电压频率与频率电压转换电路

合集下载

三.电压—频率转换电路实验报告——MultiSim仿真

三.电压—频率转换电路实验报告——MultiSim仿真

电压/频率转换电路一、设计任务与要求①将输入的直流电压转换成与之对应的频率信号。

二、方案设计与论证电压-频率转换电路(VFC)的功能是将输入直流电压转换成频率与其数值成正比的输出电压,故也称为电压控制振荡电路(VCO),简称压控振荡电路。

通常,它的输出是矩形波。

方案一、电荷平衡式电路:如图所示为电荷平衡式电压-频率转换电路的原理框图。

电路组成:积分器和滞回比较器,S为电子开关,受输出电压uO的控制。

设uI<0,;uO的高电平为UOH,uO的低电平为UOL;当uO=UOH时,S闭合,当uO=UOL时,S断开。

当uO=UOL时,S断开,积分器对输入电流iI积分,且iI=uI/R,uO1随时间逐渐上升;当增大到一定数值时,从UOL跃变为UOH,使S闭合,积分器对恒流源电流I与iI的差值积分,且I与iI的差值近似为I,uO1随时间下降;因为,所以uO1下降速度远大于其上升速度;当uO1减小到一定数值时,uO从UOH跃变为UOL回到初态,电路重复上述过程,产生自激振荡,波形如图(b)所示。

由于T1>>T2,振荡周期T≈T1。

uI数值愈大,T1愈小,振荡频率f愈高,因此实现了电压-频率转换,或者说实现了压控振荡。

电荷平衡式电路:电流源I对电容C在很短时间内放电的电荷量等于iI在较长时间内充电的电荷量。

方案二、复位式电路:电路组成:复位式电压-频率转换电路的原理框图如图所示,电路由积分器和单限比较器组成,S为模拟电路开关,可由三极管或场效应管组成。

工作原理:设输出电压uO为高电平UOH时S断开,uO为低电平UOL时S闭合。

当电源接通后,由于电容C上电压为零,即uO1=0,使uO=UOH,S断开,积分器对uI积分,uO1逐渐减小;一旦uO1过基准电压UREF,uO将从UOH跃变为UOL,导致S闭合,使C迅速放电至零,即uO1=0,从而uO将从UOL跃变为UOH,;S又断开,重复上述过程,电路产生自激振荡,波形如图(b)所示。

LM331压频变换器的原理及应用

LM331压频变换器的原理及应用

LM331压频变换器的原理及应用1. 概述LM331是美国NS公司生产的性能价格比较高的集成芯片,可用作精密频率电压转换器、A/D转换器、线性频率调制解调、长时间积分器及其他相关器件。

LM331采用了新的温度补偿能隙基准电路,在整个工作温度范围内和低到4.0V电源电压下都有极高的精度。

LM331的动态范围宽,可达100dB;线性度好,最大非线性失真小于0.01%,工作频率低到0.1Hz时尚有较好的线性;变换精度高,数字分辨率可达12位;外接电路简单,只需接入几个外部元件就可方便构成V/F或F/V等变换电路,并且容易保证转换精度。

LM331的内部电路组成如图1所示。

由输入比较器、定时比较器、R-S触发器、输出驱动管、复零晶体管、能隙基准电路、精密电流源电路、电流开关、输出保护管等部分组成。

输出驱动管采用集电极开路形式,因而可以通过选择逻辑电流和外接电阻,灵活改变输出脉冲的逻辑电平,以适配TTL、DTL和CMOS等不同的逻辑电路。

LM331可采用双电源或单电源供电,可工作在4.0~40V之间,输出可高达40V,而且可以防止Vcc短路。

2. 工作原理2.1 电压—频率变换器图2是由LM331组成的电压椘德时浠坏缏贰M饨拥缱鑂t、Ct和定时比较器、复零晶体管、R-S触发器等构成单稳定时电路。

当输入端Vi+输入一正电压时,输入比较器输出高电平,使R-S触发器置位,Q输出高电平,输出驱动管导通,输出端f0为逻辑低电平,同时,电流开关打向右边,电流源IR对电容CL充电。

此时由于复零晶体管截止,电源Vcc也通过电阻Rt对电容Ct充电。

当电容Ct两端充电电压大于Vcc的2/3时,定时比较器输出一高电平,使R-S触发器复位,Q输出低电平,输出驱动管截止,输出端f0为逻辑高电平,同时,复零晶体管导通,电容Ct通过复零晶体管迅速放电;电流开关打向左边,电容Cl对电阻RL放电。

当电容CL放电电压等于输入电压Vi时,输入比较器再次输出高电平,使R-S触发器置位,如此反复循环,构成自激振荡。

V-F与F-V转换电路

V-F与F-V转换电路

C2
VIN +15V
偏移调节 -15V
增益调节 R2 R1
R5 RIN R4
-15V 0.1μF
单稳触发器电容 +V逻辑 R3
FOUT
-IN 1
NC- 2
NC- 3 -VCC 4
5 C1 NC- 6 FOUT 7
+A -
1mA
单稳态 -VS 触发器
W1 W2 比较器
14 +IN 13 VOUT 12 +VCC
若要求输入脉冲频率FIN=10KHz时输出电压VOUT=10V,可使 R1+R2=40KΩ,C1=3650pF,C2=0.01μF。
单片机原理与应用
中ADVFC32的内部结构与引脚分布如图7.40所示,有14个引脚,采
用双列直插式结构。在联接使用时,主要外接的器件有电阻RIN、积 分电容器C2,输出电阻R3以及单稳定时器电容C1。这些器件的参数可 由下列公式计算:
C1
3.3105 Fmax
3.010小于1000pF)
C
+VS
VIN
R
IIN
A
+
VINT
比较器
W1 W2
RX CX 单稳态定时器
RL
Vo
(f)
S IR
-VS
图7.38 V/F转换器原理图
假设开始时单稳态定时器输出低电平,恒流源与反相输入端
开路。这时流过积分器的电流只有输入电流IIN。该电流对积分 电容器C充电,使积分器输出VINT下降。下降到0V时比较器翻 转,触发单稳态定时器输出宽度为t0的正脉冲,使模拟开关S闭 合,恒流源向积分电容器C反向充电(也称为电容器放电),
单片机原理与应用

电压频率和频率电压转换电路的设计讲解

电压频率和频率电压转换电路的设计讲解

设计一个V/F转换器,研究其产生的输出电压的频率随输入电压幅度的变化关系。

1 绪论(1)电压/频率转换即v/f转换,是将一定的输入信号按线性的比例关系转换成频率信号,当输入电压变化时,输出频率也响应变化。

它的功能是将输入直流电压转换频率与其数值成正比的输出电压,故也称电压控制振荡电路。

如果任何一个物理量通过传感器转换成电信号后,以预处理变换为合适的电压信号,然后去控制压控振荡电路,再用压控振荡电路的输出驱动计数器,使之在一定时间间隔内记录矩形波个数,并用数码显示,那么可以得到该物理量的数字式测量仪表。

图1 数字测量仪表电压/频率电路是一种模/数转换电路,它应用于模/数转换,调频,遥控遥测等各种设备。

(2)F/V转换电路F/V转换电路的任务是把频率变化信号转换成按比例变化的电压信号。

这种电路主要包括电平比较器、单稳态触发器、低通滤波器等电路。

它有通用运放F/V转换电路和集成F/V转换器两种类型。

1.1设计要求设计一个将直流电压转换成给定频率的矩形波的电路,要求包括:积分器;电压比较器和一个将给定频率的矩形波转换为直流电压的电路,要求包括:过零比较器、单稳态触发器、低通滤波器等。

1.2 设计指标(1)输入为直流电压0-10V,输出为f=0-500Hz的矩形波。

(2)输入ui是0~10KHZ的峰-峰值为5V的方波,输出uo为0~10V的直流电压。

2 设计内容总体框图设计2.1 V/F转换电路的设计2.1.1 工作原理及过程积分器和滞回比较器首尾相接形成正反馈闭环系统,如图 2所示,比较器输出的矩形波经积分器积分可得到三角波,三角波又触发比较器自动翻转形成矩形波,这样便可构成三角波,矩形波发生器。

由于采用集成运放组成的积分电路,因此可以实现恒流充电,能够得到比较理想的矩形波。

通过分析可知,矩形波幅值大小由稳压管的稳定电压值决定,即方波的幅值OLM Z V V =± 。

矩形波的振荡频率 2.1.2 模块功能积分器:积分电路可以完成对输入电压的积分运算,即输入电压与输出电压的积分成正比。

信号转换电路IV-频率电压转换电路资料

信号转换电路IV-频率电压转换电路资料

(2)ui >0,uC负向增加, uC≤U2时,比较器输出uo由负向限幅电压突变为正向限
幅电压,V导通,电容C通过R3放电,积分器输出迅速回升。 uo通过正反馈电路使比 较器同相端电压up突变为U1。
(3)当积分器输出回升到uC≥U1时,比较器输出又由正向限幅电压突变为负向限幅 电压,V又处于截止状态,同时up恢复为U2,积分器重新开始积分。
约 10mV t
t
2020/9/24
u单i >稳u态6,定输时入器比输较出器端输Q出为高高电电平平,,
V精导密通电,流u源o=输Uo出L≈电0V流,is开对关CLS充闭电合,,
u内电6逐放,渐电Ct电上管压升截上。止升与,。引电脚源5U相经连Rt的对芯Ct充片
u时s=器u输Ct出≥2端UQ/3为时低,电单平稳,态V定截 止, uo = UoH = +E,电流 开关S断开, CL通过RL放电, 使u6下降。 Ct通过芯片内放 电管快速放电到零。 当冲周u6期≤,ui时如,此又循开环始,第输二出个端脉便 输出脉冲信号。
8
集成V/F转换器——LM131
+U 8
1 整个周期内,RL 在消耗电荷 2 恒流源提供电荷 (充电)的时间由 CL 单稳触发器的暂态 决定 3 电荷平衡(电源 提供的电荷量等于 电阻消耗的电荷量)
精密 电流源
电流 输出 1
电流 开关
RL
2
基准
电压
1.9V
- 基准 比较
+器
iS
uo
频率 3 驱动 V RS 输出
5
二、电荷平衡型
在一个周期T=t0+t1中,积分电容 充电电荷量与放电的电荷量相等,
即i×T= Is×t0

LM331工作原理

LM331工作原理

LM331工作原理一、LM331内部电路图及各管脚定义图1 LM331内部电路图LM331内部有输入比较电路、定时比较电路、R-S触发电路、复零晶体管、输出驱动管、能隙基准电路、精密电流源电路、电子开关、复位晶体管等部分。

输出管采用集电极开路形式,因此可以通过选择逻辑电流和外接电阻,灵活改变输出脉冲的逻辑电平,从而适应TTL、DTL和CMOS等不同的逻辑电路。

此外,LM331可采用单/双电源供电,电压范围为4,40V,输出也高达40V。

下面就以以电压转换频率为例,介绍各引脚的作用,Ir(PIN1)为电流源输出端,在Fo(PIN3)输出逻辑低电平时,电流源,r输出对电容,L充电。

引脚2(PIN2)为增益调整,改变,,的值可调节电路转换增益的大小。

Fo(PIN3)为频率输出端,为逻辑低电平,脉冲宽度由,t 和,t决定。

引脚4(PIN4)为电源地。

引脚5(PIN5)为定时比较器正相输入端。

引脚6(PIN6)为输入比较器反相输入端。

引脚7(PIN7)为输入比较器正相输入端。

引脚8(PIN8)为电源正端。

二、LM331频率-电压转换工作原理图2 LM331的频率-电压转换原理图HFBR2412由光信号转为电信号,输出低电平到6N137的3脚,此时5V电压通过R14降压后,输入6N137的2脚使发光二极管发光,经片内光通道传到光敏二极管反向偏置的光敏管光照后导通,经电流-电压转换后送到与门的一个输入端,与门的另一个输入为使能端当使能端为高时与门输出高电平,经输出三极管反向后光电隔离器输出低电平。

脉冲信号由6脚输出,输出到C15与R15组成微分电路加到LM331的6脚,6脚使LM331内部输入比较器的反向输入端,7脚通过12V由R16、R19分压后到输入比较器的同向输入端。

当输入脉冲的下降沿到来时,经微分电路R1、C1产生一负尖脉冲叠加到反相输入端的上,当负向尖脉冲大于Vcc/3即4V 时,输入比较器输出高电平使内部的R-S触发器置位,此时电流开关打向右边,电流源通过LM331的1脚对电容C17充电,同时,复零晶体管导通,定时电容C16迅速放电,完成一次充放电过程。

模拟电路之电压频率转换

模拟电路之电压频率转换

模拟电路课程设计报告设计课题:电压频率转换专业班级:09电气技术教育学生姓名:易群学号:090805031指导教师:曾祥华设计时间:2011/1/10(以上小二号、行距40磅)电压频率转换一、设计任务与要求1.将输入的直流电压(10组以上正电压)转换成与之对应的频率信号。

2.用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。

(提示:用锯齿波的频率与滞回比较器的电压存在一一对应关系,从而得到不同的频率.)二、方案设计与论证(一)电源部分单相电压经过电源变压器、整流电路、滤波电路和稳压电路转换成稳定的直流电压。

直流电源的输入为220V的电网电压,一般情况下,所需直流电压的数值和电网电压的有效值相差较大,因而需要通过电源变压器降压,变压器副边电压通过整流电路从交流电压转换为直流电压,即将正弦波电压转换为单一方向的脉动电压,再通过低通滤波电路滤波,减小电压的脉动,使输出电压平滑,但由于电网电压波动或负载变化时,其平均值也将随之变化,则在滤波电路后接个稳压电路,使输出直流电压基本不受电网电压波动和负载变化的影响,从而获得足够高的稳定性。

在此次设计中则用220v、50Hz的交流电通过电源变压器、整流电路、滤波电路、稳压电路利用桥式整流电路实现正、负12V直流电压。

方框图如下:原理:图 10.1.1 直流稳压电源的方框图电网电压直流稳压电源通过变压器、整流、滤波、稳压来实现。

1)通过电源变压器降压后,再对220V 、50Hz 的交流电压进行处理,变压器副边电压有效值决定于后面电路的输出电压。

2)变压器副边电压通过整流电路将正弦波电压转换为单一方向的脉动电压,一般整流电路用单相半波整流和单相桥式整流,但单相半波电路仅试用于整流电流较小,对脉动要求不高的场合,所以此次采用单相桥式整流电路。

3)经过整流电路的电压仍含有交流分量,再为了减小电压的脉动,则接一滤波电路,输出电压平稳。

图如下:4)交流电压通过整流、滤波后虽然变为交流成分较小的直流电压,但是当电网波动或者负载变化时,它的值也会变动,则通过稳压电路使输出直流电压基本不受电网电压波动和负载变化的影响,从而得到更好的稳定行。

电压-频率转换器(VFC)电路

电压-频率转换器(VFC)电路

电压-频率转换器(VFC)电路
电压-频率转换器(VFC)电路有高的输入阻抗,采用单电源工作,与微控制
器直连。

对于高达700kHz 的频率,其线性误差小于0.1%,动态范围为60dB。

电路采用了积分器、比较器和单稳架构(图)。

输出频率与输入电压成正比:
f=(1/VCCtOS)VIN,其中,VCC 是5V 电源,tOS 是单稳产生的脉冲周期,按
照下式:tOS=0.7×ROS×COS。

电源VCC 必须经过滤和稳压。

如果电源波幅有变化,则校正曲线的斜率也会改变。

开关S1 和R1、C1 与R2 组成的定时网络构成了一个起动电路。

这一步确保了电路能在任何输入电压下起振。


通电源以后,开关保持闭合约1s,使CINT 完全充电。

当开关打开时,CINT
开始以一个固定电流充电,这个电流由输入电压幅度所确定。

结果是,在积分
器的输出端有一个上升的斜坡。

当斜坡达到2.5V 时,IC2 产生一个脉冲,因为2.5V 是IC2 的1B 输入端施密特触发器的阈值电平。

tips:感谢大家的阅读,本文由我司收集整编。

仅供参阅!。

电压频率转换电路

电压频率转换电路

2电压/频率转换电路电压/频率转换即V/F转换,是将一定的输入电压信号按线性的比例关系转换成频率信号,当输入电压变化时,输出频率也响应变化。

针对煤矿的特殊要求,我们只分析如何将电压转换成200〜1000Hz的频率信号。

实现V/F转换有很多的集成芯片可以利用,其中LM331是一款性能价格比较高的芯片,由美国NS公司生产,是一种目前十分常用的电压/频率转换器,还可用作精密频率电压转换器、A/D转换器、线性频率调制解调、长时间积分器及其他相关器件。

由于LM331采用了新的温度补偿能隙基准电路,在整个工作温度范围内和低到 4.0V电源电压下都有极高的精度。

LM331的动态范围宽,可达100dB ;线性度好,最大非线性失真小于0.01% ,工作频率低到1Hz时尚有较好的线性;变换精度高,数字分辨率可达12位;外接电路简单,只需接入几个外部元件就可方便构成V/F或F/V等变换电路,并且容易保证转换精度。

LM331可采用双电源或单电源供电,可工作在 4.0〜40V之间,输出可高达40V,而且可以防止Vs短路。

图2是由LM331组成的典型的电压/频率变换器。

S 2 电路原理匿其输出频率与电路参数的关系为:Fout= Vin R s/(2.09 R1- Rt Ct)可见,在参数Rs、R1、Rt、Ct确定后,输出脉冲频率Fout与输入电压Vin成正比,从而实现了电压-频率的线性变换。

改变式中Rs的值,可调节电路的转换增益,即V和F之间的线性比例关系。

将1〜5V的电压转换成200〜1000Hz的频率信号,电路参数理论值为R =18k莒Ct=0.022uF , R仁100k 0, Rs=16.5528k ,由于元器件与标称值存在误差,在电路参数基本确定后,通过调节Rs的电位器,可以实现所需V/F线性变换。

由Fout= Vin Rs/(2.09 R1 -Rt Ct)可知,电阻Rs、R1、Rt和电容Ct直接影响转换结果Fout,因此对元件的精度要有一定的要求,可根据转换精度适当选择,其中Rt、Ct、Rs、R1要选用低温漂的稳定元件,Cin可根据需要选择0.1uF或1uF。

vf转换

vf转换

4. 电压一频率变换电路电压一频率变换电路(VFC)能把输入信号电压变换成相应的频率信号,即它的输出信号频率与输入信号电压值成比例,故又称之为电压控制振荡器(VCO)。

VFC广泛地应用于调频、调相、模/数变换(A/D)、数字电压表、数据测量仪器及远距离遥测遥控设备中。

由通用模拟集成电路组成的VFC电路,尤其是专用模拟集成V /F转换器,其性能稳定、灵敏度高、非线性误差小。

VFC电路通常主要由积分器、电压比较器、自动复位开关电路等三部分组成。

各种类型VFC电路的主要区别在于复位方法及复位时间不同而已。

下面将讨论由运放构成的各种VFC电路和典型的模拟集成V /F转换器。

4.1运放构成的VFC电路4.1.1简单的VFC电路图4.1.1所示为简单的VFC电路。

图4.1.1 简单的VFC电路从图4.1.1可知,当外输入信号vi=0时,电路为方波发生器。

振荡频率fo为当时,运放同相输入端的基准电压由vi和反馈电压Fvvo决定。

如vi>0,则输出脉冲的频率降低,f<fo ;如vi<0,则输出脉冲的频率升高,f>fo。

可见,输出信号频率随输入信号电压vi变化,实现V/F变换。

4.1.2复位型VFC电路复位型VFC电路采用各种不同形式的模拟电子开关对VFC电路中的积分器进行复位。

(1)场效应管开关复位型VFC电路图4.1.3所示为场效应管开关复位型VFC电路及其波形。

图4.1.3 场效应管开关复位型VFC电路及其波形由图可知,接通电源后,由于比较器A2的反相输入端仅受VB (VB>0)的作用,其输出端处于负向饱和状态vo2=vo2L(<0=,复位开关管T1栅极电位被箝位在数值很大的负电平上而截止,输出管T2截止,输出电压vo=VoL(< 0),VFC电路处于等待状态。

当输入正的信号vi后,反相积分器A1输出端电压Vol从零开始向负方向线性增加,当Vol的幅值| Vol | 略大于VB(注意R2=R4)时,A2输出状态翻转,从负向饱和状态跳变到正向饱和状态,Vo2=vo2H(>0,T2饱和导通,Vo=VoH(>0),二极管D截止,Tl因栅极开路而导,C1通过Tl快速放电,|Vol| 决速下降,A2的输出状态很快又翻转,vo2 =Vo2L ,T2截止,Vo=VOL,T1截止,vi又通过Al对Cl充电, vol又从接近零值开始向负方向线性增加,重复上述工作过程,因而输出端输出频率与输入信号vi的幅度大小有关的脉冲串。

调频收音机鉴频电路原理

调频收音机鉴频电路原理

调频收音机鉴频电路原理
一、调频信号接收
调频收音机通过天线接收调频信号。

这些信号通常包含音频信息以及用于同步的载波信号。

二、信号解调
接收到信号后,通过一个解调器将高频的调频信号解调为低频的音频信号。

这个过程是通过一个与发射端调制过程相反的过程来实现的。

三、频率-幅度转换
解调后的音频信号通过一个频率-幅度转换器,将频率信号转换为幅度信号,以便后续处理。

四、低通滤波器
低通滤波器用于去除音频信号中的高频噪声,只保留所需要的音频信息。

五、直流放大器
直流放大器对滤波后的音频信号进行放大,以便后续的电压-频率转换和相位比较。

六、电压-频率转换
电压-频率转换器将放大后的音频信号转换为频率信号,这个频率信号与输入音频信号的幅度成正比。

这个过程是为了便于后续的相位比较和音频放大。

七、相位比较器
相位比较器用于比较输入音频信号和转换后的频率信号的相位差。


个相位差被转换为电压信号,用于控制一个电压-电流转换器。

八、音频放大器
音频放大器对相位比较器输出的电压信号进行放大,以便驱动扬声器或其他音频输出设备。

九、输出信号处理
输出信号处理包括一个低通滤波器,用于进一步去除不需要的噪声,以及一个音量控制电路,用于调整输出的音量。

十、电源与接地
电源提供整个鉴频电路所需的电能,同时接地是保证电路安全和稳定工作的基础。

十一、系统集成与测试
所有上述组件都集成在一个系统中,并进行全面的测试以保证其正常工作。

测试包括但不限于信号接收、解调、放大和输出的质量等各个方面。

555 电压频率变换电路的设计

555 电压频率变换电路的设计

长沙学院课程设计说明书题目125电压频率变换器的设计系(部) 电子与通信工程专业(班级)姓名学号指导教师起止日期模拟电路课程设计任务书(20)一.设计题目电压频率变换器的设计二.技术参数和设计要求1. 技术参数(1)设计一种电压/频率变换电路,输入vi为直流信号(控制信号),输出频率为fo的矩形脉冲,且fo∝vi。

(2)vi变化范围为0~10V。

(3)fo变化范围为0~10kHz。

(4)转换精度<1%。

2. 设计要求(1)画出电路原理图或仿真电路图;(2)元器件及参数选择;(3)电路仿真与调试;(4)PCB文件生成与打印输出;(5)编写设计报告:包括设计与制作的全过程,附上有关资料和图纸,有心得体会。

(6)答辩,在规定时间内完成叙述并回答问题。

三.设计工作量设计时间一周,2012年下学期进行。

四.工作计划星期一:布置设计任务,查阅资料;星期二~星期四:设计方案论证,进行电路设计,计算并选择电路元件及参数;星期五:撰写设计报告及使用说明书,进行个别答辩。

五.参考资料1.彭介华,《电子技术课程设计指导》,北京:高等教育出版社,1997;2.高吉祥,《电子技术基础实验与课程设计》,北京:电子工业出版社,2005;3.童诗白,《模拟电子技术基础》,北京:高等教育出版社,1988;4.康华光,《电子技术基础——模拟部分》,北京:高等教育出版社,2006六.指导教师马凌云七.系部审批长沙学院课程设计鉴定表目录一.技术参数和设计要求 (4)1.1. 技术参数 (4)1.2 设计要求 (4)二.设计思路 (4)三.单元电路设计 (6)3.1积分器的设计: (6)3.2单稳态触发器的设计 (6)3.3电子开关的设计 (7)3.4恒流源电路的设计 (8)四、总原理图及元器件清单 (9)4.1总原理图 (9)4.2元器件清单 (9)五、基本计算与仿真调试分析 (9)5.1基本计算 (9)5.2仿真数据 (10)六、课程设计总结 (13)七、参考文献 (14)一.技术参数和设计要求1.1. 技术参数(1)设计一种电压/频率变换电路,输入vi为直流信号(控制信号),输出频率为fo的矩形脉冲,且fo∝vi。

电压变换的原理和方法

电压变换的原理和方法

电压变换的原理和方法
电压变换是将一种电压形式转换为另一种电压形式的过程,常见的变换形式有降压、升压和变换频率等。

电压变换的原理主要涉及两个电路定律:基尔霍夫定律和欧姆定律。

基尔霍夫定律指出,在一个电路中,电流进入一个节点的总和等于电流离开该节点的总和。

根据该定律,可以通过串联和并联电阻元件来改变电压大小。

欧姆定律指出,电阻元件两端的电压与通过电阻的电流成正比。

根据该定律,可以通过改变电阻元件的阻值来调节通过它的电流,从而改变电压大小。

在实际应用中,常见的电压变换方法有:
1. 变压器变压方法:利用变压器的电感耦合原理,通过改变输入线圈和输出线圈的匝数比例来实现电压变换。

2. 电压降压方法:通过串联使用电阻、电容或电感等元件来消耗部分电压,使得输出电压降低。

3. 电压升压方法:通过变压器、电感或电容等元件的电磁感应原理,实现电压升高。

4. 电压变频方法:通过使用变频器或者开关电路等元件,改变电压的频率。

需要注意的是,电压变换过程中还需要考虑功率转换的效率,以及电路元件的稳定性和电压波形质量等因素。

电压/频率变换电路实现A/D转换

电压/频率变换电路实现A/D转换
ADC。
关 键 词 : F 变换 ;/ 转 换 ; P 3 n 4 ; 性 放 电法 V/ AD MS 4 0 9 线
中 图分类号 : M9 1 5 文献标识 码 : 文章编号 :089 3 (0 8 0 —0 90 T 2 .1 A 10 —2 3 2 0 )10 5 —2
也通过 电阻 R 对 电容 C 充 电。当电容 C 两 端充 电电压大 t t t
R1 6
输入 比较 器
、>——_ 、- . = 1陌
面 1 2
线性 度 好 , 大非 线 性 失 真 小 于 00 %, 作 频 率 低 到 最 .1 工
0 1 时 尚有较好的线性 ; .Hz 变换 精度 高 , 数字分 辨率 可达 1 2 位; 外接 电路 简单 , 只需接入几个外部元 件就可方便构成 V/ F或 F 、 等 变换 电路 , 且 容 易保 证 转换 精 度。 图 1是 /, 并 L 3 M3 1电压频率变换器的内部 结构 图, t C 和定时 比较器 、 复
然没有直接的影 响。但应选 择漏 电流 小的电容器 。电阻 R l
和电容 C 组成低通滤波器, l 可减少输入电压中的干扰脉冲,
有利于提高转换精 度。
平, 同时, 复零晶体管导 通 , 电容 C 通 过复零 晶体管迅 速放 t
电; 子开关使电容 C 电 L对 电 阻 R L放 电。 当 电容 C L放 电 电
时, 其分辨率 和线性度都优 于 A/ D转换 器 , 价格便 宜。本 且 文介绍 了采用 v/ F转换 器 L 3 M3 1实现 A/ D转换 , 详细说 明 了 L 3 及其 与控制芯片 MS 4 0 19的外接 电路 。 M3 1 P3F 4
图 1 输 入电压和输出频率关系示图 f:( i s /2 0 ×R ×R. t o V ×R )( .9 t t ×C)

LM2907频率/电压转换器原理及应用

LM2907频率/电压转换器原理及应用

LM2907频率/电压转换器原理及应用LM2907频率/电压转换器原理及应用(图)【转】2009-11-25 18:07:57| 分类:默认分类|字号订阅LM2907频率/电压转换器原理及应用(图)2007-09-12 18:311引言在测量转速(频率)时,目前多采用数字电路,但有些场合则需要转速(频率)的变化与模拟信号输出相对应,这样便可在自动控制系统实验中用频/压转换器件代替测速发电机,从而使实验设备简化。

美国国家半导体公司推出的速度(频率)/电压转换芯片LM2907/LM2917只需接少量的外围元件即可构成模拟式转速表,可用于测量电机转速,实现汽车超速报警等。

2LM2907芯片介绍LM2907为集成式频率/电压转换器,芯片中包含了比较器、充电泵、高增益运算放大器,能将频率信号转换为直流电压信号。

LM2917与LM2907基本相同,区别是:LM2917内部有一只稳压管,用于提高电源的稳定性。

2.1主要特点LM2917进行频率倍增时只需使用一个RC网络;以地为参考点的转速计(频率)输入可直接从输入管脚接入;运算放大器/比较器采用浮动三极管输出;最大50mA的输出电流可驱动开关管、发光二极管等;内含的转速计使用充电泵技术,对低纹波有频率倍增功能;比较器的滞后电压为30mV利用这个特性可以抑制外界干扰;输出电压与输入频率成正比,线性度典型值为±0.3%;具有保护电路,不会受高于Vcc值或低于地参考点输入信号的损伤;在零频率输入时,LM2907的输出电压可根据外围电路自行调节;当输入频率达到或超过某一给定值时,可将输出用于驱动继电器、指示灯等负载。

2.2电性能参数LM2907的主要电性能参数如表1所列:表1 LM2907的主要电性能参数(Vcc=12VDC,TA=25)2.3引脚排列及内部结构LM2907/LM2917有DIP8和DIP14两种封装形式。

LM2907的DIP14的内部结构如图1所示,DIP8的内部结构及各引脚功能可参考图2。

电压频率转换器原理及典型电压频率转换电路的设计

电压频率转换器原理及典型电压频率转换电路的设计

电压频率转换器原理及典型电压频率转换电路的设计电压频率转换器VFC(V oltage Frequency Converter)是一种实现模数转换功能的器件,将模拟电压量变换为脉冲信号,该输出脉冲信号的频率与输入电压的大小成正比。

电压频率转换器也称为电压控制振荡电路(VCO),简称压控振荡电路。

电压频率转换实际上是一种模拟量和数字量之间的转换技术。

当模拟信号(电压或电流)转换为数字信号时,转换器的输出是一串频率正比于模拟信号幅值的矩形波,显然数据是串行的。

这与目前通用的模数转换器并行输出不同,然而其分辨率却可以很高。

串行输出的模数转换在数字控制系统中很有用,它可以把模拟量误差信号变成与之成正比的脉冲信号,以驱动步进式伺服机构用来精密控制。

VFC 电压-频率转换器(vfc)是青岛晶体管研究所生产的电路。

电压频率转换也可以称为伏频转换。

把电压信号转换为脉冲信号后,可以明显地增强信号的抗干扰能力,也利于远距离的传输。

通过和单片机的计数器接口,可以实现AD转换。

VFC 有两种常用类型:(a)多谐振荡器式VFC ;(b)电荷平衡式VFC。

多谐振荡器式VFC简单、便宜、功耗低而且具有单位MS输出(与某些传输介质连接非常方便);电荷平衡式VFC的精度高于多谐振荡是VFC,而且能对负输入信号积分。

电压/频率转换即v/f转换,是将一定的输入信号按线性的比例关系转换成频率信号,当输入电压变化时,输出频率也响应变化。

它的功能是将输入直流电压转换频率与其数值成正比的输出电压,故也称电压控制振荡电路。

如果任何一个物理量通过传感器转换成电信号后,以预处理变换为合适的电压信号,然后去控制压控振荡电路,再用压控振荡电路的输出驱动计数器,使之在一定时间间隔内记录矩形波个数,并用数码显示,那么可以得到该物理量的数字式测量仪表。

电压/频率电路是一种模/数转换电路,它应用于模/数转换,调频,遥控遥测等各种设备。

F/V转换电路的任务是把频率变化信号转换成按比例变化的电压信号。

电压频率和频率电压转换电路的设计讲解

电压频率和频率电压转换电路的设计讲解

设计一个V/F转换器,研究其产生的输出电压的频率随输入电压幅度的变化关系。

1 绪论(1)电压/频率转换即v/f转换,是将一定的输入信号按线性的比例关系转换成频率信号,当输入电压变化时,输出频率也响应变化。

它的功能是将输入直流电压转换频率与其数值成正比的输出电压,故也称电压控制振荡电路。

如果任何一个物理量通过传感器转换成电信号后,以预处理变换为合适的电压信号,然后去控制压控振荡电路,再用压控振荡电路的输出驱动计数器,使之在一定时间间隔内记录矩形波个数,并用数码显示,那么可以得到该物理量的数字式测量仪表。

图1 数字测量仪表电压/频率电路是一种模/数转换电路,它应用于模/数转换,调频,遥控遥测等各种设备。

(2)F/V转换电路F/V转换电路的任务是把频率变化信号转换成按比例变化的电压信号。

这种电路主要包括电平比较器、单稳态触发器、低通滤波器等电路。

它有通用运放F/V转换电路和集成F/V转换器两种类型。

1.1设计要求设计一个将直流电压转换成给定频率的矩形波的电路,要求包括:积分器;电压比较器和一个将给定频率的矩形波转换为直流电压的电路,要求包括:过零比较器、单稳态触发器、低通滤波器等。

1.2 设计指标(1)输入为直流电压0-10V,输出为f=0-500Hz的矩形波。

(2)输入ui是0~10KHZ的峰-峰值为5V的方波,输出uo为0~10V的直流电压。

2 设计内容总体框图设计2.1 V/F转换电路的设计2.1.1 工作原理及过程积分器和滞回比较器首尾相接形成正反馈闭环系统,如图 2所示,比较器输出的矩形波经积分器积分可得到三角波,三角波又触发比较器自动翻转形成矩形波,这样便可构成三角波,矩形波发生器。

由于采用集成运放组成的积分电路,因此可以实现恒流充电,能够得到比较理想的矩形波。

通过分析可知,矩形波幅值大小由稳压管的稳定电压值决定,即方波的幅值OLM Z V V =± 。

矩形波的振荡频率 2.1.2 模块功能积分器:积分电路可以完成对输入电压的积分运算,即输入电压与输出电压的积分成正比。

频率转电压电路

频率转电压电路

频率转电压电路频率转电压电路是一种将输入信号的频率转换为对应的电压输出的电路。

它在许多应用中起到了重要的作用,例如频率测量、频率解调和信号调制等。

本文将介绍频率转电压电路的原理、实现方法以及应用领域。

频率转电压电路的原理基于频率和电压之间的线性关系。

当输入信号的频率变化时,频率转电压电路会将这种频率变化转换为对应的电压输出。

通常情况下,频率转电压电路由一个比较器和一个积分器组成。

比较器是频率转电压电路的核心组件之一。

它可以将输入信号的频率与参考频率进行比较,并输出相应的电压。

比较器通常使用运算放大器来实现。

当输入信号的频率与参考频率相等时,比较器的输出电压为零。

而当输入信号的频率高于参考频率时,比较器的输出电压将变为正值;当输入信号的频率低于参考频率时,比较器的输出电压将变为负值。

通过调整参考频率,可以实现不同频率范围内的转换。

积分器是另一个重要的组成部分。

它可以将比较器输出的脉冲信号进行积分,从而得到对应的电压输出。

积分器通常使用电容和电阻组成的RC电路来实现。

当比较器输出的脉冲信号为正值时,积分器开始充电;当脉冲信号为负值时,积分器开始放电。

通过调整电容和电阻的数值,可以实现不同频率范围内的转换。

频率转电压电路在实际应用中具有广泛的用途。

其中一个常见的应用是频率测量。

通过将待测信号输入频率转电压电路,可以将信号的频率转换为对应的电压值,从而实现对频率的测量。

这在科学实验、工程测量和仪器仪表等领域中非常常见。

另一个常见的应用是频率解调。

在调频广播中,广播信号的频率信息被调制在载波信号中,通过使用频率转电压电路,可以将调制后的信号转换为原始的频率信号,从而实现对广播内容的解调。

频率转电压电路还可以用于信号调制。

通过调整输入信号的频率,可以控制输出电压的大小,从而实现对信号的调制。

这在通信系统和无线电设备中非常常见。

总结起来,频率转电压电路是一种将输入信号的频率转换为对应的电压输出的电路。

它通过比较器和积分器的组合实现频率和电压之间的转换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电压频率与频率电压
转换电路
2011年8月24日
目录:
摘要: (2)
Abstract: (2)
一、设计方案 (3)
(一)、电压频率转换电路 (3)
1.基于555定时器的电压频率转换: (3)
2.基于LM331的电压频率转换: (4)
(二)、频率电压转换电路 (5)
1.基于LM2907的频率电压转换: (5)
2.基于LM331的频率电压转换 (5)
二、主体电路设计 (8)
三、电路安装 (9)
(一)、电压频率转换电路 (9)
(二)、频率电压转换电路 (10)
四、系统调试: (10)
(一)VFC: (10)
(二)FVC: (11)
1
摘要:
本系统利用了LM331的原理及性能设计了频率电压以及电压频率转换电路,实现了0Hz--10kHz频率与0—10V电压的相互转换,电路简单,转换结果线性度好。

关键字:LM331 频率电压转换滤波
Abstract:
The system uses the principle and characteristic of LM331 to design the frequency-to-voltage and the voltage-to- frequency conversion circuits, realizes the frequency of 0Hz--10kHz and the voltage of 0 - 10V’s transformation , the circuits are simple and result have good linearity.
Key-word:
LM331 frequency voltage transformation filter
2
一、设计方案
(一)、电压频率转换电路
1.基于555定时器的电压频率转换:
通过给NE555增加一些器件,可以构造电压频率转换器。

电路包括NE555定时器和基于TL071的Miller积分器(图1)。

应用中输入电压为0到-10V,产生0到1000Hz 的输出频率范围。

C1的电流为输入电压的函数:I c=–V in/(P1+R1)。

C1的电压达到VCC的2/3时,定时器的内部放电晶体管打开,C1的电压回到VCC 的1/3,比较器的低阈值。

到电压的1/3处,放电晶体管关闭,C1再次开始充电。

C1充电时,NE555的输出为高,而C1放电时,NE555的输出为低。

输入电压和C1充电时间的乘积为常数。

因为放电时间小于充电时间,下面的公式计算了输出频率:
3
4
f out = V in / (P1 + R1) × C1 × 1/3 VCC 。

P1校准了输出频率和输入电压的关系。

因为放电时间约为30µs ,电压频率转换的精度随频率的增加而降低。

如果设定100H z 为-1V ,1000Hz 为-10V ,转换范围的误差为0.3到3%。

如果使用P1校准输入电压范围中点-5V 的输出频率,那么整个范围内的转换误差小于1.3%。

为改进性能,C1应该具有低耗散的特点。

如果R1具有低温度系数,P 1为多匝金属陶瓷电位计的话,可以减少温度影响。

2.基于LM331的电压频率转换:
LM331是美国NS 公司生产的性能价格比高、外围电路简单、可单电源供电、低功耗的集成电路。

LM331动态范围宽达100dB ,工作频率低到0.1Hz 时尚有较好的线性度,数字分辨率达12位。

LM331的输出驱动器采用集电极开路形式,因此可通过选择逻辑电流和外接电阻来灵活改变输出脉冲的逻辑电平,以适配TTL 、DTL 和CMOS 等不同逻辑电路。

LM331可工作在4.0V ~40V 之间,输出可高达40V ,而且可以防止VCC 短路。

5
输出频率计算:
该转换电路线性良好,抗干扰能力强,输出范围在10Hz ~10kHz 以上,有利于提高系统的测量范围。

(二)、频率电压转换电路
1.基于LM2907的频率电压转换:
LM2907为集成式频率/电压转换器,芯片中包含了比较器、充电泵、高增益运算放大器,能将频率信号转换为直流电压信号。

LM2917 与LM2907基本相同,区别是:LM2917内部有一只稳压管,用于提高电源的稳定性。

LM2917进行频率倍增时只需使用一个RC网络;以地为参考点的转速计(频率)输入可直接从输入管脚接入;运算放大器/比较器采用浮动三极管输出;最大50mA的输出电流可驱动开关管、发光二极管等;内含的转速计使用充电泵技术,对低纹波有频率倍增功能;比较器的滞后电压为30mV 利用这个特性可以抑制外界干扰;输出电压与输入频率成正比,线性度典型值为0.3%;具有保护电路,不会受高于Vcc值或低于地参考点输入信号的损伤;在零频率输入时,LM2907的输出电压可根据外围电路自行调节;当输入频率达到或超过某一给定值时,可将输出用于驱动继电器、指示灯等负载。

2.基于LM331的频率电压转换
LM331用作FVC 时的原理框如图所示.
此时,○1脚是输出端(恒流源输出),○6脚为输入端(输入脉冲链),○7脚接比较电平.
工作过程(结合看图5-1-2所示的波形)如下:
当输入负脉冲到达时,由于○6脚电平低于○7脚电平,所以S=1(高电平),Q=0(低电平)。

此时放电管T截止,于是Ct由VCC经Rt充电,其上电压VCt按指数规律增大。

与此同时,电流开关S使恒流源I与○1脚接通,使CL充电,VCL按线性增大(因为是恒流源对CL充电)。

6
经过1.1RtCt的时间,VCt增大到2/3VCC时,则R有效(R=1,S=0),Q=0,Ct、CL再次充电。

然后,又经过1.1RtCt的时间返回到Ct、CL放电。

以后就重复上面的过程,于是在RL上就得到一个直流电压Vo(这与电源的整流滤波原理类似),并且Vo与输入脉冲的重复频率fi成正比。

CL的平均充电电流为i×(1.1RtCt)×fi
CL的平均放电电流为Vo/RL
当CL充放电平均电流平衡时,得
Vo=I×(1.1RtCt)×fi×RL
式中I是恒流电流,I=1.90V/RS
式中1.90V是LM331内部的基准电压(即2脚上的电压)。

于是得
i
t
t
S
L
o
f
C
R
R
R
09
.2
V=
可见,当RS、Rt、Ct、RL一定时,Vo正比于fi,显然,要使Vo与fi之间的关系保持精确、稳定,则上述元件应选用高精度、高稳定性的。

对于一定的fi,要使Vo为一定植,可调节RS的大小。

恒流源电流I允许在
10μA~500μA范围内调节,故RS可在190kΩ~3.8 kΩ范围内调节。

一般RS在10kΩ左右取用。

7
本系统采用基于LM331制作的V/F和F/V转换。

二、主体电路设计
芯片简介
LM331是美国NS公司生产的性能价格比比较高的集成芯片。

它是当前最简单的一种高精度V/F转换器、A/D转换器、线性频率调制解调、长时间积分器以及其它相关的器件。

LM331为双列直插式8引脚芯片,其引脚框图如图1所示。

LM331 各引脚功能说明如下: 脚1 为脉冲电流输出端,内部相当于脉冲恒流源,脉冲宽度与内部单稳态电路相同; 脚2 为输出端脉冲电流幅度调节,RS 越小,输出电流越大; 脚3 为脉冲电压输出端,OC 门结构,输出脉冲宽度及相位同单稳态,不用时可悬空或接地; 脚4 为地; 脚5 为单稳态外接定时时间常数RC ; 脚6 为单稳态触发脉冲输入端,低于脚7 电压触发有效,要求输入负脉冲宽度小于单稳态输出脉冲宽度Tw ; 脚7 为比较器基准电压,用于设置输入脉冲的有效触发电平高低; 脚8 为电源Vcc , 正常工作电压范围为4~40V。

线性度好, 最大非线性失真小于0. 01 % , 工作频率低到0. 1Hz 时尚有较好的线性;变换精度高数字分辨率可达12 位; 外接电路简单, 只需接入几个外部元件就可方便构成V/ F 或F/ V 变换电路,并且容易保证转换精度。

8
三、电路安装
(一)、电压频率转换电路
9
10
(二)、频率电压转换电路
四、系统调试: (一)VFC:
(二)FVC:
参考资料:
【1】张训文. 机电一体化系统设计与应用. 北京理工大学出版社,2006
【2】National Semiconductor.LM231A/LM231/LM331A/LM331 Precision Voltage-to-Frequency Converters
11。

相关文档
最新文档