2020一年级数学下册3圆柱与圆锥1圆柱《不规则容器容积的计算方法》习题课件新人教版

合集下载

《容积计算》PPT课件

《容积计算》PPT课件
到的,比如内直径和内高度等。
18cm
7cm
返回
计算容积和体积的相同点和不同点
不同点
1.测量方法不同:计算体积是从物体外测量需
要的相关数据;计算容积是从物体内测量需要
的数据。
2.计量单位不同:计量容积时,用毫升和升,也
可以用体积单位;但计算体积时不能用容积单
位升或毫升。
相同点
计算方法相
同,都是底面
积乘高。
无限不循环小数
….
循环
小数
各类小数的概念
小数部分的位数是无限的小数叫
无限小


小数部分的位数是有限的小数叫 有限小数

小数部分从某一位起一个数字或几 个数字依次
不断的重复出现,这样的小叫 循环小数

6.小数点位置移动引起小数大小变化的规律
0.506×10 5.06
=
50.6
0.506×10
0.506×1000
5、一个小数的小数点向右移动三位后,又向左移
动两位,结果是37.65,原数是多少?
6、一个小数的小数点向右移动一位后,比原数少
了5.04,求新数。
7、9.9▽≈10.0, ▽最大是(

)。
),最小是
冀教版
数学
六年级
下册
4 圆柱和圆锥
容积计算
情境导入
探究新知
课堂小结
课堂练习
课后作业
情境导入
一个保温杯,从外面测量的尺寸如图所示。
这个保温杯的体积
是多少立方厘米?
18cm
7cm
返回
探究新知
一个保温杯,从外面测量的尺寸如图所示。
(1)这个保温杯的体积是多少立方厘米?

《圆柱和圆锥——圆柱的体积》数学教学PPT课件(3篇)

《圆柱和圆锥——圆柱的体积》数学教学PPT课件(3篇)

V=sh
S h
教学新知
教学新知
试一试:一个圆柱形零件,底面半径是5厘米,高是8厘米。 这个零件的体积是多少立方厘米?
V=sh=5²π×8=628(cm³)
教学新知
练一练:
1.计算圆柱的体积。(单位:cm)
V=sh=4²π×8=401.92(cm³) V=sh=3²π×6=169.56(cm³)
V=sh=1.5²π×0.5×2=7.065(m³)
8.两个底面积相等的圆柱,一个高是4.5分米,体积是81立方分米。另 一个高是3分米,它的体积是多少立方分米?
s=V1÷h1=81÷4.5=18(dm²) V2=sh2=18×3=54(m³)
课堂练习
9.把3个高相等、底面半径都是10厘米的圆柱形盒子叠放在 一起,如图 所示,拿走1个盒子,表面积就减少314平方厘米。每个盒子的体积是 多少立方厘米?
个近似的长方体。拼成的长方体的底面积等于圆柱的(底面积), 高就是圆柱的( 高 )。 (2)用字母V表示圆柱的体积,S表示圆柱的底面积,h表示圆柱的高, 圆柱的体积公式可以写成(V=sh)。 (3)一个圆柱的底面积是0.6平方分米,高是3.5分米,体积是(2.1)立 方分米。
课后习题
2.—根木料如图所示,求这根木料的体积。(单位:m)
2.一根圆柱形木料,底面周长是62.8厘米,高是50厘米。这根木料的体 积是多少?
r=C÷2π=62.8÷6.28=10(cm) V=sh=10²π×50=15700(cm³)
教学新知
例一:完成下面的表格。
底面积/m2
高/m
体积/m3
圆 柱
0.6
1.2
0.25
3
0.72 0.75

圆柱和圆锥的体积课件

圆柱和圆锥的体积课件
解决与几何图形组合相关的实际问题
通过解决实际问题,如计算组合几何图形的体积、计算不规则形状的体积等,提高解决 实际问题的能力。
探究圆柱和圆锥体积公式的其他应用
要点一
探究圆柱和圆锥体积公式在物理 学中的应用
了解圆柱和圆锥体积公式在流体静力学、流体动力学等领 域的应用,如计算液体压力、计算流体速度等。
解决实际问题
计算不规则形状的近似体积
对于一些不规则形状,可以通过近似为圆柱或圆锥来计算其体积。
计算液体体积
在化学、物理实验中,经常需要计算液体体积,可以利用圆柱或圆 锥体积公式进行计算。
解决工程问题
在土木工程、机械工程等领域,经常需要计算物体的体积,圆柱和 圆锥体积公式具有广泛应用。
03
圆柱和圆锥的体积计算不同高度的圆锥体积
02
通过给定的底面半径和高,使用公式计算圆锥体积,并理解高
度对圆锥体积的影响。
练习不同类型的题目
03
包括填空题、选择题、计算题等,以巩固圆柱和圆锥体积的计
算方法。
解决与圆柱和圆锥体积相关的实际问题
解决与容积和体积相关的实际问题
通过解决实际问题,如计算容器内液体的体积、计算物体的质量等,加深对圆柱和圆锥 体积公式的理解和应用。
与其他几何形状的体积公式比较
总结词:扩展性
详细描述:学习圆柱和圆锥的体积公式后,学生可以进一步探索其他几何形状的体积计算方法。这种扩展性学习有助于培养 学生的自主学习能力和探索精神,促进他们对几何知识的全面掌握。
04
圆柱和圆锥的体积公式的扩展
圆柱和圆锥的表面积公式
圆柱的表面积公式
$S = 2pi rh + 2pi r^{2}$,其中 $r$ 是底面半径,$h$ 是高。

六年级数学下册第3单元圆柱与圆锥第5课时不规则容器容积的计算方法授课课件新人教版

六年级数学下册第3单元圆柱与圆锥第5课时不规则容器容积的计算方法授课课件新人教版

点击播放例题动画
这个瓶子是圆柱 吗?怎样求它的容 积?
倒置前后水的形状 变了,体积没有变。
正放
倒置
7cm 18cm


瓶子容积=水的体积+无水部分的体积 倒置前后无水部分形 状变了,体积没有变。
7cm 18cm
7cm 18cm
正放时瓶中空余部分不规则,倒放时空余部分 是高18cm的圆柱,它们的容积是相等的。
1.填空。 (1)一个圆柱的底面周长是28.26 cm,高是6 cm,这个
圆柱的体积是( 381.51 )cm3。 (2)一个圆柱的底面半径是7 cm,体积是769.3 cm3,高
是( 5 )cm。
2.选择。(将正确答案的字母填在括号里)
(1)将一个正方体加工成一个最大的圆柱,正方体与
圆柱的体积比为( A )。
A.4∶π
B.π∶4
C.2∶1
D.无法确定
(2)圆柱的底面半径和高都扩大到原来的2倍,它的体
积扩大到原来的( C )倍。
A.2
B.4
C.8
D.16
3. 两个底面积相等的圆柱,一个高是15 cm,体积是 144 cm3,另一个体积是48 cm3,高是多少厘米?
48÷(144÷15)=5(cm) 答:高是5cm。
3 圆柱与圆锥
第5课时 不规则容器容积 的计算方法
还记得五年级想要计算不规则物体的体积 用的什么方法吗?
“转化法”
梨放入水中,水面上升。 将梨的体积转化成上升 水的体积。
探 究 点 不规则圆柱的体积径是8cm的瓶子里,水的 高度是7cm,把瓶盖拧紧倒置放 平,无水部分是圆柱形,高度是 18cm。这个瓶子的容积是多少?
10cm

人教版《圆柱与圆锥》(完美版)PPT课件1

人教版《圆柱与圆锥》(完美版)PPT课件1

解答此类题的关键是明确长方形的长(宽)或 正方形的边长等于圆柱的底面周长,根据公式 C=2πr 或C=πd求出圆的周长,然后与长方形 的长(宽)或正方形的边长进行比较即可确定 答案。
规范解答:选择①和B、②和A或②和C都恰好 能做成圆柱形的盒子。
1.把圆柱的侧面沿高展开,得到一个(长方形),它 的长等于圆柱底面的(周长),宽等于圆柱的 ( 高 )。
思路分析:塔的顶端呈圆锥形,求塔的顶端的体积就
是求圆锥的体积。计算时先根据公式S底=π

出圆锥的底面积,再根据公式V
求出圆锥的体
积。
规范解答::圆锥的底面积: 3.14×(18.84÷3.14÷2)²
=3.14×9 =28.26(m²) 圆锥的体积:
×28.26×6 =2×28.26 =56.52(m³) 答:塔的顶端的体积是 56.52立方米。
20×2×3.14×60+202×3.14=8792(cm²) 答:做这个水桶至少需要8792平方厘米铁皮。
例3 一根钢管,长50厘米,外圆直径是10厘米, 钢管厚2cm(如下图)。铸造这样一根钢管需要 钢材多少立方厘米?
思路分析:求铸造这样一根钢管需要钢材的体积, 就是用大圆柱的体积减去中空的小圆柱的体积。
思路分析:瓶子正放和倒放时的容积与饮料的体积不
变,所以瓶子空余部分的容积相等。因此,饮料瓶的
容积就相当于一个高为(20+4)cm 的圆柱形容器的
容积,可推知饮料体积占瓶子容积的
,即
480mL的

确定瓶中饮料的体积占瓶子容积的几分之几是解答
此题的关键。
规范解答:20+4=24(cm) 480× =400(mL) 答:瓶内现有饮料400毫升。
3.一个内半径是10cm的饮料瓶里,饮料的高度为 4cm,把瓶盖拧紧倒置放平,无水部分是圆柱形, 高度为16cm,这个瓶子的容积是多少?

2020一年级数学下册3圆柱与圆锥1圆柱练习三精编课件新人教版

2020一年级数学下册3圆柱与圆锥1圆柱练习三精编课件新人教版
练习三
圆柱的侧面、底面及其之间的关系。
长方形
圆柱的侧 正方形 面展开图
长方形的长=圆柱的底面周长
长方形的宽=圆柱的高
沿高剪开
正方形的边长=圆柱的底面周长 =圆柱的高
平行四边形
不是沿高剪开
圆柱它是直直的,上下一样粗,有两个平的面, 是圆形。
圆柱各部分名称及特征
名称
意义
特征
图示
圆柱的底面
圆柱的上、下两 圆柱的两个底 个面叫做底面。 面是完全相同
的两个圆
圆柱的侧面 (上圆叫、柱做下周侧底围面面的。除面外)圆柱一的个侧曲面面是
O 底面
侧面

圆柱的高
圆柱的两个底面 之间的距离叫做 高。
圆柱有无数条 高,长度相等。
O 底面
折一折,想想能得到什么图形,写在括号里。
(长方体 )
( 正方体 )
( 圆柱 )
小芳给爷爷买了一个生日蛋糕(如图)。捆扎这个蛋糕 盒至少需要多长的彩带?(打结处大约用20厘米彩带)
圆柱的两个底面大小相 等,所有的高都相等。
40×2×2 + 20×2×2 + 20
圆柱的高
= 160 + 80 + 20
圆柱的底面直径
= 260(厘米)
答:少需要彩带260厘米的彩带。
围绕所示的轴旋转各个平面图形,将得到怎样的立体图形? 得到的图形哪个是圆柱?
圆柱
得到的图形是圆柱,底面半径是平面图形(长方形)的宽。
用一张长20厘米、宽15厘米的长方形纸卷成一个圆柱 形纸筒,纸筒的底面周长和高各是多少?
一个长方形可以卷 h=15厘米 出形状不同的两个
圆柱,圆柱的底面 周长和高变了。

北师大版小学一年级下册数学课件第一单元 圆柱与圆锥-第4课时 圆锥的体积

北师大版小学一年级下册数学课件第一单元    圆柱与圆锥-第4课时 圆锥的体积

1 3
×19.625×3.6=23.55(m3)
答:它内部的空间约是 23.55立方米
最新北师大版小学数学精品课件设 计
5.张大伯家有一堆小麦,堆成了圆锥形,张大伯量 得它的底面周长是9.42m,高是2m,这堆小麦的 体积是多少立方米?如果每立方米小麦的质量为 700kg,这堆小麦的质量为多少千克?
4
1 3 ×3.14×(4÷2)2×4≈16.75(cm3)
最新北师大版小学数学精品课件设 计
4.有一座圆锥形帐篷,底面直径约5m,高约3.6m。 ⑴ 它的占地面积约是多少平方米? ⑵ 它内部的空间约是多少立方米?
3.14×(5÷2)2=19.625(m2) 答:它的占地面积约是19.625平方米
最新北师大版小学数学精品课件设 计
2.计算下面各圆锥的体积。1 3×9×3.6=10.8(m3)
1 3 ×3.14×32×8=75.36(dm3)
1
3
×3.14×(8÷2)2 ×12=200.96(cm3)
最新北师大版小学数学精品课件设 计
3.如图,测量中经常使用铅锤。这个铅锤的体积是 多少立方厘米?
(1)5×3=15(cm)
(2)12×3=36(cm2)
最新北师大版小学数学精品课件设 计
最新北师大版小学数学精品课件设 计
底面积:3.14×(9.42÷3.14÷2)2=7.065(m2)
体积:
1 3
×7.065×2=4.71(m3)
质量: 4.71×700=3297(kg)
最新北师大版小学数学精品课件设 计
6.一个圆柱形橡皮泥,底面积是12cm2,高是5cm。 ⑴ 如果把它捏成同样底面大小的圆锥,这个圆 锥的高是多少? ⑵ 如果把它捏成同样高的圆锥,这个圆锥的底 面积是多少?

圆柱与圆锥圆柱不规则容器容积的计算方法ppt

圆柱与圆锥圆柱不规则容器容积的计算方法ppt

2023
圆柱与圆锥圆柱不规则容器容积的计算方法
CATALOGUE
目录
引言圆柱体的容积计算圆锥体的容积计算不规则容器的容积计算容器容积的计算应用研究成果与展望
01
引言
容积计算在实际生活中有着广泛的应用,如水利工程、化工、食品等行业。
对于一些不规则容器的容积计算,一般采用三维建模和数值计算等方法,但这些方法需要大量的人力和物力资源,因此研究圆柱与圆锥圆柱不规则容器的快速计算方法具有重要的实际意义。
根据圆柱体的体积公式,可以计算圆柱体的容积为:V=πr²h=3.14*(10/2)²*5=392.5立方厘米
圆柱体的容积计算实例
03
圆锥体的容积计算
$V = \frac{1}{3} \pi r^2 h$,其中r为底面半径,h为高。
圆锥体的体积公式为
$V = \frac{1}{3} \times \pi \times r^{2} \times h$。
圆柱形不规则容器
01
指底面为圆形,侧面为曲面或由直线和曲线构成的不规则圆柱体。
不规则容器的形状分类
圆锥形不规则容器
02
指底面为圆形或其它形状,侧面为曲面或由直线和曲线构成的不规则圆锥体。
其它不规则容器
03
指除圆柱形和圆锥形之外的不规则容器,如棱柱、棱锥、圆台、球台等。
圆柱形不规则容器的容积计算
圆锥形不规则容器的容积计算
圆锥体的体积也可以表示为
圆锥体的公式
圆锥体的直径D与半径r的关系为:$D = 2 \times r$。
圆锥体的高h与半径r的关系无直接计算公式,需要依据实际测量的数据锥体的底面半径为3厘米,高为4厘米,则其容积为
$V = \frac{1}{3} \times \pi \times 3^{2} \times 4 = 37.699111843077516$立方厘米。

人教版 圆柱的体积 圆柱与圆锥PPT教学课件(第1课时)

人教版 圆柱的体积 圆柱与圆锥PPT教学课件(第1课时)

近似长方形的长就是圆周长的一半,宽就是圆的半径,近似长方形的 面积就是圆的面积。所以近似长方形的面积是圆周长的一半乘半径, 所以圆的面积也就是圆周率乘半径的平方。
根据已知的条件求下面圆的面积。(单位:cm)
d=10cm
c=9.42cm
10÷2=5(cm) 3.14×5²
=3.14×25 =78.5(cm²)
答:需要2.512立方米木材。
尝试解决刚才的问题:
水杯底面直径是6cm,高是16cm, 这个杯子能装多少毫升水?
3.14×(6÷2)2×16 =3.14×9×16 =452.16(cm3) =452.16(毫升)
答:这个杯子能装45圆的半径和高,怎样求圆柱的体积?
?
h S
长方体、正方体的 体积都等于“底面 积×高”。
我猜想圆柱的体积也可 能等于“底面积×高”。
怎样把圆柱转化成近似长方体呢?
能不能像圆那样 把圆柱也转化成 近似长方体呢?
怎样把圆柱转化成近似长方体呢?
圆 柱 的 高 底面半径
圆柱底面周长的一半
把圆柱也平均分成若干份,然后拼成一 个近似长方体。请观察下,你有发现吗?
PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ 手抄报:/shouchaoba o/ 语文课件:w w w .1p p t .c o m/kejian/yu w en/ 英语课件:w w w .1p p t .c o m/kejian/yin g yu/ 科学课件:/kejian/ke xue/ 化学课件:w w w .1p p t .c o m/kejian/hu ax ue/ 地理课件:/kejian/dili /

《圆柱体积》圆柱与圆锥PPT课件

《圆柱体积》圆柱与圆锥PPT课件
九年义务教育六年制小学数学第十二册
圆柱的体积
怎样求它们 的体积呢?
圆的面积公式推导过程:
圆的面积公式推导过程:
πr
S=π r
2
r
2
S=πr ×r =π r
1、拼成的长方体的体积与原来的 圆柱体体积是否相等? 2、它的底面积变了吗? 3、它的高变了吗?
把圆柱的底面平均分的份数越多, 切拼成的立体图形越接近长方体。
如果已知圆柱底面的半径(r) 和高( h ),你会计算圆柱的 体积吗?
如果已知圆柱底面的直径(d) 和高( h )呢?
一、填表。
高 h 圆柱体积 V (平方米) (米) (立方米)
底面积
s
15 40
3
4
45 160
二、填空
1、一个长方体和一个圆柱的体积
相等,高也相等,那么它们的
底面积(
相等
)。
底面积×高
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
讨论题: 1、甲圆柱与乙圆柱谁的体积大? 2、它们的什么条件是相同的? 3、圆柱的体积大小与什么有关?

圆柱体的大小与底面积 有关!
高相等时底面积越大的 体积越大。
图2
将一个圆柱截成不相等的两段,哪个圆柱体积大?


下 上
当底面积相等时, 高越长的体积越大。
圆柱的体积=
体积越大。
大。

《圆柱的体积》圆柱与圆锥PPT下载

《圆柱的体积》圆柱与圆锥PPT下载
请你想一想,要知道这个粮囤能装多 少吨玉 米,就 要知道 这个粮 囤什么 ?
粮囤的容积:3.14×1.5²×2 =3.14×2.25×2 =7.065×2 =14.13 (m³)
粮囤所装玉米:14.13×750÷1000 =10597.5÷1000
=10.5975(吨)
答:这个粮囤能装10.5975吨。
三、知识应用
3. 学校建了两个同样大小的圆柱形花坛。 花坛的 底面内 直径为3m,高 为0.8m。如果 里面填 土的高 度是0.5m,两 个花坛 中共需 要填土 多少立 方米?
求两个花坛中共填土多少方就是求两 个底面 直径为 ( ),高为( )的圆柱的体积之和。
请你开动脑筋想一想,花坛里的土有 没有把 花坛填 满? 3m
二、探究新知
长方体的体积与圆柱的体积相等。 长方体的底面积等于圆柱的底面积。
长方体的高等于圆柱的高。
把拼成的长方体与原来的圆柱比较, 你能发 现什么 ?
二、探究新知
长方体的体积= 底面积 × 高
圆柱的体积= 底面积 × 高
V
S
h
圆柱体积计算公式是: V
πr²h =
二、探究新知
长方体的体积= 底面积 × 高
圆柱的体积= 底面积 × 高
V
S
h
圆柱体积计算公式是: V
πr²h =
10cm
二、探究新知
下图的杯子能不能装下这袋牛奶?( 数据是 从杯子 里面测 量得到 的。)
8cm
杯子的底面积:3.14×(8÷2) =3.14×4²
=3.14×16 =50.24 (cm2 )
杯子的容积: 50.24×10 =502.4 (cm3 )
(2) (8÷2)²×3.14×9=452.16(dm³)

六年级下册数学-3 圆柱与圆锥 1 圆柱 利用圆柱的体积求不规则物体的体积 人教版(共17张PPT)

六年级下册数学-3 圆柱与圆锥 1 圆柱 利用圆柱的体积求不规则物体的体积 人教版(共17张PPT)
六年级下册数学课件-3 圆柱与圆锥 1 圆柱 第5课时 利用圆柱的体积求不规则物体的体积 人教版(共17张PPT)
六年级下册数学课件-3 圆柱与圆锥 1 圆柱 第5课时 利用圆柱的体积求不规则物体的体积 人教版(共17张PPT)
随堂练习 (教科书第27页做一做)
1. 一瓶装满的矿泉水,小明喝了一些,把瓶盖拧紧 后倒置放平,无水部分高10cm,内径是6cm。 小明喝了多少水? 解: 3.14×(6÷2)2×10 =282.6(cm3) =282.6(mL) 答:小明喝了282.6mL水。
能不能转化成圆柱呢?
六年级下册数学课件-3 圆柱与圆锥 1 圆柱 第5课时 利用圆柱的体积求不规则物体的体积 人教版(共17张PPT) 六年级下册数学课件-3 圆柱与圆锥 1 圆柱 第5课时 利用圆柱的体积求不规则物体的体积 人教版(共17张PPT)
瓶子里的水倒置后, 体积没变,水的体 积加上18cm高圆柱 的体积就是瓶子的 容积。
(1)图①与图②空置部分的容积相同,
由此可知图①的控制部分的容积相
当于一个高是( 7 )cm的圆柱
25
14
18
形瓶子的容积。
六年级下册数学课件-3 圆柱与圆锥 1 圆柱 第5课时 利用圆柱的体积求不规则物体的体积 人教版(共17张PPT)
六年级下册数学课件-3 圆柱与圆锥 1 圆柱 第5课时 利用圆柱的体积求不规则物体的体积 人教版(共17张PPT)
3 圆柱与圆锥
1 圆柱
第5课时 利用圆柱的体积求不规则物体的体积
复习导入
dS h r
V=Sh V=πr2h
新课探究 (教科书第27页例7)
7 一个内直径是8cm的瓶子里,水的高度是 7cm,把瓶盖拧紧倒置放平,无水部分是 圆柱形,高度是18cm。 这个瓶子的容积是多少?
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

易错点
2.一个胶水瓶(如图),高12 cm,瓶子 的底面半径是2 cm,当瓶子正放时, 瓶内胶水面高8 cm,瓶子倒放时, 空余部分高2 cm,这个瓶子的容积 是多少毫升?
3.14×22×(8+2)=125.6(cm3)=125.6(mL) 辨析:误将瓶子的高当作两个图形所形成的圆柱的高。 瓶子的容积应是底面积×(有胶水的高+空心部分的高)。
知识点1
将不规则容器的容积转化成圆柱形容器的 容积的计算方法
1.一个内直径是10 cm的圆柱形瓶子(如图)里,水的
高度为6 cm,把瓶盖拧紧后倒置放平,无水部分
是圆柱形,高度是15 cm,这个瓶子的容积是多
少毫升?
想:瓶子的容积实际上是( 水 )的体积与(空气)的
体积的和。
水的体积:_3_.1_4_×__(_1_0_÷__2_)_2×__6_=__4_7_1_(_c_m__3)_=__4_7_1_(_m_L__) ___ 空气的体积:
不规则容器容积的计算方法

教材习题
1.两个底面积相等的圆柱,一个高为4.5dm,体积 为81dm³。另一个高为3dm,它的体积是多少? (选题源于教材P29第9题)
81÷4.5×3=54(dm³)
2.一个圆柱形玻璃容器的底面直径是10cm,把一块 完全浸在这个容器的水中的铁块取出后,水面下 降2cm。这块铁块的体积是多少?(选题源于教 材P29第10题)
_3_.1_4_×__(_1_0_÷__2_)_2×__1_5_=__1_1_7_7_._5_(_cm__3_)=__1_1_7_7_._5_(m__L_)________ 瓶子的容积:_4_7_1_+__1_1_7_7_.5_=__1_6_4_8_._5_(m__L_)______________ 答:这个瓶子的容积是__1_6_4_8_.5__mL。
提升点 1 不规则容器容积的变式练习
3.一种药水瓶的瓶身是圆柱形(不包括瓶颈),容积是 10 mL,现在瓶中装有一些药水,正放时药水高度 是4 cm,倒放时,空余部分的高度是1 cm,瓶中现 有多少毫升药水? 10 mL=10 cm3 10×[4÷(4+1)]=8(cm3)=8(mL)
3.14×(10÷2)²×2=157(cm³)
3.一种电热水炉的水龙头的内直径是1.2cm,打开水 龙头后水的流速是20厘米/秒。一个容积为1L的保 温壶,50秒能装满水吗?(选题源于教材P29第11 题)
3.14×(1.2÷2)²×20×50=1130.4(cm³) 1130.4 cm³=1.1304 L>1 L 50秒能装满水。
相关文档
最新文档