大学物理参考答案(白少民)第11章 波动光学

合集下载

大学物理第十一章波动光学作业ppt课件

大学物理第十一章波动光学作业ppt课件

平面处的屏幕上的中央明条纹宽度为2.0mm,则入射
光波长约为
(A) 100 nm
(B) 400 nm
(C) 500 nm
(D) 600 nm
[ C]
解:对单缝衍射,中央明条纹的宽度为正、负一级暗
条纹间的距离
一级暗条纹到中央明条纹的距离为 x1
则中央明条纹的宽度为
x0
2x1
2 b
f
f
b
f
入射光波长为
解:条纹间距即条纹的宽度为 b
2 n
逆时针转动,增加,则b变小,即间隔变小
由的条2纹d 被2高 级k次可的知占,据d,增因加此,向干棱涉边级方次向k增平加移,原来处
.
选A
2.在夫琅禾费单缝衍射实验中,对于给定的入射单色 光,当缝宽度变小时,除中央亮纹的中心位置不变外, 各级衍射条纹 (A) 对应的衍射角变小. (B) 对应的衍射角变大. (C) 对应的衍射角也不变.(D) 光强也不变. [ B ]
3.在用钠光(=589.3nm)做光源进行的单缝夫琅禾费
衍射实验中,单缝宽度b=0.5mm,透镜焦距f=700mm. 求透镜焦平面上中央明条纹的宽度.
解:对一级暗条纹有
则中央明条纹的宽度为 x1 b f
5 8 9 .3 1 0 6
x 0 2 x 1 2 bf 2 . 0 .5 7 0 0 1 .6 5 m m
透射光加强,为明条纹,则有 2ndk
d k
2n
当k=1时,膜有最小厚度,即
d m 2 n 2 6 1 0 .0 5 4 1 9 4 n m 1 .9 4 1 0 4 m m
或透射光加强时,反射光相消,即对反射光,有
2nd(2k1) 2ndk

波动光学大学物理答案

波动光学大学物理答案

习题13选择题(1)在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是[ ](A) 使屏靠近双缝.(B) 使两缝的间距变小.(C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源. [答案:C](2)两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的[ ] (A) 间隔变小,并向棱边方向平移. (B) 间隔变大,并向远离棱边方向平移. (C) 间隔不变,向棱边方向平移.(D) 间隔变小,并向远离棱边方向平移. [答案:A](3)一束波长为的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为[ ] (A) . (B) / (4n ).(C) . (D) / (2n ). [答案:B](4)在迈克耳孙干涉仪的一条光路中,放入一折射率为n ,厚度为d 的透明薄片,放入后,这条光路的光程改变了[ ](A) 2 ( n -1 ) d . (B) 2nd . (C) 2 ( n -1 ) d + / 2. (D) nd .(E) ( n -1 ) d . [答案:A](5)在迈克耳孙干涉仪的一条光路中,放入一折射率为n 的透明介质薄膜后,测出两束光的光程差的改变量为一个波长,则薄膜的厚度是 [ ](A) . (B) / (2n ). (C) n . (D) / [2(n-1)]. [答案:D]填空题 (1)如图所示,波长为的平行单色光斜入射到距离为d 的双缝上,入射角为.在图中的屏中央O 处(O S O S 21=),两束相干光的相位差为________________. [答案:2sin /d πθλ](2)在双缝干涉实验中,所用单色光波长为= nm (1nm =10-9 m),双缝与观察屏的距离D =1.2 m ,若测得屏上相邻明条纹间距为x =1.5 mm ,则双缝的间距d =θ λ S 1 S 2d__________________________.[答案:0.45mm](3)波长=600 nm 的单色光垂直照射到牛顿环装置上,第二个明环与第五个明环所对应的空气膜厚度之差为____________nm .(1 nm=10-9 m)[答案:900nm ](4)在杨氏双缝干涉实验中,整个装置的结构不变,全部由空气中浸入水中,则干涉条纹的间距将变 。

波动光学大学物理答案

波动光学大学物理答案

习题1313.1选择题(1)在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是[ ](A) 使屏靠近双缝.(B) 使两缝的间距变小.(C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源. [答案:C](2)两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的[ ] (A) 间隔变小,并向棱边方向平移. (B) 间隔变大,并向远离棱边方向平移. (C) 间隔不变,向棱边方向平移.(D) 间隔变小,并向远离棱边方向平移. [答案:A](3)一束波长为λ的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为[ ] (A) λ / 4 . (B) λ / (4n ).(C) λ / 2 . (D) λ / (2n ). [答案:B](4)在迈克耳孙干涉仪的一条光路中,放入一折射率为n ,厚度为d 的透明薄片,放入后,这条光路的光程改变了[ ](A) 2 ( n -1 ) d . (B) 2nd . (C) 2 ( n -1 ) d +λ / 2. (D) nd .(E) ( n -1 ) d . [答案:A](5)在迈克耳孙干涉仪的一条光路中,放入一折射率为n 的透明介质薄膜后,测出两束光的光程差的改变量为一个波长λ,则薄膜的厚度是 [ ](A) λ / 2 . (B) λ / (2n ). (C) λ / n . (D) λ / [2(n-1)]. [答案:D]13.2 填空题 (1)如图所示,波长为λ的平行单色光斜入射到距离为d 的双缝上,入射角为θ.在图中的屏中央O 处(O S O S 21=),两束相干光的相位差为________________. [答案:2sin /d πθλ](2)在双缝干涉实验中,所用单色光波长为λ=562.5 nm (1nm =10-9 m),双缝与观察屏的距离D =1.2 m ,若测得屏上相邻明条纹间距为∆x =1.5 mm ,则双缝的间距d =__________________________.[答案:0.45mm](3)波长λ=600 nm 的单色光垂直照射到牛顿环装置上,第二个明环与第五个明环所对应的空气膜厚度之差为____________nm .(1 nm=10-9 m)[答案:900nm ](4)在杨氏双缝干涉实验中,整个装置的结构不变,全部由空气中浸入水中,则干涉条纹的间距将变 。

大学物理A第十一章 波动光学

大学物理A第十一章 波动光学

第十一章 波动光学一、填空题(每空3分)11-1 相干光的条件是________________.(频率相同,振动方向相同,相位差恒定.)11-2 ______ 和 _______是波动的重要特征,光的偏振现象证明光是_____波.( 干涉,衍射, 横.)11-3当一束自然光在两种介质分界面处发生反射和折射时,若反射光为线偏振光,则折射光为_____________偏振光,且反射线和折射线之间的夹角为_______.(部分, 2π.) 11-4 当光从折射率n______ 的介质射向折射率n___________的介质,并在分界面上反射时,将产生半波损失.(填:大;小.)( 答案:大, 小.)11-5 在双缝实验中,若把一厚度为e ,折射率为n 的薄云母片覆盖在S 1缝上,中央明纹将向__________移动,覆盖云母片后两束相干光至原中央明纹O 处的光程差为_______________.(向上,(n-1)e )11-6光的干涉和衍射现象反映了光的__________________性质;光的偏振现象说明光波是_____________波.( 波动 , 横)11-7使一束自然光和线偏振光混合而成的光束垂直通过一偏振片,以入射光束为轴旋转偏振片,测得透射光的最大值为最小值的4倍,则入射光中自然光与线偏振光的强度之比为 。

(23)11-8杨氏双缝干涉实验、薄膜干涉实验、劈尖干涉实验、牛顿环干涉实验,其中属于分波面干涉的实验为 。

(杨氏双缝干涉实验)11-9 用不同波长的红光(10.7m λμ=)和紫光(20.42m λμ=)进行双缝实验,发现红光照射时第k 级明纹正好与用紫光照射时的第k+2级明纹重合,则k = 。

( 3) 11-10用两块平玻璃构成劈尖观察等厚干涉条纹。

若将劈尖上表面向上缓慢地平移,则干涉条纹向 方向移动;若将劈尖角e S 2 S 1 Oθ逐渐增大,则干涉条纹向 方向移动。

(左;左)11-11光强均为0I 的两束相干光相遇而发生干涉时,在相遇区域内有可能出现的最大光强是 。

波动光学大学物理答案

波动光学大学物理答案

波动光学大学物理答案习题1313.1选择题(1)在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是[ ](A) 使屏靠近双缝.(B) 使两缝的间距变小.(C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源.[答案:C](2)两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的[ ](A) 间隔变小,并向棱边方向平移.(B) 间隔变大,并向远离棱边方向平移.(C) 间隔不变,向棱边方向平移.(D) 间隔变小,并向远离棱边方向平移.[答案:A](3)一束波长为 的单色光由空气垂直入射到折射率为n的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为[ ](A) λ / 4.(B) λ / (4n).(C) λ / 2.(D) λ / (2n).[答案:B](4)在迈克耳孙干涉仪的一条光路中,放入一折射率为n,厚度为d的透明薄片,放入后,这条光路的光程改变了[ ](A) 2 ( n-1 ) d.(B) 2nd.(C) 2 ( n-1 ) d+λ / 2.(D) nd.(E) ( n-1 ) d.[答案:A](5)在迈克耳孙干涉仪的一条光路中,放入一折射率为n的透明介质薄膜后,测出两束光的光程差的改变量为一个波长λ,则薄膜的厚度是[](A) λ / 2.(B) λ / (2n).(C) λ / n.(D) λ / [2(n-1)].[答案:D]13.2 填空题 (1)如图所示,波长为λ的平行单色光斜入射到距离为d 的双缝上,入射角为θ.在图中的屏中央O 处(O S O S 21=),两束相干光的相位差为________________.[答案:2sin /d πθλ](2)在双缝干涉实验中,所用单色光波长为λ=562.5 nm (1nm =10-9 m),双缝与观察屏的距离D =1.2 m ,若测得屏上相邻明条纹间距为∆x =1.5 mm ,则双缝的间距d =__________________________.[答案:0.45mm](3)波长λ=600 nm 的单色光垂直照射到牛顿环装置上,第二个明环与第五个明环所对应的空气膜厚度之差为____________nm .(1 nm=10-9 m)[答案:900nm ](4)在杨氏双缝干涉实验中,整个装置的结构不变,全部由空气中浸入水中,则干涉条纹的间距将变 。

大学物理第十一章波动光学习题答案

大学物理第十一章波动光学习题答案

第十一章 波动光学习题11-1 在杨氏双缝实验中,双缝间距d =0.20 mm ,缝屏间距D =1.0 m ,若第2级明条纹离屏中心的距离为6.0 mm ,试求:(1)入射光的波长;(2)相邻两明条纹间的距离。

解:(1)由λk d D x =明知, λ22.01010.63⨯⨯= 30.610m m 600n m λ-=⨯= (2)3106.02.010133=⨯⨯⨯==∆-λd D x mm 11-2 在双缝装置中,用一很薄的云母片(n =1.58)覆盖其中的一条缝,结果使屏幕上的第7级明条纹恰好移到屏幕中央原零级明纹的位置。

若入射光的波长为550 nm ,求此云母片的厚度。

解:设云母片厚度为e ,则由云母片引起的光程差为e n e ne )1(-=-=δ 按题意 λδ7= ∴610106.6158.1105500717--⨯=-⨯⨯=-=n e λm 6.6=m μ 11-3 在折射率n 1=1.52的镜头表面涂有一层折射率n 2=1.38的MgF 2增透膜,如果此膜适用于波长λ=550 nm 的光,问膜的最小厚度应取何值?解:设光垂直入射增透膜,欲透射增强,则膜上、下两表面反射光应满足干涉相消条件,即λ)21(22+=k e n ),2,1,0(⋅⋅⋅=k 222422)21(n n k n k e λλλ+=+=)9961993(38.14550038.125500+=⨯+⨯=k k o A令0=k ,得膜的最薄厚度为996o A 。

11-4 白光垂直照射在空气中厚度为0.4μm 的玻璃片上,玻璃的折射率为1.50。

试问在可见光范围内(λ= 400~700nm ),哪些波长的光在反射中增强?哪些波长的光在透射中增强?解:(1)222n d j λδλ=+= 24 3,480n m 21n d j j λλ===- (2)22(21) 22n d j λλδ=+=+ 22n d j λ= 2,600n m j λ==;3,400nm j λ== 11-5 白光垂直照射到空气中一厚度为380 nm 的肥皂膜上,设肥皂膜的折射率为1.33,试问该膜的正面呈现什么颜色?背面呈现什么颜色? 解:由反射干涉相长公式有42221ne ne k k λδλλ=+==-, ),2,1(⋅⋅⋅=k 得4 1.3338002674nm 2214 1.3338003404nm 231k k λλ⨯⨯===⨯-⨯⨯===⨯-,红色,紫色所以肥皂膜正面呈现紫红色。

大学物理A第十一章 波动光学

大学物理A第十一章 波动光学

第十一章 波动光学一、填空题(每空3分)11-1 相干光的条件是________________.(频率相同,振动方向相同,相位差恒定.)11-2 ______ 和 _______是波动的重要特征,光的偏振现象证明光是_____波.( 干涉,衍射, 横.)11-3当一束自然光在两种介质分界面处发生反射和折射时,若反射光为线偏振光,则折射光为_____________偏振光,且反射线和折射线之间的夹角为_______.(部分, 2π.) 11-4 当光从折射率n______ 的介质射向折射率n___________的介质,并在分界面上反射时,将产生半波损失.(填:大;小.)( 答案:大, 小.)11-5 在双缝实验中,若把一厚度为e ,折射率为n 的薄云母片覆盖在S 1缝上,中央明纹将向__________移动,(向上,(n-1)e )11-6光的干涉和衍射现象反映了光的__________________性质;光的偏振现象说明光波是_____________波.( 波动 , 横)11-7使一束自然光和线偏振光混合而成的光束垂直通过一偏振片,以入射光束为轴旋转偏振片,测得透射光的最大值为最小值的4倍,则入射光中自然光与线偏振光的强度之比为 。

(23)11-8杨氏双缝干涉实验、薄膜干涉实验、劈尖干涉实验、牛顿环干涉实验,其中属于分波面干涉的实验为 。

(杨氏双缝干涉实验)11-9 用不同波长的红光(10.7m λμ=)和紫光(20.42m λμ=)进行双缝实验,发现红光照射时第k 级明纹正好与用紫光照射时的第k+2级明纹重合,则k = 。

( 3) 11-10用两块平玻璃构成劈尖观察等厚干涉条纹。

若将劈尖上表面向上缓慢地平移,则干涉条纹向 方向移动;若将劈尖角逐渐增大,则干涉条纹向 方向移动。

(左;左)11-11光强均为0I 的两束相干光相遇而发生干涉时,在相遇区域内有可能出现的最大光强是 。

(04I )11-12 在双缝干涉实验中,用折射率n =1.5的薄膜覆盖在其中的一条缝上,这时屏上的第4级明纹移到原来的零级明纹位置上,如果入射光的波长为500nm ,则此薄膜的厚度为nm 。

大学物理 第十一章 波动光学

大学物理 第十一章 波动光学

11-1钠黄光波长为589.3mm ,试以一次延续时间计,计算一个波列中的完整波的个数。

810−解178631010510589.3c N τλ−××==≈×11-2在杨氏双缝实验中,当做如下调节时,屏幕上的干涉条纹将如何变化?(要说明理由)(1)使两缝之间的距离逐渐减小;(2)保持双缝的间距不变,使双缝与屏幕的距离逐渐减小;(3)如图11.3所示,把双缝中的一条狭缝遮住,并在两缝的垂直平分线上放置一块平面反射镜。

解(1)由条纹间距公式,在D 和不变的情况下,减小d 可使增大,条D x dλ∆=λx ∆纹间距变宽。

(2)同理,若和保持不变,减小D ,变小,条纹变密,到一定程度时条纹将难以d λx ∆分辨。

(3)此装置同洛埃镜实验,由于反射光有半波损失,所以()212D x k d D x k d λλ=−=明暗与杨氏双缝的干涉条纹相比,其明暗条纹分布的状况恰好相反,且相干的区域仅在中心轴线上方的一部分。

11-3洛埃镜干涉装置如图11.4所示,光源波长,试求镜的右边缘到第一77.210m λ−=×条明纹的距离。

解因为镜右边缘是暗纹中心,它到第一明条纹的距离h 应为半个条纹间隔,()531120307.210 4.510220.4D h cm d λ−−+==×××=×11-4由汞弧灯发出的光,通过一绿光滤光片后,照射到相距为0.60mm 的双缝上,在距双缝2.5m 远处的屏幕上出现干涉条纹。

现测得相邻两明条纹中心的距离为2.27mm ,求入射光的波长解有公式得D x d λ∆=()()3372.27100.0610 5.5105502.5d x m nm D λ−−−×××=∆•==×=11-5在双缝装置中,用一很薄的云母片(n=1.58)覆盖其中的一条狭缝,这时屏幕上的第七级明条纹恰好移到屏幕中央原零级明条纹的位置。

波动光学习题参考答案

波动光学习题参考答案

结束 返回
已知:
l 589.3 q = 2nl = 2×1.52×5×10-6
=3.83×10-5 (rad) = 8´ ´
结束 返回
15、 波长为680nm的平行光垂直地 照射到12cm长的两块玻璃片上,两玻璃片 一边相互接触,另一边被厚0.048mm的纸 片隔开,试问在这l2cm内呈现多少条明条 纹?
2n k550
2n
4n
=211.5k+105.8
令 k =0 e =105.8 (nm)
结束 返回
13、 彩色电视发射机常用三基色的分 光系统,如图所示,系用镀膜方法进行分色, 现要求红光的波长为600nm,绿光的波长为 520nm,设基片玻璃的折射率n3 =15.0,膜 材料的折射率 n2 =2.12。 空气的折射率为 0 n1 ,设入射角i =45 。 白光 i 试求膜的厚度。 红光 绿光 兰光
结束 返回
解:水膜正面反射干涉加强 l kl 2ne + 2 = k=2 4ne 4×1.33×380 =674 (nm) 红 l2 = = 2×2-1 2k-1 k=3
4ne 4×1.33×380 =404 (nm) 紫 l3 = = 2×3-1 2k-1 所以水膜呈现紫红色 k 的其它取值属于红外光或紫外光范围结束
x ´为k 级新的明条纹位置

原来的光程差为 d = r 2 r 1 = dsinj = d x = kl D d b + d (x ´ x ) =0 两式相减得到: D´ D D Δ x ´= b (x ´ x ) <0 D´
即条纹向下移动,而条纹间距不变
D´ S 2
o
D
结束 返回
7、 用单色光源S照射双缝,在屏上形 成干涉图样,零级明条纹位于O 点,如图所 示。若将缝光源 S 移至位置S ´,零级明条 纹将发生移动。欲使零级明条纹移回 O 点, 必须在哪个缝处覆盖一薄云母片才有可能? 若用波长589nm的单 色光,欲使移动了4个 屏 S1 明纹间距的零级明纹 S´ O 移回到O点,云母片的 S 厚度应为多少?云母片 S2 的折射率为1.58。

大学物理 第十一章 波动光学 复习题及答案详解

大学物理 第十一章  波动光学 复习题及答案详解

大学物理第十一章波动光学复习题及答案详解第十一章波动光学第一部分一、填空题:1、波长为?的平行单色光垂直照射到如题4-1图所示的透明薄膜上,膜厚为e,折射率为n,透明薄膜放空气中,则上下两表面反射的两束反射光在相遇处的位相差??? 。

2、如题4-2图所示,假设有两个同相的相干点光源S1和S2,发出波长为?的光。

A是它们连线的中垂线上的一点。

若在S1与A之间插入厚度为e、折射率为n的薄玻璃片,则两光源发出的光在A点的位相差??? 。

若已知?=5000A,n?1.5,A点恰为??第四级明纹中心,则e? A。

? n eS1S2enA题4-1图题4-2图3、一双缝干涉装置,在空气中观察时干涉条纹间距为 1.00mm。

若整个装置放在水中,干涉条纹的间距将为 mm。

(设水的折射率为43)。

4、在空气中有一劈尖形透明物,其劈尖角??1.0?10rad,在波长??7000A的单色光垂直照射下,测得两相邻干涉明条纹间距l?0.25cm,此透明材料的折射率n? 。

5、一个平凸透镜的顶点和一个平板玻璃接触,用单色光垂直照射,观察反射光形成的牛顿环,测得第k级暗环半径为r1。

现将透镜和玻璃板之间的空气换成某种液体(其折射率小于玻璃的折射率),第k级暗环的半径变为r2,由此可知该液体的折射率为。

6、若在麦克尔逊干涉仪的可动反射镜M移动0.620mm的过程中,观察到干涉条纹移动了??4?2300条,则所用光波的波长为 A。

7、光强均为I0的两束相干光相遇而发生干涉时,在相遇区域内有可能出现的最大光强是。

8、为了获得相干光,双缝干涉采用方法,劈尖干涉采用方法。

9、劳埃德镜实验中,光屏中央为条纹,这是因为产生。

二、选择题1、在真空中波长为?的单色光,在折射率为n的透明介质中从A沿某路径传播到B,若A,B两点位相差为3?,则此路径AB的光程为()(A)1.5? (B)1.5n? (C)3? (D)1.5?n 2、在单缝夫琅和费衍射实验中,波长为?的单色光垂直入射到宽度为a=4?的单缝上,对应于衍射角30?的方向,单缝处波阵面可分成的半波带数目为 (A) 2 个. (B) 4个. (C) 6 个. (D) 8个.3、如图4-4所示,用波长为?的单色光照射双缝干涉实验装置,若将一折射率为n、劈尖角为? 的透明劈尖b插入光线2中,则当劈尖b缓慢地向上移动时(只遮住s2) ,屏C上的干涉条纹(A) 间隔变大,向下移动. (B) 间隔变小,向上移动. (C) 间隔不变,向下移动. (D)间隔不变,向上移动.4、用白光光源进行双缝实验,若用一个纯红色的滤光片遮C 1 b 2 图4-4 O s1 ?s s2 盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则()(A)干涉条纹的宽度将发生变化。

大学物理参考答案(白少民)第11章 波动光学

大学物理参考答案(白少民)第11章 波动光学

600 2 2 5 7 5 λ = × 600 / = × 600 = 428.6nm 则前一种单色光的波长 2 2 7 11.17 在通常的亮度下,人眼瞳孔直径约为 3mm,问人眼的最小分辨角是多大 ?如果黑板上
解:由题意知
(3 × 2 + 1)
λ
= (2 × 2 + 1)
画有两条平行直线,相距 1cm,问离开多远处可恰能分辨? 解:对于眼睛敏感的光 λ = 550nm 则人眼的最小分辨角
kλ 2 × 600 = = 6000nm = 6 ×10 −6 m sin θ 0.2 (2)因第四级是缺级,则 a + b = 4a (认为 k < 4 再无缺级),所以有 a +b 6 a= = ×10 −6 = 1.5 ×10 −6 m 4 4 a +b =
(3)由光栅方程得
k=
(a + b) sin θ 6 × 10 −6 × 1 = = 10 λ 600 × 10 −9
3
解:(1)由 ∆d = ∆n
λ
解:设到 P 点的光线与光轴的夹角为 θ ,则 (1)由 b sin θ = ±( 2k + 1)
tgθ =
x 1.4 ×10 −3 = = 3.5 ×10 −3 f 0 .4
λ
2
得该入射光的波长
λ=
2b sin θ 2btgθ 2 × 0.6 ×10 −3 × 3.5 ×10 −3 4.2 ×10 −6 4200 ≈ = = m= nm 2k +1 2k +1 2k + 1 2k + 1 2k +1
λ
2
.
λ = kλ (k = 1,2,) 2 4ne 4 ×1.33 × 380 2022 λ= = = nm 由此得 2 k −1 2 k −1 2 k −1 在可见光范围内 k=2 , λ = 674nm (紫色); k=3 , λ = 404nm (红色),故正面是紫红 δ 1 = 2ne +

波动光学(习题与答案)

波动光学(习题与答案)

第11章 波动光学一. 基本要求1. 解获得相干光的方法。

掌握光程的概念以及光程差与相位差的关系。

2. 能分析、确定杨氏双缝干涉条纹及等厚、等倾干涉条纹的特点(干涉加强、干涉减弱的条件及明、暗条纹的分布规律;了解迈克耳逊干涉仪的原理。

3. 了解惠更斯——菲涅耳原理;掌握分析单缝夫琅禾费衍射暗纹分布规律的方法。

4. 理解光栅衍射公式,会确定光栅衍射谱线的位置,会分析光栅常数及波长对光栅衍射谱线分布的影响。

5. 理解自然光和偏振光及偏振光的获得方法和检验方法。

6. 理解马吕斯定律和布儒斯特定律。

二. 内容提要1. 相干光及其获得方法 能产生干涉的光称为相干光。

产生光干涉的必要条件是:频率相同;振动方向相同;有恒定的相位差。

获得相干光的基本方法有两种:一种是分波阵面法(如杨氏双缝干涉、洛埃镜干涉、菲涅耳双面镜和菲涅耳双棱镜等);另一种是分振幅法(如平行波膜干涉、劈尖干涉、牛顿环和迈克耳逊干涉仪等)。

2. 光程、光程差与相位差的关系 光波在某一介质中所经历的几何路程l 与介质对该光波的折射率n 的乘积n l 称为光波的光学路程,简称光程。

若光波先后通过几种介质,其总光程为各分段光程之和。

若在界面反射时有半波损失,则反射光的光程应加上或减去2λ。

来自同一点光源的两束相干光,经历不同的光程在某一点相遇,其相位差Δφ与光程差δ的关系为δλπϕ2=∆ 其中λ为光在真空中的波长。

3. 杨氏双缝干涉 经杨氏双缝的两束相干光在某点产生干涉时有两种极端情况:一种是相位差为零或2π的整数倍,合成振幅最大—干涉加强;另一种是相位差为π的奇数倍,合成振动最弱或振幅为零——称干涉减弱或相消。

其对应的光程差为⎪⎩⎪⎨⎧=-±=±= 21k 212 210 干涉减弱),,()(干涉加强),,(ΛΛλλδk k k 杨氏双缝干涉的光程差还可写成Dx d=δ ,式中d 为两缝间距离,x 为观察屏上纵轴坐标,D 为缝屏间距。

波动光学大学物理答案

波动光学大学物理答案

习题1313.1选择题(1)在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是[ ](A) 使屏靠近双缝.(B) 使两缝的间距变小.(C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源. [答案:C](2)两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的[ ] (A) 间隔变小,并向棱边方向平移. (B) 间隔变大,并向远离棱边方向平移. (C) 间隔不变,向棱边方向平移.(D) 间隔变小,并向远离棱边方向平移. [答案:A](3)一束波长为λ的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为[ ] (A) λ / 4 . (B) λ / (4n ).(C) λ / 2 . (D) λ / (2n ). [答案:B](4)在迈克耳孙干涉仪的一条光路中,放入一折射率为n ,厚度为d 的透明薄片,放入后,这条光路的光程改变了[ ](A) 2 ( n -1 ) d . (B) 2nd . (C) 2 ( n -1 ) d +λ / 2. (D) nd .(E) ( n -1 ) d . [答案:A](5)在迈克耳孙干涉仪的一条光路中,放入一折射率为n 的透明介质薄膜后,测出两束光的光程差的改变量为一个波长λ,则薄膜的厚度是 [ ](A) λ / 2 . (B) λ / (2n ).(C) λ / n . (D) λ / [2(n-1)]. [答案:D]13.2 填空题 (1)如图所示,波长为λ的平行单色光斜入射到距离为d 的双缝上,入射角为θ.在图中的屏中央O 处(O S O S 21=),两束相干光的相位差为________________. [答案:2sin /d πθλ](2)在双缝干涉实验中,所用单色光波长为λ=562.5 nm (1nm =10-9m),双缝与观察屏的距离D =1.2 m ,若测得屏上相邻明条纹间距为∆x =1.5 mm ,则双缝的间距d =__________________________.[答案:0.45mm](3)波长λ=600 nm 的单色光垂直照射到牛顿环装置上,第二个明环与第五个明环所对应的空气膜厚度之差为____________nm .(1 nm=10-9m)[答案:900nm ](4)在杨氏双缝干涉实验中,整个装置的结构不变,全部由空气中浸入水中,则干涉条纹的间距将变 。

第十一章 波动光学及其答案

第十一章 波动光学及其答案

第十一章 波动光学答案§11.2杨氏双缝干涉实验 劳埃德镜一.选择题和填空题1. D2. B3. 4I 04. 上 (n -1)e5. 0.75二.计算题1. 解:相邻明纹间距 ∆x 0 = D λ / d2分 两条缝之间的距离 d = D λ / ∆x 0 =D λ / (∆x / 20) =20 D λ/∆x= 9.09×10-2 cm 3分2. 解:设S 1、S 2分别在P 点引起振动的振幅为A ,干涉加强时,合振幅为2A ,所以2max 4A I ∝1分因为 λ3112=-r r所以S 2到P 点的光束比S 1到P 点的光束相位落后()3π23π2π212=⋅=-=∆λλλφr r 1分P 点合振动振幅的平方为:22223π2cos 2A A A A =++ 2分 ∵ I ∝A 2 ∴ I / I max = A 2 / 4A 2 =1 / 41分§11.3 光程 薄膜于涉一.选择题和填空题1. A2. C3. B4. 2.60 e5. [( 4ne / λ )–1 ]π 或 [( 4ne / λ) +1]π二.计算题1. 解:设介质薄膜的厚度为e ,上、下表面反射均为由光疏介质到光密介质,故不计附加程差。

当光垂直入射i = 0时,依公式有: 对λ1: ()112212λ+='k e n ① 1分 按题意还应有: 对λ2: 22λk e n =' ② 1分 由① ②解得: ()32121=-=λλλk 1分将k 、λ2、n '代入②式得en 0 =1.00n '=1.35n k e '=22λ=7.78×10-4 mm 2分2. 解:加强, 2ne+21λ = k λ, 2分 123000124212-=-=-=k k ne k ne λ nm 2分 k = 1, λ1 = 3000 nm , k = 2, λ2 = 1000 nm , k = 3, λ3 = 600 nm , k = 4, λ4 = 428.6 nm ,k = 5, λ5 = 333.3 nm .2分∴ 在可见光范围内,干涉加强的光的波长是λ=600 nm 和λ=428.6 nm . 2分§11.4 劈尖 牛顿环一.选择题和填空题1. C2. C3. D4. B5. λ/(2n )6. 2 ( n – 1) e – λ /2 或者2 ( n – 1) e + λ /2二.计算题1. 解:根据暗环半径公式有 R k r k λ=2分()R k r k λ1010+=+ 由以上两式可得 ()()λ10/2210k k r r R -=+ 2分=4 m 1分2. 解: 明纹, 2ne +λ21=k λ (k =1,2,…)3分 第五条,k =5,ne 2215λ⎪⎭⎫ ⎝⎛-==8.46×10-4 mm 2分3. 解:(1) 明环半径 ()2/12λ⋅-=R k r 2分()Rk r 1222-=λ=5×10-5 cm (或500 nm) 2分 (2) (2k -1)=2 r 2 / (R λ)对于r =1.00 cm , k =r 2 / (R λ)+0.5=50.5 3分 故在OA 范围内可观察到的明环数目为50个. 1分§11.5 迈克耳孙干涉仪 时间相干性一.选择题和填空题1. D2. 2(n-1)d3. 2d /λ二.计算题1. 解:插入厚度为 d 的介质片后,两相干光的光程差的改变量为2(n-1)d,从而引起N 条条纹的移动,根据劈尖干涉加强的条件有2(n-1)d=N λ,得:§11.7 单缝衍射 一.选择题和填空题1. B2. C3. D4. C5. 干涉(或答“相干叠加”)6. ±30° (答30° 也可以)7. 0.36 mm二.计算题1.解:中央明纹宽度 x = 2 x ≈2 f λ/ a2分 单缝的宽度 a = 2 f λ/ x = 2×400×6328×10-9 / 3.4 m 2分 = 0.15 mm 1分2. 解:(1) 由单缝衍射暗纹公式得111sin λθ=a 222sin λθ=a 由题意可知 21θθ= , 21sin sin θθ=代入上式可得 212λλ= 3分(2) 211112sin λλθk k a == (k 1 = 1, 2, ……) a k /2sin 211λθ=222sin λθk a = (k 2 = 1, 2, ……)a k /sin 222λθ=若k 2 = 2k 1,则θ1 = θ2,即λ1的任一k 1级极小都有λ2的2k 1级极小与之重合. 2分§11.8 圆孔衍射 光学仪器的分辨率1.2.24×10-5 4.47§11.9 衍射光栅一.选择题和填空题1.D 2. B 3. D 4. D 5. B 6. 一 三二.计算题1. 解:(1) 由光栅衍射主极大公式得md 61051.51)-2(n N -⨯==λa +b =ϕλsin k =2.4×10-4 cm 3分 (2) 若第三级不缺级,则由光栅公式得()λϕ3sin ='+b a由于第三级缺级,则对应于最小可能的a ,ϕ'方向应是单缝衍射第一级暗纹:两式比较,得 λϕ='sin aa = (a +b )/3=0.8×10-4 cm 3分(3) ()λϕk b a =+sin ,(主极大)λϕk a '=sin ,(单缝衍射极小) (k '=1,2,3,......)因此 k =3,6,9,........缺级. 2分 又因为k max =(a +b ) / λ=4, 所以实际呈现k=0,±1,±2级明纹.(k=±4 在π / 2处看不到.) 2分2.解:(1) a sin ϕ = k λ tg ϕ = x / f 2分 当x << f 时,ϕϕϕ≈≈sin tg , a x / f = k λ , 取k = 1有x = f l / a = 0.03 m 1分 ∴中央明纹宽度为 ∆x = 2x = 0.06 m 1分(2) ( a + b ) sin ϕλk '=='k ( a +b ) x / (f λ)= 2.5 2分 取k'= 2,共有k '= 0,±1,±2 等5个主极大 2分§11.10 光的偏振性 马吕斯定律一.选择题和填空题1.B 2. A 3. 2 1/44. 自然光 线偏振光 部分偏振光 5.波动 横二.计算题1. 解:(1) 自然光通过第一偏振片后,其强度 I 1 = I 0 / 2 1分通过第2偏振片后,I 2=I 1cos 245︒=I 1/ 4 2分 通过第3偏振片后,I 3=I 2cos 245︒=I 0/ 8 1分 通过每一偏振片后的光皆为线偏振光,其光振动方向与刚通过的偏振片的偏振化方平行. 2分(2) 若抽去第2片,因为第3片与第1片的偏振化方向相互垂直,所以此时I 3 =0. 1分 I 1仍不变. 1分2. 解:设I 0为入射光中自然光的强度,I 1、I 2分别为穿过P 1和连续穿过P 1、P 2的强度. (1) 由题意,入射光强为2I 0, ()θ20001cos 5.0221I I I I +==得 cos 2θ=1 / 2, θ =45° 3分(2) I 2=(0.5I 0+I 0cos 245°) cos 2α =()0241I得 21cos 2=α , α=45° 2分§11.11 反射光和折射光的偏振一.选择题和填空题 1. D 2. B3.线偏振光 垂直于入射面 部分偏振光二.计算题1. 解:(1) 设该液体的折射率为n ,由布儒斯特定律tg i 0=1.56 / n 2分 得 n =1.56 / tg48.09°=1.40 1分(2) 折射角r =0.5π-48.09°=41.91° (=41°55' ) 2分2. 解: (1) 据布儒斯特定律tg i =n 2 / n 1=1.43所以 i =55.03° 2分(2) 令在介质Ⅱ中的折射角为r ,则 r =0.5π-i此r 在数值上等于介质Ⅱ、Ⅲ界面上的入射角,由布儒斯特定律 tg r =n 3 / n 2得 n 3=n 2 tg r =n 2 ctg i =n 2n 1 / n 2=1.00 3分§11.12 双折射一.选择题和填空题1. 遵守通常的折射 不遵守通常的折射2.传播速度 单轴。

大学物理波动光学习题答案

大学物理波动光学习题答案

第七章波动光学习题答案1.从一光源发出的光线,通过两平行的狭缝而射在距双缝100 cm的屏上,如两狭缝中心的距离为0.2 mm,屏上相邻两条暗条纹之间的距离为3 mm,求光的波长(Å为单位)。

已知 D=100cm a=0.2mm δx=3mm 求λ[解]λ=aδx/D=3×10-3×0.2×10-3/100×10-2=0.6×10-6m=6000 Å2.用波长为7000 Å的红光照射在双缝上,距缝1 m处置一光屏,如果21个明条纹(谱线以中央亮条为中心而对称分布)共宽2.3 cm,求两缝间距离。

[解]明条纹间距cm a=6.084.用波长为4800 Å的蓝光照射在缝距为0.1 mm的双缝上,求在离双缝50 cm处光屏上干涉条纹间距的大小。

[解]=2.4mm5.什么是光程?在不同的均匀媒质中,单色光通过相等光程时,其几何路程是否相同? 需要时间是否相同?[解]光程=nx。

在不同的均匀媒质中,单色光通过相等光程时,其几何路程是不同。

需要时间相同6.在两相干光的一条光路上,放入一块玻璃片,其折射率为1.6,结果中央明条纹移到原是第六级明条纹处,设光线垂直射入玻璃片,入射光波长为6.6×103 Å。

求玻璃片厚度。

已知 n=1.6 λ=6.6×103Å求 d[解]光程差MP-d+nd-NP=0∵ NP-MP=6λ∴(n-1)d=6λd=6λ/(n-1)=6.6×10-6m7.在双缝干涉实验中,用钠光灯作光源(λ=5893 Å),屏幕离双缝距离D=500mm,双缝间距a=1.2mm,并将干涉实验装置整个地浸在折射率1.33的水中,相邻干涉条纹间的距离为多大?若把实验装置放在空气中,干涉条纹变密还是变疏?(通过计算回答)已知n水=1.33 λ=5893 Å D=500 mm a=1.2mm 比较δx水和δx空气[解]δx水=Dλ/na=500×5893×10-10×10-3/(1.2×10-3×1.33)=1.85×10-4mδx空气=Dλ/a=500×5893×10-10×10-3/(1.2×10-3)=2.46×10-4m∴干涉条纹变疏8.用白光垂直照射到厚度为4×10-5 cm的薄膜上,薄膜的折射率为1.5。

波动光学习题参考答案课件

波动光学习题参考答案课件

=4062
(nm)
8、在空气中垂直入射的白光从肥皂膜 上反射,在可见光谱中630nm处有一干涉极 大,而在525nm处有一干涉极小,在这极大 与极小之间没有另外的极小。假定膜的厚度
是均匀的,求这膜的厚度。肥皂水的折射率
看作与水相同,为1.33。
解:
2ne
+
l1
2
= kl1
2ne
+
l2
2
=
(2k+1)
l2
2
由上两式得到:
k
=
l1 l1 l2
=
630 2(630-525)
=3
将 k =3 代入
e=
kl2 2n
=
32××51.2353=5.921×10-4 (mm)
9、 一平面单色光波垂直照射在厚度 均匀的薄油膜上,油 膜 覆盖在玻璃板上,
所用 单色光的波长可以连续变化,观察到
500nm与7000nm这两个波长的光在反射 中消失,油的折射率为 1.30,玻璃的折射 率为1.50。试求油膜的厚度 。
=4
明纹条件:
2e
+
l
2
=kl
明纹最高级数
k=1,2,...
k
2e + =l
l
2
2× 2l + =l
l
2
=4.5
取k=4 4级
暗纹9条 明纹8条
(2)设第k级明纹到中心的距离为rk
r
2 k
=R
2
R (d-e) 2=2R(d-e)
=2Rd R (k 12)l
rk =
2Rd
R (k
1 2
)l
(3)若将玻璃片B向下平移,条纹将向外移动

大学物理题库通用版-第11章-波动光学--光的干涉

大学物理题库通用版-第11章-波动光学--光的干涉

大学物理题库通用版 11、波动光学 光的干涉一、选择题(共15题)1.如图,S 1、S 2是两个相干光源,它们到P 点的距离分别为r 1和r 2.路径S 1P 垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径S 2P 垂直穿过厚度为t 2,折射率为n 2的另一介质板,其余部分可看作真空,这两条路径的光程差等于 没 (A) )()(111222t n r t n r +-+(B) ])1([])1([211222t n r t n r -+--+ (C) )()(111222t n r t n r ---(D) 1122t n t n - [ ]2. 在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中(A) 传播的路程相等,走过的光程相等. (B) 传播的路程相等,走过的光程不相等. (C) 传播的路程不相等,走过的光程相等.(D) 传播的路程不相等,走过的光程不相等. [ ] 3.如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1< n 2> n 3.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束(用①与②示意)的光程差是(A) 2n 2 e . (B) 2n 2 e -λ / 2. (C) 2n 2 e -λ . (D) 2n 2 e -λ / (2n 2).[ ] 4.如图所示,波长为λ的平行单色光垂直入射在折射率为n 2的薄膜上,经上下两个表面反射的两束光发生干涉.若薄膜厚度为e ,而且n 1>n 2>n 3,则两束反射光在相遇点的相位差为(A) 4πn 2 e / λ. (B) 2πn 2 e / λ. (C) (4πn 2 e / λ) +π. (D) (2πn 2 e / λ) -π. [ ]P S 1S 2 r 1n 1 n 2 t 2 r 2 t 1n 3n 1 3λ5.如图所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且n 1<n 2>n 3,λ1为入射光在折射率为n 1的媒质中的波长,则两束反射光在相遇点的相位差为(A) 2πn 2e / ( n 1 λ1). (B)[4πn 1e / ( n 2 λ1)] + π. (C) [4πn 2e / (n 1 λ1) ]+ π. (D) 4πn 2e / ( n 1 λ1). [ ]6.一束波长为λ的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为 (A) λ / 4 . (B) λ / (4n ).(C) λ / 2 . (D) λ / (2n ). [ ]7. 两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的 (A) 间隔变小,并向棱边方向平移.(B) 间隔变大,并向远离棱边方向平移. (C) 间隔不变,向棱边方向平移.(D) 间隔变小,并向远离棱边方向平移. [ ]8.用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则(A) 干涉条纹的宽度将发生改变. (B) 产生红光和蓝光的两套彩色干涉条纹. (C) 干涉条纹的亮度将发生改变.(D) 不产生干涉条纹. [ ]9. 把双缝干涉实验装置放在折射率为n 的水中,两缝间距离为d ,双缝到屏的距离为D (D >>d ),所用单色光在真空中的波长为λ,则屏上干涉条纹中相邻的明纹之间的距离是(A) λD / (nd ) (B) n λD /d .(C) λd / (nD ). (D) λD / (2nd ). [ ] 10.在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明条纹位于图中O 处.现将光源S 向下移动到示意图中的S '位置,则 (A) 中央明条纹也向下移动,且条纹间距不变.(B) 中央明条纹向上移动,且条纹间距不变. (C) 中央明条纹向下移动,且条纹间距增大. n 1 3λ1S S '(D) 中央明条纹向上移动,且条纹间距增大. [ ]11. 在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5 λ,则屏上原来的明纹处 (A) 仍为明条纹; (B) 变为暗条纹;(C) 既非明纹也非暗纹; (D) 无法确定是明纹,还是暗纹.[ ] 12.在牛顿环实验装置中,曲率半径为R 的平凸透镜与平玻璃扳在中心恰好接触,它们之间充满折射率为n 的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为λ,则反射光形成的干涉条纹中暗环半径r k 的表达式为 (A) r k =R k λ. (B) r k =n R k /λ.(C) r k =R kn λ. (D) r k =()nR k /λ. [ ]13. 把一平凸透镜放在平玻璃上,构成牛顿环装置.当平凸透镜慢慢地向上平移时,由反射光形成的牛顿环(A) 向中心收缩,条纹间隔变小.(B) 向中心收缩,环心呈明暗交替变化. (C) 向外扩张,环心呈明暗交替变化.(D) 向外扩张,条纹间隔变大. [ ] 14.如图a 所示,一光学平板玻璃A 与待测工件B 之间形成空气劈尖,用波长λ=500 nm (1 nm=10-9 m)的单色光垂直照射.看到的反射光的干涉条纹如图b 所示.有些条纹弯曲部分的顶点恰好与其右边条纹的直线部分的连线相切.则工件的上表面缺陷是(A) 不平处为凸起纹,最大高度为500 nm .(B) 不平处为凸起纹,最大高度为250 nm . (C) 不平处为凹槽,最大深度为500 nm . (D) 不平处为凹槽,最大深度为250 nm . [ ] 15.在迈克耳孙干涉仪的一条光路中,放入一折射率为n ,厚度为d 的透明薄片,放入后,这条光路的光程改变了(A) 2 ( n -1 ) d . (B) 2nd . (C) 2 ( n -1 ) d +λ / 2. (D) nd .(E) ( n -1 ) d . [ ]图b二、填空题(共15题)1. 在双缝干涉实验中,两缝分别被折射率为n 1和n 2的透明薄膜遮盖,二者的厚度均为e .波长为λ的平行单色光垂直照射到双缝上,在屏中央处,两束相干光的相位差∆φ=________.2.如图所示,假设有两个同相的相干点光源S 1和S 2,发出波长为λ的光.A 是它们连线的中垂线上的一点.若在S 1与A 之间插入厚度为e 、折射率为n 的薄玻璃片,则两光源发出的光在A 点的相位差∆φ=_2π (n -1) e / λ_.若已知λ=500 nm ,n =1.5,A 点恰为第四级明纹中心,则e =_____nm .(1 nm =10-9 m) 3.如图所示,两缝S 1和S 2之间的距离为d ,媒质的折射率为n =1,平行单色光斜入射到双缝上,入射角为θ,则屏幕上P 处,两相干光的光程差为___ ______.4. 在双缝干涉实验中,所用光波波长λ=5.461×10–4 mm ,双缝与屏间的距离D =300 mm ,双缝间距为d =0.134 mm ,则中央明条纹两侧的两个第三级明条纹之间的距离为________ _______.5. 用波长为λ的单色光垂直照射折射率为n 的劈形膜形成等厚干涉条纹,若测得相邻明条纹的间距为l ,则劈尖角θ=________.6. 把双缝干涉实验装置放在折射率为n 的媒质中,双缝到观察屏的距离为D ,两缝之间的距离为d (d <<D ),入射光在真空中的波长为λ,则屏上干涉条纹中相 邻明纹的间距是_____________.7. 用λ=600 nm 的单色光垂直照射牛顿环装置时,从中央向外数第4个(不计中 央暗斑)暗环对应的空气膜厚度为____________.(1 nm=10-9 m) 8.用波长为λ的单色光垂直照射折射率为n 2的劈形膜(如图)图中各部分折射率的关系是n 1<n 2<n 3.观察反射光的干涉条纹,从劈形膜顶开始向右数第5条暗条纹中心所对应的厚度e =____________.9. 波长为λ的平行单色光,垂直照射到劈形膜上,劈尖角为θ,劈形膜的折射率为n ,第三条暗纹与第六条暗之间的距离是______.P n 1n 2n 310. 一束波长为λ=600 nm (1 nm=10-9 m)的平行单色光垂直入射到折射率为n =1.33的透明薄膜上,该薄膜是放在空气中的.要使反射光得到最大限度的加强,薄膜最小厚度应为________________nm .11. 波长为λ的平行单色光垂直照射到劈形膜上,劈尖角为θ,劈形膜的折射率为n ,第k 级明条纹与第k +5级明纹的间距是__________.12. 波长λ=600 nm 的单色光垂直照射到牛顿环装置上,第二个明环与第五个明环所对应的空气膜厚度之差为____nm .(1 nm=10-9 m)13. 折射率分别为n 1和n 2的两块平板玻璃构成空气劈尖,用波长为λ的单色光垂直照射.如果将该劈尖装置浸入折射率为n 的透明液体中,且n 2>n >n 1,则劈尖厚度为e 的地方两反射光的光程差的改变量是_______. 14.如图所示,在双缝干涉实验中SS 1=SS 2,用波长为λ的光照射双缝S 1和S 2,通过空气后在屏幕E 上形成干涉条纹.已知P 点处为第三级明条纹,则S 1和S 2到P点的光程差为___3λ ____.若将整个装置放于某种透明液体中,P 点为第四级明条纹,则该液体的折射率n =________.15. 已知在迈克耳孙干涉仪中使用波长为λ的单色光.在干涉仪的可动反射镜移动距离d 的过程中,干涉条纹将移动__________条.三、计算题(共5题)1. 白色平行光垂直入射到间距为a =0.25 mm 的双缝上,距D =50 cm 处放置屏幕,分别求第一级和第五级明纹彩色带的宽度.(设白光的波长范围是从400nm 到760nm .这里说的“彩色带宽度” 指两个极端波长的同级明纹中心之间的距离.) (1 nm=10-9 m)2. 在双缝干涉实验中,波长λ=550 nm 的单色平行光垂直入射到缝间距a =2×10-4 m 的双缝上,屏到双缝的距离D =2 m .求:(1) 中央明纹两侧的两条第10级明纹中心的间距; (2) 用一厚度为e =6.6×10-5 m 、折射率为n =1.58的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处?(1 nm = 10-9 m)3.用波长为500 nm (1 nm=10-9 m)的单色光垂直照射到由两块光学平玻璃构成的空气劈形膜上.在观察反射光的干涉现象中,距劈形膜棱边l = 1.56 cm 的A 处是从棱边算起的第四条暗条纹中心.(1) 求此空气劈形膜的劈尖角θ;(2) 改用600 nm 的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A 处是明条纹还是暗条纹?(3) 在第(2)问的情形从棱边到A 处的范围内共有几条明纹?几条暗纹?P E2分4.图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透Array镜凸表面的曲率半径是R=400 cm.用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第5个明环的半径是0.30 cm.(1) 求入射光的波长.(2) 设图中OA=1.00 cm,求在半径为OA的范围内可观察到的明环数目.5.用波长 =500 nm的平行光垂直照射折射率n=1.33的劈形膜,观察反射光的等厚干涉条纹.从劈形膜的棱算起,第5条明纹中心对应的膜厚度是多少?光的干涉习题答案一、选择题 二、1、B ;2、C ;3、B ;4、A ;5、C ;6、B ;7、A ;8、D ;9、A ;10、B ;11、B ;12、B ;13、B ;14、B ;15、A二、填空题1、 2π(n 1 – n 2) e / λ2、4×103 nm3、d sin θ +(r 1-r 2)4、7.33 mm5、nl2λ 6、D λ / (dn ) 7、1.2=2λ μm8、249n λ 9、3λ / (2n θ) 10、113nm 11、5λ / (2n θ) 12、900 nm13、2 ( n – 1) e – λ /2 14、1.33 15、2d /λ三、计算题1解:由公式x =kD λ / a 可知波长范围为∆λ时,明纹彩色宽度为∆x k =kD ∆λ / a 2分 由 k =1可得,第一级明纹彩色带宽度为∆x 1=500×(760-400)×10-6 / 0.25=0.72 mm 2分 k =5可得,第五级明纹彩色带的宽度为∆x 5=5·∆x 1=3.6 mm 1分2解:(1) ∆x =20 D λ / a 2分=0.11 m 2分 (2) 覆盖云玻璃后,零级明纹应满足(n -1)e +r 1=r 2 2分 设不盖玻璃片时,此点为第k 级明纹,则应有r 2-r 1=k λ 2分 所以 (n -1)e = k λ k =(n -1) e / λ=6.96≈7零级明纹移到原第7级明纹处 2分3解:(1) 棱边处是第一条暗纹中心,在膜厚度为e 2=21λ处是第二条暗纹中心,依此可知第四条暗纹中心处,即A 处膜厚度 e 4=λ23∴ ()l l e 2/3/4λθ===4.8×10-5 rad 5分 (2) 由上问可知A 处膜厚为 e 4=3×500 / 2 nm =750 nm对于λ'=600 nm 的光,连同附加光程差,在A 处两反射光的光程差为λ'+2124e ,它与波长λ'之比为0.321/24=+'λe .所以A 处是明纹 3分(3) 棱边处仍是暗纹,A 处是第三条明纹,所以共有三条明纹,三条暗 纹.4解:(1) 明环半径 ()2/12λ⋅-=R k r 2分()Rk r 1222-=λ=5×10-5 cm (或500 nm) 2分(2) (2k -1)=2 r 2 / (R λ) 对于r =1.00 cm , k =r 2 / (R λ)+0.5=50.5 3分 故在OA 范围内可观察到的明环数目为50个. 1分5解: 明纹, 2ne +λ21=k λ (k =1,2,…)3分第五条,k =5,ne 2215λ⎪⎭⎫ ⎝⎛-==8.46×10-4 mm 2分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

600 2 2 5 7 5 λ = × 600 / = × 600 = 428.6nm 则前一种单色光的波长 2 2 7 11.17 在通常的亮度下,人眼瞳孔直径约为 3mm,问人眼的最小分辨角是多大 ?如果黑板上
解:由题意知
(3 × 2 + 1)
λ
= (2 × 2 + 1)
画有两条平行直线,相距 1cm,问离开多远处可恰能分辨? 解:对于眼睛敏感的光 λ = 550nm 则人眼的最小分辨角
k=4 时, λ2 = 466.7 nm
在可见光范围内当 k=3 时, λ1 = 600nm (2)由上知 k=3,4 (3)可分半波带的数目 N = 2k + 1
则对应波长是 λ1 = 600nm 时, N 1 = 7 ;对应波长是 λ2 = 466.7 nm 时, N 2 = 9 . 11.16 一单色平行光垂直照射于一单缝上,若其第三条明纹位置正好和波长为 600nm 的单 色光入射时的第二级明纹位置一样,求前一种单色光的波长.
4
纹处),两者的光程差是多少?对于第一条缝与第 n 条缝的光程差又如何? 解:(1)当满足条件 (a + b) sin φ = 2k
λ
2
( k = 0,1,2, ) 时,任意两个狭缝沿角射
出的光线能互相加强。 (2)当 k=2 时,第一条缝与第二条缝沿角射出的光线,在屏幕上会聚,两者的光程 差为: δ 1 = 2λ ;第一缝与第 n 条缝的光积差为: δn −1 = 2(n −1)λ . 11.20 波长为 600nm 的单色光垂直入射在一光栅上,第二级明条纹出现在 sin θ = 0.20 处, 第四级是缺级,试问: (1) 光栅上相邻两缝的间距(a+b)有多大?(2) 光栅上狭缝可能的最小宽度 a 有多大?(3) 按上述选定的 a、b 值,试问在光屏上可能观察到的全部级数是多少? 解:(1)由光栅方程 ( a + b) sin θ = kλ 得
θ 0 = 1.22
λ 550 ×10 −9 = 1.22 × = 2.2 ×10 −4 rad −3 D 3 ×10
由 tgθ 0 =
d 1 ×10 −2 d = = 45.5m 可得恰能分辨时离开的距离 L = d / tgθ 0 ≈ θ 0 2.2 ×10 −4 L
11.18 已知天空中两颗星相对于一望远镜的角距离为 4.84 ×10 −6 弧度,他们都发出波长 λ = 5.50 ×10 −5 cm 的光.试问:望远镜的口径至少要多大,才能分辨出这两颗星? 解 : 由
2
解(1)由 l sin θ =
λ
解:由 l sin θ =
λ
2n
得 θ ≈ sin θ =
λ
2nl
=
D = Ltgθ ≈ Lθ = 28.88 ×1.9895 ×10 −3 = 5.746 ×10 −2 mm
589.3 ×10 −6 = 1.9895 ×10 −3 rad 2 ×1 × 4.295 / 29
π
和θ = 0 或
π
11.6 在杨氏双缝干涉装置中,从氦氖激光器发出的激光束(λ=632.8nm)直接照射双缝,双缝 的间距为 0.5mm,屏幕距双缝 2m,求条纹间距,它是激光波长的多少倍? 解:已知 λ = 632.8nm = 6.328 ×10 −7 m , d = 0.5mm = 0.5 ×10 −3 m , D = 2m
r2 +d 2R
当透镜向上平移 d = 5.00 ×10 −4 cm时 ,膜厚 e = 从而得同一暗环(k=20)的直径为:
D = 2r暗 = 2 (
kλ 20 × 589 ×10 −7 − d )2 R = 2 ( − 5.00 ×10 −4 ) × 2 ×100 = 2.67 ×10 −1 cm = 2.67 m 2 2
3
解:(1)由 ∆d = ∆n
λ
解:设到 P 点的光线与光轴的夹角为 θ ,则 (1)由 b sin θ = ±( 2k + 1)
tgθ =
x 1.4 ×10 −3 = = 3.5 ×10 −3 f 0 .4
λ
2
得该入射光的波长
λ=
2b sin θ 2btgθ 2 × 0.6 ×10 −3 × 3.5 ×10 −3 4.2 ×10 −6 4200 ≈ = = m= nm 2k +1 2k +1 2k + 1 2k + 1 2k +1
1
9 9 λ= × 550 = 8530nm = 8.53 ×10 −6 m n −1 1.58 −1 11.8 白光垂直照射到空气中一厚度为 380nm 的肥皂膜上 ,设肥皂膜的折射率为 1.33,试问 该膜的正面呈现什么颜色?背面呈现什么颜色?
由此可得云母片厚度
l=
解:经膜上下表面反射的两束光的光程差 δ1 = 2ne + 出现干涉加强的条件为
第 11 章 波动光学
11.2 为什么在日常生活中,声波的衍射比光波的衍射更加显著? 答:因日常生活中遇到的障碍物或缝宽比声波的波长小或相差不大,但却比光波的波长 大得多。 11.3 光栅衍射和单缝衍射有何区别? 为何光栅衍射的明纹特别的亮而暗区很宽? 答:光栅衍射相当于多缝衍射。明纹分得很开且很细,条纹变得很亮,在两主明条纹之 间暗条纹数有 N-2 个,由于 N 很大,实际上在两主明纹间是一暗区,故暗区很宽,光强度 主要集中到很窄的主明纹区,所以衍射的明纹特别亮。 11.5 在一对正交的偏振片之间放一块 1/4 波片,用自然光入射。 (1) 转动 1/4 波片光轴方向,出射光的强度怎样变化? (2) 如果有强度极大和消光现象,那么 1/4 波片的光轴应处于什么方向 ? 这时从 1/4 波片 射出的光的偏振状态如何? 答:(1)设 1/4 波片的光轴与其前的偏振片的偏振化方向的夹角为 θ ,则出设光强
11.12 用波长为 589nm 的钠黄光观察牛顿环 .在透镜和平 板接触良好的情况下 ,测得第 20 级暗环的直径为 0.687cm.当透镜向上移动时,同一暗环的直径变为多少? 解:由
r暗 = Rkλ 得
R=
2 r暗

=
(0.687 / 2) 2 = 100cm 20 × 589 × 10 −7
除去缺级,则光屏上可能观察到的是 k=0,1,2,3,5,6,7,9,10 共九级. 11.21 利用一个每厘米刻有 4000 条缝的光栅 ,在白光垂直照射下 ,可以产生多少 完整的光 谱?问哪一级光谱中的哪个波长的光开始与其他谱线重叠? 解: a + b =
λ
2
.
λ = kλ (k = 1,2,) 2 4ne 4 ×1.33 × 380 2022 λ= = = nm 由此得 2 k −1 2 k −1 2 k −1 在可见光范围内 k=2 , λ = 674nm (紫色); k=3 , λ = 404nm (红色),故正面是紫红 δ 1 = 2ne +
11.13 当 牛顿环 装置中透镜与平面玻 璃 之间 充 以某 种液体 时 , 某一级干涉条纹的直径由 1.40cm 变为 1.27cm,求该液体的折射率. 解: r暗 = 由题知 kλR R 当透镜与玻璃片间为空气时 n=1,则 r暗 ' = kλ n
r暗 ' r暗
= n =
1.4 . 由此得该液体的折射率为 n=1.22 1.27
11.14 (1) 迈克耳孙 干涉仪可用来测量单色光的波长 .当 M 2 移动距离 d=0.3220mm 时, 测得某单色光的干涉条纹移过n =1204 条,试求该单色光的波长. (2) 在迈克耳孙干涉仪的 M 2 镜前,当插入一薄玻璃片时,可观察到有 150 条干涉条纹向一 方移过.若玻璃片的折射率 n=1.632,所用的单色光波长 λ=500nm,试求玻璃片的厚度. 得该单色光的波长为 2 2∆d 2 × 0.3220 λ= = = 5.35 ×10 −4 mm = 535nm ∆n 1204 (2)设玻璃片的厚度为 d,则 2d ( n −1) = kλ . 由此得: kλ 150 × 500 ×10 −9 d = = = 5.93 ×10 −5 m 2( n −1) 2 × (1.632 −1) 11.15 一狭缝的宽度 b=0.60mm,透镜焦距 f = 0.40m, 有一与狭缝平行的屏放置在透镜的焦 平面上.若以单色平面光垂直照射狭缝 ,则在屏上离点 O(光轴与屏的交点)为 x=1.4mm 的点 p 看到衍射明条纹.试求:(1) 该入射光的波长; (2) 点 p 条纹的级数;(3) 从点 p 看,对该光波而 言,狭缝处的波振面可分半波带的数目.
∆x D 2 = = = 4 × 10 3 λ d 0.5 ×10 −3
D λ = 4 ×10 3 × 6.328 ×10 −7 = 2.5 ×10 −3 m = 2.5mm d 11.7 在杨氏双缝干涉装置中 ,入射光的波长为 550nm.用一很薄的云母片 (n=1.58)覆盖双缝 中的一条狭缝 ,这时屏幕上的第九级明纹恰好移到屏幕中央原零级明纹的位置 ,问这云母片的 厚度应为多少? 解:设云母片的厚度为 l,则光程差的改变为 (n −1)l ,由题便有 ( n −1)l = 9λ ∆x =
δ = 2n2 e = ( 2k + 1)
取 k=0 得
λ 2
( k = 0,1,2,) ( n1 > n2 在上下表面反射都有半波损失)
e=
λ
4n 2
=
550 = 106nm . 4 ×1.30
11.10 有一劈形膜,折射率 n=1.4,尖角 θ = 10 −4 rad .在某一单色光的垂直照射下,可测得两 相邻明条纹之间的距离为 0.25cm.试求: (1) 此单色光在空气中的波长; (2) 如果劈形膜长为 3.5cm,那么总共可出现多少条明条纹. 得 2n λ = 2nl sin θ ≈ 2nlθ = 2 ×1.4 × 0.25 ×1 ×10 −4 = 0.7 ×10 −4 cm = 700nm L 3.5 = 14条 (2) N = + 1 = l 0.25 11.11 为了测量金属细丝的直径,把金属丝加在两块平玻璃之间,使空气层形成劈形膜.如用 单色光垂直照射,就得到等厚干涉条纹,测出干涉条纹之间的距离,就可以算出金属丝的直径.某 次的测量结果为:单色光的波长 λ=589.3nm, 金属丝与劈形膜 顶点间的距离 L=28.880mm,30 条 明纹间的距离为 4.295mm,求金属丝的直径 D.
相关文档
最新文档