -b|2=(2cos θ-3)2+(2sin θ+1)2=8+4sin θ-43cos θ.又4sin θ-43cos θ=8(sin θcos3π-cos θsin3π)=8sin(θ-3π),最大值为8,∴|2a -b|2的最大值为16,∴|2a -b|的最大值为4.思路2:将向量2a ,b 平移,使它们的起点与原点重合,则|2a -b|表示2a ,b终点间的距离.|2a|=2,所以2a 的终点是以原点为圆心,2为半径的圆上的动点P ,b 的终点是该圆上的一个定点Q ,由圆的知识可知,|PQ|的最大值为直径的长为4.(第18题)(第19题)。
(完整版)高中平面向量公式及知识点默写
平面向量知识点及公式默写一,基本概念1,向量的概念: 。
2,向量的表示:。
3,向量的大小:(或称模)4,零向量:,记为 ,零向量方向是 。
5,单位向量:长度为 的向量称为单位向量,一般用e 、i 1=1=6,平行向量(也称共线向量):方向 向量称为平行向量,规定零向量与任意向量 。
若a 平行于b ,则表示为a ∥b 。
7,相等向量: 称为相等向量。
若a 与b 相等,记为a =b8,相反向量: 称为相反向量。
若a 与b 是相反向量,则表示为a =b -;向量BA AB -=二,几何运算1,向量加法:(1)平行四边形法则(起点相同),可理解为力的合成,如图所示:(2)三角形法则(首尾相接),可理解为:位移的合成,如图所示, =+BC AB(3)两个向量和仍是一个向量;(4)向量加法满足交换律、结合律:a b b a +=+,)()(c b a c b a ++=++ (5)加法几种情况(加法不等式):= << = 2,减法:(1)两向量起点相同,方向是从减数指向被减数,如图=-AC AB(2)两向量差依旧是一个向量;(3)减法本质是加法的逆运算:CB CA AB CB AC AB =+⇔=- 3,加法、减法联系:(1)加法和减法分别是平行四边行两条对角线,AC AD AB =+,DB AD AB =- (2=,则四边形ABCD 为矩形 4,实数与向量的积:(1)实数λ与向量a 的积依然是个向量,记作a λ,它的长度与方向判断如下: BAaCB A•aba babba +当0>λ时,a λ与a 方向 ;当0<λ时,a λ与a 方向 ;当0=λ时,=a λ当0=a 时,0=a λ;=(2)实数与向量相乘满足:=)(a μλ =+a )(μλ=+)(b a λ5,向量共线:(1)向量b 与非零向量a 共线的条件是:有且只有一个实数λ(2)如图,平面内C BA ,,使得0=++OC n OB m OA q ,且0=++q n m ,反之也成立。
(完整版)高三一轮复习平面向量知识点整理,推荐文档
(答: 2 2 );
(3)已知作用在点
A(1,1)
的三个力
F1
(3, 4), F2
(2, 5), F3
(3,1)
,则合力
F F1 F2 F3 的终点坐标是
(答:(9,1))
4⑴、实向数量数与乘向运量算a:的积是一个向量的运算叫做向量的数乘,记作 a .
①
a
a
;
②当
0
时,
a
的方向与
(答:2);
(2)已知 a (1,1),b (4, x) , u a 2b , v 2a b ,且 u // v ,则 x=______
6、向量垂直: a b a b 0 | a b || a b | x1x2 y1 y2 0 .
(答:4);
【例题】(1)已知 OA (1, 2),OB (3, m) ,若 OA OB ,则 m
1、已知向量 a = 2,4,,b = 11 .若向量 b (a + b) ,则实数 的值是
.
2、若向量
a,b
的夹角为
60
,
a
b
1,则 aA a b
.
3、在平面直角坐标系中,正方形 OABC 的对角线 OB 的两端点分别为 O(0,0) , B(1,1) ,
则 ABAAC
.
三、解答题:
1、已知 ΔABC 三个顶点的直角坐标分别为 A(3,4)、B(0,0)、C( c ,0).
(1)若 ABAAC 0 ,求 c 的值;
(2)若 c 5 ,求 sin∠A 的值
2、在 △ABC 中,角 A,B, C 的对边分别为 a,b,,c tan C 3 7 .
(1)求 cos C ;
平面向量知识点归纳总结
平面向量是指在平面上具有大小和方向的量。
下面是平面向量的一些重要知识点的归纳总结:1.平面向量的表示:●使用箭头或小写字母加上一个横线来表示,如a→或AB。
●平面向量通常用两个有序实数(分量)表示,如a = (a₁, a₂)。
2.向量的模/长度:●向量的模/长度表示为|a|,计算公式为|a| = √(a₁²+ a₂²)。
3.向量的方向角:●向量与正x 轴之间的夹角称为方向角。
●方向角可以使用三角函数来表示,如tanθ= a₂/a₁。
4.向量的运算:●向量的加法:a + b = (a₁+ b₁, a₂+ b₂)。
●向量的减法:a - b = (a₁- b₁, a₂- b₂)。
●数乘:k * a = (k * a₁, k * a₂),其中k 为实数。
5.向量的数量积(点积):●向量a 和向量b 的数量积(点积)表示为a ·b。
●计算公式为a ·b = a₁* b₁+ a₂* b₂。
●点积满足交换律:a ·b = b ·a。
●点积的几何意义:a ·b = |a| * |b| * cosθ,其中θ为a 和b 之间的夹角。
6.向量的矢量积(叉积):●向量a 和向量b 的矢量积(叉积)表示为a ×b。
●计算公式为a ×b = (0, 0, a₁* b₂- a₂* b₁),即得到一个垂直于平面的向量。
●矢量积满足反交换律:a ×b = - (b ×a)。
●矢量积的几何意义:|a ×b| = |a| * |b| * sinθ,其中θ为a 和b 之间的夹角。
7.平行向量和共线向量:●平行向量指方向相同或相反的向量。
●共线向量指在同一直线上的向量。
●如果两个向量平行,则它们的叉积为零。
8.向量的投影:●向量a 在向量b 上的投影表示为projₐb。
●计算公式为projₐb = (|a| * |b| * cosθ) * u,其中θ为a 和b 之间的夹角,u 为b 的单位向量。
高中数学平面向量知识点归纳
高中数学平面向量知识点归纳1、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量.2、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.⑶三角形不等式:a b a b a b -≤+≤+. ⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+=.⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 3、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--. 4、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.5、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线.6、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底)7、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭.(当时,就为中点公式。
平面向量知识点归纳高考
平面向量知识点归纳高考一、向量的定义和性质在数学中,向量是由大小和方向组成的量。
平面向量可以表示为有序的数对,其中第一个数表示向量在水平方向上的分量,第二个数表示向量在垂直方向上的分量。
即向量a可以表示为a=(a₁, a₂)。
向量的性质有:1. 向量相等:如果两个向量的对应分量相等,那么这两个向量是相等的。
2. 向量的加法:向量的加法是指将两个向量的对应分量相加得到一个新的向量。
即a+b=(a₁+b₁, a₂+b₂)。
3. 向量的数乘:向量的数乘是指将向量的每个分量都乘以一个常数得到一个新的向量。
即k×a=(k×a₁, k×a₂)。
4. 向量的减法:向量的减法是指将两个向量的对应分量相减得到一个新的向量。
即a-b=(a₁-b₁, a₂-b₂)。
5. 零向量:所有分量都为零的向量称为零向量,用0表示。
二、向量的模和方向角1. 向量的模:向量的模是指向量的长度,也就是向量的大小。
向量a的模可以表示为|a|=√(a₁²+a₂²)。
2. 向量的方向角:向量的方向角是指向量与某个固定直线之间的夹角。
一般将向量与x轴正方向之间的夹角称为向量的方向角。
三、向量的数量积和向量积1. 向量的数量积:向量的数量积又称为点积或内积。
数量积的结果是一个标量,表示两个向量的相似程度。
向量a和向量b的数量积可以表示为a·b=a₁b₁+a₂b₂。
2. 向量的向量积:向量的向量积又称为叉积或外积。
向量积的结果是一个向量,垂直于这两个向量所在的平面。
向量a和向量b的向量积可以表示为a×b=(a₁b₂-a₂b₁)。
四、平面向量的运算定律1. 交换律:向量的加法满足交换律,即a+b=b+a;向量的数量积满足交换律,即a·b=b·a。
2. 结合律:向量的加法满足结合律,即(a+b)+c=a+(b+c);向量的数量积满足结合律,即(a·b)·c=a·(b·c)。
高中数学平面向量知识点总结及常见题型
高中数学平面向量知识点总结及常见题型平面向量一、向量的基本概念与基本运算1.向量的概念:向量是既有大小又有方向的量。
向量一般用a、b、c等字母来表示,或用有向线段的起点与终点的大写字母表示,如:AB(几何表示法)或a(坐标表示法)。
向量的大小即向量的模(长度),记作|AB|或|a|。
向量不能比较大小,但向量的模可以比较大小。
②零向量:长度为0的向量,记为0,其方向是任意的,与任意向量平行。
③单位向量:模为1个单位长度的向量。
向量a为单位向量|a|=1.④平行向量(共线向量):方向相同或相反的非零向量。
任意一组平行向量都可以移到同一直线上。
方向相同或相反的向量,称为平行向量,记作a∥b。
由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。
⑤相等向量:长度相等且方向相同的向量。
相等向量经过平移后总可以重合,记为a b。
大小相等,方向相同(x1,y1)(x2,y2)x1x2,y1y2.2.向量加法求两个向量和的运算叫做向量的加法。
设AB a,BC b,则a+b=AB BC=AC。
1)0+a=a;(2)向量加法满足交换律与结合律;向量加法有“三角形法则”与“平行四边形法则”:1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。
2)三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点。
当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则。
向量加法的三角形法则可推广至多个向量相加:AB BC CD…+PQ QR AR,但这时必须“首尾相连”。
3.向量的减法①相反向量:与a长度相等、方向相反的向量,叫做a的相反向量,记作a。
零向量的相反向量仍是零向量。
关于相反向量有:(i)(a)=a;(ii) a+(a)=(a)+a=0.iii) 若向量a、b互为相反向量,则a=-b,b=-a,a+b=0.向量减法:向量a加上b的相反向量叫做a与b的差,记作a-b=a+(-b),求两个向量差的运算,叫做向量的减法。
平面向量知识点总结(精华)
平面向量知识点总结(精华)一、向量的基本概念1. 向量的定义向量是既有大小又有方向的量。
例如,物理学中的力、位移等都是向量。
我们可以用有向线段来表示向量,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。
向量的表示:几何表示:用有向线段AB表示,其中\(A为起点,\(B为终点。
字母表示:用小写字母a、b、c等表示。
2. 向量的模向量AB或a的大小称为向量的模,记作AB或a。
模是一个非负实数,例如,若a=(x,y),则a=x^2+y^2。
3. 零向量长度为\(0的向量称为零向量,记作0。
零向量的方向是任意的。
4. 单位向量模等于\(1的向量称为单位向量。
对于非零向量a,与它同方向的单位向量记作e=aa。
例如,向量a=(3,4),则a= 5,同方向的单位向量e=(35,45)。
5. 平行向量(共线向量)方向相同或相反的非零向量称为平行向量。
规定:零向量与任意向量平行。
若向量a与b平行,记作a。
例如,a=(1,2),b=(2,4),因为b = 2a,所以a。
6. 相等向量长度相等且方向相同的向量称为相等向量。
若AB=CD,则\(A与\(C重合,\(B与\(D重合,且AB=CD,方向相同。
二、向量的运算1. 向量的加法三角形法则:已知向量a、b,在平面内任取一点\(A,作AB=a,BC=b,则AC=a+b。
平行四边形法则:已知向量a、b,以同一点\(O为起点作OA=a,OB=b,以\(OA、\(OB为邻边作平行四边形\(OACB,则OC=a+b。
向量加法的运算律:交换律:a+b=b+a。
结合律:\((a+b)+c=a+(b+c)。
2. 向量的减法相反向量:与向量a长度相等,方向相反的向量称为a 的相反向量,记作a。
向量减法的定义:ab=a+(b)。
其几何意义是:已知向量a、b,在平面内任取一点\(O,作OA=a,OB=b,则BA=ab。
3. 向量的数乘定义:实数\(与向量a的乘积是一个向量,记作a。
高中数学平面向量知识及注意事项
高中数学平面向量知识及注意事项一、向量基础知识1、实数与向量的积的运算律:设λ、μ为实数,那么(1)结合律:λ(μa )=(λμ) a ;(2)第一分配律:(λ+μ) a =λa +μa ;(3)第二分配律:λ(a +b)=λa +λb .2、向量的数量积的运算律:(1) a ·b = b ·a(交换律);注:c b a c b a )()(∙≠∙(2)(λa )·b = λ(a ·b )=λa ·b = a ·(λb );(3)(a +b )·c = a ·c +b ·c .3、平面向量基本定理:如果1e 、2e是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a =λ11e +λ22e .不共线的向量1e 、2e 叫做表示这一平面内所有向量的一组基底.4、投影:向量b 在向量a方向上的投影为|b |cos θ。
5、a 与b 的数量积(或内积):a ·b =|a ||b |cos θ.6、a ·b 的几何意义:数量积a ·b 等于a 的长度|a|与b 在a 的方向上的投影|b |cos θ的乘积.7、平面向量的坐标运算:(1)设a =11(,)x y ,b =22(,)x y ,则a +b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a -b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa =(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212x x y y +.8、两向量的夹角公式:121222221122cos x x y y x y x y θ+=+⋅+(a=11(,)x y ,b =22(,)x y ).9、向量的模与平面两点间的距离公式:|a |22x y =+,A B d =||AB AB AB =⋅ 222121()()x x y y =-+-(A 11(,)x y ,B 22(,)x y ).10、两个非零向量的共线与垂直的充要条件:设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a ∥b ⇔b =λa12210x y x y ⇔-=.a ⊥b (a ≠0 )⇔a ·b=012120x x y y ⇔+=.11、三角形的重心坐标公式:△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC的重心的坐标是123123(,)33x x x y y y G ++++.G G GC 0A B++= 二、向量中需要注意的问题1、向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征.2、几个概念:零向量、单位向量(与AB 共线的单位向量是||ABAB ± ,平行(共线)向量(无传递性,是因为有0 )、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影(a 在b上的投影是cos ,a ba ab b⋅=<>=∈R).3、两非零向量....共线的充要条件://a b a b λ⇔= cos ,1a b ⇔<>=± 12210x y x y ⇔-=. 两个非零向量....垂直的充要条件:0||||a b a b a b a b ⊥⇔⋅=⇔+=- 12120x x y y ⇔+=. 特别:零向量和任何向量共线和垂直. b a λ=是向量平行的充分不必要条件!4、三点A B C 、、共线⇔ AB AC 、共线;向量 PA PB PC、、中三终点A B C 、、共线⇔存在实数αβ、使得:PA PB PC αβ=+且1αβ+=.5、向量的数量积:22||()a a a a ==⋅ ,1212||||cos a b a b x x y y θ⋅==+,121222221122cos ||||x x y y a b a b x y x y θ+⋅==++ ,12122222||cos ,||x x y y a b a b a a b b x y +⋅=<>==+在上的投影. 注意:,a b <> 为锐角⇔0a b ⋅> 且 a b 、不同向;,a b <>为直角⇔0a b ⋅= 且 0a b ≠ 、; ,a b <> 为钝角⇔0a b ⋅< 且 a b 、不反向,0a b ⋅< 是,a b <> 为钝角的必要非充分条件.6、一个重要的不等式:||||||||||||a b a b a b -≤±≤+注意: a b 、同向或有0⇔||||||a b a b +=+ ≥||||||||a b a b -=- ; a b 、反向或有0 ⇔||||||a b a b -=+ ≥||||||||a b a b -=+; a b、不共线⇔||||||||||||a b a b a b -<±<+ .(这些和实数集中类似)7、中点坐标公式1212,22x x y y x y ++==,122MP MP MP P +=⇔为12PP 的中点.。
高考文科平面向量知识点
高考文科平面向量知识点高考是对学生多年来所学知识的综合考察,而数学是文科生必考的一门科目。
在数学中,平面向量是一个重要的知识点,也是考试中常常涉及的内容。
下面,将介绍高考文科平面向量的知识点,帮助考生更好地理解和掌握这一部分内容。
一、向量的概念和运算向量是表示有大小和方向的量,常用箭头表示。
在平面上,向量通常用一个有序数对表示,如AB向量可以表示为a = (x, y)。
向量的长度是指从起点到终点的距离,记作|a|。
向量的加法和减法可以通过对应坐标的加减实现,如a + b = (x₁ + x₂, y₁ + y₂)。
二、向量的数量积向量的数量积也称点积,是指两个向量间的乘积结果,记作a·b。
计算公式为:a·b = |a| |b| cosθ。
其中,θ表示两个向量之间的夹角。
数量积的结果为一个实数,具有求模、交换律以及分配律等性质。
三、向量的向量积向量的向量积也称叉积,是指两个向量间的乘积结果,记作a × b。
计算公式为:a × b = |a| |b| sinθ n。
其中,θ表示两个向量之间的夹角,n表示垂直于两个向量所在平面的单位法向量。
向量积的结果为一个向量,其方向遵循右手法则,模长为|a| |b| sinθ。
四、向量的共线与线性运算在平面向量中,如果存在一个实数k,使得a = kb,那么向量a与向量b就是共线的。
共线的向量也叫线性相关向量。
线性运算是指对多个向量进行加法、减法和数量乘法的运算。
线性相关的向量之间可以进行代入消元等操作,进而解出线性方程组。
五、向量的应用平面向量广泛应用于各个学科和职业领域,如物理学、力学、工程、计算机图形学等。
在解决实际问题时,我们可以利用向量进行几何推理、计算机模拟、数据分析等。
例如,在解决运动问题时,可以将速度、加速度等物理量抽象为向量,简化计算过程。
六、习题和应用题为了更好地理解和掌握平面向量的知识,考生可以进行大量的习题和应用题的训练。
平面向量高考一轮总复习完整版(含全部知识点习题)
第一课时 向量的基本概念及基本运算C【知识要点】1.向量的基本概念(1)定义:既有大小又有方向的量叫做向量;向量的大小叫做向量的模 (2)特定大小或关系的向量①零向量:模为0的向量,记作→0,其方向是任意的②单位向量:模为1个单位长度的向量 ③共线向量(平行向量):方向相同或相反的非零向量。
规定:零向量与任何向量共线 ④相等向量:模长相等且方向相同的向量⑤相反向量:模长相等但方向相反的向量。
规定:零向量的相反向量是它本身 2.向量的表示法①字母表示法:如小写字母a , b , c 等,或AB ,CD 等 ②几何表示法:用一条有向线段表示 ③代数表示法:即向量的坐标表示法1.向量的加法、减法(1)法则:平行四边形法则、三角形法则 (2)运算律:交换律、结合律 (3)几何意义:2.向量的数乘(实数与向量的积) (1)定义与法则:(2)运算律:交换律、结合律、分配律 1.共线定理:向量与非零向量共线的充要条件是:有且只有一个实数λ,使得λ=2.平面向量基本定理:如果21,e e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数221121,,e e a λλλλ+=使3.三点共线定理:平面上三点A 、B 、C 共线的充要条件是:存在实数βα,,使得βα+=,其中1=+βα ,O 为平面上任意一点4.①平面内有任意三点O 、A 、B ,若M 是线段AB 的中点,则()+=21②ABC ∆中,M 为BC 边的中点,G 为重心,则=++,=++ ③向量加法的多边形法则 【自主练习】1. 以下命题中,正确命题的序号是 (1=,则b a = (2)b a b a =则都是单位向量若,, (3)===则若,,(4)==则,//(5)若四边形ABCD 是平行四边形,则==,2.已知直线a y x =+与圆422=+y x 交于AB两点,且-=+。
其中O 为坐标原点,则实数a 的值为3.已知向量,53=-=+=,则= 4.已知()-=+-=+=3,82,5 ,则( ) A. 点A 、B 、D 共线 B. 点A 、B 、C 共线 C. 点B 、C 、D 共线 D. 点A 、C 、D 共线 【典例解析】例1.对于非零向量b a ,,“=+”是“//”的( )A. 充分非必要B. 必要不充分C. 充要条件D.既不充分也不必要知识突破:如图,四边形ABCD ,其中A. 与B. 与C. DB AC 与D. OB DO 与例2.如图所示,D 、E 是△ABC 中AB ,AC 边的中点, M 、N 分别是DE ,BC 的中点。
高中平面向量知识点总结
高中平面向量知识点总结一、平面向量的定义与性质1. 平面向量的定义平面向量是具有大小和方向的几何对象,通常用有向线段来表示,记作AB→,其中A、B 为起点和终点。
2. 平面向量的性质(1)平面向量相等的充分必要条件是它们的大小相等,方向相同。
(2)平面向量相加的几何意义:平面向量A+B的几何意义是以B为起点,在A的方向上作另一有向线段,则A+B的终点是以A、B的起点为起点、终点的有向线段。
(3)平面向量乘以实数的几何意义:实数k是负数时,它对平面向量的作用是对此向量作方向相反或绝对值为|k|倍的拉伸;k为正数时,它对平面向量的作用是对此向量作方向相同或绝对值为k倍的拉伸;k=0时,作用是得到一个零向量。
二、平面向量的基本运算1. 平面向量的加法平面向量A(a1, a2)、B(b1, b2)相加的结果是C(c1, c2),其中c1=a1+b1,c2=a2+b2。
2. 平面向量的减法平面向量A(a1, a2)、B(b1, b2)相减的结果是C(c1, c2),其中c1=a1-b1,c2=a2-b2。
3. 平面向量的数量积平面向量A(a1, a2)、B(b1, b2)的数量积是a1b1+a2b2,它是一个标量(实数)。
4. 平面向量的数量积的性质(1)交换律:A·B = B·A(2)分配律:A·(B+C) = A·B + A·C(3)A·A = |A|^2,其中|A|为向量A的模。
(4)若向量A与向量B夹角为θ,则A·B = |A||B|cosθ5. 平面向量的夹角若向量A、B夹角为θ,则A·B = |A||B|cosθ三、平面向量的应用1. 向量的共线性与共面性两个向量共线的充分必要条件是它们的方向相同或相反;三个向量共面的充分必要条件是它们的线性相关。
2. 向量的投影向量A在向量B上的投影是A在B方向上的长度,记作proj_BA = |A|cosθ,其中θ为A 与B的夹角。
平面向量高考考点梳理及真题分类解析(2022年高考备考版)
第一节 平面向量的概念及线性运算
一、高考考点梳理
(一)、向量的有关概念
名称
定义
备注
向量
既有大小又有方向的量;向量的大小叫做向量的长度(或模)
平面向量是自由向量
零向量
长度为零的向量;其方向是任意的
记作0
单位向量
长度等于1个单位的向量
非零向量a的单位向量为±
其中不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.
(二)、平面向量的坐标运算
1.向量加法、减法、数乘向量及向量的模
设a=(x1,y1),b=(x2,y2),则
a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),λa=(λx1,λy1Fra bibliotek,|a|= .
2.向量坐标的求法
3.夹角:cosθ= = .
4.两非零向量a⊥b的充要条件:a·b=0⇔x1x2+y1y2=0.
5.|a·b|≤|a||b|(当且仅当a∥b时等号成立)⇔|x1x2+y1y2|≤ · .
(三)、平面向量数量积的运算律
1.a·b=b·a(交换律)
2.λa·b=λ(a·b)=a·(λb)(结合律)
3.(a+b)·c=a·c+b·c(分配律).
3.数量积的几何意义:数量积a·b等于a的长度|a|与b在a的方向上的
射影|b|cosθ的乘积,或b的长度|b|与a在b方向上射影|a|cosθ的乘积.
(二)、平面向量数量积的性质及其坐标表示
设向量a=(x1,y1),b=(x2,y2),θ为向量a,b的夹角.
1.数量积:a·b=|a||b|cosθ=x1x2+y1y2.2.模:|a|= = .
2024年高考数学平面向量的基本定理总结(2篇)
2024年高考数学平面向量的基本定理总结平面向量是高考数学中的重要内容之一,也是一道很多学生所困扰的难题。
2024年高考数学试卷中关于平面向量的命题主要以基本定理为主。
基本定理是矢量分解定理和平行四边形定理的推论,也是解决平面向量问题的基础。
下面我将就2024年高考数学试卷中出现的平面向量基本定理进行总结,以便为考生复习提供参考。
一、平面向量的矢量分解定理平面向量的矢量分解定理是高考数学中使向量具有普通向量性质的基础。
矢量分解定理有两种表达形式:平行四边形法则和三角形法则。
1. 平行四边形法则平行四边形法则是指对于平面内的任意两个向量,它们可以用平行四边形的两条对角线表示。
对于平面中的向量AC和AD,可以有以下公式:AC = AB + BCAD = AE + ED其中AC和AD是两向量之和,AB和AE是两向量的矢量分解,BC 和ED是两向量的矢量共线分解。
2. 三角形法则三角形法则是指对于平面内的任意两个向量,它们可以用构成由这两个向量所在的两条边所组成的三角形的一条边和该边上的向量的和表示。
对于平面中的向量AC和AD,可以有以下公式:AC = AB + BCAD = AE + DE其中AC和AD是两向量之和,AB和AE是两向量的矢量分解,BC 和DE是两向量的矢量共线分解。
二、平面向量的平行四边形定理平面向量的平行四边形定理是基本定理的推论,也是较为重要的定理之一。
平行四边形定理有两个推论,分别是相等条件和平行条件。
1. 相等条件平行四边形定理的相等条件是指对于平行四边形形状的两个向量,它们互为相等向量。
对于平面中的向量AC和BD,如果满足AC = BD,则可以得出以下的结论:ABCD为平行四边形2. 平行条件平行四边形定理的平行条件是指对于平面中的两个向量,如果它们的终点相同,则这两个向量是平行向量。
对于平面中的向量AC和BD,如果满足C = D,则可以得出以下的结论:AC // BD三、基本定理的应用基本定理是解决平面向量问题的基础,通过运用矢量分解定理和平行四边形定理,可以解决各种与平面向量相关的问题,如求向量的模、方向、分解等问题。
高考平面向量知识点总结
高考平面向量知识点总结一、向量定义和表示方法在平面上,向量由大小和方向两部分组成。
通常使用箭头AB表示向量,其中A为向量的起点,B为终点。
向量的大小可以用模长表示,通常用符号 ||AB|| 表示,也可以用绝对值表示,即 |AB|。
二、向量的基本运算1. 向量的加法:向量的加法满足交换律和结合律,即:AB + BC = AC。
2. 向量的减法:向量的减法可以通过向量的加法来表示,即:AB – BC = AB + (-BC)。
3. 向量的数量积:向量的数量积也称为点积,表示为 AB · BC,结果是一个实数。
计算方式为:AB · BC = |AB| × |BC| × cosθ,其中θ为 AB 和 BC 的夹角。
4. 向量的夹角:两个非零向量的夹角的余弦值可以通过向量的数量积来计算。
5. 向量的共线性判定:如果两个向量的夹角为 0°或者 180°,则称这两个向量共线。
6. 向量的平行判定:如果两个非零向量的夹角为 0°或者 180°,则称这两个向量平行。
三、平面向量的性质和定理1. 平行四边形定理:平行四边形的对角线互相平分。
2. 矩形的对角线性质:矩形的对角线相等且互相垂直。
3. 平面向量组线性相关的判定:如果存在不全为零的实数 k1、k2、…、kn,使得 a1 + a2 + … + an = 0,则称向量组 A = {a1, a2, …, an} 线性相关。
4. 平面向量组线性无关的判定:如果向量组 A = {a1, a2, …, an}线性相关的充分必要条件是不存在不全为零的实数k1、k2、…、kn,使得 k1a1 + k2a2 + … + knan = 0。
四、平面向量的坐标表示和计算平面向量可以用坐标表示,通常用大写字母表示向量,如 A(x1, y1) 和 B(x2, y2)。
平面向量的坐标表示可以进行加法、减法和数量积等运算。
高考复习知识点_平面向量 -学生
高考复习知识点 平面向量1、向量的运算: (1)几何运算:①向量加法:利用“平行四边形法则”进行,但“平行四边形法则”只适用于不共线的向量,如此之外,向量加法还可利用“三角形法则”:设,AB a BC b ==,那么向量AC 叫做a 与b 的和,即a b AB BC AC +=+=; ②向量的减法:用“三角形法则”:设,,AB a AC b a b AB AC CA ==-=-=那么,由减向量的终点指向被减向量的终点。
注意:此处减向量与被减向量的起点相同。
如(1)化简:①AB BC CD ++=___;②AB AD DC --=____;③()()AB CD AC BD ---=_____ (2)若正方形ABCD 的边长为1,,,AB a BC b AC c ===,则||a b c ++=_____(3)若O 是ABC 所在平面内一点,且满足2OB OC OB OC OA -=+-,则ABC 的形状为____ (4)若D 为ABC ∆的边BC 的中点,ABC ∆所在平面内有一点P ,满足0PA BP CP ++=,设||||AP PD λ=,则λ的值为___(5)若点O 是ABC △的外心,且0OA OB CO ++=,则ABC △的内角C 为____(2)坐标运算:设1122(,),(,)a x y b x y ==,则: ①向量的加减法运算:12(a b x x ±=±,12)y y ±。
如(1)已知点(2,3),(5,4)A B ,(7,10)C ,若()AP AB AC R λλ=+∈,则当λ=____时,点P 在第一、三象限的角平分线上(2)已知1(2,3),(1,4),(sin ,cos )2A B AB x y =且,,(,)22x y ππ∈-,则x y += (3)已知作用在点(1,1)A 的三个力123(3,4),(2,5),(3,1)F F F ==-=,则合力123F F F F =++的终点坐标是②实数与向量的积:()()1111,,a x y x y λλλλ==。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
咼考平面向量知识点总结
设、 两点的坐标分别为 x 1,y 1 , x 2,y 2 ,贝U uuur
X i X 2,y i y -
19、向量数乘运算:
⑴实数 与向量a 的积是一个向量的运算叫做向量的数乘,记作 a .
① I 剳丨ii a ;
② 当o 时,a 的方向与a 的方向相同;当
o 时,a 的方向与a 的方向相反;当
r r
0 时,a 0 . ⑵运算律:①
a a :② aaa :③a
b a b .
⑶坐标运算:设a x, y ,贝U a x, y x, y .
16、向量:既有大小,又有方向的量.
数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 单位向量:长度等于 1个单位的向量.
零向量:长度为 0的向量.
平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量.
17、向量加法运算:
⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:
a HI
⑷运算性质:①交换律:abba ; ②结合律:a b c a b c :③a 0 0 a a .
r r
⑸坐标运算:设a x 1, y-! ,b x 2, y 2,贝U a b x 1 x 2,y 1 y 2
18、向量减法运算:
⑴三角形法则的特点:共起点,连终点,方向指向被减向量.
⑵坐标运算:设a rb
%
X1
X 2,y 2 r [ ,贝U a b x 1 x 2, y 1 y 2
D
20、 向量共线定理:向量a a o 与b 共线,当且仅当有唯—个实数
,使b a .
设a N ,y i ,b X 2,y 2 ,其中b 0,则当且仅当x 』2 X 2y i 0时,向量a 、 b b 0共线. 21、 平面向量基本定理:如果 e 、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意
r
r u
uu ur uu
向量a ,有且只有一对实数 1、
2,使
a
1e i
2e 2 •(不共线的向量 e 1、作为这一平面内所有
向量的一组基底) 22、 分点坐标公式:设点
是线段1 2上的一点, 1、 2的坐标分别是
X 1,% , X 2,y 2,当
uuu mir
x x y y
,
1 2时,点的坐标是-
1
x 2,!! y2
•(当 1时,就为中点公式。
)
1 2
1 1
23、平面向量的数量积:
⑶运算律:①a b b a :②
r r
设a 、b 都是非零向量,a x 1, y 1 , b
y2
y1
卷
X1
r
b r
a y2
X2,
%
X1,
y2
y1
X1>
r
a
设
2
y
⑷坐标运算:设两个非零向量a 若 a x, y ,贝y a 2 x 2 y 2,或 a
o
y1
X2
X1
r
cos
a b
X 1X 2 yy
180 •零向量与任一向量的数量积为 0 .
⑵性质:设a 和b 都是非零向
量, ;当a 与b 反向则①
r r
a b 0 .②当a 与b 同向时,
a 2或a 、、訂.③
r i r
a b a
x 2,y 2 , 是a 与b 的夹角,贝U
s co r b ra
ra
a。